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A Language for the Cell

Troels C. Damgaard, Vincent Danos, and Jean Krivine

Abstract

We introduce a formal language, the C-calculus, for modelling low-
level interaction inside and among cells, the basic building blocks of all
known life. We focus on two main actors of cells, proteins and membranes.
Proteins are represented as clusters of domains sharing a common hid-
den name; domain-domain bonds are also represented via name-sharing.
Compartments are formed by formal membranes. We treat also channels
between membranes allowing transport of proteins, allowing us to cap-
ture an observable intermediate state in cell fusion or division, regulated
by diffusion.

We illustrate the calculus by giving two example models. We ex-
emplify the basic constituents of the calculus, by developing a model of
simple cross-membrane signalling via a G-protein coupled receptor pro-
tein. We continue by developing a model illustrating part of the endocytic
pathway—the formation of clathrin-coated cytoplasmic vesicles, through
budding from the plasma membrane (the cell-wall).

1 Introduction

In this paper, we introduce a formal language, the C-calculus, for modelling low-
level interaction inside and among cells, the basic building blocks of all known
life. We start by giving a brief overview of the biology of cells, and discuss the
level of abstraction that we aim to capture in the calculus. In the C-calculus,
we focus on two main actors of cells, membranes and proteins.

Membranes In nature, biological membranes are vital for separating cells
from their surroundings, for confining dangerous compounds to secure compart-
ments, for serving as vehicles of transport, or, for promoting certain reactions
by raising the local concentration of reactants. The membrane of a cell consists
mostly of a double layer of proteins and lipids (fat-like molecules). Membranes
may have a variety of molecules attached to them or embedded within them.
Notably, such molecules may be transmembrane proteins, which serve to prop-
agate signals across the membrane barrier; or, they may be various molecules,
which serve as pumps for moving different smaller molecules in and out of the
cell. The molecules attached to membranes also serve to differentiate the two
sides of a membrane and to stabilize it. Organelles (“small organs”) inside eu-
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karyotic cells (cells with nuclei) are also wrapped in protective membranes, as
are vesicles transporting material between cells.

Biological membranes are dynamic entities—under certain conditions, they
may form buds, new small membrane-enclosed compartments that grow from
a particular location on the membrane. Budding may serve to create vesicles,
for instance. A membrane may also undergo fission and divide entirely in two,
in the process also dividing the content in the enclosed compartment.1 Both
budding and cell division are typically complicated and regulated processes in-
volving various kinds of machinery (depending on the type of membranes and
division). For instance—in what is sometimes known as asexual reproduction
of eukaryotic cells—when two eukaryotic cells divide, initially the chromosomes
(the structures carrying DNA) in the cell nucleus are carefully separated into
two nuclei. This process is called mitosis. In a following step called cytokine-
sis, the cytoplasm (the contents inside the cellular membrane) as well as the
organelles and the cellular membrane are split up to form two new daughter
cells.

Membranes may also fuse with other membranes. This occurs, for instance,
when viruses infect cells, and it serves to create such structures as the long fibers
of human skeletal muscles. When two cells fuse together, their membranes meet
at one point and create a connection between the membranes. Eventually, the
two membranes will form one single, continuous membrane that surrounds the
contents of both cells.

Research has confirmed that both when cells fuse or divide, membranes will
temporarily be in a partially fused state with a neck consisting of partially fused
membrane material.2 This neck acts as a bridge connecting two compartments
and it typically allows some material to be exchanged by diffusion. Even further,
it also happens that cells abort fusion (or fission). For instance, two cells may
partially fuse, exchange some material by diffusion, and then part again.

In the C-calculus, compartments are formed by formal membranes. To cap-
ture faithfully the dynamics of fusion and fission, we include in the C-calculus
also binary channels between membranes. Channels are, to our knowledge, a
novel abstraction that allows us to capture an observable intermediate state in
fusion and fission. In this intermediate state the connected compartments may
exchange material regulated by diffusion. Formally, channels are formed by
gates sharing a common name; gates can be seen as abstractions for the various
molecular-structures that constitute the neck.

1As in computer science, biological terminology tends to be overloaded. In this paper, we
shall use fission as a generic term to refer to any process by which membranes divide. In doing
so, we stretch the terminology typically employed by biochemists a bit, but it is convenient
to use the term to describe the reverse of fusion. We stress that our usage of fission should
not be confused with so-called binary fission—the specific process by which prokaryotic cells
(cells without a nuclei) divide.

2For instance, studies on cellular division in nematode worms show that an intermediate
state may indeed be observed during cell fusion [Pod06]. Other studies have focused on
different models for the intermediate structures in membrane fission [KK03]. Some studies
also hypothesize that the shapes of the intermediate protein structures, which form the neck
itself, may drive and serve to distinguish the process of fission and fusion [KC02].
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Membranes-enclosed cells are large structures compared to the typical pro-
tein. While a eukaryotic cell may be around 10 − 100µm, the typical diameter
of a globular protein—like hemoglobin, for instance—is around 5nm. The dif-
ference in scale of mass is far larger. Thus, from the perspective of cells and
membranes, proteins can be considered essentially atomic.

Proteins Proteins are linear chains of amino-acids. The string of amino-acids
is known as the backbone of a protein. Gene-sequences in the DNA enclosed in
all cells determines the amino-acid sequence for all the proteins that a cell can
produce. Production (synthesis) of proteins involves transcribing the DNA to
mRNA, various kinds of post-transcriptional modification, and translating the
mRNA to proteins by way of small cellular factories called ribosomes. Finally,
most proteins fold into three-dimensional structures called the conformation or
the tertiary structure of the protein. The tertiary structure may in turn hide or
reveal some parts of the protein.3 The entire process of synthesis of proteins is
complex, self-organized and, as nearly all biological phenomena, highly regulated
by various molecular signals.

The peptide bonds forming the backbone make proteins relatively stable
structures. Proteins may also form weaker bonds with other proteins to form
multi-protein complexes. These bonds form on particular parts of the proteins
referred to as domains or sites.

In the C-calculus, our aim is to capture a domain-level description suitable
for describing protein-protein interaction in a multi-compartment environment.
To allow for transmembrane-proteins, in the C-calculus proteins are represented
as clusters of domains sharing a common name. This name is a formal rep-
resentative of the backbone. Domain-domain bonds are also represented via
name-sharing.

Formal foundation and sources of inspiration Formally, the calculus is
founded on bigraphical reactive systems (due to Milner et al. [JM04, Mil06])
through the BΣ,R-framework treated by Damgaard and Krivine [DK08] (see be-
low). Thus, the C-calculus admits a formally founded graphical language; and
we inherit results for a tacit term syntax with well-understood structural congru-
ence properties [Mil05, DB06], and a well-understood behavioral theory. Even
further, due to recent results by Milner, Krivine, and Troina [KMT08], a stochas-
tic extension of the nondeterministic calculus presented in this paper, is well-
founded. Implementation of bigraphs has also been investigated [BDGM07],
and a prototype implementation is available [BPL07].

The BΣ,R-framework (presented in [DK08]) paves the way for our usage of bi-
graphical calculi for modelling biological interaction, in particular, by extending
bigraphical reaction rules to allow testing of contextual negative side-conditions.

3Traditionally, biochemists refer to four distinct aspects of structure for proteins. Primary
structure, the amino-acid sequence; secondary structure, describing regular local structures
(such as so-called alpha-helixes or beta-sheets); tertiary structure, the 3-d structure; and,
quaternary structure, the structure of complexes formed from several proteins.
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It also introduces a self-contained and generic presentation of the operational
semantics for a subset of bigraphical calculi, in a structural style more in line
with how process calculi are typically presented. We shall make good use of this
groundwork in this paper, eliding most discussion of bigraphical idiosyncracies,
and focusing on the presentation and motivation of the calculus itself.

We are inspired by and combine features from several existing languages,
in particular, the κ calculus [DL04], a rule-based language capturing domain-
level protein-protein interaction. We base our domain-level model of proteins
closely on our experience with capturing the κ-calculus in the BΣ,R-framework
(in [DK08]), only here generalized to a multi-compartment setting. A main aim
of the work presented in this paper, has been to extend a κ-like language with
dynamic compartments.

The model for membranes and their dynamics is influenced, in particular, by
the brane-family of calculi [Car04b, DP04], which deals solely with membrane
interaction; and the Bioambients [RPS+04], one of the first calculi to investigate
at the same time both molecular and membrane-level interaction.

We discuss in more detail the inspiration sources for the C-calculus both in
the main sections of the paper, and in Section 5.2.

An overview of the paper Having given an overview of the biology of cells
and introduced the background that the C-calculus builds on, in the next section
we present the C-calculus static model. In Sections 2.1 and 2.2, we introduce and
motivate the model of proteins and membranes, and in Section 2.3 we define the
grammar for C-calculus solutions and define an associated structural congruence
relation. In Section 2.4, we discuss how structural congruence classes of solutions
correspond to bigraphs. This paves the way for a graph-based description of
well-formed solutions, which we define and motivate in Section 2.5. We shall
define well-formedness to ensure that well-formed solutions are those that we
can interpret biologically.

In Section 3, we turn to the operational semantics of the calculus. The
κ-calculus has been one of several advocates for what we may call rule-based
modelling. Rules can be understood and manipulated separately, are easily
visualized, and, easily express possible overlapping behaviors of certain config-
urations. On the other hand, we need to uphold certain well-formedness invari-
ants to ensure that we can interpret model configurations sensibly as biological
states. Hence, we advocate a middle-ground for the C-calculus: Modelling by
rule refinement. We shall give a set of rule-generators that each express a core
biological action for membranes and proteins. The key idea is that a domain
expert, say a bio-chemist, may pick and refine those core generators to give a
domain-specific sub-calculus for the study of a particular biological application.
He does this by giving a set of application conditions that express when an
action may be applied.

We start by defining C-calculus reactive systems and reaction rules in Sec-
tion 3.1. In Section 3.2 we describe formally so-called projective descriptions of
rules, inspired by the Projective Brane Calculus by Pradelier and Danos [DP04],
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and, more recently, by the patch reactions treated by Cardelli for Bitonal Sys-
tems [Car08]. They let us describe conveniently sets of rules for reactions in-
volving regions separated by one or two membrane-surfaces, while eliding the
orientation of those separating membranes. In Sections 3.3 and 3.4, we introduce
rules for protein-protein interaction and membrane (or channel) reconfiguration,
respectively. In Section 3.5, we define refinements of rules and settle on a defi-
nition of those rules that we allow in the C-calculus. Finally, in Section 3.6 we
show that the allowable rules preserve well-formedness.

In Section 4, we illustrate the calculus with two examples. We exemplify
the basic constituents of the calculus, by developing a model of simple cross-
membrane signalling via a G-protein coupled receptor protein. We continue
by developing a model illustrating part of the endocytic pathway—the forma-
tion of clathrin-coated cytoplasmic vesicles, through budding from the plasma
membrane (the cell-wall).

In Section 5, we conclude and discuss some related and future work.
In Appendix 6, we include a series of definitions for solutions inherited di-

rectly from the BΣ,R-framework for such properties as free names, normal forms,
and substitution.

2 The C-calculus—a Model of Proteins and Mem-
branes

In Sections 2.1 and 2.2, we introduce and motivate the foundation of the C-
calculus—the model of proteins and membranes. In Section 2.3, we define for-
mally the grammar for the C-calculus and its associated structural congruence
relation. In Section 2.4, we discuss how solutions up to structural congruence
correspond to bigraphs, and, finally, in Section 2.5 we define and motivate well-
formedness for the C-calculus.

2.1 Proteins

In the C-calculus, proteins are represented as groups of interaction domains
sharing a common name, which we call the backbone. Domain-domain bonds,
which let proteins form complexes, are also represented via name-sharing. While
in the κ-calculus proteins are atomic entities, domains are the atoms of the
C-calculus. Domains are represented via atomic function symbols, and thus
depicted as atomic nodes (i.e., they cannot contain other nodes).

Formally, we derive the set of domains from a protein-signature. Protein-
names are drawn from a fixed set P, which we require to be disjoint from all
other kinds of names.

Definition 2.1 (protein-signature). A protein-signature, ΣP , is a map from P
to N2.

The protein-signature, ΣP , maps each protein-name p to a pair of integers
(a, r), where a is the arity of the protein—it determines the number of domains
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of p—and, r is the receptor-arity of p. We explain the receptor-arity below.

Definition 2.2 (domains). Given a protein-signature ΣP , let D ⊆ P × N, the
set of domains induced by ΣP , be given as

D = {(p, i) | p ∈ P, ΣP(p) = (a, r), and 0 ≤ i < a}.

We choose a simple concrete language for expressing the domains of proteins.
Suppose the protein-name pro has the signature (4, 1). The arity 4 determines
that there are four domains in a protein of type pro. We write its four domains
as pro0, pro1, pro2, pro3. We interpret the receptor-arity for a protein-name in
the following manner: If the receptor-arity r is larger than zero, pro is a trans-
membrane protein, and all well-formed instances of pro must take the shape of
two subunits separated by a single membrane: one with domains 0 to r−1, and
one with the domains numbered r to n− 1.

Protein domains have one or two ports for connecting to named links. All
domains of a protein share a common backbone-link connected to their first port,
and pairs of bound domains may share a complexation-link on a second port.
A domain has an associated complexation-state, which determines their current
ability to form complexes. It may be bound to a link x; it may be in a hidden
state due to the overall conformation of the protein it is part of; or it may be
currently unbound, but visible and ready to form new complexation-links.4

We write proixa for the ith domain of a pro protein connected to the backbone
a and bound to the complexation-link x; we write proia for the domain in its
visible, but unbound state; and, we write proia for the domain in its hidden state.
Figure 1 shows how we illustrate these three kinds of domains. Figure 2 contains
an illustration of an instance of the entire protein pro, which respects the protein-
signature. Figure 2) contains an illustration of a well-formed instance of a
closed protein pro. (We formally introduce the name-hiding operator (x) and
the syntax for membranes in the following sections.) 5

4We have some freedom in choosing exactly how to model as state. In particular, there
is a subtle difference in electing to model unbound, visible domains (i) via a separate state
as inspired by the κ-calculus, or (ii) via closed unary links. Model (i) allows us to use less
names, while model (ii) allows us to write a reconfiguration rule, which matches both bound
and unbound domains. In this paper, we have chosen model (i), thus building on the intuition
from the κ-calculus.

5Our model and naming scheme for proteins and their domains is essentially a mini-
mal extension to a multi-locality setting of the BΣ,R-model of κ-calculus proteins described
in [DK08]. Centrally, the atom representing the protein backbone has been substituted for a
shared link, allowing us to conveniently model transmembrane proteins.

Though the protein-model and naming scheme is simplistic, it is sufficient for describing
many interesting examples (as we shall see later in Section 4). However, one may easily
extend the protein model with more complex kinds of state, as done for later versions of the κ
calculus [DFF+07, DFFK07], or with more complex naming schemes, for instance, for proteins
or domains. For instance, in later versions of the κ-calculus (see loc. cit.), the capability to
write such rules is added by introducing a small subtyping lattice for states and incorporating
subtyping into the matching relation.
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proi proi proi

a a ax

proixa proia proia

Figure 1: Domain states.

pro0

pro1

pro2

pro3
m

(a, x) m[pro0a] | pro1x
a | pro2a | pro3x

a

Figure 2: A well-formed instance of pro.

2.2 Adding Dynamic Compartments

To model membranes and their dynamics in the C-calculus, we add two kinds
of function symbols to the language. In keeping with the tradition set out by
Cardelli et. al. for ambient and brane-calculi, we represent formal membranes
by square brackets [· · · ]. The syntactic space between the brackets induces a
region in which other entities, including other membranes, may float. As for
proteins, it is convenient to allow different kinds of membranes to be distin-
guished by names, allowing us to distinguish, for instance, a vesicle from the
plasma membrane encapsulating a cell. For example, we may write an expres-
sion to model that a plasma membrane contains an empty vesicle: plasma[ves[ ]].
We suppose that such membrane-names are drawn from another fixed pool of
names,M, disjoint from every other kind of names.

We add also gates to the language. They are the endpoints of binary chan-
nels between membranes. Gates, and the channels they form, are an abstraction
of the molecular structure forming bonds between fusing or dividing membranes.
We shall discuss the channel abstraction in more detail in a separate section be-
low. Gates have one port to connect gates pairwise; for instance, the expression
(x) ves[4x] | ves[4x] denotes a channel formed between sibling vesicles.

While our gates, 4g, are anonymous, one could certainly consider also al-
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lowing gates to be named, as domains and membranes. This would allow us to
distinguish different kinds of channels, potentially convenient for some models.
In this paper, however, we shall focus on introducing the channel abstraction
itself, and for that purpose, anonymous gates suffice.

2.2.1 On the Channel Abstraction

Compared to existing calculi treating membranes [Car04b, RPS+04, PQ05,
LT06, Car08], channels allow us to capture an observable semi-fused intermedi-
ate state in cell fusion or fission. In this state, the membranes are still separate,
but may exchange material regulated by diffusion. To capture partial fusion or
fission as described in the introduction, we need to keep the material in each
compartment separate.

In Figure 3, we illustrate the two most basic configurations of semi-fused
membranes, and show how they are represented in the calculus with the help of
channels. On the left, the surfaces of two co-located membranes are partially
fused; on the bottom-left we show the C-calculus representation of that situation.
They may be cells in the process of fusing or dividing; or it may be a cell
in the process of budding a small vesicle. On the right, we have a similar
situation, only with one membrane inside the other. In both cases, the partial
fusing of the membranes allows diffusion of material across the point where the
membrane surfaces touch. On the left, the channel allows diffusion between
the two compartments inside the membranes. On the right, the channel allows
transport between the surroundings and the innermost compartment.

m m

membrane membrane membrane

membrane

m
m

(g)m[4g] |m[4g] (g)4g |m[m[4g]]

Figure 3: Fused membranes, and their representation via channels in the C-
calculus.

In the topmost part of Figure 4, we illustrate the three different stages in cell
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fusion and fission that we wish to capture. The arrows indicate, that while the
process of fusing two membranes is deterministic (resulting in a single membrane
containing all the entities of both compartments), the division of the entities
inside a single compartment is a nondeterministic process.

Fission (non deterministic)

Fusion (deterministic)

m m

A B

m m

A BA B

m

Figure 4: Representing an observable intermediate state—for cell fusion and
division.

In nature, various kinds of cell division may be identified. For instance, due
to their different structure, the division processes are fundamentally different
between eukaryotic cells and prokaryotic cells. Common to them all are that
they are quite complicated and highly regulated processes—in particular, for
determining the division of contained entities. By adding an intermediate state,
we allow users of the C-calculus to model such regulatory behavior during the
process of division, in more detail. In particular, it allows rules for diffusion to
regulate the final division of entities in the newly formed compartments.

At the bottom of Figure 4, we illustrate the three different stages as they
are captured in the C-calculus. We focus on membranes and gates, and use
variables to parameterize the model over the contents of the membranes. We
shall return to these stages, when we discuss the dynamics of the C-calculus in
Section 3.

As a final remark, we may also note that while the main motivation for chan-
nels is to represent an intermediate step in division regulated by (nondeterminis-
tic) diffusion, one might also envision using channels to model more stable kinds
of transport channels, such as so-called tunneling nano-tubes (TNTs) [RSM+04,
GBG08]. TNTs are long and stable binary channels between co-located mem-
branes that were recently discovered and bear a striking resemblance to our
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binary gated channels.6

2.3 Signature and Syntax

In the previous section, we have informally introduced proteins, membranes,
and gates and their syntax. In this section, we formally define the signature
and grammar of the C-calculus.

2.3.1 Signature

The signature of the C-calculus defines the classes of function symbols in C-
calculus, and their type and number of ports for linkage.

Definition 2.3 (C-calculus signature). Given a protein-signature ΣP and a set
of membrane-names M, the signature for the C-calculus is

Σ = D × {v,h} : atomic(1)
] D × {b} : atomic(2)
] M : active(0)
] {4} : atomic(1)

where B : kind(n) is short for stating that the elements of B are assigned the
type kind and n ports.

The signature formally records what we have stated informally above. Func-
tion symbols from the set of domains, D (as defined in Definition 2.2), are atomic
and exists in three states, visible (v), hidden (h), or bound (b). They all have
one port (for linking to a protein backbone) and in their bound state an extra
port (linked to a complexation-link). The function symbols used for membranes
have no ports, but are active—i.e., they may nest other solutions inside them—
and gates are atomic and have a single port (linked to another gate).

2.3.2 Grammar

We call the basic computing units in the C-calculus solutions, and we shall define
their grammar below. We use a small set of well-known operators from process
calculi equipped with pure names, in particular, we take an operator for hiding
names, (x), and parallel product, |. We shall also quotient the grammar over
a structural congruence relation ensuring, for instance, that bound names are
alpha-convertible and that parallel product is associative and commutative as
usual. In formally defining solutions, we presuppose an unbounded supply of
pure names (disjoint from all other kinds of names); we use lowercase italic
letters a, b, c, . . . for pure names.

For defining parametric reaction rules in the following section, we shall also
need solutions with variables (sometimes called holes), and groups—ordered se-
quences of solutions that may share names. Variables in the C-calculus are num-
bered, i.e., they are drawn from a countable set of variables V = {�0,�1, . . .}.

6We discuss TNTs in more detail under future work (see Section 5.1.)
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x, y, z, . . . pure names
A,B,C, . . . variables

d, e generic domains
m, n generic membranes

Figure 5: Notational conventions—names, variables, domains, and membranes

Formally, we require for any solution, that all variables in a solution are distinct
(in the following, we assume all solutions and groups to respect this require-
ment). We let metavariables A,B,C, . . . ,X, Y, Z, . . . range over variables. In
practice, we shall not be concerned with the actual numbers used for variables,
only their order (i.e., relatively to the other variables) in a solution. We record
this in the structural congruence relation below.

Formally, the C-calculus is a BΣ,R-calculus [DK08]. This means that the
following grammar, definitions for structural congruence, substitution, etc. for
the C-calculus is derived directly from the C-calculus signature, and the generic
grammar given for BΣ,R-processes. In this paper, we shall elide the full for-
mal treatment of certain definitions derived directly from the BΣ,R-framework,
such as variables and their ordering, substitution, definitions of free and bound
names, and certain normal forms. In this section, we limit ourselves to informal
introductions. For a formal treatment, we refer the reader to the paper intro-
ducing BΣ,R-calculi [DK08]; for easy reference, we have included in Appendix 6
the central definitions inherited from BΣ,R.

In the remainder of the paper we shall overload the following names to be
metavariables for domain and membrane-names: d and e are generic domain-
names, m and n are generic membrane-names. Note, that this also means that
later on, when we give rules using these names, formally these rules should be
read as schemas for rules using concrete names. We summarize these metavari-
able conventions in Figure 5.

In Definition 2.4, we define formally solutions, and in Definition 2.5, we define
solution groups. A solution is a special case of a group—namely, a group with
exactly one solution. We use this in definitions and properties, and overload the
symbols we use for operations such as structural congruence and substitution
to work for both solutions and groups.

Definition 2.4 (solutions). Solutions are collections of protein-domains, and
channel-gates nested inside compartments induced by membranes. A solution
may either by empty; a combination of two colocated solutions; a solution with
a hidden name x; a domain d ∈ D in one of three possible states linked to
backbone b and (when bound) to complexation-link x; a gate 4 linked to a
channel-link g; a membrane m ∈M; or, a variable X.

11



We define solutions inductively as follows

S,T ::= 0 the empty solution
| S | T parallel product
| (x) S new name
| D a domain
| 4g a channel-gate
| m[S] a membrane
| X variable

where
D ::= dx

b a bound domain
| db a visible and unbound domain
| db a hidden domain

Definition 2.5 (groups). Groups are defined inductively as

G,F ::= S a single solution
| (x) G new name
| G || F wide parallel product
| ε the empty group

Call solutions or groups without variables ground. Call nonground solutions
presolutions, and nonground groups pregroups—in general, we call nonground
solutions or groups, contexts. We write SΣ for the solutions over the signature
Σ.

We use parentheses for grouping as usual. We let | bind tighter than ||,
which in turn binds tighter than the operator (x). When x̃ = {x1, · · · , xn} we
write (x1 · · ·xn) S or (x̃) S to mean (x1) · · · (xn) S. Finally, as usual, we shall
typically elide the 0 in empty membranes, for instance, writing ves[ ] instead of
ves[0].

As usual, the new name operator (x)S is a binder on pure names, that is,
instances of the pure name x in S are α-convertible. We define inductively the
set of free, fn(G), or bound (pure) names, bn(G), of an expression as usual
(cf. Definition 6.3 in Appendix 6). (Recall that names for proteins, and mem-
branes are distinct and different from the pure names). We call a solution or
group closed if all its pure names are bound; and open if it is not closed. Gen-
erally, we shall refer to pure names as just names, qualifying protein-names and
membrane-names. We say that two solutions S and T are connected if they
share free names, that is, if fn(S) ∩ fn(T) 6= ∅.

Structural congruence We quotient solutions and groups according to a
structural congruence relation, ≡, enforcing prominently that names in the scope
of a binder are α-convertible and that (x) floats freely in a term, as long as we
do not capture free instances of the name x. We also allow order-preserving
reordering of variables, for instance, that �0 | �1 ≡ �0 | �2. This formalizes
the notion that we are only concerned with ordering of variables internal to an
expression (cf. Definition 6.1 in Appendix 6). Furthermore, we make parallel
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product associative, allow reordering, and stipulate that we may introduce (or
delete) empty solutions. For groups, we make wide parallel product associative
and make ε the neutral element.

Definition 2.6 (structural congruence). Structural congruence, ≡, on solutions
and groups is the least congruence relation containing α-equivalence (i.e., bijec-
tive renaming of bound names), order-preserving renumbering of variables, and
s.t.:

• parallel product, |, is associative and commutative with 0 as neutral ele-
ment;

• wide parallel product, ||, is associative with ε as neutral element;

and including the following scope extrusion laws

m[(x) S] ≡ (x) m[S] (extrusion - mem)
S | (x) T ≡ (x) S | T if x 6∈ fn(S) (extrusion - par)

((x) S) || T ≡ (x) S || T if x 6∈ fn(T) (extrusion - wide par left)
S || (x) T ≡ (x) S || T if x 6∈ fn(S) (extrusion - wide par right)
(x)(y) S ≡ (y)(x) S (reordering)

(x) S ≡ S if x 6∈ fn(S) (elision)

As usual, it is easy to check that free names are invariant under structural
congruence, that is, for solutions S ≡ T, fn(S) = fn(T).

Substitution Variables in a solution S may be substituted for a group of
solutions G. In the C-calculus, we shall find use for both total substitution S ·G,
and S / G. The treatment of (variables and) substitution is transferred directly
from the BΣ,R-framework, so we introduce substitution only informally here (for
easy reference, the definitions are included in Appendix 6, cf. Definitions 6.7
and 6.9).

We may, for instance, substitute three variables in a solution S by a group G
of three solutions. Essentially, the resultant solution is computed by exchanging
the ith ordered variable in S by the ith solution in G. If S has exactly three
variables, the substitution is total, and we write S · G for the result. If S has
more than three variables, the substitution is partial, and we write S / G for
the result; remaining variables in S are reordered to have higher numbers than
any variable in G. We distinguish the two kinds of substitution because total
substitutions are associative while partial substitutions are not.

Notably, in parametric reaction rules, variables play the role of placeholders
serving only to carry parameters across a reaction. For this usage, neither the
numbers nor the ordering of variables matters (as we shall close the reaction re-
lation under substitution for arbitrarily ordered groups of solutions). We require
only that the same variables be used on both sides of a reaction rule. Therefore
in reaction rules, we overload the usage of the metavariables A,B,C, . . . to allow
them to be used instead of concrete variables (thus eliding the numbers of each
variable).
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2.4 Solutions as Graphs

For programming in the C-calculus, and for giving and checking many properties,
it is convenient to have a concise and formal term-base language as we have
defined in the previous section. For visualization and for expressing certain
properties and conditions it is convenient also to consider solutions as certain
kinds of graphs.

Up until now, we have used a number of illustrations to illustrate solu-
tions. Since the C-calculus is formally founded on bigraphs, through the BΣ,R-
framework, these illustrations are actually based on a fully formal graphical
language for solutions and groups, both ground and nonground. Formally, struc-
tural equivalence classes of solutions and groups correspond to certain bigraphs
over a corresponding bigraph signature; hence, we may directly use the graphical
language for bigraphs to describe C-calculus-solutions. This is formally stated
in [DK08, Proposition 5.4]; we shall not go into detail with that here.

For expressing and checking well-formedness conditions, it is however con-
venient to be able to describe and reason about solutions from a graph-based
understanding of solutions. Hence, below we describe informally how solutions
correspond to certain bigraphs—the combination of a tree and a hyper-graph
sharing nodes.

First of all, every function symbol in the signature corresponds to the kind
(or control) for a node in a bigraph. Eliding names, we may view a solution
as a tree—sometimes called the place graph—with unordered children (parallel
product is commutative) induced by the containment relation for membranes,
whose leaves are domains, gates, variables, or empty solutions. In other words,
the tree is simply the abstract syntax tree of the expression for a solution, only
with unordered children to model directly the properties of the parallel product.
Groups of solutions correspond to place graphs that are forests, instead.

Name-sharing between domains and gates creates a separate graph—sometimes
called the link graph—of (hyper-)links across the tree. In closed solutions every
link is an unnamed edge, while in open solutions, the links that correspond to
free names are named.

When we depict bigraphs, instead of drawing the two graphs of bigraphs sep-
arately, we draw them in one picture, indicating the place graph with containment—
just as we have done in the illustrations of C-calculus solutions up until now (e.g.,
in Figure 2).

Finally, it may be convenient to point out, that graphically, we may think
of substitution as inserting subtrees in the holes made by variables. Reactions,
which we shall consider later, induce changes in the graph by creating or deleting
nodes, by creating or severing links, or by moving entire subtrees (by way of
parameters in reaction rules).

2.5 Well-formedness

The grammar for the C-calculus allows us to write expressions for many solu-
tions, which may be hard to interpret biologically. We wish to restrict to those
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solutions, which respect the motivations that we have given for each type of
construct in the language.

To capture such solutions we give a set of well-formedness criteria. It is con-
venient to state the requirements on solutions as properties of the (bi)graphs
that C-calculus solutions correspond to. The key theorem in the following sec-
tion, which presents the operational semantics of the C-calculus, states that
well-formedness is preserved by the reaction relation induced by the class of
reaction-rules that we allow. In verifying this theorem, we shall also make use
of the bigraphical underpinning of the C-calculus. We motivate each of the
criteria in the paragraphs following the definition.

Definition 2.7 (well-formedness). We say that a solution is well-formed, if

• (link sorting) links are well-sorted, i.e., for any two function symbols u, v,
if the ith port of u and the jth port of v is part of the same link, then u
and v are either two gates, or two domains and j = i;

• (binary channels) all gates are linked pairwise;

• (binary complex ) complexation-links are binary;

• (local complex ) complexation-links are mono-located, i.e., if two domains
d and e are linked by their complexation-ports, then they are siblings;

• (fixed backbone) for any protein pro with signature (n, r), every domain
proi is linked by its backbone port to exactly n − 1 domains pro0, . . . ,
proi-1 , proi+1 , . . . , and pron-1 .
Further, if r = 0, all those domains of are siblings; else if r > 0, the
domains pro0, . . . , pror-1 are siblings, and the domains pror , . . . , pron-1
are siblings, and these two subunits of the protein are separated by a single
membrane.

• (bitonality) all connected gates are separated by either 0 or 2 membranes.

Each kind of function symbol represents different types of entities. We re-
quire links to be sorted, such that links only connect entities from the same
class. This ensures us that we only have links that we can interpret as protein
backbones, domain-domain complexation links, and channels.

We require that channels and complex-formation links be binary. We have al-
ready discussed the motivation behind the channel-abstraction. Domain-domain
complexation links represent a variety of weak forces attracting certain parts of
proteins to each other. While at some level of abstraction, one could con-
ceiveably consider domains interacting with more than one other domain at
a time, we shall disregard that possibility in this exposition and require that
complexation-links be binary.

We require also for complexation links that they be local, that is, that they
do not cross membrane borders. The weakness of the forces working to establish
complexes also enforce a high degree of locality. Only the backbone of a protein
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may cross membranes, the biological correspondent being that the amino-acid
structure of a transmembrane protein actually penetrates the membrane.

We require that the backbone link of a protein is fixed, such that all in-
stances of proteins respect their protein-signature (cf. Definition 2.1). This
simply means, that for any protein pro with signature (n, 0), all instances of pro
takes the form

pro0 | . . . | pron-1 .

For any protein pro with signature (n, r) for r > 0, the following two kinds of
configurations are well-formed

pro0 | . . . | pror-1 |m[pror | . . . | pron-1 | S]
m[pro0 | . . . | pror-1 | S] | pror | . . . | pron-1 ,

for some membrane-name m ∈M and arbitrary well-formed solutions S.
Thus, we may at all times identify the protein to which a domain belongs

by its backbone.
Finally, we require that channels respect bitonality. This requirement de-

serves a bit more discussion.

2.5.1 On Bitonality

As discussed earlier, membranes consist of a lipid bilayer, two layers of lipids
’back-to-back’. Such a layer works as an amphipathic layer, that is, a layer with
both hydrophilic and hydrophobic parts. This layer induces a strong barrier for
fluids on the two sides of the membrane. In fact, these forces are also a main
stabilizing factor of a membrane.

A direct consequence is that, in a calculus seeking to capture membrane
interaction, we should try to enforce that entities may not cross membrane bar-
riers, and that the reconfigurations of membranes only happen in such a way
that the orientation of membranes is respected. As discussed by Cardelli for
brane calculi [Car04b], we may abstractly capture this by considering the com-
partments induced by membranes to be coloured alternately black and white
according to their nesting depth; and, essentially, then requiring of our opera-
tional semantics that it keeps black entities and white entities separate.

We should remark also that, while bitonality serves as good design abstrac-
tion, many important reactions in nature do, however, not respect bitonality.
For instance, the plasma membrane of cells, is penetrated by many structures,
some of which work as channels for the direct intake of smaller molecules.

In the C-calculus, any kind of transport between compartments involves
channels, and we may enforce a correspondent to the bitonality constraint by
requiring that channels form and exist between compartments separated by two
membrane surfaces. This allows the basic configurations of membranes and
channels that we have illustrated in Figure 3, but disallows a variety of more
exotic configurations.

The basic configurations that we wish to disallow are those with channels of
odd length, such as

(g)4g |m[4g].
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Although, as discussed, in nature limited transport across membranes do oc-
cur, we wish to keep channels as an abstraction for the neck of partially fused
membranes.

In Figure 6, we illustrate two other prominent configurations that are not
well-formed. We give the corresponding C-calculus solutions below each illus-
tration. In both cases, it is the h channel that is the perpetrator; it has been
stretched, so to speak. On the left, two fusing membranes have stretched across
a channel between another pair of partially fused membranes. On the right,
we have a similar situation, only with the direction of the fusing membranes
inverted.

m m

m m

m
m

m

m
(g, h) m[4g |m[4h]] |m[4g |m[4h]] (g, h)4h |m[4g |m[m[4g |m[4h]]]]

Figure 6: Examples of disallowed membrane configurations, and their represen-
tation via channels in the C-calculus.

We disallow these configurations in our definition of bitonality, not because
they would allow colours to mix (only channels of odd length would do that),
but because we would struggle to interpret them biologically. Though biological
membranes are quite deformable, their plasticity still makes configurations such
as those depicted in Figure 6 very improbable. The examples are prominent,
however; we need to take care in the treatment of reaction rules that allow
creating or transporting membranes, to disallow reactions that lead to these
configurations from well-formed ones. Consider, for instance, this (well-formed)
configuration

(g, h) m[4g |m[4h] |m[4h]] |m[4g].

If we allowed one of the membranes with a gate 4h to be transported across
the g channel, we get the leftmost configuration in Figure 6. We may write a
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similar wellformed pre-configuration for the rightmost configuration. We shall
discuss how to avoid such mishaps in Section 3.

As a special case we allow degenerate channels such as

U = (g) m[4g | 4g].

As shall be apparent when we introduce the operational semantics, they may be
formed when colocated membranes form several channels between themselves,
before fusing. For instance, we shall allow the following chain of reactions to
form the solution U:

m[ ] |m[ ]→ (g) m[4g] |m[4g]→ (g, h) m[4g |4h] |m[4g |4h]→ (g) m[4g |4g].

We may illustrate this chain of reactions as in Figure 7.

Figure 7: Multi-touch may form degenerate channels.

The first reaction is a basic instance of a so-called touch; so is the second
reaction. The third reaction is a fusion around the h channel, which leaves the
g channel as a residual of the first touch.

One could contemplate giving side-conditions on touch-rules to disallow the
second reaction; it turns out that this is not sufficient for preserving well-
formedness across reaction, however. Multi-channels may be formed by fusion
as consequence of a sequence of earlier touch events, each of which should be
locally allowable, in the sense that no multi-channels are created. A minimal
situation is illustrated in Figure 8. In general, testing for multi-channels is
highly non-local requiring a traversal of the entire link graph of channels. And
disallowing the final fusion in Figure 8 would be counter-intuitive with regard
to biological consistency. Indeed, though multi-touches and the shape of mem-
branes in the second step of Figure 8 are highly unlikely to happen in nature,
they are not impossible.
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Figure 8: A multi-touch as a consequence of earlier touches.

For the reasons discussed above, we choose to allow multi-touches. This
keeps our reaction rules simpler, and it allows us to model membranes still
separate, but in different stages of fusing. In turn, the design choice has the
side-effect that degenerate channels can be formed. Such degenerate channels
are, however, harmless; no diffusion or reconfiguration may occur along them.7

3 Dynamics

In this section, we introduce the operational semantics of the C-calculus.
7We may even consider extending the structural congruence with a rule to “garbage collect”

them, i.e.: (g)4g | 4g ≡ 0. However, that would remove the 1-1 correspondence between
solutions and bigraphs, in turn preventing us from using bigraphical reasoning in the proofs.
Hence, we leave this idea for future work.
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A user develops a model in the C-calculus by selecting a set a proteins and
membranes to work with (by giving a protein-signature, and a set of membrane-
names), and a set of reaction rules. We cannot allow any collection of reaction
rules; such a loose policy would not allow us to maintain well-formedness. This
would also lay upon the shoulders of modellers the task of inventing their own
abstractions of biological events; this in turn would complicate, for instance,
composition of different models, something which we would like to be an easy
task. Instead, we characterize in this section a fixed set of canonical biological
actions, encapsulated in classes of certain reaction rules. We allow modellers to
refine these actions by giving contextual preconditions for rules. In all, we char-
acterize a set of core rules, which provide modellers with a toolbox of generic
actions that can be incorporated into a model by specializing them to a partic-
ular signature. Given this toolbox of actions, a C-calculus reactive system can
essentially be designed by domain experts (rather than computer scientists).

In summary, modelling in C-calculus is done by giving a signature and choos-
ing and refining a set of core rules over this signature. Thus, as set out in the
Introduction, the slogan for modelling in the C-calculus is: Modelling by rule
refinement.

First, in Section 3.1 we define C-calculus reactive system and explain reac-
tion rules. In Section 3.2, we treat so-called projective descriptions of rules.
They let us describe conveniently sets of rules for reactions involving regions
separated by membrane-surfaces, while eliding the orientation of those separat-
ing membranes. We continue to introduce reaction rules; they divide into two
categories. In Section 3.3, we discuss rules that involves protein-protein inter-
action, that is, forming or breaking complexation-links, changing the state of
domains, or creating or deleting proteins. These kinds of rules work essentially
in the κ-like fragment of the calculus, and, as we have treated an encoding of the
κ-calculus before [DK08], we shall go into less detail with these kinds of rules. In
Section 3.4, we discuss rules involving membrane (or channel) reconfiguration;
the rules for transport of material along channels need special care—we shall
discuss and motivate them at length. In Section 3.5, we formally define the
allowable rules, and, in Section 3.6 we verify that any allowable rule preserves
well-formedness.

3.1 C-calculus Reactive Systems

In the C-calculus, we work with reaction rules of the following format:(L→ R, ϕ),
where L and R are expressions for solutions and ϕ is a side-condition. The
expressions may have a number of variables, which serve to carry parameters
unchanged across from the left-hand side to the right-hand side. The side-
condition ϕ is a (possible empty) predicate that tests parameters. We shall use
side-conditions for expressing contextual conditions on the surroundings of L
and R for the rules handling transport.

The C-calculus reaction rules are fairly simple (as compared to the gener-
ality allowed for bigraphical rules, say). We need only consider rules, where
free names are preserved, that is, fn(L) = fn(R), and where variables occur
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exactly once on the left-hand side and on the right-hand side (i.e., all rules
are linear). These are exactly the kind of rules, we have treated in the BΣ,R-
framework [DK08], and we may instantiate the theory for reaction and reactive
systems from that work. We outline how reaction works below. (As verified in
loc. cit., it also follows that C-calculus reaction is bigraphical reaction modulo
side-conditions, which ensures us that we may reason (bi)graphically in proofs.)

Loosely, any ground solution S that is a substitution-instance of the left-
hand side of a rule may be rewritten with that rule. Given a rule (L → R, ϕ),
if for some (ground) group G, we have S ≡ L · G, we may perform a reaction
S→ S′ ≡ R ·G, if ϕ(G) is satisfied. We say that S matches L with the parameter
G, since G consists of the group of solutions that we will substitute for the
variables in R. Reactions may occur in any solution context. We make this
explicit in Definition 3.1.

We contextualize reactions according to standard tradition for process cal-
culi. We close reactions under syntactic constructions, structural congruence,
and also under (bijective) renaming of free names. Definition 3.1 records a set
of rules that together gives a simple characterization of the reactive system over
solutions. The definition is a straight instantiation of the generic operational
semantics given for BΣ,R (in [DK08, Definition 3.16]). Free names are preserved
across reaction, that is, if S→ S′, fn(S) = fn(S′).

As outlined in the introduction to this section, we do not wish, however,
to allow all kinds of reaction rules. Therefore, in the Definition 3.1, we have
restricted to a set of (as yet unspecified) allowable reaction rules. Informally, we
wish to allow rules that encapsulates a single biological action, such as breaking
a domain-domain bond or fusing two partially fused membranes. The following
sections shall be concerned with introducing core rules that incorporate biolog-
ical actions (Sections 3.3 and 3.4).

Definition 3.1 (reactive system). Given a set of allowable reaction rules R
and a signature Σ, T RΣ the reactive system associated with R, is given by the
reaction relation →, the least binary relation over SΣ, s.t.

rule
(L→ R, ϕ) ∈ R ∃G s.t. S = L ·G and S′ = R ·G ϕ(G) satisfied

S→ S′

par
S→ S′

S | T→ S′ | T
membrane

S→ S′

m[S]→ m[S′]

close
S→ S′

(x)S→ (x)S′
struct

T ≡ S S→ S′ S′ ≡ T′

T→ T′

subst
S→ S′ ∃x̃.α : fn(S)↔ x̃

α(S)→ α(S′)

where α is a bijection between the free names of S and fresh names x̃, and α(S)
is the solution S with free names substituted by names x̃.

However, we also wish to allow a modeller to test parts of the surroundings,
to give application conditions for reactions. We allow a modeller to refine core
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Figure 9: Illustrating refinement of a rule.

rules by adding extra context to rules. It turns out that we may capture refine-
ment succinctly with substitution. We define formally refinement and allowable
rules in Section 3.5 (allowing us to explain and motivate refinement with a con-
crete example using a core rule introduced in the previous sections). Figure 9
illustrates schematically how refinement works. Suppose we have the core rule
L→ R, where L and R have two variables each (depicted as dark triangles inside
L and R). The user may refine that rule by substituting both sides L and R into
an external context, T (with one variable), and by substituting a common group
of solutions into the variables of L and R, yielding the rule T · L · F→ T · R · F.
For full generality, we still need to treat rules with side-conditions, however; we
return to refinement in detail in Section 3.5.

3.2 Projective Descriptions

The model of membranes in the C-calculus is influenced by Cardellis brane cal-
culi [Car04b]. We build, however, also on the insights reported by Pradalier
and Danos on the so-called projective brane calculi [DP04], and, more recently,
patch reactions by Cardelly [Car08]. Their insights were to note, that for mem-
brane calculi all reactions that are described for membranes occur irrespective
of membrane orientation. For instance, the reaction

A B A

C C

B
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is allowed, and so is

B

A

B A

C C

If we focus on the local patches of membranes that are merging (indicated
by the rectangular lenses), we may observe that from a local perspective, the
preconditions for the reactions look highly similar. Only the orientation of the
curvature of the membranes is different—a property, which is hardly detectable
in nature.8

Indeed, some descriptions of biological reactions abstract away from the
orientation of the membrane, describing instead only the conditions local to a
patch of a membrane wall. It does, of course, matter whether a signal propagates
inwards or outwards across the cellular membrane; the central observation is,
that this is not due to the orientation of the cellular membrane.

We wish to allow such descriptions for C-calculus reaction rules; adopting
the terminology introduced by Pradalier and Danos, we call the descriptions
projective. To that end, we start by defining lateral and horizontal projection
of binary groups of solutions.

3.2.1 Projective Contexts and Projective Groups

In essence, projective descriptions, involve two regions separated by a membrane
wall, as depicted below:

0

1

We may interpret such descriptions as a schema for two reaction rules, one for
each orientation of the separating membrane. In Figure 10, we illustrate the
two ways one may interpret a description of two regions separated by a single
membrane wall. As depicted, it simply boils down to determining which of
the regions numbered 0 or 1 contain the other. We may colour the regions in

8Although, as reported in [HR05], curvature does occasionally matter and may serve to
distinguish and sort vesicles by size.
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accordance with the colouring scheme discussed for the bitonality constraint
in the previous section, and call the descriptions heterogenous, as they involve
differently coloured regions.

0

1

0

1

Figure 10: Heterogenous projective contexts illustrated.

Similarly projective descriptions of reactions involving regions separated by
two membranes, involve three regions as depicted below:

2

1

0

We call such descriptions homogenous as the regions 0 and 1 have equal colour.
In Figure 11, we illustrate the three ways one may orient the membranes,
such that the regions 0 and 1 are separated (three, as the first is symmetric).
Consequentially, we may read homogenous projective descriptions as a schema
for three rules.

We may generate projections by substitution into sets of projective contexts,
defined to match each of the projections in Figures 10 and 11. Formally, we let
the two sets of projective contexts be parameterized over one or two names (for
heterogenous and homogenous contexts, respectively) to allow projection across
any kind of membrane(s).

Definition 3.2 (Projective contexts). For all m, n ∈M, the heterogenous pro-
jective contexts ηm

↓ and ηm
↑ , and the homogenous projective contexts ωm,n

↓ , ωm,n
↑ ,

and ωm,n
↔ are

ωm,n
↓ = m[n[�1] |�2] |�0 ηm

↓ = m[�1] |�0

ωm,n
↑ = m[n[�0] |�2] |�1 ηm

↑ = m[�0] |�1

ωm,n
↔ = m[�0] | n[�1].
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1

0

2

1

0

2

1

0

Figure 11: Homogenous projective contexts illustrated.

The sets of generic homogenous and heteregonous projective contexts are

ωδ = {S | ∃m, n ∈M.S = ωm,n
δ }, for δ ∈ {↑, ↓}

ηδ = {S | ∃m, n ∈M.S = ηm
δ }, for δ ∈ {↑, ↓,↔}.

We shall typically use the sets of generic projective contexts, because we
want to refer to the set of projective contexts generated by all valid membrane-
names; for instance, ω↓ = {S | ∃m, n ∈ M.S = ωm,n

↓ }. In the following we
shall allow ourselves a convenient sloppyness: to use directly in expressions the
unqualified projective contexts, such as in the expression ω↓ / G. Formally, this
means that we are talking about a set of solutions {S/G | ∃m, n ∈M.S = ωm,n

↓ }.
This shall be particularly convenient when writing schemas for rules.9

We depict the contexts defined in Definition 3.2 in Figures 12 and 13 (colour-
ing the compartments for effect).

m m

0
1

1
0

ηm
↑ = m[�0] |�1 ηm,

↓ = m[�1] |�0

Figure 12: Heterogenous projective contexts.

Now we may define heterogenous and homogenous projection of binary
groups by way of substitution.

9In the following definitions, we shall consistently use partial substitution G/S, though total
substitution G · S would be sufficient in some cases (specifically, for heterogenous contexts).
(Recall, that / denotes partial substitution—see Section 2.3.2 and Def. 6.9).
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1
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1

ωm,n
↔ = m[�0]|n[�1] ωm,n

↑ = m[n[�0]|�2]|�1 ωm,n
↓ = m[n[�1]|�2]|�0

Figure 13: Homogenous projective contexts.

Definition 3.3. Given a binary group G = S | T, its heterogenous projections
is the sets of solutions generated by

η↓ / G, and η↑ / G,

and its homogenous projections is the sets of solutions generated by

ω↓ / G, ω↑ / G, and ω↔ / G.

Letting δ range over the directions {↑, ↓,↔} (up, down, and lateral), we
may summarize Definition 3.3, by stating that the heterogenous projections are
those characterized by

ηδ / G,

while the homogenous projections can be characterized as

ωδ / G.

3.2.2 Projective Rules

We utilize our characterization of projective groups, to define projective descrip-
tions of reaction rules.

We define projective generators, projective descriptions that constitute schemas
for rules, which we project to form concrete rules.

Let ρ ∈ {ω, η}, and recall that δ ∈ {↑, ↓,↔}. We write projective generators
as

ruleρ : L→ρ R,

using the subscripted ρ as reminder that these are rule-schemas that await a
projective direction before application.

From generators, we generate projected rules. For homogenous generators
we have

ruleω
δ : ωδ / L→ ωδ / R,

and for heterogenous generators we have

ruleη
δ : ηδ / L→ ηδ / R.
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Figure 14: Illustrating refinement of projective generators.

For some generators, we shall declare once and for all, that they are either
heterogenously or homogenously projective, and elide the projection, ρ, from the
name of the rule. We depict generators in correspondence with the illustrations
for projective groups above, separating groups with one or two horizontal lines
denoting the projected membranes.

Expanding on the illustration of refinement in Figure 9, Figure 14 illustrates
schematically how generators are projected to form concrete rules, before giving
application conditions for them. In the illustration, L and R are groups contain-
ing two solutions, and we suppose that L→ρ R is a heterogenous generator. By
inserting the group into the heterogenous projective contexts, we may obtain
(projected) rules. These rules we may refine as usual.

3.3 Protein-protein Interaction

Our domain-level model of proteins is closely related to that of the κ-calculus,
only generalized to a distributed setting by using backbone links instead of
nodes to connect domains of the same protein. In the C-calculus, we shall allow
essentially the same kind of reactions as in the κ-calculus, that is, rules creating
or destroying protein complexation-links and/or changing domain state. We
also take rules that create or delete proteins, whose domains are all unbound
(i.e., visible or hidden).

For the κ-calculus it has been discussed in detail, how one may restrict to
rules with a suitable level of atomicity (see [DL04]). This level of atomicity
may be enforced by restricting to so-called monotone and anti-monotone re-
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action rules. As we have essentially imported a generalized version of the core
κ-calculus inside the C-calculus, we may adopt such (anti-)monotonicity require-
ments more or less directly. We elide such treatment here, as the restrictions
are not central for the main theorem—the preservation of well-formedness—that
we wish to establish; and because we wish to focus on the extension of a κ-like
calculus with dynamic compartments.

We take instead a simpler set of rules that allow to us capture core κ-
reactions. Definition 3.4 defines base domain-level rules; a set of rules, which
each incorporate a single core biological action.

Definition 3.4 (base domain-level rules). For arbitrary domains d and e, we
allow the following rules:

bind : da | eb → (x) (dx
a | ex

b )
break : da | eb ← (x) (dx

a | ex
b )

show : da → da

hide : da ← da.

We allow also rules for synthesis, protein-creation, and for degradation,
protein-deletion. These kinds of rules come in two variants depending on the
signature of the protein involved. For proteins p with ΣP(p) = (a, 0), they take
the forms:

synth : 0→ (b)
(
ṗ0b | . . . | ˙pa-1b

)
degrade : 0← (b)

(
ṗ0b | . . . | ˙pa-1b

)
,

where we use the shorthand ṗi to range over visible or hidden domains pi , i.e.,
ṗi ∈ {pi , pi}. (In other words, we allow synth and degrade rules to create or
delete domains that are unbound—whether visible or hidden.)

For receptor-proteins p, with ΣP(p) = (a, r) for r > 0, synthesis and degra-
dation are described by the following projective generators:

synth : 0 || 0→η (b)
(
ṗ0b | . . . | ˙pr -1b || ṗrb | . . . | ˙pa-1b

)
degrade : 0 || 0←η (b)

(
ṗ0b | . . . | ˙pr -1b || ṗr b | . . . | ˙pa-1b

)
The rules are pairwise inverses. We can summarize the actions in the reaction

rules as follows:

• bind establishes binary complexation links between visible and co-located
domains;

• break breaks closed complexation links between (bound) domains;

• hide/show changes the domain-state between visible and hidden;

• synth allows creation of the domains and the backbone that constitutes
a protein; all domains should be unbound (i.e., visible or hidden); and,

• degrade allows deletion of the domains and the backbone that constitutes
a protein; all domains should be unbound (i.e., visible or hidden).
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For synth (and degrade), we require further that the protein is created (or
deleted) in a configuration, which respects its protein signature (cf. Defini-
tion 2.1).

Together the actions incorporated into the base rules allow us to capture
reaction for proteins comparable to those in the κ-calculus, extended to a multi-
compartment setting, but with considerably tighter atomicity-requirements on
reactions. In the κ-calculus, one may, for instance, break several complexation-
links in unison or synthesize proteins and bind them to other proteins in one go.
It is not particularly hard to relax the atomicity requirements we have given on
domain-level rules in the C-calculus; however, in this paper, we shall make do
with a few extra rules combining the actions captured in the base domain-level
rules.

Definition 3.5 (domain-level rules). Domain-level rules are those described by
bind, break, hide, show, synth, and, degrade above, and the following
rules (for arbitrary domains d, e and f):

bind+hide : da | eb | fc → (x)
(
dx

a | ex
b | fc

)
break+show : da | eb | fc ← (x)

(
dx

a | ex
b | fc

)
bind+show : da | eb | fc → (x) (dx

a | ex
b | fc)

break+hide : da | eb | fc ← (x) (dx
a | ex

b | fc) .

Together the extra kinds of rules, bind+show, break+hide, bind+hide,
and break+show, allows us to model that creation or deletion of a complexation-
link may invoke a change of conformation on a protein.

One can also combine other of the base rules, obtaining rules such as synth+bind
to synthesize a protein and bind one of its domains to an existing domain, or
bind+bind to allow two complexation-links to be created in one go. For the
concrete examples we shall discuss in Section 4, the set of rules captured in
Definition 3.5 is sufficient, however.

3.4 Membrane Reconfiguration

Membrane-based actions model structural reorganization of membranes such
as fusion or fission. As we discussed in Section 2.5, as studied by pioneering
works [DP04, Car08], oriented membrane interactions can be factored into a
small set of projective interactions, which do not take into account the global
orientation of the involved membranes. We capture this by giving generators
for projective rules as defined in Section 3.2.

3.4.1 Touch and Part

We start by describing generators incorporating the dual actions of establishing
and breaking a channel between colocated membranes. In terms of the bitonality
constraint, these involve regions separated by two membrane surfaces; hence the
generators are homogenous, that is, we generate rules by composing with the
homogenous contexts (cf. Definition 3.2).
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The touch and part generators are each others inverses; they are depicted
in Figure 15. The part generator allows us to model the first step of a fusion
process. It creates a channel between two colocated membranes, bringing them
into a partially fused state.

B

A
A

B

touch (→ω) and part (←ω): A ||B ↔ω (x)(4x |A || 4x |B)

Figure 15: The homogenous generators touch and part.

The part generator is the counterpart of touch; it allows one membrane
to detach from another by severing a channel that links the two.

3.4.2 Bud and Merge

In this section, we treat generators incorporating the actions of creating and
destroying a membrane. These generators are heterogenous; they involve a
single membrane, which bends and buds a new small compartment; or, which
merges entirely with another compartment that it is partially fused with.

The bud generator, on the left in Figure 16, describes how a membrane may
start to divide to create a new compartment.

The merge generator, on the right in Figure 16, describes how a membrane
may finish its fusion with another membrane. A membrane merges into another
by releasing its content, C, into the second membrane. The merge generator
clearly generates left inverses of bud (take C to be empty).

Note, that the merge generator applies even if the involved membranes
have channels—to other membranes in the context, or to the projected mem-
brane containing B. (The latter case, is the one we have discussed already
in Section 2.5.) This neatly captures that after merging two membranes, the
resulting membrane inherits the partial fusings of both membranes.

The bud generator creates an empty compartment that is still connected
to the original membrane via a channel. This channel will allow us to model
exchange of materials between the two compartments (by diffusion, which we
shall treat below). For simple models where empty vesicles are budded from
the cellular membrane, this may be sufficient. However, in most natural cases,
a bud is formed around something, for instance, a complex bound to the cell
wall. (For a concrete example, see the model of the formation of clathrin-coated
vesicles in Section 4.2.) To allow this, we need to allow the (deterministic)
transfer of a parameter into the newly formed membrane. To fullfill that need,
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bud: A ||B →η (x)(A |m[4x] ||B | 4x)

B

A

B

Am

B

A

B

Am

C

C

merge: (x)(A |m[4x | C] || 4x |B)→η A || C |B

Figure 16: The heterogenous generators bud and merge.

in the following section we define the pinch generator, a generalization of the
bud generator.

3.4.3 Transport Rules

In this section, we shall discuss how to encapsulate transport. We define two
generators, one that encapsulates the action of diffusion, and another, the pinch
generator, a generalization of bud introduced above. These generators involve
transport of complexes across channels, and we need to take care to uphold well-
formedness. (The merge generator already allows transport, of course, but in
a manner non-problematic with regard to well-formedness.)

We start by developing a model of transport for the generator encapsulating
diffusion. We discuss and motivate in some detail the choices that we make;
also to show that the generators that we give are not cast in iron, but may be
slanted towards different scenarios depending on the biological model one has
in mind. We round off by applying our model of transport to generalize bud to
pinch.

The action we need to encapsulate is fairly simple: “Should any complex
find itself beside a (non-degenerate) channel, it may travel across it.” From this
specification it is immediate that the generator is homogenous (since well-formed
channels go between compartments separated by two membrane-surfaces), and
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needs to be parametric in the cargo, that is, the complex (or complexes) that it
allows to diffuse. Furthermore, in nature diffusion is typically highly regulated,
so we need to allow a modeller to specify that cargo-parameter.

Our first attempt is the following rule:

B

A

T
B

AT

(x) (A |4x ||4x |T |B)→ω (x) (A |T |4x ||4x |B), for any closed complexes T

Here T denotes the cargo-parameter given by the modeller. We certainly pre-
serve well-formedness if we restrict T to be a closed product of zero or more
domains; that is just another way to require that T contain zero or more fully
specified complexes. In other words, formally we require that T be on the form:

T ≡ (ỹ)(dx1
b1
| · · · | dxk

bk
),

where all for i, xi ∈ ỹ and bi ∈ ỹ.
The generator above is computationally complete, in the sense that it allows

transport of arbitrary complexes. So we might leave it at that. It is, however,
also somewhat impractical to use; there is a huge number of possible configura-
tions of complexes (biologically speaking, species) in which a particular protein
may be a part. Furthermore, in many cases a central regulation mechanism of
diffusion consists of certain proteins or complexes that act as “chaperones”; they
essentially allow anything that they bind to to pass. In such situations it would
be unfeasible to require a modeller to enumerate all the possible complexes that
a chaperone was known to bind to, as well as being a somewhat unfaithful cap-
ture of the biological knowledge. In essence, to help practical modelling, we
want to be able to give a rule to say that: “any complex(es) C bound to a
chaperone (given in T) may diffuse”, without having to specify any more than
T.

Consequentially, we need to allow T to be open, to allow it to drag one or
more complexes along with it. Our next attempt is then the following rule:
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A

T
B

A
T

C

C

fn(T | C) = ∅
(x) (A | 4x || 4x | T | C |B)→ω (x) (A | T | C | 4x || 4x |B)

T still denotes the user-given parameter, while C contains the complexes that
are dragged along with T. Again, we require that T be on the form

T ≡ (ỹ)(dx1
b1
| · · · | dxk

bk
),

but this time stipulating no conditions on the names (thus allowing T to be
open). Instead, we require that the product of T and C be closed. We state
this formally as a contextual side-condition, as it needs to be checked for the
unknown parameter C before a reaction may occur.10

This version of the diffusion-rule allows us to give diffusion-rules that only
mention chaperones, and not the cargo that they drag along. However, the
generator may also allow any solution not connected to T to travel along in C,
thus undermining the possibility of modelling highly regulated chaperoning.

The generator above is also too fine-grained to allow a phenomenon known
as receptor-sliding.When a vesicle is forming on a cell membrane, receptors tied
to the membrane wall may on some occasions slide from the cytoplasm to the
vesicle. The figure below illustrates the pivot-motion that the receptor-protein
follows:

Our generator, as stated above, locks receptors to their membranes; to allow
receptors to travel, we need to allow an open complex to travel along a channel.
In conclusion, our second version is both too coarse, allowing any context to be
dragged along, and in a sense also too fine-grained, disallowing receptor-sliding.

Taking a lesson from these failings, let us try to specify more precisely what
it is that we would like to drag along with T: We want to capture the local,

10A central contribution of the BΣ,R-framework was to work out how such contextual side-
conditions may be adopted for bigraphically based calculi (see [DK08]).
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minimal context of the parameter T. By local, we mean colocated with domains
in T; by minimal, we mean to restrict to domains connected to domains in T.
In other words, we want to capture the local connected component of domains
in T. Let us first try to formulate a non-constructive side-condition to capture
this specification:

B ≡ B+ |B− B+ minimal s.t. fn(B−) ∩ fn(T |B+) = ∅ δ =↓: fn(T |B+) = ∅
(x) (A | 4x || 4x |B− |B+ | T) →ω (x) (A | 4x | T |B+ || 4x |B−)

,

allowing the same form for T as in our previous attempt.
First of all, note that instead of allowing any split of surroundings of T on

the left-hand side (as in the previous rule), we specify in the side-condition that
the parameters B− and B+ should be a certain split of the surroundings of T.
Here, we have simply stated informally, that B+ must be “minimal”, such that
there are no links between T plus its dragged cargo B+, and B−, the part of
the context left behind.11

Note also, that we have kept the side-condition requiring closure of the entire
cargo T |B+, for the downwards projection of the generator. This breaks from
the intuition that membrane reconfiguration is projective, which we described
in Section 3.2. Indeed, it turns out that in the C-calculus, because we model
cross-membrane links, such as receptor-backbones and channels, the intuition
underpinning projectivity does not hold for a certain kind of limit case. And, it
is for that reason that we keep the side-condition for the downwards projection.
The limit case, which the side-condition prevents, essentially breaks down to a
simple geometrical property, and can be illustrated as below:

We wish to transfer the domain d0 (indicated by the dotted rectangle) down the
channel. Trying to compute the minimal surroundings of d0, we find that it is
tied to a membrane in the context that encapsulates also the membranes with

11Note, that non-aliasing matching as introduced and discussed in [DK08] is necessary to
infer the lack of any immediate links from the lack of name-sharing expressed by the side-
condition.
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the channel. Without breaking links or violating well-formedness we cannot per-
form any transfer; the problem is precisely that the tied membrane surrounds
the partially fused membranes. If the tied membrane had had the inverse pro-
jection, a transfer would in principle be possible, if we allow membranes to be
diffused:

d0
d1

In this case, we may compute a closed cargo to be transfer along with d0 (indi-
cated by the outer dotted rectangle).

The conclusion is, that membrane curvature does matter when our transfer
is directed downwards. We cannot drag along enclosing membranes; thus the
side-condition restricts to closed cargoes for the downwards projection.

The fact remains that the side-condition is still non-constructive and infor-
mally stated, however. More critically, our analysis also highlights another flaw:
the minimal context of T may contain a membrane, as illustrated above.

In other words, as the generator is stated above, we also admit the drag-
ging of membranes in B+ bound to receptors in T. Though this preserves
well-formedness as we have defined it in Definition 2.7, it is hardly biologically
feasible. Though on some occasions tiny vesicles may travel along certain spe-
cial channels (such as in tunneling nano-tubes [RSM+04]), our channels are
intended mainly as an abstraction allowing transport of protein complexes, not
membranes. The difference in scale between proteins and membranes is such
that, broadly speaking, the “pulling power” of forces affecting proteins cannot
drag along a membrane. In a situation such as the one illustrated above, the
most likely scenario would probably be that the tied membrane prevented any
transfer from happening at all; while for certain applications, a more likely sce-
nario might be that any tied complexation-links be broken. In this paper, we
shall make the first choice, as it equips diffusion with a transactional guarantee.

Consequentially, in giving a concrete definition of “minimality”, we would
like to capture also that membranes are too large to travel in channels. However,
as the discussion above illustrates, it is probably beneficial not to hardwire
exactly the collection of the cargo. Hence, we choose to isolate and implement
the final version of the side-condition as a small function that computes the
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surroundings. For certain applications this function may then be tweaked. We
may, for instance, specify in this function that under certain conditions the
transport is not possible; thus allowing us to prevent membrane-dragging.

We cannot get around, however, that computing the connected component
of a node in a graph requires iteration. In our case, we want to find a par-
ticular subset of the connected component of the user-parameter T (following
backbone-links and complexation-links); namely the part of it that is colocated
with T. Formally, we can define the function that computes the local connected
component by taking the least fixed point of a function that computes the im-
mediate (local) neighbours; as usual, we may then compute this least fixed point
by iterating the latter function.

We start by defining collect(T,S), the function that collects those top-level
domains in S (i.e., not nested inside membranes), which are connected with
domains in T.

Definition 3.6 (collecting immediate local neighbours). The function collect(T,S)
is defined for any solution T and any open solution

S ≡ (S0| . . . |Sn−1),

where each Si is either a domain, a gate or a membrane (empty or with another
solution inside).

The function is defined as follows (iterating over S from right to left):

collect(T, 0) = (T, 0)
collect(T,S | dx

b ) = collect(T,S) | (0, dx
b ), if {x, b} ∩ fn(T) = ∅

collect(T,S | db) = collect(T,S) | (0, db), if {b} 6∈ fn(T)
collect(T,S | db) = collect(T,S) | (0, db), if {b} 6∈ fn(T)

collect(T,S | 4g) = collect(T,S) | (0,4g)
collect(T,S |m[S′]) = collect(T,S) | (0,m[S′]),

where | is lifted pointwise to tuples of solutions.

Formally, the normal form for solutions ensures us that collect(T,S) is de-
fined for all open solutions S (cf. Definition 6.4 in Appendix 6). The function
collect(T,S) returns another tuple of solutions (T′,S′), where those domains in
S connected to T (i.e., sharing names) have been removed from S and added to
T, to form T′. This can be summed up in the following little lemma.

Lemma 3.7. If collect(T,S) = (T′,S′) then there exists some solution S′′, s.t.
T′ ≡ T | S′′ and S ≡ S′ | S′′.

In other words, we always have collect(T,S |S′) ≡ (T |S,S′), for some S. It is
also easy to see that collect(T,S) has least fixed points; either collect(T,S) re-
moves part of S, making further progress towards the base case for collect(T, 0);
or nothing is removed from S, and we are done.

Lemma 3.8. The function collect has least fixed points.
The least fixed point can be computed by iterating collect; call the least fixed

point collect∗.
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And finally, we can define lcc, the function that computes the draggable
local connected component. We define lcc(T,S) as a partial function, that uses
collect∗ to compute the local connected component (T∗,S∗), and then tests
whether the resulting solutions are still connected, that is, still share names.
If so, this is because domains are tied across a membrane, and we let lcc be
undefined in this case.

Definition 3.9 (draggable local connected component). For

T ≡ (x̃) T′,

where T ′ is a parallel product of domains, and

S ≡ (ỹ) S′,

where S′ is any open solution, s.t. x̃ ∩ ỹ = x̃ ∩ fn(S) = ỹ ∩ fn(T) = ∅,

lcc(T,S) =

{
((ỹ) T∗, (ỹ) S∗) if collect∗(T,S′) = (T∗,S∗) and fn(T ∗) ∩ fn(S∗) = ∅
⊥ else

The restrictions on the bound and free names of T and S are purely technical,
as we can always α-convert bound names to avoid any clashes.

We state in the following proposition the properties of the solutions com-
puted by lcc. The proposition is straight-forwardly verified from the definitions
and lemmas above.

Proposition 3.10. Either lcc(T, B+ | B−) is undefined or lcc(T, B+ | B−) ≡
(T | B+, B−), and B+ is solution that contains only domains, such that every
domain in B+ can trace a path of (backbone or complexation) links to a domain
in T, and such that no domain in B− can trace such a path.

In other words, the result of invoking lcc on the user-parameter and its
context, lcc(T, B+ | B−) is either undefined, indicating that a tied membrane
prevents transfer, or a result (T | B+, B−), such that B+ is a parallel product
of domains; and, all domains in B+ are in the connected component of T, while
none of the domains in B− are.

Having captured and isolated the computation of the solution that T drags
along in lcc, we may now state the final generator for diff. Figure 17 contains
the definition and an illustration that slightly overloads our graphical language
to illustrate the computation of the draggable local connected component. We
take Proposition 3.10 as verifying that we have implemented faithfully the last
non-constructive specification of the generator.

We may similarly enhance the pinch-rule to allow also the transfer of an
initial parameter, as discussed in the previous section. The resulting generator
is depicted and defined in Figure 18.

As a final remark in this section, a note on expressivity: Not unlike the
encoding of κ into micro-κ [DL04], we may implement the lcc-function using
vanilla reaction rules encoding the traversal performed in lcc. It essentially

37



B+

A

T

A

B- B-

B+ T

diff(T):

lcc(T, B+ |B−) ≡ (T |B+, B−) δ =↓: fn(T |B+) = ∅
(x) (A | 4x || 4x |B− |B+ | T) →ω (x) (A | 4x | T |B+ || 4x |B−)

Figure 17: The homogenous generator diff.

requires the addition of a single control for temporarily gathering the connected
connect; and a number of extra rules for recognizing preconditions corresponding
to the left-hand sides of the lcc-function. We find, however, that the higher
abstraction-level gained by taking the lcc-function is sufficiently important to
justify our choice. Also, as the function is inductively given, it lends itself
directly to implementation.

Table 1 summarizes all the generators introduced in this section for mem-
brane reconfiguration.

3.5 Refinement and Allowable Rules

In the previous sections we have introduced a series of generators all encapsu-
lating a core biological action. And in Section 3.1, and Figures 9 and 14, we
have introduced refinement formally. We now turning to defining refinement,
formally.

The idea is, that we want to allow in C-calculus any rule that is a suitable
refinement of (a projection of) one of the generators for membrane actions or
domain-level rules given in the previous section. All (projected) generators are
certainly valid rules by themselves. However, we want to allow a biochemist to
specify that, for instance, a vesicle may only touch the plasma membrane, if
a protein pro attached to its surface is bound to a receptor rec on the plasma
membrane. Let is work out this example in detail.

From the informal specification above, we want a rule that might look like
this:

r0 = pro0x
a | ves[ pro1a |A] | rec0x

b | plasma[ rec1b |B]→
(y) pro0x

a | ves[4y| pro1a |A] | rec0x
b | plasma[4y|rec1b |B],
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pinch(T):
lcc(T, B+ |B−) ≡ (T |B+, B−) δ =↓: fn(T |B+) = ∅
A ||B− |B+ | T →η (x)(A |m[T |B+ |Gx] ||B− | 4x)

Figure 18: The heterogenous generator for parametric pinch.

where, for effect, we have aligned counterparts on the left- and right-hand sides.
Let is spell out precisely in what sense r0 is a refinement of the lateral projection
of touch.

First, the lateral projection of touch, selecting the appropriate kinds of
membranes, yields the following rule:

ves[A] | plasma[B]→ (y) ves[4y |A] | plasma[4y |B].

Next, in refining a generated rule, we want to allow refinement of the parameters;
in practice, by substituting for any variable X, a solution S (that might in turn
contain variables). We call this inner refinement of X. Refining the parameters
A and B in the lateral projection of touch, we get:

ves[pro1a |A] | plasma[rec1b |B]→ (y) ves[4y | pro1a |A] | plasma[4y | rec1b |B]

And finally, we want to allow outer refinement of a reaction rule by specifying
parts of surrounding context, where the reaction occurs. In practice, for a rule
L → R, we want to allow any rule L | S → R | S. By contextualizing the rule
above with pro0x

a | rec0x
b , we get r0.

We may sum up refinement conveniently with the help of substitution. First
however, for full generality, we also need to consider rules with side-conditions.

Consider the following (somewhat artificial) rule and side-condition:12

r1 = A→ p |A, ϕ = ”A does not contain a p.”

If we perform inner refinement on A to get

r′1 = p |A→ p | p |A, ϕ′ = ?,

12In writing side-conditions for reaction rules, it is convenient to overload the usage of
variable-names in the rule, such as A, to refer to the solution that instantiates the variable.
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Homogenous generators

part (x)(4x |A || 4x |B) →ω A ||B

touch A ||B →ω (x)(4x |A || 4x |B)

diff(T)
lcc(T, B+ |B−) ≡ (T |B+, B−) δ =↓: fn(T |B+) = ∅

(x) (A | 4x || 4x |B+ |B− | T) →ω (x) (A | 4x | T |B+ || 4x |B−)

Heterogenous generators

merge (x)(A |m[4x | C] || 4x |B) →η A || C |B

pinch(T)
lcc(T, B+ |B−) ≡ (T |B+, B−) δ =↓: fn(T |B+) = ∅
A ||B+ |B− | T →η (x)(A |m[T |B+ |Gx] ||B− | 4x)

for any T ≡ (ỹ)(dx1
b1
| · · · | dxk

bk
) and for lcc as given in Def. 3.9.

Table 1: Summary of the generators for membrane reconfiguration.

what should the side-condition ϕ′ say? We elect that A should be refined in the
side-condition, as well. This yields: ϕ′ = ”(p |A) does not contain a p.” This in
turn yields a valid rule (that, however, never applies, since the side-condition is
equal to falsity). In other words, when substituting a parameter X for T, we
also need to substitute that parameter in ϕ. We finally settle on the following
definition for refinement:

Definition 3.11 (refinement). For any rule (L → R, ϕ), any solution context
S with one hole, and any group of solutions G, s.t., the number of solutions in
G is equal to the number of variables in L and R, a refinement of this rule is
(S/L/G→ S/R/G, ϕ′). The side-condition ϕ′ is true for a group of parameters
F if ϕ(G / F) holds.

We call the contexts S and G the outer and inner refinement, respectively.
Together, we call them the application conditions used to refine the rule L→ R.

In our case, for the generators in Table 1, the only parameters mentioned
in side-conditions are the B-parameters in pinch and diff. In practice, for
those rules, to ensure that refined rules not be unappliable, do not refine B−

to include a domain that is connected to T, and do not refine B+ to include a
domain that is not connected to T.

Our choice to refine also side-conditions ensures us that application condi-
tions only restrict the applicability of rules. In particular, we easily verify the
following convenient little lemma.

Lemma 3.12 (application conditions restrict rules). Suppose r′ = (L′ → R′, ϕ′)
is a refinement of r = (L,R, ϕ) as defined in Definition 3.11. Then, if T → T′

by r′, then also T→ T′ by r.
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Suppose, we had not refined side-conditions also; then this lemma would not
hold. (To see this, consider the reaction p → p | p against the example rule r1

and against the refined rule r′1 without refining also the application condition.)
Having treated the technicalities concerning refinement, we can sum up the

allowable rules.

Definition 3.13 (allowable rules). The allowable rules in the C-calculus are
refinements of

• domain-level rules, as defined in Definition 3.5; and,

• projections of the generators in Table 1.

In Section 4, we give several concrete examples of rules.

3.6 Preservation of Well-formedness

In this section, we establish the promised property that any reaction due to an
allowable rule preserves well-formedness.

The main theorem is the following. We devote the rest of this section to
prove this theorem.

Theorem 3.14 (C-calculus reactive systems preserve well-formedness). If S is
well-formed, and S→ T, then T is well-formed.

Proof. Follows from Lemmas 3.12, 3.15, 3.16, and 3.17.

All well-formedness conditions stipulate conditions on links—on the pres-
ence, arity, or sorting of links or on the locality of the ports they connect. That
fact, and the nature of allowable C-calculus rules, makes graph-based reasoning
on solutions most convenient. As explained in Section 2.4, solutions correspond
to certain bigraphs. Further, as recorded in [DK08, Theorem 4.5], reaction for
any BΣ,R-calculus corresponds 1-1 to bigraphical reaction (under so-called non-
aliasing contexts). Hence, due to the founding of C-calculus on bigraphs, we can
directly apply (bi)graphical reasoning to verify the following propositions.

We need to check the change(s) induced by a reaction rule against each of
the well-formedness conditions.

In outline, we proceed as follows: Most allowable rules, specifically domain-
level rules and those generated from touch, part, and bud create or break
links (plus some domains or membranes) contained entirely inside the left-hand
side or right-hand side of a rule. Consequentially, it is easily checked that they
cannot break well-formedness. We start by stating this in Lemmas 3.15 and 3.16.
Those rules that allow bunched transportation of subsolutions, contained in
parameters of the rules, need a bit more care. We check that rules generated
from merge are innocuous; and, for the rules generated from diff and pinch
we check that our development in Section 3.4.3 has been sound. We handle
these three transport rules in Lemma 3.17. Together the three lemmas imply
that all reactions due to allowable rules preserve well-formedness, as stated in
Theorem 3.14.
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A simple, but convenient corollary of Lemma 3.12 is that any reactive sys-
tem T ′ over refined rules will be a sub-system of a reactive system T over
the corresponding unrefined rules. It follows that, if we prove preservation of
well-formedness for reactive systems over core rules without refinements, i.e.,
domain-level rules and the projections of the generators in Table 1 without any
application conditions, then, in particular, any reactive systems using refined
rules also preserves well-formedness. Hence in the following lemmas, we shall
simply check unrefined rules.

Lemma 3.15 (domain-level rules preserve well-formedness). If S is well-formed
and S→ S′ by a domain-level rule, then S′ is well-formed.

Proof. Below we sketch the proof in some detail. The proof is essentially a
straight-forward case-analysis of a number of cases corresponding to the kinds
of links in the bigraphs that correspond to well-formed solutions. We thus rely
on bigraphical reasoning. In this paper, we have not introduced bigraphical
theory in full; however, we refer the reader to the informal summary given in
Section 2.4.

From Definition 3.5 we know that all domain-level rules L → R incorporate
one change (for the base rules) or two changes. Those changes translate directly
to changes which relate the (bi)graphs S to S′.

Let us consider first, what occurs under synth and degrade.

• synth All domains affected by this reaction have just been created in
S and are unbound. The only created link is the protein backbone, and
it is explicitly required to respect the well-formedness condition (fixed
backbone), together with the created domains it links.

• degrade No complexation-links are created or deleted by this reaction.
A backbone link is deleted, and it is explicitly required that every domain
in a protein is deleted together with it (ensuring us that (fixed backbone)
is upheld).

Now, we analyze each of the base rules, which change existing or newly created
domains or links, for their effect on a domain in S and consider well-formedness.

• bind Suppose d in S is affected by this reaction. Then it is visible and
will be bound to a co-located d′ in S′. In effect, S′ will have an added link
compared to S. We check this link against the well-formedness conditions;
the three interesting conditions are (binary complex ), (link sorting), and
(local complex ). They are all upheld, as it is explicitly required that
the link be between two complexation-ports of co-located domains. The
remaining conditions are voidly upheld.

• break Suppose d in S is affected by this reaction. Then it is bound, and
will be visible in S′ (as well as another d′ in S). In effect, S′ will have lost
a link compared to S. Checking against the well-formedness conditions,
it easily seen that no conditions are violated. In particular, note that
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since we explicitly require the entire link to be matched and deleted in
break, no faulty unary links can be created (which would violate (binary
complex )).

• hide/show These reactions change no links, making them non-problematic
with regard to well-formedness.

Finally, from the check of hide/show, it easily seen that the combinations of
bind and break with one of hide and show (i.e., bind+show, bind+hide,
break+show, and, break+hide) also preserve well-formedness.

In conclusion, no domain-level reaction rule may induce a change in S, which
breaks well-formedness in S′.

We turn to checking the generators described in Section 3.4 and the changes
they induce. We start by considering projections of the rules that do not involve
transport.

Lemma 3.16 (non-transport generators preserve well-formedness). If S is well-
formed and S→ S′ by a rule generated from touch, part, or bud, then S′ is
well-formed.

Proof. We sketch the proof.
Any reaction rule generated from touch and part induces exactly the fol-

lowing changes on S: The addition or deletion of two gates as well as the creation
or deletion of a link between them. By definition, the homogenous projections
will ensure us that these changes occur in compartments separated by exactly
two membranes, in turn ensuring us that any such channel respects (bitonality).
It is immediate from the definition of the generators that the conditions (link
sorting) and (binary channels) are upheld.

Any reaction rule generated from bud adds exactly one membrane as well as
two connected gates (as for touch above). The heterogenous projection in com-
bination with the created membrane ensures that the gates respect (bitonality).
(Again, it is immediate that the conditions (link sorting) and (binary channels)
are upheld.)

It remains for us to consider those rules, which move subtrees—captured in
parameters in the rules—in the solution. To illustrate the reasoning in the fol-
lowing proof, we shall sketch the parts of the tree corresponding to the solution,
where the reaction occurs.

We are reasoning about rules, which stem from generators projected to form
two or three rules. To concisely illustrate and reason about all projections in one
go, we may illustrate the subtrees corresponding to generators in the manner
depicted for heterogenous projection in Figure 19 and for homogenous projec-
tion in Figure 20. Below, we refer to such illustrations as projective. At the
top of the figures, projective groups are illustrate as in Section 3.2.1. When
we consider solutions as trees whose parenthood-relation is given by membrane-
containment, this corresponds to stating that one or two parenthood relations
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Figure 19: Depicting heterogeneous generators projectively, using unoriented
parenthood-edges.

(for heterogenous and homogenous, respectively) are unspecified. We can con-
veniently illustrate that by leaving one or two parenthood-edges in the tree
corresponding to a solution be unoriented. We depict that in the middle of
Figures 19 and 20. At the bottom, we illustrate how the projections work to
produce the two or three trees corresponding to the projective illustrations.

Lemma 3.17 (transport generators preserve well-formedness). If S is well-
formed and S → S′ by a rule generated from merge, diff, or pinch, then S′

is well-formed.

Proof. Below we sketch and illustrate the proof in some detail. As for the proofs
above, the proof is a case-analysis of a number of cases for the kinds of links
in bigraphs corresponding to well-formed solution. We thus rely on bigraphical
reasoning; we refer the reader to the intuition given in Section 2.4.

We consider the generators merge and pinch, and discuss the links that we
need to check with the help of projective illustrations as explained above. We
elide a detailed sketch of the analysis for the case for diff, as the verification is
similar to that for pinch.

merge: A membrane and two connected channels are deleted; and the con-
tents of the membrane (captured in the parameter C) is transfered to the other
end of the channel. The deletion of the connected channels correspond to the
action captured in part, and we need not consider them further.
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Figure 20: Depicting homogenous generators projectively, using unoriented
parenthood-edges.
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The projective illustration below illustrates the generator, and highlights
representatives of links, which we need to consider.

C

C

A B(2)

d

d

(3)
(1)

m

On the bottom-left is the subtree corresponding to C. The arrow pointing to
the right and the dotted subtree on the right indicates the transport that C will
undergo as a consequence of merge. C is inside a membrane (to illustrate, we
indicate this with a membrane M at the top of subtree illustrating C), which is
inside a compartment, which contains another subtree (A). This compartment
either has a parent or child (depending on the projection) containing the subtree
B.

Those links that may prove problematic are those spanning regions, and it
is clear that we need only consider those connected to nodes inside C. On the
illustration, we have drawn representatives of each kind of link, that we need to
consider.

Channels, whose gates lie within C, may come in two versions:

• Well-formed channels that are top-level in C may be connected to the
region that C is transported into. Such an example is illustrated and
tagged with (1) above. As a consequence of the transport such channels
will be degenerate (i.e., their length will be 0), but well-formed in S′.

• Well-formed channels that are inside a top-level membrane in C may only
be connected to the parent of C. We have illustrated and tagged such
a link with (2) above. As can be seen from the illustration, after the
transport of C, the channel will still span two membranes.

Every other well-formed channel is either contained entirely within or outside
C.

The link tagged with (3) illustrates a protein backbone that crosses the
membrane that is destroyed as a consequence of merge. Checking, we see that
this backbone also preserves its well-formed after the transfer.

pinch: A membrane and two connected channels are created, and the cargo
T |B+ is transfered to the compartment inside the new membrane. It is simple
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to check that the creation of the membrane itself and the connected channels
respect well-formedness. We concern ourselves with the links, whose endpoints
change location.

We illustrate the generator projectively, and again we highlight representa-
tives of links that we need to consider more carefully.

B+T|

B- A
B+T|

m

(1)

(2)(5)

(4)

(3)

On the middle-left, we illustrate with a dotted region the compartment con-
taining the user-parameter T and the parameter, B+, it is dragging along. The
parameter that remains, B−, is a sibling. The compartment, that the new
membrane is created in, is a parent or a child (depending on the projection) of
the compartment that T | B+ stems from. We illustrate the transfer with an
arrow, and on the bottom-right, we draw the newly created membrane and the
transferred T |B+ with dotted lines.

The parent-compartment of the new membrane (on the top-right) has a sub-
tree A. Finally, in case the projection is downwards (i.e., in case the undirected
parent-edge is oriented from right to left), then we need to consider also links
to the parent-region of the compartment containing T, B+, and B− (illustrated
on the top-left).

As for merge, we need concern ourselves mainly with links spanning com-
partments. However, we should remark that this is only because we have already
verified (in Proposition 3.10) that the split of B into B+ and B− by lcc, ensures
that there are no links, channels or backbones, between T | B+ and B− (we
illustrate such a link above with a crossed link and tag it with (5)).

Also, the side-condition fn(T |B+) = ∅ given for the downwards projection,
ensures that there can be no links to a parent region (we illustrate such a link
with a crossed link tagged with (4)).

Having treated the links that the side-conditions prevent, we turn to channels
captured partially in T |B+. However, lcc ensures ensures that no gates may be
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captured in T | B+. Hence, the two possibilities for channels (illustrated with
crossed lines and tagged with (1) and (2) above), are prevented. It remains again
to consider backbones that span the projected membrane, such as the link tagged
(3) above. After the pinch they will instead span the newly created membrane—
having followed the pivot-motion illustrated and discussed in Section 3.4.3—and
will still be well-formed.

diff: The analysis is similar to that for pinch.

4 Examples

Now for some examples.

4.1 G-protein Coupled Receptor

We start by developing a model of cross-membrane signal transduction (i.e.,
propagation of signals across say a cell wall in a signalling pathway) via G-
protein coupled receptor proteins (GCPRs). A GCPR is a kind of receptor
belonging to a large family of certain transmembrane proteins—proteins integral
to the cell wall that have protrusions on both sides. The family of GCPRs is large
and diverse, but they all employ a similar technique to implement a mechanism
that allows extracellular signals to cross the plasma membrane. In the following
description and model of GCPRs we shall abstract away from many details to
develop a model illustrating some of the central properties shared by GCPRs; in
any case, the answers to many questions pertaining to GCPRs are not known.

The extracellular part of a GCPR, illustrated in Figure 21, constitutes
a receptor site that is shaped to be able to bind certain ligands (signalling
molecules). Its inner part is bound to a partner G-protein (a guanine nucleotide-
binding protein). The G-protein in its inactive state is actually a little complex
of three different protein subunits bound to each other: Gα, Gβ , and Gγ .13

The β and γ subunits are bound tightly together (together they are called the
Gβγ-complex), while the α complex is relased as part of the activation of the
GCPR. Particular to GCPRs are that they do not pass any substance through
the membrane, but rely on structural changes to the folding shape of the re-
ceptor. The folding shape of a protein is called its conformation, hence such
structural changes are known as conformational changes.

Loosely, the GCPR propagates a signal in the following manner: A ligand
is bound to the receptor site activating the GCPR by changing the conforma-
tion of the receptor in such a way that the G-protein is activated, causing the
Gα subunit to bind to a molecule of GTP (guanosine triphosphate). This in
turn causes it to release itself from the rest of the G-protein, as illustrated in
Figure 22. The remaining Gβγ-complex also detaches from the receptor. The
release of the Gα subunit has exposed sites on the Gβγ-complex that may in-
teract with other molecules that serve as effectors for further propagation of

13For simplicity, we restrict to treating here heterotrimeric G proteins, also called “large”
G-proteins.
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the signal. A receptor in an activated state may bind to other G-proteins and
activate them. Depending on the stability of the ligand-receptor complex, the
ligand is released at some point. At this point an inactive G-protein may again
bind to it to return the entire complex to the initial inactive state.

Figure 21: A G-protein receptor before binding to a ligand (illustration
from [Coh07]).

A C-calculus model We work with the following protein signature:

{lig : (1, 0), re : (2, 1), gbc : (3, 0), ga : (2, 0), gtp : (1, 0), eff : (1, 0)},

and a single membrane type plasma to model plasma membranes.
In Figure 23, we give seven rules that encapsulates a model of the core

reactions involved in the firing of a G-protein coupled receptor. We explain the
rules one-by-one, below.

• Rule 0: This rule allows a ligand lig to bind to the extra-cellular domain
of the receptor, re0.

• Rule 1: The rule models the conformational change of the receptor induced
by the ligand binding in rule 0, by activating the Gα subunit, specifically
the domain ga1, able to bind to the GTP molecule, gtp. We make rule
1 η-projective, i.e., we intend that it may be applied if the two solutions
in the groups in the left and right hand side are separated by exactly one
membrane. In this manner, we capture conveniently and consisely the fact
that these transmembrane receptors transfer signals across the membrane,
independent of the orientation of the membranes.

We should note, that though this serves as a nice illustration of projectiv-
ity, in nature the particular family of transmembrane receptors we have
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Figure 22: A G-protein receptor firing due to a conformational change, after
binding to a ligand (illustration from [Coh07]).

chosen, GCPRs, work only in the plasma membrane, working to prop-
agate extra-cellular signals inwards.Note also, that we disassociate the
ligand-binding event with the conformational change.

• Rule 2: In this rule the domain ga1 of the Gα subunit binds to the gtp.

• Rule 3: This rule allows the Gα subunit to break the assocation to the
G-protein leaving the Gβγ-complex bound to the receptor. The dissasso-
ciation reveals (and activates) a part of the Gβγ-complex hidden by the
Gα subunit. We model that by the activation of the domain gbc1. Note
that rules 2 and 3 are not causally dependent. The ga1 may bind to gtp
before or after the ga0 domain has broken the bond to gbc2 domain. In
other words, we model that the Gα subunit may bind to the GTP molecule
independently of the dissassocation from the Gβγ-complex.

• Rule 4: After the activation of gbc1, the Gβγ-complex may release itself
from the receptor to seek out an effector to propagate the signal further.
Rule 4 captures this breakage of the complexation-link between the inter-
nal receptor-domain, re1, and the domain of Gβγ , gbc0.

• Rule 5: And in rule 5 the Gβγ-complex, represented by the activated gbc1-
domain, binds to some effector-domain—here abstractly represented as an
eff-molecule. Note that for variation, here we have made the formation
of the bond between the effector and the Gβγ-complex dependent of the
breakage of the bond between the receptor and the Gβγ-complex.
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r0 ligl | re0r → (x) ligx
l | re0x

r

r1 (ligx
l | re0x

r ) ||
(
re1y

r | gbc0y
b | gbc2z

b | ga0z
a | ga1a

)
→η

(ligx
l | re0x

r ) || (re1y
r | gbc0y

b | gbc2z
b | ga0z

a | ga1a)

r2 ga1a | gtpg → (u) ga1u
a | gtpu

g

r3 (z) gbc1b | gbc2z
b | ga0z

a | ga1u
a | gtpu

g →
gbc1b | gbc2b | ga0a | ga1u

a | gtpu
g

r4 (x) re1x
r | gbc0x

b | gbc1b → re1r | gbc0b | gbc1b

r5 gbc1b | effe → (y) gbc1y
b | eff

y
e

r6 re1r | gbc0b | gbc1b | gbc2z
b | ga0z

a | ga1a →
(x) re1x

r | gbc0x
b | gbc1b | gbc2z

b | ga0z
a | ga1a

Figure 23: Rules for modelling a G-protein coupled receptor

• Rule 6: Finally, rule 6 captures that a receptor with no G-protein may
bind to another (inactive) G-protein.

4.2 Clathrin-dependent Endocytosis

For an example involving both formation and fusion of compartments, we turn
to one of the celebrities in the world of research organisms, the illustrious ne-
matode worm Caenorhabditis elegans (or C. elegans among friends). It exists
in spades in common dirt, and is a multicellular eukaryote, with a small enough
amount of cells (959 in adult hermaphrodites, 1031 in adult males) to have been
extensively researched. This has made it possible to document in great detail
the developemental lineage of every cell in the lifespan of a single organism.
A key property for the tractability of such a study has also been that unlike
mammals, for instance, in C. elegans the fate of cells are largely invariant be-
tween individual worms. The online compendium WormBook [WB] documents
all aspects of research into these wondrous creatures.

We shall focus on endocytosis—the process by which cells internalize various
extracellular material—as studied for C. elegans. The best studied endocytic
pathway for both worms and mammals is the receptor-mediated endocytosis by
formation of clathrin-coated vesicles. We base the following high-level presen-
tation on the excellent review by Grant and Sato [GS06, Section 1] (available in
the WormBook). The schematic illustration of clathrin-dependent endocytosis
in Figure 4.2 we also borrow from loc. cit.

We may describe the process of clathrin-dependent endocytosis as follows:
On the cell wall receptor proteins await, ready to bind to ligands, cargo molecules
that the cell wishes to internalize. The purpose of the uptake of such cargo
molecules may be diverse, and may be part of signalling pathways, but may
also, for instance, involve the uptake of molecules that the cell needs—such
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Figure 24: Mechanism of clathrin-dependent endocytosis. Clathrin and cargo
molecules are assembled into clathrin-coated pits on the plasma membrane to-
gether with an adaptor complex called AP-2 that links clathrin with transmem-
brane receptors, concluding in the formation of mature clathrin-coated vesicles
(CCVs). CCVs are then actively uncoated and transported to early/sorting
endosomes (illustration and caption from [GS06]).

pathways inevitably lead the digested particles to degradation (i.e., destruc-
tion) in the lysosomes (with the suitable nickname, the “suicide sacs”). Over
time, it so happens that clusters of receptors bound to ligands tend to form on
the plasma membrane. The intra-cellular part of the receptors bind to adap-
tor complexes called AP2, who in turn bind to so-called clathrin lattices. The
macro-shape of clusters of clathrin is thought to provide the down-force required
to curve the plasma membrane into small inward buds. These inward buds are
mechanically constricted and snipped off to form clathrin-coated vesicles float-
ing freely in the cytoplasm. These coated vesicles are subsequently uncoated
actively (with the help of chaperone protein hsc-70 and its compatriot the co-
chaperone auxillin). With the aid of another GTPase, Rab5, these uncoated
vesicles now fuse with each other and with so-called early endosomes, which
serve a sorting purpose. These endosomes have a slightly reduced pH inside
their membranes, which tends to cause the receptors to let go of their ligands.
From the endosomes most receptors (some still with ligands bound) now form
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new vesicles and eventually recycle to the cell wall; while most ligands con-
tinue their transport—possibly through further vesicle transport towards their
endgoal, say, lysosomes.

At this point we shall leave our protagonists, and turn to developing a C-
calculus model. We underline again that, though detailed, the description above
is quite high-level. Most steps in the pathway involve intricate biochemical
steps; to name one, for instance, the snipping of buds happens through the
intervention of a GTPase dynamin—it works essentially by forming a coil around
the invaginated bud and then gradually, through a process of GTP hydrolysis,
mechanically constricts until the bud is closed off to form a coated vesicle.
In our model, we shall aim at hitting the same level of abstraction as in the
description above, focusing mostly on illustrating how C-calculus allows us to
model induced vesicle formation, and later fusion of such vesicles with each
other and with endosomes.

A C-calculus model We make certain simplifications to make the model
manageable: We model the 4-subunit complex AP2 as a single protein with
only the two domains necessary for the reactions in this example. Also, we do
not model exactly how the chaperone and co-chaperone, hsc-70 and auxillin,
or the GTPase Rab5 work; we only require that they be present for certain
reaction to take place. (For the same reason, we shall elide the mention of any
complexation-ports on these three latter proteins.)

We arrive at the following protein signature:

{lig : (1, 0), re : (2, 1), ap : (2, 0), cla : (1, 0), hsc-70 : (0, 0), aux : (0, 0), rab : (0, 0)}.

We take three membrane types plasma, ves, and end; the latter two types model
endosomes and vesicles.

In Figure 25, we give a set of rules to model clathrin-dependent endocytosis
as described above. Again, we explain the rules one-by-one.

• Rules 0, 1, and 2: These rules allow a ligand to bind to the extra-cellular
receptor domain, re0, (rule 0); allow the receptor-binding domain, ap0, of
the adaptin AP2 to bind to the intra-cellular receptor domain re1, (rule
1) inducing a conformational change that allows clathrin, cla, to bind to
the adaptin domain ap1 (in rule 2).

• Rule 3: Rule 3 is a refinement of pinch. (Since there is no need to repeat
the generic side-condition for pinch or diff, we just write by the rule
ϕpinch(T = . . .) to remind that the rule has a side-condition.)

We take the downwards projection of to model the clathrin-coating and
forming of a vesicle inside a cell. The rule allows creations of buds of
vesicle-type, ves[. . .]. We have refined the vanilla pinch-rule to require at
least one receptor coated with clathrin to be present for the bud to form,
by setting T = re0x

r , requiring the extra-cellular part of the receptor to be
bound (to a ligand), and giving application conditions inside the plasma
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r0 ligl | re0r → (x) ligx
l | re0x

r

r1 re1r | ap0a | ap1a → (x) re1x
r | ap0x

a | ap1a

r2 ap1a | clac → (x) ap1x
a | cla

x
c

r3 B− |B+ | re0x
r | plasma[re1y

r | ap0y
a | ap1z

a | cla
z
c ]→

(g)4g |B− | plasma[ves[4g |B+ | re0x
r ]|

re1y
r | ap0y

a | ap1z
a | cla

z
c ], ϕpinch(T = re0x

r )

r4 (g) ( B− |B+ | ligx
l | 4g) || (4g |A)→ω

(g) ( B− | 4g) || (4g |B+ | ligx
l |A) , ϕdiff(T = ligx

l )

r5 (g)4g | plasma[A | re1y
r | ap0y

a | ap1z
a | cla

z
c | re1v

s |
ap0v

b | ap1w
b | cla

w
d | ves[4g | re0x

r | re0u
s |B] ]→

plasma[A | re1y
r | ap0y

a | ap1z
a | cla

z
c | re1v

s |
ap0v

b | ap1w
b | cla

w
d | ves[re0x

r | re0u
s |B] ]

r6a (y, z) hsc-70h | auxb | re1y
r | ap0y

a | ap1z
a | cla

z
c →

(z) hsc-70h | auxb | re1r | ap0a | ap1z
a | cla

z
c

r6b (z) ap0a | ap1z
a | cla

z
c → ap0a | ap1a | clac

r7a rabr | ves[A ] | ves[B ]→ (g) rabr | ves[4g |A ] | ves[4g |B ]

r7b rabr | ves[A ] | end[B ]→ (g) rabr | ves[4g |A ] | end[4g |B ]

r8a (g) ves[4g |A ] | ves[4g |B ]→ ves[A |B ]

r8b (g) ves[4g |A ] | end[4g |B ]→ end[A |B ]

r9 (x) end[ ligx
l | re0x

r ]→ end[ ligl | re0r ]

Figure 25: Rules for modelling clathrin-dependent endocytosis
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membrane to require the intra-cellular part to clathrin-coated. (For sim-
plicity, we suppose that the downforce of a single clathrin-coating is enough
to create a small bud.) The extra-cellular receptor-domain is pulled into
the bud—dragging, in the surroundings, B+, the bound ligand—and a
channel is created.

• Rule 4: We refine the vanilla diff-generator to enable free diffusion of
ligands in and out of the pinched bud. For variation, in this rule we just
take every (homogenous) projection of the diff (indicated by keeping
the ω-subscript on the reaction-arrow)—for every kind of membranes in
the signature. This allows the rule to also allow diffusion among fused
uncoated vesicles and endosomes later in the process—which we comment
on below. Note, that should the ligand be bound to a receptor, then the
receptor will be dragged into the bud (or out of the bud) as well as part
of the surroundings, B+. This may result in further or lessened clathrin-
coating of a bud.

• Rule 5: Having pinched a bud via rule 3, rule 5 allows the bud to break
off and part from the plasma membrane. Rule 5 is a straight refinement
of the downwards projection of the part-generator. For variation, we
suppose, that the downforce of two clathrin-coatings is necessary to break
off a bud. This necessitates the diffusion of more bound ligands into a
formed bud—via rule 4.

• Rules 6a and 6b: These rules model, on a high level of abstraction, the
uncoating of vesicles (as discussed above) in two steps. We simple require
the presence of the two representatives of the chaperone hsc-70, hsc-70,
and the co-chaperone auxillin, aux, for the uncoating reaction to occur.

• Rules 7a, 7b, 8a, and 8b: These rules allow the two-step procedure of
touch and merge, that results on fusion of uncoated vesicles with each
other (rules 7a and 8a) and with endosomes-compartments, end[. . .] (rules
7b and 8b). For both fusions to occur, we require the GTPase Rab5,
represented by rab, to be present for initiating the process. To illustrate
the leverage we have in choosing refinements, for these rules, we take only
the lateral projections of the touch- and merge-rules; thus the reaction-
arrows have no subscripts.

• Rule 9: Finally, rule 9 models that the cargo-ligand may be released when
it has been enveloped by an endosome.

As a final remark, we may note, that one might also consider adding a
rule to allow smaller clathrin-coated buds formed on the plasma membrane to
merge, thus forming larger buds. This is probably a biologically viable alterna-
tive explanation to the formation of larger clusters of clathrin-coated receptors,
resulting in larger buds.
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5 Conclusion

We have presented and motivated in detail a novel calculus, the C-calculus,
for modelling low-level interaction inside and among cells, the basic building
blocks of all known life. The focus is on two main actors of cells, proteins and
membranes.

The calculus takes inspiration from several calculi, in particular, the κ-
calculus and the brane-calculi. The extension of a κ-like calculus with dynamic
compartments is a novel contribution, in itself. The C-calculus also introduces a
novel abstraction, channels, for modelling partially fused membranes, and uses
these to give a novel treatment of transport of complexes through diffusion and
parametric pinching of buds. Furthermore, as opposed to most process calculi
the C-calculus allows domain experts considerable freedom in instantiating a
domain-specific sub-calculus for the study of a particular biological application.

A user develops a model in the C-calculus by selecting a set a proteins and
membranes to work with and selects reaction rules from a toolbox of core rules,
encapsulating basic biological actions. Subsequently, the core rules may be
refined by giving contextual application conditions for rules.

In summary, the slogan for modelling in the C-calculus is: Modelling by rule
refinement.

5.1 Future Work

We should start by underlining that the reason for including names for domains
and membranes was to be able to express directly the concrete examples in
Section 4. The central parts of the calculus—the core actions, captured in the
projective generators, and the capture of diffusion and fission (via pinch)—
could have been discussed without names and state for domains, and does not
rely on the specific model chosen. In this first version of the calculus, the
concrete model for representing names and state for domains (and membranes)
has been chosen mainly because it allows readers familiar with the κ-calculus
as presented in [DL04] to build on the intuition from there. In future work, we
expect to revise the model for names and state, to allow the expression of rules
that mention domains eliding their name or state, and, more generally, to allow
a more uniform treatment of names and state for all the entities in the calculus.

The rules for transport in the C-calculus allow only transport of proteins
and complexes. However, by generalizing the pinch generator, we may model
cell-division in eukaryotic cells. As sketched in the introduction, this involves,
in particular, the division of membrane-enclosed organelles into two daughter-
cells. We may model this by allowing membranes and gates to travel across
channels. Due to the isolation of the computation of the connected component
in the lcc function, it suffices with a simple refinement of the pinch-rule and of
the lcc-function.

The generic tool for working with bigraphs, the BPL tool [BPL07], allows
experimentation with the fragment of the C-calculus without transport (i.e.,
the rules pinch and diff). In experimenting with different semantics for the
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calculus, this has very been useful. However, as for the κ-calculus [DFFK07],
a dedicated implementation can be optimized directly for the C-calculus. For
instance, knowing that well-formedness is preserved across reaction allows an
implementation to optimize for this, utilizing, in particular, that all links except
backbones are binary, and that backbone links are restricted to one or two
specific shapes.

A good way to mature the language is to investigate larger models. In
particular, the level of abstraction in the C-calculus leads us to believe that we
may capture smoothly the steps from receptor transcription to placement (this is
a part of the so-called exo-cytic pathway). This involves, in particular, the steps
of transcription for exo-particles and transmembrane receptor proteins, which in
turn involves recognition of partial proteins in the cytosol during transcription
by ribosomes. As domains, not full proteins, are atoms in the C-calculus, we
should be able to capture these reactions by extending the allowable domain-
level reactions. Recognition of a partial protein induces a lodging of the partial
protein in the endoplasmic reticulum surrunding the nucleus—this is essentially
a merging between two kinds of membrane-enclosed compartments. After final
transcription, a vesicle is formed to encapsulate the exo-part of the protein,
and the vesicle is transported through the (3-layer) Golgi apparatus sorting
mechanism, and finally merged with the plasma membrane.

Our binary gated channels also bear a striking resemblance to a recent dis-
covery [RSM+04, GBG08], so-called tunneling nanotubes (TNTs), long and thin
stable membrane-enclosed nanotubes (diameter of of 50 to 200nm, several cell
diameters in length) tunneling through the divide between two cells. TNTs were
originally reported to allow transport only of vesicles (i.e., essentially diffusion of
vesicles), but seem later to have been found to permit direct intercellular trans-
fer of organelles, cytoplasmic molecules and membrane components [GBG08].
Many things are as yet unknown about these entities and the mechanisms and
conditions they work under. They seem to be correspondents of membrane
channels observed in plants, so-called plasmodesmata (PD), membrane chan-
nels providing both membrane and cytoplasmic connectivity between cells. The
paper by Gurke et al. [GBG08], provides a recent overview and summary of the
current knowledge about TNTs, and contains an overview of three proposals on
the nano-structure and mechanics of TNTs. It would be valuable to investigate
whether, in the C-calculus, we may model easily each of these three different
proposals.

We have also made a preliminary investigation of the analysis of causality
for pure bigraphs, which we expect to be instantiable for the C-calculus. Es-
sentially, we may give a presentation for describing causal relations in terms of
modification-testing dependencies, in which we may describe classical notions
such as precedence, weak permutation, casuality, and concurrency.

Finally, due to recent results by Milner, Krivine, and Troina [KMT08], a
stochastic extension of the nondeterministic calculus presented in this paper, is
well-founded.
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5.2 Related Work

Several languages have been proposed in order to model biomolecular systems.
We have already discussed in detail, how the C-calculus is inspired by several
previous efforts, in particular, by the κ-calculus [DL04]. The Bio-κ-calculus
by Laneve and Tarissan extends the κ-calculus with basic brane-inspired mem-
branes [LT06]. However, splitting of membranes is a non-atomic procedure,
which requires a considerable amount of (computationally expensive) encod-
ing. In comparison, in the C-calculus we have taken the atomic pinch primitive
for membrane division, and isolated any associated splitting of proteins in a
side-condition.

The idea to use formal calculi for mobile and distributed systems was launched
by Regev, Shapiro, and Silverman. They use the π-calculus to represent and
simulate [RSS01] biomolecular processes underlying protein signalling networks.
They continue that work in the stochastic version of the π-calculus [PRSS01] (as
treated by Priami in [Pri95]) taking into account both the time and probability
of biochemical reactions. Proteins are encoded as parallel products of a series
of domains, encoded via channels. As in the C-calculus, name-sharing encodes
both protein-backbones and complexation. As is standard in the π-calculus lo-
cality (i.e., membrane-encapsulated compartments) is encoded via the sharing
of names, and mobility is encoded via name-passing. Conformational change
is also encoded via mobility. The basic combinators of π-calculus suffice to en-
code sequential events, independent events (via parallel), or, mutually exclusive
events (via sum). The line of work on using languages inspired by the stochastic
π-calculus is continued in the school of work on β-binders [PQ05] lead by Priami
and co-authors. In particular, β-binders add syntactic constructs for modelling
membranes, but do not offer any solution to the problem of fission.

In Bio-ambients [RPS+04], Regev et al. extend their earlier work by de-
veloping a modified version of the ambient calculus developed by Cardelli and
Gordon [CG98, CG00]. The ambient calculus is extended to include parent-to-
child communication as well as intra-ambient communication. The calculus is
also equipped with a variety of dual capabilities to allow actions such as en-
try, exit, and merging of ambients. Named ambients model membrane-enclosed
compartments; the ambient abstraction is also used to model proteins, allowing
merge to model certain kinds of complex-formation and membrane fusion. The
calculus encodes cross-membrane proteins by parent-child communication—by
allowing proteins to communicate outside the membrane they are enclosed in.
This has the side-effect of requiring the user to not model cross-membrane
proteins via ambients, but instead as naked processes. Also, protein complex
breakage is complicated by using merge to model complex-formation.

Cardelli continues the investigation of membrane interactions in the family
of brane calculi [Car04a]. Here, the focus is aimed mainly at finding good
abstractions for membranes and their behavior. Molecular structures are limited
to atomic structures attached to membrane-surfaces. Cardelli identifies a set of
basic membrane-actions that is motivated by the hydrophilic and hydrophobic
properties of membranes, and coin the concept “bitonality” to describe their
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constraints. In capturing a small set of membrane-actions in the C-calculus, we
are inspired by the brane calculi, and, in particular, by the projective variant
of the brane calculi, by Danos and Pradellier [DP04]. Projective descriptions
(which we explain and define in detail in the paper) let us describe conveniently
sets of rules for reactions involving regions separated by membrane-surfaces,
while eliding the orientation of those separating membranes.

In the recent paper on Bitonal Membrane Systems [Car08], Cardelli contin-
ues the line of work on membrane calculi, and investigates further the notion
of projectivity and orientation to unify membrane-reactions that from a local
perspective (a so-called local patch of the membranes) involve the same pattern
of reconfiguration.

Finally, also related is the school of work on P -systems [Pau02] initiated by
Paun. P -systems are essentially rewriting systems with locations at a high level
abstraction. The aim of P -systems is more angled towards developing a general
computational model inspired by biology, than towards giving a language for
describing and investigating biology, however.
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6 Definitions Inherited from the BΣ,R-framework

We include below, for easy reference, a few central definitions from the BΣ,R-
framework, instantiated to the signature used for the C-calculus. For more
extensive explanation and motivation, we refer the reader to [DK08].

Ordering of variables We are not interested in the particular numbers used
for variables in a given term, only in their relative ordering inside that term.
For instance, we do not wish to distinguish the solution �45 |�56 from �0 |�1.
All variables in terms are distinct, so we may order the variables in any term
uniquely according to their numbers. It is therefore clear what we mean, when
we refer to the ith variable in a given term.

Formally, we define order-preserving renumbering, and include it in the
structural congruence relation. Write nv(C) for the set of numbers of variables
in C.

Definition 6.1 (order-preserving renumbering). Given a group G and an order-
preserving and injective map r : nv(C) → N, let [G]r be the group G with all
variables renumbered according to r.

Order-preserving renumberings are partial maps on natural numbers. We
define also the stratifying renumbering, the renumbering that maps every vari-
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able to the number given by its relative order. To that end, we order the
renumberings themselves, pointwise.

Definition 6.2 (stratifying renumbering). The stratifying renumbering of vari-
ables in a group G is the least order-preserving renumbering defined on nv(G).

We write [G] for the group G renumbered according to this renumbering, and
call [G] stratified.

Free and bound names The new name operator (x) S is a binder for pure
names—instances of the name x in S are α-convertible. We define inductively
the set of free or bound names of a term as usual.

Definition 6.3 (free and bound names). For solutions S the free names fn(S)
and the bound names bn(S) are defined inductively as:

fn(m[S]) = fn(m[S]) bn(m[S]) = bn(S)
fn(dx

b ) = {x, b} bn(dx
b ) = ∅

fn(db) = {b} bn(db) = ∅
fn(db) = {b} bn(db) = ∅

fn(4g) = {g} bn(4g) = ∅
fn(S | T) = fn(S) ∪ fn(T) bn(S | T) = bn(S) ∪ bn(T)
fn((x) S) = fn(S) \ x bn((x) S) = x ∪ bn(S)

fn(0) = ∅ bn(0) = ∅
fn(A) = ∅ bn(A) = ∅

For groups we extend the definition above to include also:

fn(G || F) = fn(G) ∪ fn(F) bn(G || F) = bn(G) ∪ bn(F)
fn((x) G) = fn(G) \ x bn((x)G) = x ∪ bn(G)

fn(ε) = ∅ bn(ε) = ∅

Normal form Using structural congruence laws we may push binders to the
top (performing α-conversion as needed), remove superfluous binders via elision,
and remove empty solutions or groups to bring every solution and group to a
normal form, resembling the standard form for CCS [Mil80].

Proposition 6.4 (normal forms). Every solution S is structurally congruent to
a normal form

S ≡ (x̃)(S0 | · · · | Sn−1)

where each S0, · · · ,Sn−1 is a domain, a gate, or a membrane (empty or with
another solution inside) containing no binders; and where x̃ ⊆ fn(S0) ∪ · · · ∪
fn(Sn−1). (If n = 0, then S0 | · · · | Sn−1

def= 0, and if x̃ = ∅ then the binder (x̃)
is not there.)

Every group G is structurally congruent to a normal form

G ≡ (x̃)(S0 || · · · || Sn−1)
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where each S0, · · · ,Sn−1 is non-empty, contain no binders, and is otherwise on
(solution) normal form; and where x̃ ⊆ fn(S0) ∪ · · · ∪ fn(Sn−1). (If n = 0, then
S0 || · · · || Sn−1

def= ε, and if x̃ = ∅ then the binder (x̃) is not there.)
The forms are unique up to α-equivalence, and reordering of binders and

parallel solutions (i.e., up to the commutative law for |).

We write G ≡N G′, if G ≡ G′ and G′ is on normal form.

Definition 6.5 (width of group). For

G ≡N (x̃)(S0 || · · · || Sn−1)

let width(G) = n.

Substitution Nonground solutions (and groups) have variables for which we
may substitute other solutions.

We start by defining basic substitution of the variables in a group G by
a solution S. (We define substitution only for groups, G. The definition for
solutions follows as a special case.) Substitution is capture-avoiding, as usual.

Definition 6.6 (raw substitution). Let ϕ be a bijective map from variables to
solutions S0,S1, . . . ,Sn−1.

The substitution Gϕ of variables in G by the solution in ϕ is defined when
| var(G)| = n, for all i ∈ n, bn(G) ∩ fn(Si) = ∅. In that case, we define Gϕ
inductively over the structure of G,

m[S]ϕ = m[Sϕ]
dx

b ϕ = dx
b

db ϕ = db

db ϕ = db

4g ϕ = 4g

((x) S)ϕ = (x) (Sϕ)
(S | T) ϕ = (Sϕ | Tϕ)
0 ϕ = 0

Xϕ =

{
Si if ϕ(X) = Si

X else

((x) G)ϕ = (x) (Gϕ)
(G || F) ϕ = (Gϕ || Fϕ)
ε ϕ = ε.

As each variable is a leaf in G it is easy to see that the substituted term
respects the grammar (i.e., in Definition 2.4 and in Definition 2.5). In general,
however, raw substitution is not well-behaved; it may lead to terms violating
the requirement that numbered variables occur only once in expressions. We
shall only use raw substitution as a means to define two versions of substitution,
where this issue is resolved.
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We start by defining total substitution, G ·F, the substitution of all variables
in a group G with the solutions in a group F.

We define total substitution by pushing the binders of F to the top of the
created term; hence, we also require that both bound and free names of G be
distinct from bound names in F. This is simply a technical requirement, as we
can always α-convert bound names of F to avoid any clashes.

Definition 6.7 (total substitution). Substitution G · F of variables in G by
solutions in F is defined when | var(G)| = width(F) and bn(G)∩ fn(F) = bn(G)∩
bn(F) = fn(G) ∩ bn(F) = ∅. In this case, for

F ≡N (x̃)(S0 || · · · || Sn−1)

let
G · F = (x̃)[G]{�0 7→ S0, · · · ,�n−1 7→ Sn−1},

Note, that we use stratifying renumbering to renumber the variables in G
before substituting, to ensure that the variables in G are numbered severally
from 0 to n− 1. Substitution is associative.

Proposition 6.8 (total substitution is associative). (G · F) · H = G · (F · H).

We generalize our definition of substitution to partial substitution—where
only some of the variables of the context G are substituted. Definition 6.9
generalizes Definition 6.7 to the cases, where F has fewer solutions than G has
variables.

Definition 6.9 (partial substitution). Partial substitution G / F of variables
in G by solutions in F is defined when | var(G)| ≥ width(F) and (as for total
substitution) when bn(G) ∩ fn(F) = bn(G) ∩ bn(F) = bn(G) ∩ fn(F) = ∅. In this
case, let

G / F = G · ([F] ||�k || · · · ||�k+n),

for | var(G)| − width(F) = n and | var(F)| = k.

It is immediate from the definitions, that in the case where | var(G)| =
width(F), G · F ≡ G / F. In the case, where G has more variables, than F
has solutions, F is extended with appropriately numbered variables.

Partial substitution is not in general associative; by convention we take it to
be left-associative.
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