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Abstract

We report our experience with exploring a new point in the design space for formal
reasoning systems: the development of the programming language Ωmega. Ωmega
is intended as both a practical programming language and a logic. The main goal of
Ωmega is to allow programmers to describe and reason about semantic properties of
programs from within the programming language itself, mainly by using a powerful
type system.

We illustrate the main features of Ωmega by developing an interesting meta-
programming example. First, we show how to encode a set of well-typed simply
typed λ-calculus terms as an Ωmega data-type. Then, we show how to implement a
substitution operation on these terms that is guaranteed by the Ωmega type system
to preserve their well-typedness.

Key words: Meta-programming, Meta-language, Equality types

1 Introduction

There is a large semantic gap between what a programmer knows about his
program and the way he has to express this knowledge to a formal system for
reasoning about that program. While many reasoning tools are built on the
Curry-Howard isomorphism, it is often hard for the programmers to concep-
tualize how they can put this abstraction to work. We propose the design of
a language that makes this important isomorphism concrete – proofs are real
object that programmers can build and manipulate without leaving their own
programming language.

We have explored a new point in the design space of formal reasoning
systems and developed the programming language Ωmega. Ωmega is both a
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practical programming language and a logic. These sometimes irreconcilable
goals are made possible by embedding the Ωmega logic in a type system based
on equality qualified types[6]. This design supports the construction, mainte-
nance, and propagation of semantic properties of programs using powerful old
ideas about types in novel ways.

For what kind of programming would a language like Ωmega be useful?
The rest of this paper describes one possibility.

Meta-programming in Ωmega

Meta-programs manipulate object-programs represented as data. Tradi-
tionally, object-language programs are represented with algebraic data-types
as syntactic objects. This representation preserves syntactic properties of
object-language programs (i.e., it is impossible to represent syntactically in-
correct object-language programs). In this paper, we explore the benefits of
representing object-language programs as data in a manner that preserve im-
portant semantic properties, in particular scoping and typing. Representing
typed object-languages in a way which preserves semantic properties can lead
to real benefits. By preserving typing and scoping properties, we gain as-
surance in the correctness of a particular language processor (e.g. compiler,
interpreter, or program analysis). Such semantics preserving representations
statically catch errors introduced by incorrect meta-language programs.

Contributions

The first contribution is an approach to manipulating strongly typed object
languages in a manner which is semantics preserving. This approach encodes
well-typed and statically scoped object-language programs as data-types which
embed the type of the object-language program in the type of its representa-
tion. While this can be done using only the standard extensions to the Haskell
98 type system (using equality types), we use Ωmega, an extension to Haskell
inspired by Cheney and Hinze’s work on phantom types [6].

The second contribution is an implementation of Cheney and Hinze’s ideas
that makes programming with well-typed object-language programs consider-
ably less tedious than using equality types in Haskell alone. Our implemen-
tation of Ωmega also supports several other features, such as extensible kinds
and staging, which we shall not discuss in this paper. This integration creates
a powerful meta-programming tool.

The third contribution is a demonstration that semantic properties of
meta-programs (i.e., preserving object-language types) can be encoded in the
type of the meta-program itself – the programmer need not resort to using an-
other meta-logic to (formally) assure himself that his substitution algorithm
preserves typing. We demonstrate this by implementing a type-preserving
substitution operation on the object-language of simply typed λ-calculus.
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The last contribution is the demonstration that these techniques support
the embedding of logical frameworks style judgments into a programming
language such as Haskell. This is important because it moves logical style
reasoning about programs from the meta-logical level into the programming
language.

2 Ωmega: A Meta-language with Type Equality

Type Equality in Haskell. A key technique that inspired the work de-
scribed in this paper is the encoding of equality between types as a Haskell
type constructor (Equal a b). Thus a non-bottom value (p::Equal a b),
can be regarded as a proof of the proposition that a equals b.

The technique of encoding the equality between types a and b as a poly-
morphic function of type ∀ϕ. (ϕ a)→ (ϕ b) was proposed by both Baars &
Swierstra [2], and Cheney & Hinze [6] at about the same time, and is described
somewhat earlier in a different setting by Weirich [20]. We illustrate this by
the data-type Equal : *→ *→ *

data Equal a b = Equal (∀ϕ. (ϕ a)→ (ϕ b))

cast :: Equal a b→ (ϕ a)→ (ϕ b)

cast (Equal f) = f

The logical intuition behind this definition (also known as Leibniz equal-
ity [12]) is that two types are equal if, and only if, they are interchangeable
in any context. This context is represented by the arbitrary Haskell type con-
structor ϕ. Proofs are useful, since from a proof p :: Equal a b, we can
extract functions that cast values of type (C[a]) to type (C[ b]) for type con-
texts C[ ]. For example, we can construct functions a2b::Equal a b→ a→
b and b2a::Equal a b→ b→ a which allow us to cast between the two types
a and b in the identity context. Furthermore, it is possible to construct com-
binators that manipulate equality proofs based on the standard properties of
equality (transitivity, reflexivity, congruence, and so on).

Equality types are described elsewhere [2], and we shall not belabor their
explanation any further. The essential characteristic of programming with
type equality in Haskell is the requirement that programmers manipulate
proofs of equalities between types using equality combinators. This has two
practical drawbacks. First, manipulation of proofs using combinators is te-
dious. Second, while present throughout a program, the equality proof manip-
ulations have no real computational content – they are used solely to leverage
the power of the Haskell type system to accept certain programs that are not
typable when written without the proofs. With all the clutter induced by
proof manipulation, it is sometimes difficult to discern the difference between
the truly important algorithmic part of the program and mere equality proof
manipulation. This, in turn, makes programs brittle and rather difficult to
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change.

2.1 Type Equality in Ωmega

What if we could extend the type system of Haskell, in a relatively minor way,
to allow the type-checker itself to manipulate and propagate equality proofs?
Such a type system was proposed by Cheney and Hinze [6], and is one of
the ideas behind Ωmega [17]. In the remainder of this paper, we shall use
Ωmega, rather than pure Haskell to write our examples. We conjecture that,
in principle, whatever it is possible to do in Ωmega, it is also possible to do in
Haskell (plus the usual set of extensions), only in Ωmega it is expressed more
cleanly and succinctly.

The syntax and type-system of Ωmega has been designed to closely resem-
ble Haskell (with GHC extensions). For practical purposes, we could consider
(and use) it as a conservative extension to Haskell. In this section, we will
briefly outline the useful differences between Ωmega and Haskell.

In Ωmega, the equality between types is not encoded explicitly (as the type
constructor Equal). Instead, it is built into the type system, and is used im-
plicitly by the type-checker. Consider the following (fragmentary) data-type
definitions. (We adopt the GHC syntax for writing the existential types with
a universal quantifier that appears to the left of a data-constructor. We also
replace the keyword forall with the symbol ∀. We shall write explicitly uni-
versally or existentially quantified variables with Greek letters. Arrow types
(->) will be written as → , and so on.)

data Exp e t

= Lit Int where t=Int

| V (Var e t)

data Var e t

= ∀γ. Z where e = (γ,t)
| ∀γα. S (Var γ t) where e = (γ,α)

Each data-constructor in Ωmega may contain a where clause which con-
tains a list of equations between types in the scope of the constructor def-
inition. These equations play the same role as the Haskell type Equal in
Section 2, with one important difference. The user is not required to provide
any actual evidence of type equality – the Ωmega type checker keeps track of
equalities between types and proves and propagates them automatically.

The mechanism Ωmega uses to keep track of equalities between types is
very similar to the constraints that the Haskell type checker uses to resolve
class-based overloading. A special qualified type [8] is used to assert equal-
ity between types, and a constraint solving system is used to simplify and
discharge these assertions. When assigning a type to a type constructor,
the equations specified in the where clause just become predicates in a qual-
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ified type. Thus, the constructor Lit is given the type ∀e t.(t=Int) =>

Int→ Exp e t. The equation t=Int is just another form of predicate, similar
to the class membership predicate in the Haskell type (for example, Ord a =>

a→ a→ Bool).

Tracking equality constraints. When type-checking an expression, the
Ωmega type checker keeps two sets of equality constraints: obligations and
assumptions.

Obligations. The first set of constraints is a set of obligations. Obligations
are generated by the type-checker either when (a) the program constructs
data-values with constructors that contain equality constraints; or (b) an ex-
plicit type signature in a definition is encountered.

For example, consider type-checking the expression (Lit 5). The con-
structor Lit is assigned the type ∀e t.(t=Int) => Int→ Exp e t. Since
Lit is polymorphic in e and t, the type variable t can be instantiated to Int.
Instantiating t to Int also makes the equality constraint obligation Int=Int,
which can be trivially discharged by the type checker.

Lit 5 :: Int→ Exp e Int with obligation Int = Int

One practical thing to note is that in this context, the data-constructors
of Exp and Var are given the following types:

Lit :: ∀e t.t=Int => Int→ Exp e t
Z :: ∀e e’ t.e=(e’,t) => Var e t
S :: ∀e t e’ t’. e=(e’,t’) => (Var e’ t)→ (Var e t)

It is important to note that the above qualified types can be instantiated
to the following types:

Lit :: Int→ Exp e Int

Z :: Var (e,t) t

S :: (Var e’ t)→ (Var (e’,t’) t)

We have already seen this for Lit. Consider the case for Z. First, the
type variable e can be instantiated to (e’,t). After this instantiation, the
obligation introduced by the constructor becomes (e’,t)=(e’,t), which can
be immediately discharged by the built-in equality solver. This leaves the
instantiated type (Var (e’,t) t).

Assumptions. The second set of constraints is a set of assumptions or
facts. Whenever, a constructor with a where clause is pattern-matched, the
type equalities in the where-clause are added to the current set of assumptions
in the scope of the pattern. These assumptions can be used to discharge
obligations. For example, consider the following partial definition:

evalList :: Exp e t→ e→ [t]

evalList exp env =

case exp of Lit n→ [n]
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When the expression exp of type (Exp e t) is matched against the pat-
tern (Lit n), the equality t=Int from the definition of Lit is introduced as
an assumption. The type signature of evalList induces the obligation that
the body of the definition has the type [t]. The right-hand side of the case

expression, [n], has the type [Int]. The type checker now must discharge
(prove) the obligation [t]=[Int], while using the fact, introduced by the pat-
tern (Lit n) that t=Int. The Ωmega type-checker uses an algorithm based
on congruence-closure [11], to discharge equality obligations. It automatically
applies the laws of equality to solve such equations. In this case, the equation
is discharged easily using congruence.

3 Ωmega Example: Substitution

Now, we shall develop our main example, showcasing the meta-programming
facilities of Ωmega. First, we shall define a sample object-language of simply
typed λ-calculus judgments, and then implement a type-preserving substi-
tution function on those terms. While this object-language is quite simple,
useful perhaps only for didactic purposes, we have applied our techniques on
a wider range of meta-programs and object-languages (e.g., tagless staged in-
terpreters for typed imperative languages, object-languages with modal type
systems, and so on [13,14]).

This example demonstrates type-preserving syntax-to-syntax transforma-
tions between object-language programs. Substitution, which we shall develop
in the remainder of this paper, is one such transformation. Furthermore, a
correct implementation of substitution can be used to build more syntax-
to-syntax transformations: we shall provide an implementation of big-step
semantics that uses substitution.

The substitution operation we present preserves object-language typing.
As a meta-program, it not only analyzes object-language typing judgments,
but also builds new judgments based on the result of that analysis.

3.1 The Simply Typed λ-calculus with Typed Substitutions

Figures 1 and 2 define two sets of typed expressions. The first figure of ex-
pressions (Figure 1) is just the simply typed λ-calculus. The second figure
(Figure 2) defines a set of typed substitutions. The substitution expressions
are taken from the λυ-calculus [4]. There are several of other ways to repre-
sent substitutions explicitly as terms (see Kristoffer Rose’s excellent paper [16]
for a comprehensive survey), but we have chosen the notation of λυ for its
simplicity.

A substitution expression σ is intended to represent a mapping from de-
Bruijn indices to expressions (i.e., a substitution), the same way that λ-
expressions are intended to represent functions. As in λυ, we define three
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Expressions and types

τ ∈ T ::= b | τ1 → τ2

Γ ∈ G ::= 〈〉 | Γ, τ

e ∈ E ::= Var n | λτe | e1 e2

Γ, τ ` 0 : τ
(Base)

Γ ` n : τ

Γ, τ ′ ` (n + 1) : τ
(Weak)

Γ ` n : τ

Γ ` Var n : τ
(Var)

Γ, τ1 ` e : τ2

Γ ` λτ1 .e : τ1 → τ2

(Abs)
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

(App)

Fig. 1. The simply typed λ-calculus fragment.

Substitutions à la λυ [4]

σ ∈ S ::= e/ | ⇑(σ) | ↑

Γ ` e : τ

Γ ` e/ : Γ, τ
(Slash)

Γ, τ `↑: Γ
(Shift)

Γ ` σ : Γ′

Γ, τ `⇑(σ) : Γ′, τ
(Lift)

Fig. 2. Explicit substitutions fragment.

e

0

<<zzzzzzzzz
Var 0

1

==zzzzzzzz
Var 1

2

==zzzzzzzz
Var 2

3

==zzzzzzzz
Var 3

...

??~~~~~~~~~ ..
.

0

!!D
DD

DD
DD

D Var 0

1

!!D
DD

DD
DD

D Var 1

2

!!D
DD

DD
DD

D Var 2

3

  @
@@

@@
@@

@@ Var 3

...
...

0 // Var 0

1 // ↑ (σ(0))

2 // ↑ (σ(1))

..

.
// ..
.

...
// ...

(a) Slash (e/) (b) Shift (↑) (c) Lift (⇑(σ))

Fig. 3. Substitutions

kinds of substitutions in Figure 2 (see Figure 3 for a graphical illustration):

(i) Slash (e/). Intuitively, the slash substitution maps the variable with the
index 0 to e, and any variable with the index n + 1 to Var n.
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(ii) Shift (↑). The shift substitution adjusts all the variable indices in a
term by incrementing them by one. It maps each variable n to the term
Var (n + 1).

(iii) Lift (⇑ (σ)). The lift substitution (⇑ (σ)) is used to mark the fact that
the substitution σ is being applied to a term in a context in which index
0 is bound and should not be changed. Thus, it maps the variable with
the index 0 to Var 0. For any other variable index n+1, it maps it to the
term that σ maps to n, with the provision that the resulting term must
be adjusted with a shift: ((n + 1) 7→↑ (σ(n))).

Typing substitutions

The substitution expressions are typed. The typing judgments of substi-
tutions, written Γ1 ` σ : Γ2, indicate that the type of a substitution, in a
given type assignment, is another type assignment. The intuition behind the
substitution typing judgment is the following: given a term whose variables
are assigned types by Γ2, applying a the substitution σ yields an expression
whose variables are assigned types by Γ1.

Example. We describe a couple of example substitutions.

(i) Consider the substitution (True/). This substitution maps the variable
with the index 0 to the Boolean constant True. The type of this substi-
tution is Γ ` True/ : Γ, Bool. In other words, given any type assignment,
the substitution (True/) can be applied in any context where the variable
0 is assigned type Bool.

(ii) Consider the substitution σ = (⇑ (True/)). σ is the substitution that
replaces the variable with the index 1 with the constant True.

Recall that the type of any substitution θ under a type assignment Γ, is
a type assignment ∆ (written Γ ` θ : ∆), such that for any expression e′

to which the substitution θ is applied, the following must hold ∆ ` e′ : τ
and Γ ` θ(e′) : τ .

So, what type should we assign to σ? When applied to an expression,
a lift substitution (σ =⇑ (True/)) does not change the variable with the
index 0. Thus, when typing σ as Γ ` σ : ∆, we know something about
the shape of Γ and ∆. Namely, for some ∆′, we know that ∆ = (∆′, τ),
and for some Γ′, we know that Γ = (Γ′, τ). The type assignments ∆′ and
Γ′ are determined by the sub-substitution True/, yielding the following
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typing derivation:

Γ ` True : Bool
Const

Γ ` Bool/ : Γ, Bool

Slash

Γ, τ `⇑(Bool/) : Γ, Bool, τ

Lift

There are three typing rules for the substitutions (Figure 2):

(i) Slash (e/). A slash substitution e/ replaces the 0-index variable in an
expression by e. Thus, in any context Γ, where e can be given type
τ , the typing rule requires the substitution to work only on expressions
in the type assignment Γ, τ , where the 0-index variable is assigned the
type τ . Since the slash substitution also decrements the indexes of the
remaining variables, they are all shifted to the right by one place, so that
the remaining free variables can be assigned their old types in Γ after the
substitution is applied.

Γ ` e : τ

Γ ` e/ : Γ, τ
(Slash)

(ii) Shift (↑). The shift substitution maps all variables n to Var (n + 1).
Thus, given a term whose variables are assigned type a by Γ, after per-
forming the shift substitution, the types in the type assignment must for
each variable must “move” to the left by one position. This is done by
appending an arbitrary type τ for the variable with the index 0, which
cannot occur free in the term after the substitution is performed.

Γ, τ `↑: Γ
(Shift)

(iii) Lift (⇑ (σ)). For any variable index (n + 1) in a term, the substitution
⇑(σ) applies σ to n and then shifts the resulting term. Thus, the 0-index
term in the type assignment remains untouched, and the rest of the type
assignment is as specified by σ:

Γ ` σ : Γ′

Γ, τ `⇑(σ) : Γ′, τ
(Lift)

Applying substitutions

In the remainder of this Section, we show how to implement a function (we
call it subst) that takes a substitution expression σ, a λ-expression e, and re-
turns an expression such that all the indices in e have been replaced according
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Substitution on expressions
(·, ·) ⇒ · ⊂ S× E× E

2

(σ, e1) ⇒ e′1

(σ, e2) ⇒ e′2

(σ, (e1 e2)) ⇒ e′1 e′2
(⇑(σ), e) ⇒ e′

(σ, λ.e) ⇒ λe′

(σ, n) ⇒ e

(σ, Var n) ⇒ e

Substitution on variables
(·, ·) ⇒ · ⊂ S× N × E

(e/, 0) ⇒ e (e/, n + 1) ⇒ Var n (⇑(σ), 0) ⇒ Var 0

(σ, n) ⇒ e (↑, e) ⇒ e′

(⇑(σ), n + 1) ⇒ e′ (↑, n) ⇒ Var (n + 1)

Fig. 4. Applying substitutions to terms

the substitution. In the simply typed λ-calculus, substitution preserves typ-
ing, so we expect the following property to be true of the substitution function
subst: if Γ ` σ : ∆ and ∆ ` e : τ , then Γ ` subst σ e : τ .

How should subst work? Figure 4 presents two judgments, (σ, e1) ⇒ e2

and (σ, n) ⇒ e, which describe the action of substitutions on expressions
and variables, respectively. These judgments are derived from the reduction
relations of the λυ-calculus [4]. It is not difficult to show that this reduction
strategy indeed does implement capture avoiding substitution sufficient to
perform β reductions (see Benaissa, Lescanne & al. [4] for proofs).

4 Implementing Substitution in Ωmega

Next, we show how to implement this substitution operation in Ωmega, using
expression and substitution judgments instead of expressions and substitution
expressions.

4.1 Judgments

The expression and substitution judgments can be easily encoded in Ωmega.
The data-types Var and Exp encode expression and variable judgments pre-
sented in Figure 1.

data Var e t = ∀d. Z where e = (d,t)

| ∀d t2. S (Var d t) where e = (d,t2)

data Exp e t = V (Var e t)
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| ∀t1 t2. Abs (Exp (e,t1) t2)

where t = t1→ t2

| ∀t1. App (Exp e (t1→ t))

(Exp e t1)

The judgment Var implements the lookup and weakening rules for vari-
ables. Just as in the judgment of Figure 1, there are two cases:

(i) First, there is the constructor Z. This constructor translates the definition
of Figure 1 directly: the where-clause requires the type system of Ωmega
to prove that there exists some environment γ such that the environment
t is equal to γ extended by t.

(ii) The second constructor, S takes a judgment of type (Var γ t), and a
requirement that the environment e is equal to the pair (γ, α), where
both γ and α are existentially quantified.

The names S and Z are chosen to show how the judgments for variable
are structurally the same as the natural number indices. Finally, the sub-
judgments for the variable case are “plugged” into the definition of Exp e t

using the constructor V.

The type of expression judgments (Exp e t) is constructed in a similar
fashion. We shall only explain the abstraction case in some detail. The con-
structor Abs takes as its argument a judgment of type (Exp (e,t1) t2): an
expression judgment of type t2 in the type assignment e, extended so that it
assigns the variable 0 the type t1. If this argument can be supplied, then the
result type of the Abs judgment is the function type (t1→ t2), as indicated
by the where-clause.

Next, we define a data-constructor Subst gamma delta that represents the
typing judgments for substitutions . The type constructor Subst gamma delta

represents the typing judgment Γ ` σ : ∆ presented in Figure 2.

data Subst gamma delta =

∀t1. Shift

where gamma = (delta,t1)

| ∀t1. Slash (Exp gamma t1)

where delta = (gamma,t1)

| ∀del1 gam1 t1. Lift (Subst gam1 del1)

where delta = (del1,t1),

gamma = (gam1,t1)

4.2 Substitution

Finally, we define the substitution function subst. It has the following
type:

subst :: Subst gamma delta→
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1 subst :: Subst gamma delta→
2 Exp delta t→ Exp gamma t

3 subst s (App e1 e2) = App (subst s e1) (subst s e2)

4 subst s (Abs e) = Abs (subst (Lift s) e)

5 subst (Slash e) (V Z) = e

6 subst (Slash e) (V (S n)) = V n

7 subst (Lift s) (V Z) = V Z

8 subst (Lift s) (V (S n)) = subst Shift (subst s (V n))

9 subst (Shift) (V n) = V (S n)

Fig. 5. Substitution in simply typed λ-calculus.

Exp delta t→ Exp gamma t

It takes a substitution whose type is delta in some type assignment gamma, an
expression of type t that is typed in the type assignment delta, and produces
an expression of type t typable in the type assignment gamma.

We will discuss the implementation of the function subst (Figure 5) in
more detail. In several relevant cases, we shall describe the process by which
the Ωmega type-checker makes sure that the definitions are given correct types.
Recall that every pattern-match over one of the Exp or Subst judgments may
introduce zero or more equations between types, which are then available
to the type-checker in the body of a case (or function definition). The type
checker may use these equations to prove that two types are equal. In the text
below, we sometimes use the type variables gamma and delta for notational
convenience, but also Skolem constants like 1. These are an artifact of the
Ωmega type-checker (they appear when pattern-matching against values that
may contain existentially quantified variables) and should be regarded as type
constants.

(i) The application case (line 3) simply applies the substitution to the two
sub-expression judgments and then rebuilds the application judgment
from the results.

(ii) The abstraction case (line 4) pushes the substitution under the λ-abstraction.
It may be interesting to examine the types of the various subexpressions
in this definition.

Abs e : Exp delta t, where t=t1→ t2

e : Exp (delta,t1) t2

s : Subst gamma delta

Lift s : Subst (gamma,t1) (delta,t1)

subst (Lift s) e : Exp (gamma,t1) t2

The body of the abstraction, e has the type (delta,t1), where t1
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is the type of the domain of the λ-abstraction. In order to apply the
substitution s to the body of the abstraction (e), we need a substitution
of type (Subst (gamma,t1) (delta,t1)). This substitution can be ob-
tained by applying Lift to s. Then, recursively applying subst with
the lifted substitution to the body e, we obtain an expression of type
(Exp (gamma,t1) t2), from which we can construct a λ-abstraction of
the (Exp gamma (t1→ t2)).

(iii) The variable-slash case (line 5-6). There are two cases when applying the
slash substitution to a variable expression:
(a) Variable 0. The substitution (Slash e) has the type

(Subst (gamma) (gamma,t)), and contains the expression
e :: Exp gamma t. The expression (V Z) has the type
(Exp (delta,t) t). Pattern matching introduces the equation
gamma=delta, and we can use e to replace (V Z).

Slash e :: (Subst (gamma) (gamma,t))

e :: Exp gamma t

(b) Variable n+1. Pattern matching on the substitution argument intro-
duces the equation delta=(gamma,t1). Pattern matching against the
expression (V (S n)) introduces the equation delta=(gamma’,t),
for some gamma’. The expression result expression (V n) has the
type (Exp gamma’ t). The type checker then uses the two equalities
to prove that it has the type (Exp gamma t). It does this by first
using congruence to prove that gamma=gamma’, and then by applying
this equality to obtain Exp gamma’ t = Exp gamma t.

Slash e :: Subst gamma (gamma,t)

(V (S n)) :: Exp delta t

(iv) The variable-lift case (lines 7-8). There are two cases when applying the
lift substitution to a variable expression.
(a) Variable 0. This case is easy because the lift substitution places makes

no changes to the variable with the index 0. We are able simply to
return (V Z) as a result.

(b) Variable n+1. The first pattern (Lift s :: Subst gamma delta),
on the substitution, introduces the following equations:

delta = (d’,_1),

gamma = (g’,_1)

The pattern on the variable (V(S n):: Var delta t) introduces
the equation

delta = (d2,_2)

The first step is to apply the substitution s of type (Subst g’

d’) to a decremented variable index (V n) which has the type n ::
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Var d2 t. To do this, the type checker has to show that g’=d2, which
easily follows from the equations introduced by the pattern, yielding
a result of type (Exp g’ t). Applying the Shift substitution to
this result yields an expression of type (Exp (g’,a) t) (where a

is can be any type). Now, equations above can be used to prove
that this expression has the type (Exp gamma t) using the equation
gamma=(g’, 1).

(v) Variable-shift case (line 9). Pattern matching on the Shift substitution
introduces the equation gamma = (delta, 1). The expression has the
type (Exp delta t). Applying the successor to the variable results in
an expression (V (S n)) of type (Exp (delta,a) t). Immediately, the
type checker can use the equation introduced by the pattern to prove
that this type is equal to (Exp gamma t).

We have defined type-preserving substitution simply typed λ-calculus judg-
ments. Recall, that since equality proofs can be encoded in Haskell, it should
be possible (with certain caveats) to implement the function subst in Haskell
(with a couple of GHC extensions). It is worth noting that Ωmega has proven
very helpful in writing such complicated functions: explicitly manipulating
equality proofs for such a function in Haskell, would result in code that is
both verbose and difficult to understand.

5 A Big-step Evaluator

Finally, we implement a simple evaluator based on the big-step semantics for
the λ-calculus. The evaluation relation is given by the following judgment:

λe ⇒ λe x ⇒ x

e1 ⇒ λe′ (e2/, e
′) ⇒ e3 e3 ⇒ e′′

e1 e2 ⇒ e′′

Note that in the application case, we first use the substitution (e2/, e
′) ⇒ e3

to substitute the argument e2 for the variable with index 0 into the body of
the λ-abstraction.

The big-step evaluator is implemented as the function eval which takes
a well-typed expression judgment of type (Exp delta t), and returns judg-
ments of the same type. The evaluator reduces β-redices using a call-by-name
strategy, relying upon the substitution implemented above.

eval :: Exp delta t -> Exp delta t

eval (App e1 e2) =

case eval e1 of

Abs body -> eval (subst (Slash e2) body)

eval x = x
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Note that the type of the function eval statically ensures that it preserves
the typing of the object language expressions it evaluates, with the usual
caveats that the Exps faithfully encode well-typed λ-expressions.

Finally, let us apply the big-step evaluator to a simple example. Consider
the expression, example.

example :: Exp gamma (a→ a)

example = (Abs (V Z)) ‘App‘ ((Abs (Abs (V Z)))

‘App‘ (Abs (V Z)))

-- example = (λ x.x) ((λ y. (λ z.z))) (λ x.x)

The expression example evaluates to the identity function. Applying eval

to it yields precisely that result:

evExample = eval example

-- evExample = (Abs (V Z)) : Exp gamma (a→ a)

6 Related Work

Implementations of simple interpreters that use equality proof objects imple-
mented as Haskell datatypes, have been given by Weirich [20] and Baars and
Swierstra [2]. Baars and Swierstra use an untyped syntax, but use equal-
ity proofs to encode dynamically typed values. Hinze and Cheney [5,6] have
recently resurrected the notion of “phantom type,” first introduced by Lei-
jen and Meijer [10]. Hinze and Cheney’s phantom types are designed to ad-
dress some of the problems that arise when using equality proofs to represent
type-indexed data. Their main motivation is to provide a language in which
polytypic programs, such as generic traversal operations, can be more easily
written. Cheney and Hinze’s system bears a strong similarity to Xi et al.’s
guarded recursive datatypes [21], although it seems to be a little more general.

We adapt Cheney and Hinze’s ideas to meta-programming and language
implementation. We incorporate their ideas into a Haskell-like programming
language. The value added in our work is additional type system features
(extensible kinds and rank-N polymorphism, not used in this paper) applying
these techniques to a wide variety of applications, including the use of typed
syntax, the specification of semantics for patterns, and its combination with
staging to obtain tagless interpreters, and the encoding of logical framework
style judgments as first class values within a programming language.

Simonet and Pottier [18] proposed a system of guarded algebraic data types,
which seem equivalent in expressiveness to phantom types, guarded recur-
sive datatype constructors, and Ωmega’s equality qualified (data)types. They
present a type system for guarded algebraic data types as an extension to the
HM(X) [19] type system, and describe a type inference algorithm. They prove
a number of important properties about the type system and the inference
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algorithm (e.g., type soundness, correctness, and so on).

The technique of manipulating well-typedness judgments has been used
extensively in various logical frameworks [7,15]. We see the advantage of our
work here in translating this methodology into a more main-stream functional
programming idiom. Although our examples are given in Ωmega, most of our
techniques can be adapted to Haskell with some fairly common extensions.

In previous work, we have used the techniques and programming language
extensions described above to address the problem of tagless interpreters in
meta-programming [14]. Tagless interpreters can easily be constructed in de-
pendently typed languages such as Coq [3] and Cayenne [1]. These languages,
however, do not support staging, nor have they gained a wide audience in the
functional programming community. Programming with well-typed object-
language syntax, applied to the problem of constructing tagless staged in-
terpreters, has been shown possible in a meta-language (provisionally called
MetaD) with staging and dependent types [14]. The drawback of this ap-
proach is that there is no “industrial strength” implementation for such a
language. In fact, the judgment encoding technique presented in this paper
is basically the same, except that instead of using a dependently typed lan-
guage, we encode the necessary machinery in a language which is arguably
more recognizable to Haskell programmers. By using explicit equality types,
everything can be encoded using the standard GHC extensions to Haskell 98.
Ωmega adds further ease of use to these techniques, relieving the programmer
of the responsibility of explicitly manipulating equality proofs.

A technique using indexed type systems [22], a restricted and disciplined
form of dependent typing, has been used to write interpreters and source-to-
source transformations on typed terms [21]. The meta-language with guarded
recursive datatype constructors, used by Xi & al., seems to be roughly equiv-
alent in expressive power to Ωmega. Ωmega, however, is equipped with ad-
ditional features, such as staging, which may give it a wider range of useful
applications.

7 Discussion and Future Work

Meta-language Implementation. The meta-language used in this paper can
be seen as a (conservative) extension of Haskell, with built-in support for
equality types. It was largely inspired by the work of Cheney and Hinze. The
meta-language we have used in our examples in this papers is the functional
language Ωmega, a language designed to be as similar to Haskell. We have
implemented our own Ωmega interpreter, similar in spirit and capabilities to
the Hugs interpreter for Haskell [9].

Theoretical work demonstrating the consistency of type equality support
in a functional language has been carried out by Cheney and Hinze. We
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have implemented these type system features into a type inference engine,
combining it with an equality decision procedure to manipulate type equalities.
The resulting implementation has seen a good deal of use in practice, but more
rigorous formal work on this type inference engine is required.

Polymorphism and Binding Constructs in Types. The object-language of
the example presented in this paper (Figure 1), is simply typed: there are no
binding constructs or structures in any index arguments to Exp. If, however,
we want to represent object languages with universal or existential types, we
will have to find a way of dealing with type constructors or type functions as
index arguments to judgments, which is difficult to do in Haskell or Ωmega.
We are currently working on extending the Ωmega type system to do just that.
This would allow us to apply our techniques to object languages with more
complex type systems (e.g., polymorphism, dependent types, and so on).

Logical Framework in Ωmega. The examples presented in this paper suc-
ceed because we manage to encode the usual logical-framework-style inductive
predicates into the type system of Ωmega. We have acquired considerable ex-
perience in doing this for typing judgments, lists with length, logical proposi-
tions, and so on. What is needed now is to come up with a formal and general
scheme of translating such predicates into Ωmega type constructors, as well as
to explore the range of expressiveness and the limitations of such an approach.
We intend to work on this in the future.
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