Classification of recursive functions into polynomial and superpolynomial
complexity classes

Carsten Scirmann Jatin Shah
Department of Computer Science Department of Computer Science
Yale University Yale University
New Haven, CT 06511 New Haven, CT 06511
carsten@cs.yale.edu jatin.shah@yale.edu
Abstract (ALPL) [5, 18]. We measure the complexity of an algo-

rithm as the size of the resulting derivation (should it exist),
We present a decidable yet incomplete criterion for clas- in terms of the size of the input arguments. The main con-
sifying recursive functions into polynomial and superpoly- tribution of this paper is a decidable criterion that decides
nomial complexity classes. We circumvent the usual ne-if a logic program runs in polynomial time. Our criterion
cessity for encoding domains on Turing tapes by employ-runs in time depending only on the size of the program and
ing proof search for uniform derivations in a logic pro- is independent of the inputs to the program.
gramming setting as the underlying model of computation.

Wi bout f . lati q Interpreting functions as relations and logical programs
e reason about functions as relations and measure comsyq\ys ys to reason about the run-time of an algorithm in

plexity in terms of the height of the derivation indexed by yo s of the size of a uniform derivation where each infer-

the size of the input. Our notion of complexity coincides gcq is counted as one computation step, and not in terms of
with that characterized by Turing machines. This way, We y,e nymper of execution steps of a RAM or Turing machine.
can let functions range over flrstjorder, h|gher-.order, O Functions as relations alleviate many restrictions commonly
dependently-typed domains and still examine their complex-, s ciated with RAM machines. Arguments that are usually
ity in @ meaningful way. elements of a freely generated term algebra need not be ar-

tificially encoded as data objects in RAM memory, but can

be analyzed and constructed as they are. The technique de-
1. Introduction veloped in this paper has many applications as many logical
formalisms possess a uniform derivations property, for ex-
ample, the Horn or hereditary Harrop fragment of first-order
logic, and even the logical framework LF. Thus, the com-
plexity of computational counterparts that are commonly
associated with representational particularities, for exam-
ple, dependently typed, linear, or higher-order encodings,
can be easily studied in extensions to the framework pre-
sented here.

Cobham [6] gave the first functional characterization
of a complexity class by exhibiting an equational schema
that generates precisely the poly-time functions over nat-
ural numbers. Later, in their seminal papers, Bellantoni
and Cook [2], and Leivant [14, 15] have given a recursion-
theoretic characterization of polynomial time computable
functions. Based on that work, Bellantongt al. [3]
and Hofmann [11] have developed type systems where all The search for uniform derivations is in general
well-typed functions correspond to polynomial time com- parametrized by a unification algorithm. For the purpose
putable functions. On the other hand, Ganzinger andof this work, where functions are encoded as logic pro-
McAllester [8], and Givan and McAllester [9] have given grams, all input arguments may be assumed to be ground
various criteria for identifying polynomial time predicates (i.e. terms that do not contain free variables). Every subgoal
in bottom-up logic programs. In this paper, we chose to in the logic program will have a logic variable in its output
represent recursive functions as relations between input angosition, to bind (but not match) the result of the subcom-
output arguments hereby lifting the underlying model of putation, which will be a ground term again. The running
computation away from Turing and RAM machines into time of the unification algorithm is a substantial part of the
the world of logic programming and the search for uniform overall proof search runtime. Therefore, we require of each
derivations and Abstract Logic Programming Languages function that we analyze to trigger only runs of the unifi-

cation algorithms whose running time can be bounded by P (X1, X2, . . ., Xn; Y1, V2, - - ., Ym), the X’s correspond to the
a polynomial in the size of the pattern. fRdrent term al- input arguments ang;’s correspond to the output argu-
gebras require domain specific unification algorithms. For ments. The value of the function is computed by performing
example, in our setting, the runtime of first-order unification a proof search where the input arguments are ground and
restricted to linear patterns is bounded by polynomial in the the output arguments are free logic variables. On successful
size of the pattern. Higher-order unification with depen- return, the output arguments are ground.
dent types is in general not decidable unless it is restricted We represent input and output arguments in simply-
to Miller patterns [17] (each existential variable is applied typed A-calculus shown below. Further, we disallow non-
only to pairwise distinct parameters). In addition, variables canonical terms (terms wirredexes). Later, in Section 4,
must occur linearly, which can only be achieved if redun- we shall show how to extend our results to programs with
dant information is removed from the pattern ahead of time. non-canonical terms.

The central contribution of this paper is a criterion that

decides if a logic program can be executed in polynomial Zypes_ T A f 3' AA—)NBR
time. Informally, it consists of two parts. The first part re- anonical 1 erms MN o= AN
Atomic Terms R = Cc|Xx|RN

quires that the sum (of the sizes) of all recursive arguments
is not larger than t.he sum (of the sizes) of all input' argu- e are only considering logic programs which corre-

ments to the function. In the second part, we require thatgond to functions. This subclass of logic programs satisfies
all auxiliary (non-recursive) functions that take recursively o important properties. First, the predicates correspond-

computed arguments as inputs are non-size-increasing. lng to the functions have a well-defined mode behavior and
these conditions are satisfied, we show that the search foy proof search that corresponds to function computation

uniform derivations will terminate in a number of steps that g non-backtracking. Second, we only need to biggher-
is bounded by a polynomial in the size of the input argu- qrger patterng7] to represent the terms in a logic program.
ments. The technique apphes to various Iog_lcal formalisms Higher-order patterngire simply typedi-terms whose free
and handles the case of higher-order encodings correctly. ariablesx are only applied to a sequence of distinct bound
The paper is organized as follows. First, we give a gen- yariaples, i.e. XxX...X,). For example, ifc is a con-
eral theorem for computing complexity of integer-valued giant 1x Xx andcX are higher order patterns bXt is not
recursive functions. The criteria we describe in Section 3 4 higher-order pattern. It has been shown that unification
for classifying recursive functions are based on this theo-ig gecidable when only higher-order patterns are allowed.
rem. We develop these conditions in two stages. In Stagepresently, we also restrict ourselves to functions where a
1 we restrict ourselves to funcuoqs where outputs of re- variable does not appear more than once in an input posi-
cursive calls are not provided as input to auxiliary func- tion and disallow patterns in output positions of any sub-
tions used. In Stage 2, we relax this condition, but now re- goa|s. This ensures that unification take time polynomial in
quire that these auxiliary functions are non-size-increasing.ipe size of the pattern (See section 5). Later, we shall show
Aehlig, et al. [1] and Hofmann [12, 13] have also used the Lo to include such functions in our analysis.
latter condition (ongmally. prqposed by Caseiro [4]) to ex- We shall present our results in the logic programming
tend Hofmann’s polynomial-time type system to include a language shown below. The go@sand clause® are rep-
larger class of functions. Finally, in Section 4, we argue that (ogented using Horn clauses and the teNnare simply-

our results can be extended to higher-order hereditary harTyped A-terms in canonical form. Predicates are given
rop formulas and illustrate the expressiveness of our resultsOy Pt(Ni,. .., Nn; My, ..., My) with input and output argu-

with some examples. ments separated by ;.

2. Functions as logic programs Goals G u= TIP
Clauses D .= GoD|V¥x:AD|P
Predicates P ::= Pf(Ng,..., Ny My,..., Mp)

We are primarily interested in studying general re-
cursive functions and classifying their running time into

complexity classes using syntactic criteria. We shall Often we find it convenient to reverse the direction of
represent the functions by predicates where a functiong 5 D and useD ¢ G instead.c is left-associative.

Y, ¥2, ..., ¥m) = f(X1,%2,...,X%,) is denoted by a pred-

icate P+ (X, X2, ..., Xn; Y1, Y2, - . ., Ym). We represent func- Definition 2.1 For a clause D or a goal G, we define
tion computation by restricting ourselves to a particular head(D) andhead(G) as given below

subclass of logic programs whose argument positions have

a well-defined meaning with respect to input and out- head(Ps(:;) Ps

put behavior of ground terms. Thus, in the predicate head(Vx: AD) = head(D)

Programs ¥ == -|¥,D

Goals: 3. Syficient Conditions for polynomial and su-
DeF ¥>D>P

757 9-Tue F5p g-Atom perpolynomial complexity classes
Clauses: In this section, we shall describe criteria for classifying
F S p>p SAOM recursive functions into polynomial and superpolynomial
complexity classes. These criteria are decidable and can be
F - [yx]D>P e Exists FoD>P F-5G Imp checked in time depending only on the size of the logic pro-
F = VIx:AD>P F—->Go>Db>»>P gram corresponding to the function. These criteria are suf-

ficient criteria and there will be logic programs that would

Figure 1. Proof search semantics for the Horn belong in a complexity class but will not satisfy our criteria.

fragment Thus, a checker implementing these criteria can only have
two responsegesanddon’t know
First, we shall present a general theorem on integer val-
head(Go D) = head(D) ued recursive functions given by
T = XM T+ f(x) ifx>K 1
Proof search in any logic programming languageasi- TX) = b ifl<x<K @)

orientedif every compound goal is immediately decom-

posed and the program is accessed only after the goal hasvherex, x; € Z* and there exists functiorg(-) (not de-
been reduced to an atomic formula. The proof search ispending onT()) such thatg = gi(x) foralli = 1,...,m
focusedf every time a program claud® is considered, it such thatg < x, eachf(X) is an integer valued function de-
is processed up-to the atoms it defines without the need tdfined onZ* (not depending oA (-)), b andK are positive
access any other program clause. Logic programming lan-integers; andanis an positive integer constant.

guages whose proof search satisfies these two properties are

called Abstract Logic Programming Languages (ALPLs). Theorem 3.1 ([20]) Given a recursive function (K) de-
We have given the proof search semantics of the Horn frag-fined in equation 1. If ¢x) is a monotonically increasing
ment in Figure 1. Itis not hard to verify that this language is function such that) > d > Oforall 1 < x < K, and
an ALPL. Whenever a variableis replaced by a logic vari- X = XiZ; X, then there exists a constantx 1 such that
able, we denote it by In reality, we replace the variable by T(X) < &X*f(x) forall x > 1.

the actual proof term which is guessed appropriately. .

The interpreter succeeds on the g@abiven a program f (xljoi eé?)?)pges, >lff>(xix/_3 wa(LL)L(i %)J * (;S)E(]A(;J)O;Lh;} thh:nn d
¥ if and only if there is a uniform proof of the judgment N - ' '
¥ — G. In the ruleg_Atom an appropriate clause corre- wedkfnc())w t_hitfix)_: 1f(x — 1+ f()l(-~ Z)J.r Il V\I/her;]_x 22
sponding to the godb is selected. There is a proof of the in;_‘ (x()l)_+ (E() 2_) Is not a polynomial. - In this case,

judgment” — D > Pifand only if head oD unifies with In fact, the theorem can be generalized to a set of func-

P. . . .
For example, the logic program correspond- tions7” = {Ta(1). T2(). - .. T(")} where eacTi() is defined

ing to the Fibonacci function is given by as
F = {¥YN. + (z,N;N),YN7:NoM. + (N;,M;Np) > Ti(X) = anlTIj(Xij)"‘ fi(x) if x> K
+(sN1, M; sNy), fib(z; s 2). fib(s z; s 2), VM1 M2N. + T = b f1<x<k @

(M1, M2; M) o fib(N; M) > fib(sN; My) > fib(s sN; M)},
where the constants s, andfib are appropriately defined. wherem, K; andb; are positive integer constants, edgk
In this remainder of this paper, we shall omit the universal {1 ...k}, everyf,(x) is an integer-valued function defined

guantifiers whenever there is no confusion. onZ* (not depending off (-)), X, %;j € Z* andx;;’s depend
For a logic progran¥, we denote a proof search deriva- only onx.

tion for a goalG by D :: ¥ — G and measure the size

of this derivation as the number of inference rules in the Theorem 3.2 Given a set of recursive functiong =
derivation. Later in Section 5, we shall show that every rule {T1(:), T2(-), ..., Tk(:)} such that each function is given by
can be implemented on a RAM machine in a constant num-equation 2. If for alli=1,...,k:

ber of steps.])))
1. f(-) are monotonically increasing functions such that

Definition 2.2 Given alogic progran¥ and a proof search fi(x) > di > 0forall 1 < x < K.
derivation®? :: ¥ — G, we define the size @, sz(D), as
the number of proof search inference rule<in 2. x> ZTll Xij

Programs:

Goals: — pp.empty head(D) ¢S s 7 poly, pp-clausel
sz, (T) -0 s - poly; ts 7, D poly;
Clauses: head(D) € S +s -/D poly; s F poly;
sz,(G>D) = sz(D) +s 7, D poly; pp-clause2
szy(Vx: AD) = szy(D) Clauses:
Predicates:] < A/P poly; pc_Atom <Zhea§fé)ss sz(G) < szi(P)>
Szi(P(NL cee Nn,)) = Zi:]_ #(NI)
. m
Szo(P(;My,...,Mm)) = X7 #(M) rs AG/Dpoly, head@eS o)

ts A/G D D poly;

ts A,G/D poly; head(G) ¢S +r ¥ polyy
+s A/G D D poly;

Figure 2. Size function for goals G and pc_Imp2(sz(G) < fs(szi(D)))

clauses D (u=ior u=0) (wherehead(D) € T and fg(-) is a polynomial)
Fs A/D poly;
Fs A/VX: A.D poly; pe-Forall
then there exists a constant £ 1 and a monotonically)) N)
increasing function &) such that T(x) < cXF(x) for all Figure 3. Syficient conditions for polynomial

x> 1. time predicate (Stage 1)

For the remainder of the paper, we shall assumefthat
and fj(x) are polynomials. In this case, the functiohéx)
andT;(x) are bounded by polynomials as well. In general,
f(X) or fi(X) could be any set of monotonically increasing
superpolynomial functions closed under composition and

Definition 3.1 (goals) Given a clause D, we define the set
goals(D) as given below.

O : goals(P) = ¢
all the results in this paper still hold. _ goals(Go D) = (G} U goals(D)
We present our result in two stages. In Section 3.1 we goals(¥x: AD) = goals(D)

present the first stage as a simplified version of our general

criterion that only applies to functions whose recursively Definition 3.2 (Mutually recursive predicates) Given a
computed values can only be returned from a computationlogic program¥, a set S of predicates is said to be mutu-
but never passed on to subsequent computations in form oflly recursive if and only if for any predicatesi Py € S
auxiliary function calls. In Section 3.2, we describe the cri- there exist clauses DD, € ¥ such thathead(D;) = Py,

terion in its most general form. head(D,) = Py and there exist a goals Ge goals(D;)
and & € goals(D,) such thathead(G;) = Py and
3.1 Restricted Auxiliary Function Calls head(G,) = P;.

We generalize Theorems 3.1 and 3.2 to functions on ar- " '9ure 3 shows a deductive system for identifying logic

bitrary simply-typedi-terms. First, we shall begin by defin- programs corresponding to polynomial timg functions. The
ing an appropriate size function for terms which ensures that™/|SPP-empty, pp_clausel andpp_clause2 simply check
the terms can be represented on a RAM machine in spacéhat all clauses which compute the function we are inter-

proportional to the size of the terms. (See section 5). Theeszled in sahﬁfy the qgterla. dT'he ”;]IBSAtO(;n' pcb,lmpl q
size function # for simply typed-terms counts the number andpc_mp2 have a side condition that needs to be proved.

of variables and constants in the term. Similarly, the size of V& have omitted the proofs of those conditions in our for-
a LF goalG or a clause is defined usingzi(-) andsz, (") mal system, but it could be implemented in standard theo-

depending on whether we wish to compute the sizeit rém provers using, say, an ir_n'plementati.on of Pean0’§ arith-
or outputargumentssz(G) computes the sum of #-sizes of metic. If any of those cond_ltlons contain output varlgbles
all theinput arguments in the go& andsz (D) computes from oth_er goals, then we will n_eed a!ddmonal properties of_
the sum of #-sizes of all theput arguments in predica the predicate whose output variable is used. For example, if

in the clause. It is shown in Figure 2. the predicate is of the form (c X; Z) c g(X;Y) c f(Y;2),
then we need to show that¥(< #(c) + #(X). However,

#X) =#c0) = 1 unless vt\)/Ie can ﬁn?1 a reIaﬁioanetween(l)#aq‘d #(Xk) we A
B are unable prove that result. For example, if we know that

#RN) = #R) +#N) #(Y) < #(X) for all inputs X, i.e g is a non-size increasing
#AXN) = #(N) function, we can immediately prove this result. In general,

we could use any property of the auxiliary functions that

can assist us in proving the required condition. These prop-

erties could be provided either by the user or implemented
in the polynomial time checker.

For every clause, the rulec_Atom guarantees that the
sum of the sizes of the recursive calls does not increase

Theorem 3.3 (Stage 1)Given a progran¥ and a set S of
mutually recursive predicates frofi such thats F poly;.
Given a goal G such thdtead(G) € S, ifD 1 F — G,
then there exists a monotonically increasing polynom{gl p
(not depending on the ground input terms of G) such that

This condition is based on Theorems 3.1 and 3.2. The rulesz(D) < p(szi(G)).

pc_lmpl ensures that the size of the argument to a recursive

call is strictly less than the original input. Finally, we re-
quire that input to the auxiliary functions is a polynomial in
the original input in the rul@c_Imp2.

The main result of this paper is shown in the lemmas and
theorems below. We have already defyoals(D) as the set
of all subgoalss in a clauseD. Now, GOALS(D) as the set
of all immediate subgoal derivatioBg :: ¥ — G in D.
The diference lies in the fact that godlse goals(D) have
free variables while those goad € GOALS(D) have no
free variables.

Definition 3.3 (GOALS) Given aclause D and a predicate
P such thahead(D) = head(P) and a derivatiorD :: ¥ —
D > P, we define the s@OALS(D) as given below.

GOALS(F 5 P>P) = ¢
Dl 1)2
GOALS[fF>D>P ¥ -G] = {D,} UGOALS(D;)
F—->Go>D>»P
o
coaLs| F = [y/xD>P GOALS(D')
F >VYXx:AD> P

Lemma 3.1 Given a logic progran¥ and a set S of mutu-
ally recursive predicates frort. Given a predicate P and
a clause De ¥ such thathead(P) = head(D) € S, if D ::

F — D > P, thensz(D) = ¥ p.eccoaso) $2(Ds) + Cp
where G is a constant depending only on the structure of
D and not its input terms.

Lemma 3.2 (Stage 1)Given a logic prograny and a set
S of mutually recursive predicates fraf Given a predi-
cate P and a clause B ¥ such thahead(P) = head(D)
S and& :irs A/D polyy, if D :: F —» D > P, then

1. Forall Dg :: F —» G € GOALS(D), if head(G) € S
thensz(G) < sz(P) and ifhead(G) € T # S, then
Fr F poly; andsz;i(G) < fg(szi(P)).

2. Y oeiroeeconso) SZi(G) + Ygea SZi(G) < szi(P).
head(G)eS

Lemma 3.3 Given a logic programF and a set S of mu-

tually recursive predicates front such thatrs ¥ poly;.

Given a predicate P and a goal G ,9 :: ¥ — G, then

there exists a clause B # such thahead(D) = head(P) €

S and a sub-derivatio®’ :: ¥ — D > P such that

sz(D) = sz(P’') + Cs where G is a constant depending

only on the structure of G and not on its input terms. Also,

szi(P) = szi(G) andsz,(P) = sz,(G).

Example 3.1 (Combinators) The combinators c:= S |

K | MP c¢; ¢, that are prevalent in programming lan-
guage theory are represented as constructors of tygeb.
We study the complexity of the bracket abstraction algo-
rithm ba, which converts a parametric combinator M (a
representation-level function of tymemb — comb) into

a combinator with one less parameter (of tyg@mb) to
which we refer as M The bracket abstraction algorithm
is expressed by a predicate relating M and.N#or any N,
combinator, it holds thamP M’ N corresponds to ¥N/xX]

in combinator logic. Lef be defined as the following pro-
gram.

ba (Ax:
ba (Ax:

comb. x; MP (MP S K) K)
comb. K; MP K K)
ba (Ax: comb.S; MP K S)

ba (Ax: comb.MP (C; X) (Cz X); MP (MP S D;) D)
Cc ba (Ax: comb.C; x; D7)
C ba (Ax: comb.C; x; Dy)

It is easy to see thaty?,#(1x:comb.C; X) <
#(Ax: comb.MP (C; X) (C2 X)), and hence,, ¥ poly.
O

3.2 General Auxiliary Function Calls

The second stage of our criterion allows us to rea-
son about the complexity of functions, where recursively
computed values may be passed to auxiliary functions as
well. We require that such auxiliary functions are non-
size-increasing. We say that a predic&gis non-size-
increasing if and only if, the sum of the sizes of the out-
put arguments is never greater than the sizes of its in-
put arguments (within an additive constant, isz,(G) <
szi(G) + C, whereC is independent of the input variables of
G). The concept of multiplicity defined below will be used
in building a formal deductive system to identify non-size-
increasing predicates.

Definition 3.4 (Multiplicity) Given a clause D, a goal @
goals(D) the @ and B multiplicities of D are defined as
follows. Letpred(D) be defined as

predP) = P
pred(G> D) = pred(D)
pred(¥x: AD) = pred(D)

1. a(D) is defined as the maximum number of times any
input variable inpred(D) appears in the output posi-
tions ofpred(D).

2. Bs(D) is defined as the maximum number of times any
output variable in G appears in the output positions of
pred(D).

For example the values af(YN;NoM. + (N3, M; Ny) o
+(SN1, M; sN2)) and g, min;) (YNIN2M. + (N1, M N2) o
+(sNz1, M; sNy)) corresponding to the second declaration of
addition+ operation are 0 and 1 respectively. Similarly, for
a clause of the fornP(N; cNN), a(P(N; cNN)) is given by

2.

The judgment corresponding to the non-size-increasing
property is written ass ¥ nsi and the corresponding de-
ductive system is given in Figure 4. The first three rules
examine the non-size increasing property for every clause
defining a function inS, and the following four rules for
each type constructor. For a claudgthe contribution to the
size of the outpusz,(D) due to the outputs from the sub-
goals ofD (stored inA) isgiven byy. cn Bc(P)szi(G)+

head(G)eS
GeA

Bc(P)sz,(G) and due to the the original inputs of
head(G)¢S

D is a(D)sz;j(D). The rulensi_Atom ensures that the sum of
these two contributions is always less than the total original
inputsz;(D). It will be shown in Theorem 3.4 that this con-
dition is suficient to ensure that the predicate corresponding
to the clausé is non-size-increasing.

Definition 3.5 Given a clause D, and goals G and H in
the clause, Hw~, G iff variables of G in output positions
appear in input positions of H and no variable of G appears
more than m times in H.

Definition 3.6 (Dependence Path)Given a clause D and
goals H = Gg,G;,...,G6, = G € goals(D), a de-
pendence path from G to H ofngth n denoted by

H « G is a sequence of goal and positive integer pairs
(G1,my), ..., (Gn = G, my) such that for each pair of goals
Gi,Giyp fori =0,....,n—1, G vy, Gi;1. Thewidth of
this dependence path is definedigs, m.

For example, consider the example of Fibonacci numbers

rsH<D tsH<D
rs H<vx: AD dp-Foral TGS b dPImPLH ¢ G)
head(G) € S
sH<GoSD dp_Imp2(H «~ G)

head(G) ¢S +sG<D
ts H<G>D

dp_Imp3/1(H « G)

head(G) ¢S +sH<D
tsH<G>D

dp_Imp3/2(H ¢~ G)

rs H#4 D
ts H#4aVXx:AD

ts H#4 D

ndp_Forall sH#G5D

ndp_Imp1(H ¢+ G)

head(G) ¢S +rsG#D
rsH#G>D

tsH 4D

ndp_Imp2(H «~ G)

Figure 5. Proving existence and non-
existence of dependence paths

It is worth noting that dependence paths are structural
property of a logic progran¥ and hence identifying de-
pendence paths is independent of any of the inputs to the
program.

Definition 3.7 (Set of Dependence Pathspiven a clause
D and two goals GH € goals(D), H <* G is the set of all
dependence paths from G to H

For a clausd® and a goaH, we define a judgmemis H «

D which is provable if and only if there exists a gdale
goals(D) such thathead(G) € S and there is a dependence
path fromG to H. Similarly, we define the judgmeng H #

D. Figure 5 gives the deductive systems corresponding to
these judgments.

Now we can define an extended version of the conditions
given in Figure 3. These conditions are given in Figure 6
below and they generalize the conditions given earlier. In
this casefs F poly;1 2 means that eithers # poly; or
ks F poly, is true. According to these conditions, if out-
put of a recursive call (output variables Gf € goals(D)
such thathead(G) € S) appear in input positions of an
auxiliary function (input positions oH € goals(D) such

shown below. In this case, there are two dependence pathghat head(H) ¢ S) then we require the auxiliary func-

each of length 1 fronfib(N;X) to +(X,Y;Z) and fromfib(s
N; Y) to +(X,Y;2).

fib(z;sz) c T

fib(sz;sz) ¢ T
fib(s (s N); Z) c fib(N;X)
c fib(s N;Y)
c +(X)Y;2)

tion to be non-size-increasing. This condition is ensured
through the rulep_Imp2/1. As we will show later, these
conditions actually ensure that the size of the output of the
logic programs which satisfy these criteria is polynomially
bounded in their input. Thus, condition given in the rule
pp_Atom is similar to the conditiorpc_Atom of Figure 3.

In the rulepc_Atom we require that the sum of all the in-
puts to the recursive calls is not larger than the original
input. In this case, we require a similar condition, except
that we count the inputs to those recursive calls whose out-

Programs:

. head(D) ¢S +sF nsi head(D) €S +s-:/Dnsi tsF nsi
ks - nsi nsi.empty rs 7, D nsi nsi_clausel rs 7.D nsi nsi_clause2

Clauses:

nsiAtom< >, Be(Psz@)+ D Bo(P)szo(G) < (1- a/(P))szi(P)>
+s A/P nsi GeA GeA
head(G)eS head(G)¢S

ts A,G/Dnsi head(G) € S
+s A/G D D nsi

nsi_Imp1(sz;(G) < sz(D))

ts A,G/Dnsi head(G) ¢S +t ¥ nsi
+s A/G D D nsi

pc_lmp2

(whereT is a set of mutually recursive predicates such Heaid(G) € T)

+s A/D nsi

m nsi_Forall

Figure 4. Syficientconditions for non-size-increasing predicates

puts have been used either as input to other predicates orin andrt F nsi.
the final output (with appropriate multiplicities). Thus, the B)
mY es Bo(P)szi(G) accounts for the first case and o Forall D :: ¥ — G € GOALS(D), if head(G) <

head(G)e T # S andS i+ G ¢ D, then there exists a polynomial
Z Z Br(P)szi(G)width(p) for the second. fo(+) such thatszi(G) < f(sz(D)) andrs ¥ polys,.
hsau(eﬁ)es heaE(Eé)zS
peH<*
This ensures that the input arguments to dbalre poly- ,
nomial in the original input arguments of the claude ¢ Z Z Pr(D)szi(G)width(p) *
Hence, the conditiopc_Imp2 given in Figure 3 (stage 1) head(Fhes nff@zs
is satisfied.
Lemma 3.4 Given a programf and a set S of mutually Z Bs(D)szi(G) | < szi(P) where
recursive predicates frorf. Given a predicate P and a Y
clause De ¥ such thathead(P) = head(D) € S. IfD :: head(G)eS
F — D> P, then A =AU{G|Dg :: F — G € GOALS(D)}.
sz,(P) < a(D)sz(P) + Z Bas(D)szo(H) + C
Dy :F —»HEGOALS(D) Lemma 3.6 Given a logic prograny and a set S of mutu-

ally recursive predicates frof. Given a predicate P and
a clause De ¥ such thathead(P) = head(D) € S and
ts A/Dnsi. If D .. F - D> P, then

where C is a constant depending only on the structure of D
and not its ground input terms.

Lemma 3.5 (Stage 2)Given a logic progran¥ and a set

S of mutually recursive predicates from Given a predi- e For all D € GOALS(D), if head(D) € S then

cate P and a clause B ¥ such thahead(P) = head(D) € sz(G) < szi(P).
S andrs A/D poly,. o For all Dg € GOALS(D), if head(D) ¢ S thenrt
e Forall Dg :: ¥ — G € GOALS(D), if head(G) € S,
thenSZi(G) < Szi(P)- * z:hea((BiE(AG/)eSBG(D)SZI(G) " Z:hea((BiE(AG’)ezS'BG(D)SZO(G) =

1-a(D))szi(P) whereA’ = AU{G GOALS(D)).
o Forall Dg :: F — G € GOALS(D), if head(G) € (1-a(D))sz(P) where (G0 € D))

T # S andS - G« D, then there exists a polynomial Theorem 3.4 (Non-size-increasing functionsGiven

fa(-) such that a logic program¥ and a set S of mutually recursive
(©G) < f (P H)width predicates frony¥ such that-s T nsi. 1O F -G, then
sz(G) < fo(sz(P)) + Z szo(Hwidth(p) sz,(G) < szj(G) + C where C is a constant depending on

Dy :F —HeGOALS(D)

head(H)eS i
poases the logic prograny .

Programs:

head(D) € S +s /D poly, +s F poly, head(D) ¢ S +s F poly,
————— pp-empt _clausel _clause2
ks - poly, PP pYy ks F,C: D poly; PP ks F,c: D poly, PP
Clauses:
ppAlom(> Ba(Psz@)+ Y, > Bu(P)sz(Gwidth(p) < sz,(P)>
+s A/P poly, heagfé)es head)es headG)es
peH<*G
+s A/D poly; rs A,G/D poly, head(G) € S _ _
TS A/Vx . AD poly; pp-Forall < A/G 5 D poly pp-Imp1(szi(G) < sz;(D))
ts A,G/Dpoly, head(G) ¢S +sG<D ry F nsi rr F polyyy
— pp-lmp2/1

ts A/G > D poly,

(whereT is a set of mutually recursive predicates such teatd(G) € T)

ks A,G/D poly, head(G) ¢ S

I—sGﬂD

Fr F polyuz

+s A/G D D poly,

pp-Imp2/2

(whereT is a set of mutually recursive predicates such teatd(G) € T)

Figure 6. Syficientconditions for polynomial time predicate (Stage 2)

Theorem 3.5 (Stage 2)Given a progran¥ and a set S of
mutually recursive predicates froffi such thats F poly,.
Given a goal G such thdtead(G) € S, ifD 1 F — G,
then there exists monotonically increasing polynomidly p
and p(:) (not depending on the ground input terms of G)
such thatsz,(G) < p(szi(G)) andsz(D) < p'(szi(G)).

Example 3.2 (Merge Sort) Consider a representation of a
list using the constantsil andcons. The logic prograny?
corresponding to merge sort is given below.

mergesort(nil; nil)
mergesort(cons X XS W)
c split(cons X XsY,2)
c mergesort(y; y1)
C mergesort(z; z;)
c merge(Y1, Z; W)
split(nil; nil, nil)
split(cons X nil; cons X nil, nil)
split(cons x (cons y X9; cons X X, cons Y Y1)
C split(Xs X1, 1)
merge(nil, w; w)
merge(Ww, nil; w)
merge(cons X XS cons y yscons u 2
c compare(X,Y;t)
C merge’(t,cons X X§cons y ys U, Vv, W)
c merge(V, w; 2)

merge’(true, cons X XS cons y y§ X, XS cons y y9
merge’(false, cons X X§cons y ySY, cons X XSy9)

In the example given abowempare(x, y; t), tistrue if X <

y and t isfalse otherwise (clauses omitted for brevity). It is
not hard to see thatcompare 7 POly1

It is also clear that kg F poly: as #(Xs) <
#(cons (cons y x9) for the third declaration obplit. The
predicatemerge’ is also in polynomial time as it is not re-
cursive. We can also check thaterge 7 nsi. In this case,
the side condition ofisi_Atom is satisfied because(:) = 1
andpBg(-) = 0 for both declarations ofmerge’. In fact, we
can show thasz,(merge’(G)) = szij(merge’(G)) — 2 when
given some input through a goaltG

We can also show thatege & poly;. For this we need
to show that#(v) + #(w) < #(cons x x9 + #(cons y y9. It
is true becausenerge’ is non-size-increasing and we know
that1+#(cons x X9 +#(cons y y9 —2 = #(u) + #(V) + #(w).
We can also show thamerge is non-size increasing. Here
a(merge’(-)) = a(merge()) = 1 and we need to show
that #(cons) + #(u) + #(v) + #(w) < #(cons X X9 +
#(cons y y9. This follows from the fact thaherge’ is
non-size-increasing.

Finally, it needs to be shown thakergesort F pOly, as
the outputs yand z of mergesort are given as inputs to the
predicatemerge. In this casefmergesort(-) = 0 for both the
mergesort subgoals an@merge(-) = 1 for the second decla-
ration of mergesort. There are also two dependence paths
of length = 1 from mergesort to merge. Thus, this condi-
tions in Figure 6 require thainerge is non-size-increasing
and#(y) + #(2) < #(cons x x9. This follows from the fact
thesplit is non-size-increasing.

1This is not shown in the formal system given in Figure 4 for the sake
of clarity, but is easy to incorporate in it.

Goals: For example, if A= B = exp thensubst®™P®® s given by
De¥ F ->D>P

g-True g-Atom
For F-oP subst®PP(ax.x, V; V) C T.
FDoG cnew F — [c/XG subst®*<P(Ax.app(E1x)(E2X), V; (app(E})(ES)))
== 9Imp ; g-Forall C subst™PP(Ax.(E1X); E)
F—->D>G F — Vx:AG 1%+
Clauses: C subst™*#P(Ax.(E2x); E)).
———5—5 C.Atom subst®#P(Ax.lam (2y.(E x y))), V;lam (1y.(E’Y)))
FoP>P c (Vy : exp.subst™*P(Axy, V;y)
F = [/XD > P v« FOD>P F5G D subst®PEP(Ax.(E x y), V; (E"Y)))
FSVx:AD» p CEXSS . T g psp &P _ _
In this case, we observe that for logic prograyn
Figure 7. Proof search semantics for the corresponding tasubst™™®®, kg genee F poly, because
Hereditary Harrop formulas the first declaration is non-recursive;? , #(Ax.(Eix)) <
#(Ax.app (E1X) (E2x)) in the second declaration, and
the embedded implication in the third declaration in non-
recursive.
4. Extending to Hereditary Harrop Formulas On the other hand, when A exp — exp and B= exp

thensubst®P~®®#P is given by

The results presented so far are quite general and even Subst™*~PEPAf.f,V; V)
apply to logic programming languages with dependent Subst®*~®*EP(Af (app (E1 f) (E f)),V;app E; EY)

types, higher-order terms, and embedded implication. Let C subst®P~PEP(Af (E1), V; EY)
us consider Hereditary Harrop formulas [10, 16] which al- C subst®PePER (A (Eo 1),V E))
low embedded implications by extending Horn go@lsis subst™*7EPEP (2 f.lam Ay.(E fy),V;lam 1y.(E"Y))
shown below. c (Vy : exp.subst™PPEP(1fy, V;y)
D subst™PERERAf (E fy),V;(E'Y))
Goals G = T|P|¥x:AG|D>G Subst™PERER(AL.f (ET), V;E”)
Clauses D := GoD|VYx:AD|P Subst™*RER(ALE f, VI E)

subst®PP(Ax.Vx E'; E”)

The proof search semantics are extended as shown be- | this case, the first three declarations satisfy the poly-
low. The embedded implication is operationally interpreted nomial time conditions we have described so far. In the
as extending the logic program dynamically during proof- fourth declaration, output term ‘Hrom the recursive call
search. Subst®P~e PP is provided as input teubst™*P, |t is

Thus, a logic program with Hereditary Harrop formu- easy to see that Stage 1 conditions do not hold for this
las is polynomial time if we can ensure that all embedded case because, it is not possible to determine the run time
implications satisfy the polynomial time conditions that we of subst®™*** as we do not know the size of its input E
have presented so far. Stage 2 conditions do not hold either becauseyst™P*®

is a size-increasing function.
Now theeval (app E; E;) V is changed to

Example 4.1 B-redexes) Since the arguments to predi-

cates P have to be in canonical form, it is not possible to eval (app E1 Ez) V. c eval E; (lam Ej)
represent functions such &val which simplify a term in c eval B, Vs,
lambda-calculus to itg-normal form. C SubstAP(EY, Va; EY)
c eval(E{V)
eval lamE) (lamE) c T
eval (app E; E) V. ¢ eval E; (lam E}) where an appropriatsubst*®® is chosen.
c eval E; Vs Therefore, when A= exp we know thats-reduction
is a polynomial time operation, but when A is a higher-
c eval(E; Vo)V poly P g

order type, our conditions can no longer guarantee {Bat

reduction is in polynomial time.
However, such predicates can be represented by defining a

predicatesubst®® : (A - B) - A — B which performs Example 4.2 (Combinators cont'd) Recall the bracket
the substitution explicitly and computes the canonical form. abstraction algorithm from Example 3.1 that is used in the

conversion fromi-expressions into combinators. We follow
standard practice and define a new type together with
the two constructorapp of typeexp — exp — exp and
lam of type(exp — exp) — exp. Using our syntax, extend
the program# from Example 3.1 to a programi’ by the
following new declarations.

convert(app E; Ez; MP C; Cy)
c convert(Ey; Cq)
c convert(Ey; Cy)

convert(lam E); D)
c (VX:exp.Yy:comb.ba(1z: comb.y; MP KY)
D convert(y; 2) convert (E x, C y))
Cc ba (1y : comb.C y; D)

We observe thatsonert ¥ poly, because the first declara-
tion satisfies tha}:iz=1 #(Ei) < #(app E1 E,), and each em-
bedded implication in the second is non-recursive. Further-
more#(E X) < #(lam E) because E is applied to a paramter
X (and not an arbitrary term). In additions,, F’ nsi by
rule nsi_Atom where we choose(-) = 0 andpBpa(-) = 1 for

e The goal G can be represented on a RAM machine in
size proportional tez;(G).

e The corresponding proof search can be implemented
in time proportional tosz(D).

6. Conclusions

The polynomial time criteria that we have developed in
this paper while not complete are able to identify &isu
ciently large class of functions. Further, we are not limited
to functions on integers or lists but can apply these criteria
to a function which range over first-order, higher-order or
even dependently-typed domains.

These criteria are not specific to a particular program-
ming language but can be extended to any logic or func-
tional programming language as long as unification and
substitution can be implemented in constant time. Cur-
rently, we are working on a implementing these criteria for
Twelf [19].

In our presentation, we distinguish predicates based on

the two recursive Ca”S, and hence the dynamic extension Ofwhether they do or do not receive input from a Output of

the bracket abstraction algorithiva is non-size increasing.
m]

5. Translation to a RAM Machine

In this section, we shall show that the proof search shown
in Figure 1 can be implemented on a RAM machine in time
proportional to the number of proof search rules in the proof
search derivation.

We will show that every rule can be implemented on a
RAM machine in a constant number of steps. Since, the
logic program actually implements a function, every proof

search where the input arguments are ground returns with [21

its output arguments ground or simply fails. Moreover, the
proof search is deterministic (no backtracking) as there is
a unique clause corresponding to every function compu-
tation where the inputs are ground terms. We do not al-
low patterns in the output positions of any subgoals and
always store a single copy of a variable in a clause even
when it appears multiple times in a clause. Thus, clauses
like P(x,y) c Q(x,c y) are not allowed and in the clause
P(x,c u; Up) € Q(X,2) c Ri(z up) € Ry(z up) a single copy

of the variablezis shared byr; andR;. Finally, as we have
mentioned before, we only allohigher-order patternsind
disallow multiple occurrences of the same variable in input
positions. This ensures that unification is decidable and is
done in time proportional to the size of the program.

Theorem 5.1 Given a logic prograny satisfying the con-
ditions given above and a goal G. If there exists a derivation
D F — G, then

a recursive call. By making this distinction at the level of
input arguments instead of predicates, we can further refine
our criteria to identify a larger class of polynomial time

functions.

References

[1] K. Aehlig and H. Schwichtenberg. A syntactical analysis
of non-size-increasing polynomial time computationFifa
teenth Annual IEEE Symposium on Logic in Computer Sci-
ence 2000.

S. Bellantoni and S. Cook. A new recursion-theoretic char-
acterization of the polytime functions. Tiwenty-fourth An-
nual ACM Symposium on Theory of Computihg92.

S. Bellantoni, K.-H. Niggl, and H. Schwichtenberg. Higher
type recursion, ramification and polynomial tim&nnals of
Pure and Applied Logicl04, 2000.

[4] V.-H. Caseiro. Equations for defining poly-time functians
PhD thesis, University of Oslo, 1997.

I. Cervesato. Proof-theoretic foundation of compilation in
logic programming languages. In Jfida, editor,Joint In-
ternational Conference and Symposium on Logic Program-
ming MIT Press, June 1998.

[6] A. Cobham. The intrinsic computational complexity of
functions. In Y. Bar-Hellel, editofProceedings of the 1964
International Congress for Logic, Methodology, and the
Philosophy of Scien¢@ages 24-30, 1965.

G. Dowek, T. Hardin, C. Kirchner, and F. Pfenning. Unifi-
cation via explicit substitutions: The case of higher-order
patterns. Technical Report 3591, Institut National De
Recherche En Informatique Et En Automatique (INRIA),
December 1993.

(3]

(5]

(7]

[8] H. Ganzinger and D. McAllester. A new meta-complexity
theorem for bottom-up logic programs. Rroc. Interna-
tional Joint Conference on Automated Reasonivgume
2083 of Lecture Notes in Computer Sciengeges 5114—
5128. Springer-Verlag, 2001.

[9] R. Givan and D. McAllester. Polynomial-time computation
via local inference relationsACM Transactions on Compu-
tational Logig 3(4):521-541, October 2002.

[10] R. Harrop. Concerning formulas of the typAs— BV
C,A — (EX(BX. Journal of Symbolic Logijc25:27-32,
1960.

[11] M. Hofmann. Typed lambda calculi for polynomial-time
computation Habilitation thesis, TU Darmstadt, 1998.

[12] M. Hofmann. Linear types and non-size-increasing polyno-
mial time computation. Ifrourteenth Annual IEEE Sympo-
sium on Logic in Computer Sciengeages 464—-473. IEEE,
1999.

[13] M. Hofmann. Linear types and non-size-increasing poly-
nomial time computation.Information and Computatign
183:57-85, 2003.

[14] D. Leivant. Subrecursion and lambda representation over
free algebras. In S. Buss and P. Scott, editéeasible Math-
ematics pages 281-292. Birkhauser, 1990.

[15] D. Leivant. Afoundational delineation of computational fea-
sibility. In Sixth Annual IEEE Symposium on Logic in Com-
puter Sciencegpages 2-11. IEEE, 1991.

[16] D. Miller. Hereditary harrop formulas and logic program-
ming. InProceedings of the VIII International Congress of
Logic, Methodology, and Philosophy of Scienboscow,
August 1987.

[17] D. Miller. A logic programming language with lambda-
abstraction, function variables, and simple unificatigour-
nal of Logic and Computatiqri(4):497-536, 1991.

[18] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uni-
form proofs as a foundation for logic programmimnnals
of Pure and Applied Logic51:125-157, 1991.

[19] F. Pfenning and C. S¢inmann. System description: Twelf
— a meta-logical framework for deductive systems. In
H. Ganzinger, editoiRProceedings of the 16th International
Conference on Automated Deduction (CADE;1pages
202-206, Trento, ltaly, July 1999. Springer-Verlag LNAI
1632.

[20] R. M. Verma. General techniques for analyzing recursive
algorithms with applicationsSIAM Journal of Computing
26(2):568-581, April 1997.

[21] C. Walther. Mathematical induction. In D. M. Gabbay, C. J.
Hogger, and J. A. Robinson, editoidandbook of Logic in
Artificial Intelligence and Logic Programming/olume 2,
pages 127-227. Oxford University Press, Oxford, 1994.

Appendix
A. Proofs of Recursive Functions

Theorem A.1 ([20]) Given a recursive function (K) de-
fined in equation 1. If {x) is a monotonically increasing
function such that {x) > d > Oforall 1 < x < K, and

x > Y x, then there exists a constantx 1 such that
T(X) < cx?f(x) for all x > 1.

Proof:2 Choosec = max1,b/d}. We shall prove by
inductior?.

Base caseWhen 1< x < K, T(X) = b = (b/d)d <
cf(x) < e f(X).

Induction caseWhenx > K,

T()

DI+ F(X)
i=1

IA

DX T06) + F()

i=1
(Using Induction Hypothesis ox C x:

T(x) < o f(x))
Zcx,-zf(x) +cf(x)

i=1
(- x <x= f(x) < f(x)andc > 1)

= cf(x)(zm: X2 +1)
=]

IA

IA

e %)?
i=1

(A Xi2 +1< (T %))
o2 f(X)
(x> X0 %)

IA

Theorem A.2 Given a set of recursive functiornig =
{T1(-), T2(),..., Tk(-)} such that each function is given by
equation 2. Ifforalli=1,...,k:

1. f(-) are monotonically increasing functions such that
fi(x) > d >0forall 1< x <K;.

2. x> ZTllxij

then there exists a constant £ 1 and a monotonically
increasing function F) such that T(X) < cx2F(x) for all
X>1.

Proof: Choosec = max1,b;/dy,...,bc/d} andF(x) =

max fi(x),..., fik(X)}. We shall prove this theorem using
the induction hypothesis?i = 1,...,ky C x = Ti(y) <
cy’F(y)

Base Case:For anyi = 1,..., ki When 1< x < K;,
Ti(X) = bi = (bi/d)d < cfi(X) < OF(X).

2This version of the proof is due to Adam Poswolsky and Valery Tri-
fonov.

3We shall assume the partial orderings :. .. = gi(gi(x)) © gi(X) C x
and use the principle of Noetherian Induction [21]

Induction Casefor anyi = 1,..., ki Whenx > K, By induction hypothesis,

sz(D1) = sz(Dg) + Cp.
Ti(x) = Z T, (%)) + fi(¥) (D1) DGEGOZALS(&) (Dg) +Co
ul Hence,
< Zcxz F(xj) + fi(x)
j=1 sz(D) = sz(D1) +sz(Dy) +1
(Using Induction Hypothesis oxj C x: sz2(D) = s2(Dg) + Cp + 52(Dy) + 1
Tiy (%) < e F (i) DeeGOALS(D;)
u SZ(D) = SZ(DG) + ChHop
S Z C)ﬂz F(xj) + F(X) DsEGOALS(D)

N
=

(-Vi=1... kF() > fi(¥) (WhereCrap = Co +1)

¢ F(X) + cF(X)

INgE!

Case: When the derivatiorD is given by

1]
=

(- x <x= F(x) < F(x)andc > 1) o
F - [t/XID>P

m
: CF(X)(Z Xizj +1) F —->VYXx:AD>P c-Exists
m 5 The proof of this case is also similar to the above cases,
< SR %) if we defineCyyap = Ciyp + 1.
I +1< (X0 %)) .
< ofF(¥ Lemma B.2 (Stage 1)Given a logic progran¥ and a set
(x> ZTll Xij) S of mutually recursive predicates frafm Given a predi-
cate P and a clause B ¥ such thahead(P) = head(D)
S and& ks A/D polyy, if O :: F —» D> P, then
|
1. Forall Dg :: F —» G € GOALS(9D), if head(G) € S
thensz(G) < szi(P) and ifhead(G) € T # S, then
B. Proofs of Stage 1 Fr F poly; andszi(G) < fg(szi(P)).
2. ce G G) < sz(P
Lemma B.1 Given a logic progran¥ and a set S of mutu- ZDGhFaS(g))ALSw) Sz(G) + Zeen sz(G) < szi(P).
ally recursive predicates frorst. Given a predicate P and Proof:
a clause De ¥ such thathead(P) = head(D) € S, ifD :: Sj - - . .
ince& ks A/D poly,, it is easy to show by induction
F — D > P, thensz(D) = Specconso) S2D6) + Co oy s A/D poly, y y
where G is a constant depending only on the structure of
D and not its input terms. e For allG € goals(D), if head(G) € S thensz(G) <
.) .) szi(D) and ifhead(G) € T # S, thent ¥ poly; and
Proof: We shall prove by induction on the size of deriva- sz(G) < fs(szi(D)).
tion D. B
. T Ge szi(G) + szi(G) < sz(D
(Base) Case:When the derivatiotD is given by Z”Ghlaﬁ(éﬁ’éés‘”) () + Zeen s2(C) (D)
¢ Atom These properties are mathematical side conditions that
F—->P>P , are proved using additional properties of the predicates, if

necessary. Thus, if a go@ € goals(D) or the clauseD
contain any free variables then, the mathematical side con-
Case: When the derivatioD is given by ditions are true for any substitution of variables by ground
terms for the variables i andD. We only need to en-
sure that this substitution is generated by a successful proof
c_lmp searchll

sz(P) = 1 and hence the theorem is true.

Dl DZ
F->D>»P ¥ ->H
F—>H>D>P

Lemma B.3 Given a logic progranmy¥ and a set S of mu- Let us define

tually recursive predicates froi” such thatrs ¥ poly;.

Given a predicate P and a goal G , 9 = ¥ — G, then F(szi(H)) = Z fr, (fu(szi(H))) + Co + Cp™

there exists a clause B ¥ such thahead(D) = head(P) € DH:@EEGH(;QLSS(D/)

S and a sub-derivatio®” :: ¥ — D >» P such that

sz(D) = sz(D') + Cs where G is a constant depending whereCP®* = maxCp|D € 7).

only on the structure of G and not on its input terms. Also, \ve shall prove by induction osz;(G) that the polyno-

szi(P) = szi(G) andszo(P) = s2,(G). mial p(X) = X2F(X). The theorem follows by applying The-
Proof: (Sketch) Given a goalG, identifying the right ~ orems A.2l

clauseD corresponding to that goalis independent of the

input arguments to the goals. The proof follows from the
proof search semantics of FigureliL. C. Proofs of Stage 2

Theorem B.1 (Stage 1)Given a prograny” and asetS of | emma C.1 Given a progran# and a set S of mutually
mutually recursive predicates froffi such thats poly, . recursive predicates frorif. Given a predicate P and a

Given a goal G such thatead(G) € S, ifD :: & — G, ¢lause De F such thathead(P) = head(D) € S. IfD ::
then there exists a monotonically increasing polynom@ p & _, p . P, then

(not depending on the ground input terms of G) such that
sz(D) < p(sz(G)). szo(P) < a(D)sz(P) + Z Bo(D)sze(H) + C
Proof: Using Lemma B.3, we know that there exists a Dri:F ~HEGOALS(D)

derivation? = ¥ — D > P such that where C is a constant depending only on the structure of D

sz(D) = sz(D') + Cg. and not its ground input terms.

Using L B.1, we k that . .
sing Lemma we knowtha Proof: (Sketch) The size of output of a claude given

sz(D') = Z sz(Dg) + Cp. by sz,(D) consists of three kinds of terms: a fixed number
DseGOALS(D) of term constants, the input variables Dfand the output
Hence, variables of the subgoals of D (G € goals(D)). By taking
into account ther andBs multiplicities of the variables and
sz(D) = sz(Dy) +Cp + Cg

the fact that the output terms Bfare unified with the output
Driif ~HEGOALS(D) variables ofD the theorem followsll

= Z SZ(DH) +Cp +Cg

o adthes Lemma C.2 (Stage 2)Given a logic progran¥ and a set
N Z s2(Dy) S of mutually recursive predicates from Given a predi-
. H cate P and a clause B ¥ such thahead(P) = head(D)

M head(t)es. S and-s A/D polys.

IfD::F — D> P, then

By Lemma B.2, for goal$l such thahead(H) € Ty # S, _
tr,, 7 polys. Hence, by induction, e Forall Dg :: F — G € GOALS(D), if head(G) € S,
thensz;(G) < sz;j(P).

sz(D) < Z sz(Dy) + Cp + Cg
Dy :F ~HEGOALS(D') e Forall Dg : F - G € GOALS(D), if head(G) €
heat(H)<S T # S andé ::+ G < D, then there exists a polynomial
) fr(sz(H) fo() such that
Dy ::;r—» ZEGHOALSS(Z)’)
cadiH)e sz(G) < fa(sz(P) + Y szo(H)width(p)
< Z SZ(DH) + CD + CG Dy :F ~HeGOALS(D)
, head(H)eS
e =
) m(fuze) andrr 7 nsi
Dy F —~HeGOALS(D')
head(H)eS e Forall Dg = ¥ — G € GOALS(D), if head(G) e
(Using Lemma B.2szi(H) < fu(szi(P)) T #S ands ::+ G # D, then there exists a polynomial

< fu(szi(G)) whenhead(H) ¢ S)) fs(-) such thasz(G) < fs(sz(D)) andrs F poly,.

D, D Bu(D)szi(Gwidth(p)

HeA’ GeA’
head(H)¢S head(G)eS
peH<*G

Z Ba(D)szi(G) | < szi(P) where

GeA’
head(G)eS

A =AU{GIDg :: F — G € GOALS(D)}.

Proof: (Sketch)

LetA” = {G|Dg :: F — G € GOALS(D)}.

ForG € A”, if head(G) € T and& :irs G # D, then
all terms that appear in input positions@are either the
terms from input positions oD or from output positions
of goalsH such that&’ :irs H 4 D. We can show by
induction that for such goakz,(H) < p(szj(D)) for some
polynomialp(:). Hence there exists a polynomi(-) such
thatsz(G) < fg(szi(D)).

ForG € A”, if head(G) € T and& ::i+s G <« D, then
all terms that appear in input positions@are either from
input positions oD, output positions of goalsl such that
&' :i+s H 4 D or form output positions of goald such that
& +ts H<D.

For the first two cases, we have already shown that there
exists a polynomiaf}(-) that bounds the total contribution
to sz;(G) due to the terms that satisfy the conditions of these
two cases. Thus,

sz(G) < f4(szi(D) +) mszo(H).
D
GermH
We shall bound the contribution due to the third case us-
ing induction on the length of dependence paths ending in a
goall such thatead(l) € S. For the base case (length of
dependence paths is 1), we have,

f(sz(D) + > msze(H)

rgH<D
GermH

Z msz,(H) +

"

<

szi(G)

IA

f&(szi(D)) +

head(H)eS
+rgH<DAGvmH

Z mszo(H)

HeA!”
head(H)¢S
+gH<DAG&-mH

fiszD)+ > mszo(H)+0

head(H)eS
+gH<aDAGevmH

(As all dependence paths have length 1)
f&(szi(D)) + Z width(p)szo(H)

HeA’”
head(H)eS
peG<*H

IA

IA

In this casefg(-) = f4().

For the induction case,

sz(G) < f4(sz(D) +) msze(H)
< fi(sz(D)) + Z m(szi(H) + C)

HeA’”
head(H)¢S
rgH<aDAGemH

> mszo(H)

HeA””
head(H)eS
rgH<DAGewmH

(Forhead(H) € U andrs H <« D, +y F nsi

+

and using Theorem C.1.) ©)
By induction hypothesis,
szj(H) < f/,(szi(D)) + Z szo(l)width(q) (4)

leA””
head(l)eS
geH<*1

wheref/,(-) is a polynomial.

By substituting right side of equation 4 fez;(H) in

equation 3 we get,

sz(G) < fo(sz(D)+ > msze(H)
hesdg(ﬁ)/es
+gH<DAGemH
+ Z Z mwidth(q)sz(1)
he’;de(?-l/)lﬁs hela%%l/)lss
rgHaDAGewmH geH<*|
< folszD)+ Y. msze(H)
hemd(ies
+gH<aDAGevmH
+ Z width(r)sz,(I)
helafi%l/)/es
reG<*1alength(r)>1
< fo(szi(D)) + Z width(r)szo(l)

lea’”
head(l)eS
reGa*|

wherefs(szi(D)) is a polynomial and is given by

2,

Hea?”
head(H)¢S
rgHaDAGewmH

f&(szi(D)) + m(f/,(szi(D)) +C).

The remaining cases of the proof is by induction on the
size of the derivatiorn® is quite similar to the proof of
Lemma B.21

Lemma C.3 Given a logic progran¥ and a set S of mutu-
ally recursive predicates frort. Given a predicate P and
a clause De ¥ such thathead(P) = head(D) € S and
ts A/Dnsi. If O .. F — D> P, then

e For all D € GOALS(D), if head(D) € S then
szi(G) < szi(P).

e For all Dg € GOALS(D), if head(D) ¢ S thenrr
F nsi.
Gen’ Gen!

* Zhead(G)eSﬁG(D)szi(G) " Zhead(G)éZS'B e(D)szo(G) <
(1-(D))sz(P) whereA’ = AU{G|Dg € GOALS(D)}.

Proof: The proof is by induction on the size of the
derivation® and is similar to the proof of Lemma B.L.

Theorem C.1 (Non-size-increasing functions)Given

a logic program ¥ and a set S of mutually recursive
predicates fron¥ such thats ¥ nsi. If D :: ¥ — G, then
sz,(G) < szi(G) + C where C is a constant depending on
the logic prograniF.

Proof: (Sketch) We shall prove by induction on the size
of the derivation.

Using Lemma B.3, we know that there exists a derivation
D 0 F — D > P such thakz(G) = szj(P) andsz,(G) =
sz, (P).

From Lemma C.1, we know that,(G) < a(D)sz(G) +
2 Dn:F—HecoaLs(D) BH(D)szo(H) + C.

Whenhead(H) € S, sz,(H) < szj(H) by induction hy-
pothesis. Hence,

s2(G) < a(@)sz(@)+), Bu(D)sz(H)
D F >HeGOALS(D)
head(H)eS
> Bu(D)sze(H)+C
Dy :F >HeGOALS(D)
head(H)¢S
< sz(G)+C
This is because, Z Bu(D)szi(H) +
D :F »HeGOALS(D)
head(H)eS
Bu(D)szo(H) < (1 - a(D))szi(G) is im-
Dy :F —HeGOALS(D)
head(H)eS

plied byt+s ¥ nsi andsz;(G) = sz;(P).
|

Theorem C.2 (Stage 2)Given a prograny and a set S of
mutually recursive predicates froffi such thats F polys.
Given a goal G such thatead(G) € S, ifD :: ¥ — G, then
there exists monotonically increasing polynomia(§ pnd
p’(-)(not depending on the ground input terms of G) such
thatsz,(G) < p(sz(G)) andsz(D) < p’'(szi(G)).

Proof: Let the derivatiorD be given by

P
De¥ ¥ —>D>»P
F—-P

and
A ={H|Dy : F - H € GOALS(D)}

By Lemma B.3 and Lemma C.1, we know that,

sz,(G) <

a(D)szi(G) + Y Bu(D)szo(H) + C

HeA!

a(D)sz(G) + . Bn(D)szo(H)
he':i?a;es

+ Z BHSZo(H) +C

Hen’
head(H)¢S

a(D)sz(D) + | Pu(D)szo(H)
hea”:ﬂ?a;es

+ > BuD)szo(H)+ > Bu(D)sze(H)

HeA
head(H)¢S
I"rgH<D

+Cn

IA

IA

EA
head(H)eS
I’rgH#D

In this caseC is the total size of the term constants ap-
pearing in output positions db. Clearly, it is a constant
(depending only orF). LetCy, be the maximum among all
such constants.

By Lemma C.2, for goalbl € A’ such thahead(H) € T,
tr F nsiif s H < D andrr F poly, if ks H 4 D.

By theorem C.1sz,(H) < sz(H) in the former case. In
the latter case, we can show by induction on the call graph
of F rooted atS thatsz,(H) < pr(szi(H)) wherepr() is a
polynomial. Hence,

s2(G) < a(D)sz(P)+ D Bu(D)szo(H)

Hea’
head(H)eS

+ D, BuDsz(H) + > Bu(D)pr(szi(H)

Hea!
head(H)¢S
+gH<D

Hea’
head(H)2S
rgH#D

+Cn
a(D)sz(G)+), Bu(D)szo(H)

HeA!
head(H)eS

+ > pu(D)sz(H)

HeA’
head(H)¢S
+gH<D

+ > BuD)pr(fu(sz(G)) + Cn

HeA/
head(H)¢S
rgH#AD

(By Lemma C.25zi(H) < fu(szi(P)) < fu(szi(G)))
< Fusz(@)+), Bu(D)szi(H)

hegff(ﬁ)es
rgH<D
+ > Bu(D)szo(H)

Hea’
head(H)eS

IN

(5)

(whereF(szi(G)) = @(D)szi(G) + Cn,
+2 wer Bu(D)pr(fu(szi(G))))

head(H)¢S
rgH#D

By Lemma C.2, we have

sz(H) < fy(sz(P) +). szo(1)width(p)
heg\sﬁ/)es
peH<*I
wheref/,(-) is a polynomial.
Substituting in equation 5, we get,

Fi(sz(G)+ | Bu(D)szo(H)
hee’;‘dﬁl)es

+ > Bu(D)f(sz(D))

HeA!
head(H)¢S
rgH<D

sz,(G) <

+ >, BuD)|) szo(l)width(p)

lea’
head(l)eS
peH<*1

< F(szG)+). Bu(D)sze(H)
he:je(ﬁ;es

* Z Z Br(D)sz,(I)width(p)
hekd(yes nead(hes
+rgH<D peH<*1

(whereF(szi(D)) = F1(szi(D)
+2 Br(D)f,(szi(D)))

Hea!
head(H)¢S
+rgH<D

Hea’
head(H)¢S
rgH<D

Now, by Lemma C.2, we know that,

Z aGszi(G) [+ Z Z apszi(G)width(p) [<szi(P)

GeA HeA GeA
head(G)eS head(H)¢S h;za(fzés

The polynomialp(x) = x°F(x) and the remainder of the
proof follows by induction orsz,(G). It is similar to the
proofs of Theorem A.1 and A.2.

To prove thatsz(D) < p'(sz(G)), we shall first need
to show that for allH € A’ such thathead(H) ¢ S,
szi(H) < fu(szi(P)) for some polynomialfy(-). All terms
that appear in input positions &f are either sub-terms of
the terms in input positions d or from output positions of
other goal#H. Whenhead(H) € S, we have already proved
thatszo(H) < pi(szi(G)) and whenhead(H) € T # S,
we know that-t # poly, and hencesz,(H) < p2(szi(G))
for some monotonically increasing polynomigig(-) and
p2(-). Hence,szi(H) < fu(szi(P)) for some polynomial

fu(-). Now it is possible to show that the conditions given

in Figure 3 are satisfied. The conditipn_Atom is always
true if pp_Atom is true and the conditiopc_Imp2 is true as
SZi(H) < fH(SZi(P)). |

D. Proof of RAM Machine Translation

Theorem D.1 Given a logic progran¥ satisfying the con-
ditions given above and a goal G. If there exists a derivation
D F — G, then

e The goal G can be represented on a RAM machine in
size proportional t&z;(G).

e The corresponding proof search can be implemented
in time proportional tosz(D).

Proof: The goalG can be represented on RAM machine
by simply storing the ground terms in the input positions of
the goalG. The total size of this input is bound IBg;(G).

We shall now show that every rule in Figure 1 can be
implemented in a constant number of steps.

For the rulesg_True andc_Imp, itis clear that the imple-
mentation can be done in constant number of steps. Imple-
mentingg_Atom involves selecting the correct clause based
on the inputs to the go@. This selection is done by match-
ing the inputs of the goab with the input patterns in the
clauses inF. Since the progranf is fixed, the maximal
depth of the patterns is known and it is possible to design
a hash function which maps every unique pattern to a hash
value!, thus providing a constant time implementation for
pattern matching.

During the implementation af Exists, we substitute the
universally quantified variables by a logic variables which
are unified with the ground terms in the relé\tom. Since,
the logic program is mode correct, all logic variables are
guaranteed to be ground when the proof search completes.
Unification is guaranteed to be decidable since we only al-
low higher order patterns Moreover, since the program
is mode correct and no variable appears more than once in
an input position, unification is simply a series of pattern
matching operations and hence it runs in time polynomial
in the size of the pattern (a constant). The number of such
operations per inference rule is bounded by the total num-
ber of input positions which is a constant depending only
on the logic prograns. I

4A simple implementation would assign a unique prime number to ev-
ery type family. In this case, the hash value of the pattern would be product
of the prime numbers corresponding to the constituent type familes in the
pattern.

