

Position (i, j) may be reached
Implementing global alignment: Filling in the matrix - from $(i-1, j-1)$ with a match, adding score $\left[x_{i}\right]\left[y_{j}\right]$ to the score; - from $(i-1, j)$ with a gap in y, subtracting d from the score; or
The traceback $B(i, j)$ points to the source of the maximal resulting score $F(i, j)$. Thus: for (int $i=1 ; i<=n ; i++)$
for (int $j=1 ; j<=m ; j++)\{$
\quad int $s=\operatorname{score}[\operatorname{seq} 1 . \operatorname{charAt}(i-1)][$ seq2. charAt $(j-1)] ;$
int $\operatorname{val}=\max (F[i-1][j-1]+s, F[i-1][j]-d, F[i][j-1]-d)$

[if (val == F[i-1][j-1]+s)
 B[i][j] = new Traceback2 (i-1, j); B[i][j] = new Traceback2(i, j-1);

 ?

	 'g $\mathrm{H}-\mathrm{MH}$ 'gHDME

2l e6ed $^{\text {d }}$	
	 -gH-ME• Z 'g ォ马

Implementing local alignment: Filling in the matrix
Position (i, j) may be reached - from nowhere, with score 0 , because we can always start a new local alignment; - from $(i-1, j-1)$ with a match, adding $s c o r e\left[x_{i}\right]\left[y_{j}\right]$ to the score; - from $(i-1, j)$ with a gap in y, subtracting d from the score; or - from $(i, j-1)$ with a gap in x, subtracting d from the score. The traceback $B(i, j)$ points to the source of the maximal resulting score $F(i, j)$, if any. Thus: ```for (int i=1; i<=n; i++) for (int j=1; j<=m; j++) { } } int s = score[seq1.charAt(i-1)][seq2.charAt(j-1)]; int val = max(0, F[i-1][j-1]+s, F[i-1][j]-d, F[i][j-1]-d); F[i][j] = val; if (val == 0) B[i][j] = null; else if (val == F[i-1][j-1]+s) B[i][j] = new Traceback2(i-1, j-1); else if (val == F[i-1][j]-d) B[i][j] = new Traceback2(i-1, j); else if (val == F[i][j-1]-d) B[i][j] = new Traceback2(i, j-1);``` The start B0 of the traceback must be set some cell (i, j) in F with maximal score.

tı 06 d d	

 Implementing repeated matches: Initialization Left-hand border: Position $(0, j)$ represents the best alignment of an empty subsequence of x to a subsequence of y. This must have score 0. The traceback pointer at $(0, j)$ points nowhere. Seminar on computational biology 1999-10-04

