
Preliminary version. Final version in IEEE Software, 1998, March/April pp. 76-83.
 97-03-22 21:07

oo-real.doc

Object-Oriented Systems in Real Life
Søren Lauesen

Copenhagen Business School, Howitzvej 60

DK-2000 Frederiksberg, Denmark
E-mail: sl.iio@cbs.dk

Abstract
Object-oriented development is expected to provide many
benefits, but observations of industrial practice show that
there are many problems to overcome. This paper discusses
two issues: (1) The architectural issue of how to connect
database, application, and screen objects. (2) To what extent
expected benefits such as seamless transition from analysis to
design, improved usability, etc. can be obtained. The
architectural issue appears to have a significant influence on
the expected benefits.

The paper is based on studies of about seven experienced, but
very different, development teams, plus a lot of casual
observations. I will present the three basic architectures that I
found in practice and discuss their advantages and problems.
Surprisingly, only one team had a solid architecture that
solved most of the problems.

1. Background
The term "object-oriented" has been used as a catchword in
recent years. We hear about OO user interfaces, OO design,
OO languages, etc. Managers have heard about all the
benefits of object-orientation: better user interfaces, reuse of
code, cheaper development, and so on. In spite of the claimed
advantages, little detail has been published about real-life
object-oriented systems.

In the early eighties, I was leading an object-oriented project.
Since then, I have been following the spread of OO and often
wondered what benefit OO actually gave, particularly in
business applications. Some developers of business
applications have told me in private that their managers
expected great benefits, but they could not themselves see the
advantages. In contrast, developers of technical systems could
tell about real benefits after some trials.

As a response to these comments, I published a critical article
in the Danish version of ComputerWorld. It sparked a heavy
debate and brought me into contact with many developers
claiming they had successful OO projects. Typically they had
more than five years of OO experience. Through many
interviews and studies of about seven different development

groups, I have tried to map the difficulties and identify the
current best practice.

2. Object-Or ientation
Object-oriented development starts with an object-oriented
analysis where the problem domain is modeled as collections
of objects. During design and implementation these objects
are transformed into the objects that make up the actual
computerized system [1, 2].

Formally, an object contains data and operations that operate
on those data. Objects cooperate by sending messages to each
other, i.e. call the operations in other objects. An important
rule is that the data in an object is only accessible through the
operations. No object can access another obejct's data
directly.

In a truly object-oriented system, data and functions exist only
in the form of objects. We can distinguish two kinds of
degenerate objects: (1) An object without any data - this is
the same as a traditional subroutine library. (2) An object with
only trivial operations to retrieve data fields, update data
fields, create and delete the object (CRUD operations) - this
corresponds to a traditional data structure where the data is
visible to the entire system. If a system is composed entirely
of degenerate objects, we would not call it a truly object-
oriented system.

As explained below, the business applications I observed
turned out to consist mainly of degenerate objects.

Object-oriented systems are expected to provide many ad-
vantages compared to traditional systems [1, 3, 4]: Users
should find the whole development process more
understandable because the objects model the real world;
there is a seamless transition from analysis to final
implementation; the user interface should be better because
the GUI objects on the interface correspond to the user's
objects; the system is more easy to maintain because objects
can be modified without involving the entire system; objects
can be reused in other applications because they are
encapsulated and provide a general "service".

 2

My studies show that these expectations are far from being
fulfilled. Business systems in particular cause troubles. There
are several reasons for this:

One reason is that it is difficult to compose a real-life system
of objects that can handle the screen, connect it to some form
of a database, and also handle the semantics of the
application. This is the architectural problem and current
literature has very little to say about it.

Another reason is that the expected benefits are not realistic.
At least they require something more than just "object
orientation".

Below, we will first discuss the architectural problems and
then the expected benefits.

3. The Implementation Layers
In order to compare the various systems I have seen, I will use
the 3-layer model shown in Figure 1. The figure illustrates the
model with a simple example, an order processing

application. The figure does not show a specific
implementation, but a joint collection of objects from all the
architectures I met.

The top layer is a traditional database, which typically is
accessed through SQL-queries. In some technical systems
(embedded software, etc.) this layer is absent. In all the
business applications, this layer existed, and I have yet to see
systems using an object-oriented database. The figure shows
part of a database for order processing. It contains customer
records, product records, and order lines that describe
products purchased by customers. (Order records will exist
too, but have been omitted here for simplicity.)

The bottom layer contains the screen objects that the user
sees. These objects comprise GUI windows, fields, guiding
texts, lists, scroll bars, menus, buttons, graphical curves, etc.
The screen objects are arranged in a nested fashion (as ag-
gregates). The window objects, for instance, contain fields
and lists, etc. Since GUIs are object-oriented by nature, the
screen objects actually exist in the implementation whenever
a GUI interface is used. Several developers mentioned that
the need for object-orientation in the user interface was the
main reason for using object-oriented development.

The figure shows a customer window, an order entry window,
and a sales window with a list of purchases for a given
product. Note that the order lines are reflected in both the
order entry window and the sales window. Similarly,
customer names appear in all three types of window.

The middle layer forms the connection between the database
and the screen windows. The figure shows the six kinds of
middle-layer objects observed in practice. In real-life systems
we find only some of them (typically between one and four
kinds). The six kinds are:

Database wrappers that mirror the traditional database. A
customer object, for instance, contains name, address, etc. for
a specific customer. It has only simple operations that retrieve
or update customer fields. There are also operations to create
and delete customers.

Wrapper objects get their data from the traditional database
and can write modified data back to the database. They are
convenient as buffers for fast updating of the screen objects.
Note that wrapper objects are degenerate objects since they
do not contain high-level operations like Move or Print-
Account.

In systems without a traditional database, Domain objects
contain the database. A domain object is usually more
complex than a database record, and it can also contain high-
level operations. Domain objects could correspond closely to
the real-world objects determined during analysis [2, 5].

Customer OrderLine Product

Customer
Name
Address . . .
GetName()
UpdName()
. . .

Data base
wrapper

Customer
Name
Address . . .
GetName()
UpdName()
Move()
PrintAccount()

Domain object

Purchase(cust,
product, #items)

Service object

CancelControl
. . .
. . .

Control object

Order
Date
Lines
Purchase()
Cancel()

User object

 Customer

Name: NNNN
Addr:

 Save

 Order
NNNN 5/8-95

 xxx xxxxxxx
 xxx xxxxxxx
 xxx xxxxxxx
 xxx xxxxxxx

 Sales
Product: xxx

 ddd nn NNNN
 ddd nn NNNN
 ddd nn NNNN
 ddd nn NNNN

Traditional data base. SQL access

Middle
layer

The kinds
of objects
found in
practice

Screen objects (GUI objects)

Update()

Observer object

Top
layer

Bottom layer

Figure 1. Three-layer model of an object-oriented system. The top
and bottom layers are given by the platform. The middle layer illu-
strates the various kinds of objects found in practice.

 3

Service objects provide high-level operations, but do not
contain data. They occur in many implementations but are
degenerate objects, much like ordinary procedures or sub-
routines. As an example, we could find an operation for
registering a purchase. It would take three parameters: the
customer, the product, and the number of items purchased.
When called, this operation would create an order line object
and link it to the customer and the product. It might also
perform various checking to ensure consistency of the
database. In Section 5.1, we will discuss alternative places to
put the Purchase operation.

User objects mirror the screen windows. They contain the
data shown in the window and have operations corresponding
to the buttons and menu items available to the user. The
Purchase operation would belong quite naturally to a user
object representing the screen. User objects could be
considered "logical windows", i.e. slightly abstract versions
of the real window. For instance, they might hold a long list
of data, whereas the real window only shows part of the list
with an associated scroll bar. User objects correspond to what
Rumbaugh calls "application objects" [2, 5].

When a field in the database is changed, observer objects
distribute update messages to all screen objects showing that
data. When receiving such an update message, the screen
object may update itself to show the new database value.
Gamma et al. call this the Observer Pattern [6, pp. 293 ff.].

In the example, three observer objects might distribute
changes of the customer name to the three windows. Data
values can also be reflected in more subtle ways on the
screen, for instance as a total of many fields, graphical curves,
graying of buttons in certain system states, etc. Observer
objects can distribute update information to such screen
objects as well.

Observer objects contain only a create, a delete, and an
update operation. So they are also quite degenerate objects.

Control objects provide functionality closely associated with
the screen objects. They could handle user actions when the
user edits a field, pushes a button, etc. [7]. The actual GUI
platform has a major influence on the choice of control
objects. Some platforms do not require control objects at all,
since the necessary functionality is specified as part of the
screen objects (e.g. Visual Basic). Due to platform
dependency, I will not consider control objects further, but
assume that their functionality is part of the screen objects.

4. Actual Systems
How do actual, completed systems relate to the 3-layer
model? I have found three basic architectures: Two for
business applications and one for technical systems. Actual
systems may deviate somewhat from the basic architectures.

For each architecture I will discuss standard issues it has to
deal with, such as commit of transactions, consistency of the
database, etc.

4.1 Simple Business Application Architecture
These systems have a traditional database. The screen objects
are for instance written in Visual Basic. The middle layer
consists of a buffer for each window, and the buffer is
updated by means of queries to the database (Figure 2).
According to the three-layer model, the buffers are degenerate
user objects, i.e. without high-level functionality. Apart from
the screen objects, these systems are not truly object-oriented.

Although the developers sometimes claimed that the deve-
lopment was object-oriented, this is not visible in the final
implementation. During analysis and part of design, domain
objects were considered, but their operations did not survive
to implementation. The user functions found in the screen
objects rarely correspond to such domain operations but
reflect simple database operations.

On the other hand, this architecture is much simpler to
implement than the other two. However, as we will see, it has
difficulties handling two or more windows that share some
data.

Commit: When will the data shown in a window be written
back to the database? With the simple architecture, the
answer is easy: When the window is closed or at a specific
user request. The buffer is simply written back through one or
more SQL-queries as a single transaction.

Consistency: The database must of course be kept consistent.

Customer OrderLine Product

 Order
NNNN 5/8-
95
 xxx xxxxxxx
 xxx xxxxxxx
 xxx xxxxxxx
 xxx xxxxxxx

Middle layer

Screen objects (GUI objects)

SQL
data
base

 Customer

Name: NNNN
Addr:

 Save

 Sales
Product: xxx

 ddd nn NNNN
 ddd nn NNNN
 ddd nn NNNN
 ddd nn NNNN

Customer
window
buffer

Order
window
buffer

Sales
window
buffer

Figure 2. The simple business system architecture. The middle
layer consists of degenerate user objects: a buffer for each window.
The arrows show calls between objects. Notice the one-way calls.

 4

With the simple architecture, some fields may be stored in
more than one buffer. If the user edits such a field and closes
the window, the database will be updated, but the old field
value remains in a buffer for another window. When that
window is closed, the old value may erroneously be written to
the database. The typical solution is to restrict the dialogue so
that only one window allows editing of the field, or so that
only one window can be used at a time.

Data retrieval: How is data for a window retrieved? When
the window is opened, the data can efficiently be retrieved
into the buffer by means of one or a few SQL-queries.

Distribution: Efficient task support often requires that the
same field is shown in more than one window. If the user
edits such a field under the simple architecture, the changes
are not reflected in the other windows. The usual solution is
to provide a "refresh" button or menu point in each window,
and leave it up to the user to ask for updating of the window if
desired.

Call-back: In the other architectures, the call pattern between
the objects can be complex with risks of endless recursion.
But in the simple architecture, all initiative goes from the
screen towards the database, so there is no call-back. This
simplifies programming.

4.2 Complex Business Application Architecture
These systems use a traditional database combined with
wrapper objects that hold data currently shown in some
window (Figure 3). Observer objects link the wrapper objects
to the windows that show their data. Note that a database
record is handled by only one wrapper object, but may be
shown in several screen objects at the same time.

The middle layer also holds service objects that perform high-
level functions. This is convenient because high-level
functions tend to refer to several database objects with a loose
coupling to all of them (discussed further in Section 5.1). The
screen objects retrieve data from and store data into the
wrapper objects, and call service objects to perform high-
level functions.

Since wrapper objects, observer objects, and service objects
are degenerate, the solution is not truly object-oriented.
Rather, it corresponds to a traditional system where data and
functionality are separated. In practice, there are deviations
from the pure architecture, and we may find some service
objects with data or some observer objects with non-trivial
operations. However, they are exceptions to the general rule.

As we will see, this architecture is quite complex to
implement. It solves the problems that the simple architecture
had difficulties with, but creates other problems.

Commit: It is no simple task to determine when to write data
back to the database. Assume that a user edits a field. The

result has to be stored in the corresponding wrapper object,
since that is the only place data is stored in this architecture.
But when will the value have to be written back to the
database? Immediately, or when the window is closed, or
when the last window using that database field is closed, or at
a specific user request? Usually the right time is when the
window is closed, but there may be exceptions. Writing back
all the window fields has to be done as a single transaction,
but that is quite foreign to the distributed logic of an OO
system. This complicates the logic in screen objects, observer
objects, and wrappers.

Consistency: Since each piece of data is stored only in the
proper wrapper object, there is not the same consistency
problem as with the simple architecture. Two different copies
cannot accidentally be written back to the database.

Data retrieval: When a window is opened, each field will ask
a wrapper class to retrieve the necessary data from the
database. The wrapper class may determine that the field is
available already in an existing wrapper object, or it may
create a new wrapper object and retrieve data from the
database through an SQL-query. This is clean and easy.
However, when a window with for instance a long list of
records is to be opened, an SQL-query is used for each record
- or maybe for each field in the record. This can give serious
performance problems, in particular if the database is remote.
(In one case I studied, the database was on the other side of

Customer OrderLine Product

Customer
Name
Address . . .
GetName()
UpdName()
. . .

Update()
Observer
object

 Order
NNNN 5/8-
95
 xxx xxxxxxx
 xxx xxxxxxx
 xxx xxxxxxx
 xxx xxxxxxx

Middle layer

Screen objects (GUI objects)

OrderLine
#Items
 . . .
Get#Items()
Upd#Items()
. . .

Product
Name
Price . . .
GetName()
UpdName()
. . .

SQL
data
base

 Customer

Name: NNNN
Addr:

 Save

Purchase(cust,
product, #items)

Service object

 Sales
Product: xxx

 ddd nn NNNN
 ddd nn NNNN
 ddd nn NNNN
 ddd nn NNNN

Figure 3. The complex business system architecture. The middle
layer consists of degenerate objects. The database envelopes
serve as buffers for screen updating. The arrows show calls be-
tween objects. Notice the two-way calls.

 5

the globe, so the problem was serious.)

The proper solution would be to retrieve all the necessary
data with one SQL-query, but that is foreign to the distributed
logic of an OO system.

Distribution problem: In contrast to the simple architecture,
the complex architecture offers a solution to the distribution
problem: the observer objects. If the dialogue is just a bit
complex, the same record might be reflected in several screen
objects, and a single screen object might reflect data from
several records, for instance in case of a field that shows the
sum of a list of records. This calls for a many-to-many
relationship between screen objects and wrapper objects. One
purpose of the observer objects is to implement this
relationship.

Special logic is needed for updating fields with aggregate data
such as totals or graphical curves. Time-consuming updates
are usually only made at user request.

An observer object should be able to connect any wrapper
class with any screen object class. In C++ this gives severe
binding problems, multiple inheritance, and leads to a huge
class hierarchy in real systems. The problems and a complex
solution have been described by Jaaksi [7].

In practice, developers make more or less ad hoc solutions to
all these problems.

Interestingly, the only complete and general architecture I saw
in practice, was based on SmallTalk, which does not have the
binding problems of C++. The solution is developed and
marketed by a small software house, ObjectDesign [8]. They
have developed several large business applications by means
of their architecture. SmallTalk has a built-in
distribution/observer mechanism, MVC, which is inefficient
for larger systems, so ObjectDesign built their own observer
system. This architecture also had efficient solutions of most
of the other problems.

Call back: Another problem is that the initiative goes both
ways: The screen objects call the middle layer for retrieving
and updating data, and the wrapper objects call the screen
objects - through the observer objects - for distributing chan-
ges. This requires careful handling of concurrence to avoid
deadlocks and endless recursion. Several developers had
experienced problems in this area, and one group had given
up solving the distribution problem for that reason.

4.3 Technical System Architecture
This architecture does not use a traditional database. Data are
stored in domain objects that reflect the physical system
controlled by the computer. Usually the domain objects are
not simple record structures, but highly structured aggregates
of data or sub-objects. Service objects may be added for con-
venience. Observer objects are often used to distribute data

changes to the screen objects. Since the data is only found in
the domain objects and not in a traditional database too, the
domain objects are simpler to implement than wrapper
objects.

The architecture is truly object-oriented. This is probably the
reason why object-orientation has been quite successful in
technical systems like complex equipment, process control,
etc. To some extent analysis objects can be traced to
implementation of the middle layer, although some
developers said that there was little traceability.

As we shall see, the implementation of the architecture is
quite complex if the distribution problem is to be solved.

Commit: When will the data shown in a window be written
back to the domain objects? Usually as soon as the data has
been edited. But even in technical systems there may be cases
where a group of fields have to be committed at the same
time. Typically, that is solved through a closed dialogue
where no other updates of the domain objects take place
meanwhile.

Consistency: Since the data is stored in only one place - the
domain objects - there is no risk of two different screen
copies being stored back to the domain objects. However,
technical systems are often a kind of process control system,
and that gives rise to another kind of consistency problem:
Concurrent threads may try to update the same data at the
same time, for instance trying to update the same counter.

This is solved in traditional ways, for instance by letting the
domain object do the entire update through an asynchronous
operation. The domain object is then a separate thread that
can handle only one message at a time. Alternatively, locks,
semaphores, etc. can be used, so that only one thread at a time
is allowed to retrieve and update domain data..

Data retrieval: Data to be shown on the screen is simply
retrieved from the domain objects. The performance penalty
for retrieving the data in several small chunks rather than one
big chunk is small compared to the time it takes to update
screen displays.

Distribution: Observer objects are used to connect the screen
objects to the domain objects, so that a change in a domain
object can be distributed to the screen objects showing the
data.

The solution is similar to the complex business applications
and requires the same careful implementation. However, the
technical architecture has to deal with an additional problem:
In the complex business architecture, data in the wrappers can
be addressed in a uniform way, because the wrappers are an
extract of a relational database. What a screen object has to
do, is to specify a wrapper class and a key for the record in
that class. This makes all observer objects quite similar. In

 6

contrast, data maintained by domain objects cannot be
addressed in a uniform way, since the data inside a domain
object can be structured in many ways with arrays and records
in many levels. This means that there are even more observer
object classes in the technical systems.

For the same reason, it can often be difficult to extend the
system so that it shows data in ways that cross-reference data
from different domain classes. It may be necessary to extract
data from inside the complex domain objects, and new
operations in the domain objects may be needed for that.

Call-back: The technical architecture has the same problems
with two-way initiative as the complex business architecture.

4.4 Summary of Architectures, OO-Databases?
If we compare the three basic architectures, we see that the
simple business architecture is not object oriented at all. Apart
from that, its only weakness is that it has troubles handling
data shared between two windows.

The complex business architecture consists primarily of
degenerate objects. It is very difficult to implement, and only
one team had implemented it fully. There are also
performance problems when retrieving large quantities of
data from a remote database.

The technical system architecture is truly object oriented, but
it too is quite difficult to implement.

Most applications do not completely follow a single
architecture. One business application, a financial information
system with a world-wide database, followed the complex
business architecture, but had also user objects with their own
data and computationally complex functionality for analyzing
trends and stock values. One would expect that this gave
problems with commit, consistency, and distribution.
However, the system's main purpose was not to update the
database, only to retrieve data. For this reason, the commit,
consistency, and distribution problems did not exist, and no
observer objects were needed. The few updates that could be
made were handled with ad-hoc logic.

It is reasonable to ask whether an object-oriented database
would have helped. I did not see any examples in the cases I
investigated, but an OO database would probably contain an
implementation of the wrapper objects. A few groups had
tried out an OO database, but had found performance
problems with data retrieval. It is not obvious that OO
databases would solve the problems with consistency,
distribution, and call-back. Dana Moore [9] has a thorough
discussion of the relation between SQL and OO databases.

5. Development And Usability Aspects
In this section I will discuss to what extent the object-oriented
approach eased development and improved usability of the
final system.

5.1 Object Or ientation and Seamless Transition
In the technical systems there was often a clear trace from
analysis to final implementation, but in the business ap-
plications this was rarely the case. Particularly the operations
did not transfer in a seamless manner. While the technical
systems had domain objects with non-trivial functionality, the
final business applications consisted primarily of degenerate
objects. I believe there are three causes for this:

(1) The technical systems model a physical world consisting
of equipment with various parts. This can be reflected as
aggregations of objects, where each object belongs to only
one aggregate. Further, the interface to a physical part can
map quite well into operations in the corresponding object.

In contrast, business applications handle data that do not
aggregate naturally, but relate to each other in many ways. To
the user, an order form is a physical entity and we might try to
model it as an aggregation of an order heading and a list of
order lines. But the order lines appear also in other
"aggregates" like sales reports. This means that we have to
model the basic entities as separate objects and link them to
several other objects.

(2) Since we have to model the business data in this way, we
have no natural place to put a high-level operation like
Purchase. It could belong to the customer object, the product
object, or the order heading object. As a result, it seems more
convenient to avoid an arbitrary decision and instead put the
operation in a service object, i.e. a degenerate object without
data of its own.

Another argument for separating high-level operations from
the objects is given by Maring [10], describing GTE's many
years of experience with large, object-oriented systems. He
explains that they did not succeed until they put control flow
and business processes (i.e. high-level operations) outside
class behavior. If built into the classes involved, it was
impossible to get an overview of the control flow: it was like
"reading a road map through a soda straw".

 (3) Traditional developers of business applications report
that information models (data models) transfer very well
from analysis into the final system. In contrast, the
functional aspects can be described in the analysis (for
instance as data flow diagrams), but do not transfer well
into the final system. If this observation has a counterpart in
object-oriented development, it may be the reason why
operations in particular don't transfer well to
implementation. As a simple example, consider the
operation

 Customer.Move(newAddress)

This operation may seem natural during analysis, but at run
time there is no such menu point as "Move". Instead, the user
handles the operation by simply editing the address field of

 7

the customer. In general, the user carries out most tasks
through editing or other low-level database operations.

Does this mean that truly object-oriented business applica-
tions cannot be made? I found it striking that those developers
with the most experience and many successful systems behind
them, accepted the largely degenerate models as the best
solutions for business applications.

5.2 User Involvement Dur ing Development
To what extent could users understand the object-oriented
approach and contribute during development?

According to some approaches (e.g. Rumbaugh et al. [1]), the
analysis and design start with object diagrams that use a
notation rather similar to E/R-modeling (like Figure 3). All
designers using this approach reported that they had tried to
discuss the diagrams with the users, but the diagrams did not
make sense to users at all.

In other approaches (e.g. Wirfs-Brock et al. [11]), the primary
diagram is an object interaction diagram which shows the
messages passed between objects. These diagrams have more
of the flavor of traditional data flow diagrams. One group
reported that this gave some basis for discussion with users,
but users seemed to think of the boxes as functions rather than
as sets of objects.

In general, what OO analysts call objects may not be natural
objects to users. In our example, customers may be natural
objects since they can perform something, but a user is
confused if we talk about an order as something that can
perform operations and has responsibilities. Rosson and
Alpert discuss this in [12].

Some groups had experienced that initial user involvement
was successful if based on traditional requirements
specifications, including scenarios and task descriptions in
plain text and on a rather high level. Users could readily
comment on such descriptions and add further tasks to be
supported.

Later user involvement was successful if based on prototypes,
either as computerized prototypes or as simple paper
mockups.

In conclusion, object-orientation itself did not ease user
involvement, but traditional techniques - like scenarios and
prototypes - did.

5.3 User Inter face
Until now we have primarily looked at analysis and design of
the internal system functionality. But the user sees only the
screen objects. How were they developed? When discussing
this issue, I will only look at the business applications,
because I can see a general pattern there.

In most cases, the developers had no clear explanation of how
the screen windows were chosen. The attitude was that the
system had to show the contents of the database somehow.

In the actual systems, most screen windows were database
oriented, i.e. they corresponded to simple database records or
to simple records with an associated list of related records.
The customer window of Figure 3 is an example of a simple
record shown in a window, while the order window and sales
report window are examples of a record with an associated
list. These kinds of windows can easily be generated by
CASE tools or database packages - based on the database
structure. Baskerville [14] and Balzert [15] show a systematic
way to do that.

Although this user interface is close to the data model found
during analysis, it causes several problems to the user:

Few windows for frequent tasks: A consequence of database-
oriented windows is that the user often needs to access many
screens to carry out a frequent task. As an example, I saw a
system for registering blood pressure and temperature of
hospital patients. Since these measurements were two
different object types, there was one screen for entering blood
pressure and another one for entering temperature, although
the two measurements usually were registered at the same
time.

One way to remedy such problems is to design more complex
windows where the necessary data for a task is collected. This
requires screen designs that explicitly consider task
requirements. Lauesen et al. [16] show a systematic way to do
that. Since Jacobson's introduction of use cases (similar to

Time registration Init: MBH Week: 22 Year: 95

Activity Mo Tu We Th Fr Sa Su Tot
102 Lunch 0.5 0.5 0.5 0.5 2.0
715 Design DXP 4.0 3.0 5.0 3.0 4.5 19.5
808 Review SPA 4.5 2.5 7.0
812 Cust. meeting 3.0 3.5 6.5
901 Course 7.5 7.5
Total 7.5 8.0 8.0 7.5 7.0 4.5 42.5

Time registration Init: MBH

Activity Date Hours
102 Lunch 290595 0.5
715 Design DXP 290595 4.0
812 Cust. meeting 290595 3.0
102 Lunch 300595 0.5
715 Design DXP 300595 3.0
808 Review SPA 300595 4.5
102 Lunch 310595 0.5
715 Design DXP 310595 5.0
808 Review SPA 310595 2.5

Figure 4. An example of data shown in traditional list form, and the
same data shown as a matrix that enables easy perception of pat-
terns.

 8

"tasks"), OO methods should have a potential for matching
tasks and screen design [13]. Two groups systematically
made complex windows for efficient task support, but they
did it as prototype experiments in close cooperation with
users, not based on an OO method.

Understanding the database: In order to perform unusual
tasks, the user has to navigate through the database-oriented
windows. It requires a good understanding of the database.
But as we saw with user involvement, it is not easy for users
to understand the various types of records (objects) and their
relation. So in this respect, the systems were no better than
traditional mainframe-based business applications.

Understanding the database operations: In spite of style
guides, etc., users have surprising difficulties finding out how
to use the database functions. For instance, when is the
database updated? When you have edited the field, or when
you close the window, or when you use the Update function?
This problem is closely related to the architectural commit
problem.

A special concern is the search mechanism necessary to
retrieve data from large databases. Typically, the user enters
some search criteria and sees a list of matching records in a
window. But if the search criteria do not stay on the screen
close to the list, the user easily loses track of what is in the
list. For instance, a bit later the user might believe that
something is not in the database because it does not appear in
the list. The problem is aggravated in certain systems that use
the same screen fields for search criteria and results. The user
easily loses track of the current mode: Do the fields show
criteria or retrieved data?

Editing a list: Quite often, fields in a list cannot be edited, and
editing must be done in single-record windows. This
restriction is related to the consistency problem discussed
earlier, and also to limitations of standard classes to show and
handle lists.

Easy perception of structure: The database-oriented screen
design can show a lot of data in a condensed form as lists and
fields, but it is difficult to perceive patterns and structure in
the data. Nygren et al. discuss this in [17]. The object-
oriented approach itself does not encourage such efforts. Only
two of the business groups I studied paid attention to this
issue and could produce advanced pictures.

Figure 4 shows a simple example of the list approach com-
pared to an approach where data form patterns. The example
concerns registration of time spent on various development
activities and overhead activities. Each entry in the list shows
the activity worked upon, the date worked, and the number of
hours worked that date. In the matrix presentation of the same
data, it is easy to see patterns. We can visually check that
lunch is registered every day, that certain activities take a full

day, or that they are worked upon every day. We can also
easily check that a full day is registered, etc.

5.4 Modifiability and Reusability
It was difficult to get systematic information about
maintenance and reuse. Most developers agreed, however,
that the object-oriented design was much more complete than
the traditional designs they had made. Some also believed that
the program was easier to modify.

There was little experience with reuse. One group explicitly
said that they had realized they could not reuse classes in
other projects in the company. However, they believed that
object orientation had allowed them to agree on concepts and
terminology across many teams. Other groups were able to
reuse the architecture they had developed and common parts
of the wrapper objects. The ObjectDesign group could reuse
all the classes implementing their architecture, and they
market that package as a product.

6. Conclusion
Inspections of several industrial, object-oriented projects and
talks with developers show that many of the expected OO-
benefits are not obtained in current practice. Furthermore,
there are serious problems finding a solid architecture and
implementing it.

Why, then, do companies invest in OO? Usually, the reason is
one or more of these:

• They hope that the expectations come true.

• They need GUI interfaces and client-server technology,
and OO seems the only way to get it.

• They have never tried data modeling and become happy
with the data modeling aspect of their chosen OO method.
(Companies with data modeling experience consider OO
more of a gradual evolution.)

What can be done about it? Much work has to be done in
designing and implementing one or more solid architectures -
or finding an existing good solution. It should also be realized
that the ideal presented in the textbooks is not realistic and
sometimes even harmful. Finally, it must be realized that OO
alone does not provide all the expected benefits; other
techniques and methods have to be used in addition.

References
1. Rumbaugh, J. et. al.: Object-oriented modeling and

design. Prentice-Hall, 1991.

2. Rumbaugh, J.: Objects in the twilight zone. Journal of
Object-Oriented Programming, June 1993, pp. 18, 20, 22,
24.

 9

3. How to overcome the object technology learning curve.
I/S Analyzer, Vol. 33, no. 8, August, 1994.

4. Henry, S. & Humphrey, M.: Object-oriented vs.
procedural programming languages: Effectiveness in
program maintenance. Journal of Object-Oriented
Programming, June 1993, pp. 41-49.

5. Rumbaugh, J.: Modeling models and viewing views.
Journal of Object-Oriented Programming, May 1994, pp.
14-20, 29.

6. Gamma, E. et. al.: Design patterns. Addison-Wesley,
1995.

7. Jaaksi, Ari: Implementing interactive applications in C++.
Software-Practice and Experience. Vol.25 (3), March
1995, pp. 271-289.

8. ObjectDesign. Software house. Contact: Anders Bonde,
obdeandb@inet.UNI-C.dk

9. Moore, D.: An Ode to persistence. Journal of Object-
Oriented Programming, Nov/Dec 1996, pp. 29-34.

10. Maring, B.: Object-oriented development of large
applications. IEEE Software, May 1996, pp. 33-40.

11. Wirfs-Brock, R., Wilkerson, B., and Wiener, L.:
Designing object-oriented software. Prentice Hall, 1990.

12. Rosson, M.B. & Alpert, S.R.: The cognitive consequences
of object-oriented design. Human-Computer Interaction,
1990, Vol 5, pp. 345-379.

13. Jacobson, I.: Object-oriented software engineering - a use
case driven approach. Addison Wesley, 1994

14. Baskerville, R.: Semantic database prototypes. Journal of
Information Systems (1993) 3, pp. 119-144.

15. Balzert, H.: From OOA to GUIs: The JANUS system.
Journal of Object-Oriented Programming, Feb 1996, pp.
43-47.

16. Lauesen, S., Harning, M.B. & Grønning, C.: Screen
design for task efficiency and system understanding. In S.
Howard and Y.K. Leung (eds.): OZCHI 94 Proceedings,
pp. 271-276.

17. Nygren, E., Lind M., Johnson, M. & Sandblad B.: The art
of the obvious. CHI'92, pp. 235-239. ACM 0-89791-513-
5/92/0005-0235.

