Programs as data

Scheme and program generation

Peter Sestoft
2012-11-26
Today

• Program generation
 – Programs that generate programs

• The Scheme programming language
 – Dynamically typed functional language
 – Concrete syntax = abstract syntax

• Program generation in Scheme
 – Two-level languages
 – Distinguishing binding-times

• Partial evaluation: automatic program specialization
The power(n, x) function

- Computing x^n efficiently in Java/C#
- Using that $x^{2m} = (x^2)^m$ and $x^{m+1} = x^*x^m$

```java
static double Power(int n, double x) {
    double p;
    p = 1;
    while (n > 0) {
        if (n % 2 == 0) {
            x = x * x; n = n / 2;
        } else {
            p = p * x; n = n - 1;
        }
    }
    return p;
}
```

Example:

$$3^5 = 3 * 3^4 = 3 * (3^2)^2 = 3 * 9^2 = 3 * 81 = 243$$
Specialized power(n,x) for n=5

• Assume we need to compute x^5 for many x
• So we know, statically, that $n=5$, but don’t know x
• Then a *specialized* function Power_5(x)
 – would compute exactly the same result
 – but would be faster (why?)

```c
static double Power_5(double x) {
    double p;
    p = 1;
    p = p * x;
    x = x * x;
    x = x * x;
    p = p * x;
    return p;
}
```
Generator of specialized power(n,x) functions

```java
public static void PowerTextGen(int n) {
    System.out.println("static double Power_" + n + "(double x) { ");
    System.out.println("  double p;");
    System.out.println("  p = 1; ");
    while (n > 0) {
        if (n % 2 == 0) {
            System.out.println("  x = x * x; ");
            n = n / 2;
        } else {
            System.out.println("  p = p * x; ");
            n = n - 1;
        }
    }
    System.out.println("  return p; ");
    System.out.println("} ");
}
```
Binding times in $\text{Power}(n,x)$

- **green** = static = early, **red** = dynamic = late

$$\text{static double Power(int n, double x) \{ }$$

- **double p;**
- **p = 1;**
- **while (n > 0) {**
 - **if (n % 2 == 0) {**
 - **x = x * x; n = n / 2;**
 - **else {**
 - **p = p * x; n = n - 1;**
 - **}**
- **return p;**

- **The generator performs the green code and generates the red code**

- **But tiresome to generate code as text**
The Scheme language

• Design by Guy L Steele 1978
 – Plus a revolutionary compilation technique
 – Master’s thesis from MIT
 – Co-author of Java Language Specification
 – Designer of other languages: Common Lisp Object System (CLOS), Fortress, ...

• Scheme descends from Lisp (McCarthy 1960)
• A higher-order functional language
• Like Scala, ML, F# but no static types
• Very simple syntax, lots of parentheses
Scheme expressions

• Compute 7+9:

 (+ 7 9)

• Compute 7*9+13:

 (+ (* 7 9) 13)

• Define variable x to be 42:

 (define x 42)

• Define variable x to be value of 7+9:

 (define x (+ 7 9))

• If x<15 then x^2 else x-15:

 (if (< x 15) (* x x) (- x 15))
Scheme function definitions

• Defining the function \(f(x) = x \times 3 + 7 \):

 \[
 \text{(define (f x) (+ (* x 3) 7))}
 \]

• Same in C/C++/Java/C#:

  ```
  int f(int x) { return x*3+7; }
  ```

• Calling the function on argument 10:

  ```
  (f 10)
  ```

• Defining a recursive function:

  ```
  (define (fac n)
    (if (= n 0)
      1
      (* n (fac (- n 1)))
    )
  )
  ```
The power function in Scheme

(define (sqr x) (* x x))

(define (power n x)
 (if (> n 0)
 (if (eq? (remainder n 2) 0)
 (sqr (power (/ n 2) x))
 (* x (power (- n 1) x)))
 1))

> (power 10 2)
1024
> (power 97 2)
158456325028528675187087900672
Scheme anonymous functions

- The anonymous function $x \mapsto x^3+7$

 $$(\text{lambda} \ (x) \ (+ \ (* \ x \ 3) \ 7))$$

- Applying the function to argument 10:

 $$((\text{lambda} \ (x) \ (+ \ (* \ x \ 3) \ 7)) \ 10)$$

- Anonymous functions in other languages

 - Standard ML, 1978
 - Lambda calculus, 1936
 - C# 2.0
 - C# 3.0, Scala
 - F#, Ocaml
 - Standard ML, 1978
 - Lambda calculus, 1936
Closures in Scheme

• An anonymous function may use a variable from an enclosing scope

```
(define (makeadd y)
  (lambda (x) (+ x y))
)
```

```
(define g (makeadd 7))
(g 42)
```

• A closure must be built for the function:

```
(define g (makeadd 7))
(g 42)
```

![Diagram of closure](image)
Scheme data: lists and pairs

• Scheme data are either
 – atoms (numbers, Booleans, symbols ...) or
 – S-expressions: pairs, lists

• The list containing 11, 22 and 33:
 `' (11 22 33)

• Defining xs to be that list:
 (define xs `(11 22 33))

• The first element of xs:
 (car xs)

• The rest of xs:
 (cdr xs)

• The second element of xs:
 (car (cdr xs))
Pairs and lists: s-expressions

- Structured data are built from cons cells
- A cons cell’s components are car and cdr:

```
(cons 44 (+ 44 11))
```

- Creating a new cons cell:

```
'(44 . 55)
```

- A constant cons cell:
A list is a special s-expression

- A list (11 22 33) is a right-linear tree ending in nil, alias the empty list ():

- Four ways to build that list:

 \[(11 \ 22 \ 33)\]
 \['(11 . (22 . (33 . ())))\]
 \[(\text{list} \ 11 \ 22 \ 33)\]
 \[(\text{cons} \ 11 \ (\text{cons} \ 22 \ (\text{cons} \ 33 \ ()))))\]
Ten-minute exercise

• Assume \(\text{xs} \) is the list \((11 \hspace{1em} 22 \hspace{1em} 33)\)

• Write Scheme expressions
 – for extracting the third element from \(\text{xs} \)
 – for extracting the list containing only the third element
 – for computing the sum of the first and second element
 – for testing whether first element is positive

• Write a Scheme expression corresponding to
 \(11 + x \times (22 + x \times (33 + x \times 0))\)
Some list-processing functions

• Length of a list:

```
(define (len xs)
  (if (null? xs)
      0
      (+ 1 (len (cdr xs)))))
```

• Sum of a list’s elements:

```
(define (sum xs)
  (if (null? xs)
      0
      (+ (car xs) (sum (cdr xs)))))
```
Some tree-processing functions

• Representing a tree:

```
(define t
  '(11 . (22 . 33))
)
```

• Depth of a tree:

```
(define (depth t)
  (if (pair? t)
      (+ 1 (max (depth (car t))
                 (depth (cdr t))))
      0)
)
```
Higher-order functions

• Mapping a function over a list:

(define (map f xs)
 (if (null? xs)
 ()
 (cons (f (car xs)) (map f (cdr xs)))))

• Example use:

(define xs ' (11 22 33))
(map (lambda (x) (* 2 x)) xs)
Running Scheme programs

• Some Scheme implementations:
 – Gambit Scheme, http://dynamo.iro.umontreal.ca/~gambit
 – MIT/GNU Scheme (Linux, MacOS, Win)
 – Jaffer’s SCM (only Linux and other Unixes)
 – Racket (formerly PLT Scheme)
 – Chez Scheme (commercial)
 – More at http://schemers.org/ > implementation

• Documentation, lots, among which:
Data representing expressions: Abstract syntax and the `eval` function

- Abstract syntax for `(+ 2 3)` is `'(+ 2 3)`
- Abstract syntax can be evaluated by built-in `eval`

```
> (+ 2 3)
5
> '(+ 2 3)
(+ 2 3)
> (eval '(+ 2 3))
5
> (define myexpr '(+ (* x x) 7))
> myexpr
(+ (* x x) 7)
> (define x 10)
> (eval myexpr)
107
```
Constructing abstract syntax

• Abstract syntax can be built with list and quote:

```scheme
> (define ee '(* x 3))
> (list '+ ee '7)
(+ (* x 3) 7)

> (define (addsqr y) (list '+ 'x (* y y)))
> (addsqr 7)
(+ x 49)

> (define (addsqrdef y)
    (list 'define '(f x)
         (list '+ 'x (* y y)))
)

> (addsqrdef 7)
(define (f x) (+ x 49))
```

Build AST for function that adds \(y^2 \) to \(x \)

AST only
From AST to defined function

- The abstract syntax tree (AST) is just data
- To define a function, we must `eval` the AST
 - Just like `javac` followed by `java`; here just one step

```scheme
> (add sqr def 7)
(define (f x) (+ x 49))

> (f 10)
# ... undefined identifier: f

> (eval (add sqr def 7))

> (f 10)
59
```

Build AST only

Cannot call f

Build and eval

Can call f
Scheme quasiquotation: Comma and backquote

• Using list and quote can be confusing
• Backquote and comma make life easier
 – Backquote “quotes” everything so it gets constructed, not evaluated
 – Comma “unquotes” a subexpression so it gets evaluated, not constructed

> (define (addsqrdef y)
 `(define (f x) (+ x ,(* y y))))
> (addsqrdef 7)
 (define (f x) (+ x 49))
> (eval (addsqrdef 7))
Generator of specialized power power(n,x) functions

(define (powergen n)
 (if (> n 0)
 (if (eq? (remainder n 2) 0)
 `(sqr ,(powergen (/ n 2)))
 `(* x ,(powergen (- n 1)))
 `1)
)
)

(define (mkpower n)
 (eval `(define (pow x) ,(powergen n))))
Two-level languages and binding-times

• Scheme with backquote and comma is a two-level language:
 – Backquote: dynamic (late) computation
 – Comma: static (early) computation in dynamic context

```
(define (power n x)
  (if (> n 0)
      (if (eq? (remainder n 2) 0)
          (sqr (power (/ n 2) x))
          (* x (power (- n 1) x))
      )
    1)
)
```
Ten-minute exercise

• Ex 1: Use backquote and comma to write an expression that builds

\((+ \ y \ 2^{97})\)

where the value of \(2^{97}\) must be computed (using \texttt{power}) and inserted as number

• Ex 2: Assume \(x\) is static and \(y\) dynamic in

\((+ (* 11 \ x) (* y 22)))\)

– Mark static and dynamic parts (green, red)
– Write expression that builds the above for any given value of \(x\)
Partial evaluation

• Proposed by Yoshihiko Futamura 1970
• Studied in USSR and Sweden in the 1970'es
• Idea:
 – Assume \(p \) is a two-input program \(p(\text{in1},\text{in2}) \)
 – But we have only part of the input, \(\text{in1} \)
 – Then we cannot run (evaluate) program \(p \)
 – But can **partially evaluate**, or **specialize**, it
 \[r = [\text{spec}](p,\text{in1}) \]
 – We don’t get a result, but a new program \(r \)
 – Running \(r \) on \(\text{in2} \) will then give the result
• Two-stage execution …
Interpreter, compiler and partial evaluator (spec)

• Let s be a source program and inp input data
• Running s on input inp gives output out
 – In symbols: \([s](inp) = out\)
• An interpreter int is a program such that
 – \([int](s, inp) = out\)
• A compiler comp is a program such that
 – If \(target = [comp](s)\) then \([target](inp) = out\)
• Now let p be a two-input program,
 \([p](in1,in2) = out\)
• A partial evaluator is a program spec such that
 – If \(r = [spec](p,in1)\) then \([r](in2) = out\)
• The partial evaluator runs p on only part of its input,
 giving a residual program r
The three Futamura projections

• First: compilation
 – If $\text{target} = [\text{spec}](\text{int}, s)$
 then $[\text{target}](\text{in}) = \text{out}$

• Second: compiler generation
 – If $\text{comp} = [\text{spec}](\text{spec}, \text{int})$
 then $[\text{comp}](s) = \text{target}$

• Third: compiler generator generation
 – If $\text{cogen} = [\text{spec}](\text{spec}, \text{spec})$
 then $[\text{cogen}](\text{int}) = \text{comp}$

• There’s no Fourth Futamura projection:
 – Because $[\text{cogen}](\text{spec}) = \text{cogen}$
This actually works!

• Self-application is non-trivial in practice
 – Avoid generating large trivial specializations
• Success 1985 at University of Copenhagen

• We invented binding-time analysis, a static analysis:
 – Which computations depend only on known data
 – Those may be performed at specialization time

http://www.itu.dk/people/sestoft/pebook/pebook.html
Example function: \((\text{power } n \ x)\)

\[
((\text{define } (\text{pow } n \ x)\\
 \quad (\text{if } (\text{op even? } n \ 0)\\
 \quad \quad 1\\
 \quad (\text{if } (\text{op even? } n)\\
 \quad \quad (\text{call } \text{pow} \ (\text{op quotient } n \ 2) \ (\text{op } * \ x \ x))\\
 \quad \quad (\text{op } * \ x \ (\text{call } \text{pow} \ (\text{op } - \ n \ 1) \ x))))))
\]

\[
(\text{define } \text{pa2} \ (\text{montonate } \text{power } '(s \ d)))
\]

\[
((\text{define } ((\text{pow } 2) \ s \ d) \ (n) \ (x))\\
 (\text{ifs } (\text{ops even? } n \ 0)\\
 \quad (\text{lift } 1)\\
 (\text{ifs } (\text{ops even? } n)\\
 \quad (\text{callld } ((\text{pow } 2) \ s \ d)\\
 \quad ((\text{ops quotient } n \ 2))\\
 \quad ((\text{opd } * \ x \ x)))\\
 \quad (\text{opd } * \ x \ (\text{calls } ((\text{pow } 2) \ s \ d) \ ((\text{ops } - \ n \ 1)) \ (x))))))))
\]
Specializing for $n=97$

> (scheme (spec pa2 '(97)))

```scheme
((define (pow*sd-1 x) (* x (pow*sd-2 (* x x))))
(define (pow*sd-2 x) (pow*sd-3 (* x x)))
(define (pow*sd-3 x) (pow*sd-4 (* x x)))
(define (pow*sd-4 x) (pow*sd-5 (* x x)))
(define (pow*sd-5 x) (pow*sd-6 (* x x)))
(define (pow*sd-6 x) (* x (pow*sd-7 (* x x))))
(define (pow*sd-7 x) (* x '1)))
```

Specialize wrt $n=97$

Result

> (make 'power97 (spec pa2 '(97)))
> (power97 3)
19088056323407827075424486287615602692670648963

Compile and run it
Generating and using a specializer

> (define sann (monotate specializer '(s d)))
> (define sp2 (spec sann (list pa2)))

Specialize specializer wrt power

Compile and use it

Resulting sp2 power specializer

> (make 'powergen sp2)
> (powergen '(97))

Result is as before

((define (pow*sd-1 x) (* x (pow*sd-2 (* x x))))
 (define (pow*sd-2 x) (pow*sd-3 (* x x)))
 (define (pow*sd-3 x) (pow*sd-4 (* x x)))
 (define (pow*sd-4 x) (pow*sd-5 (* x x)))
 (define (pow*sd-5 x) (pow*sd-6 (* x x)))
 (define (pow*sd-6 x) (* x (pow*sd-7 (* x x))))
 (define (pow*sd-7 x) (* x '1)))
Generating a specializer generator

> (define cc (spec sann (list sann)))

Specialize specializer wrt itself

Use resulting specializer generator to generate a power specializer

> (make 'cogen cc)
> (define cp2 (cogen (list pa2)))

Result cp2 is identical to sp2

Regenerate specializer generator

> (define ccc (cogen (list sann)))
> (equal? cc ccc)

Result ccc is identical to cc
Pitfalls of partial evaluation

- Sometimes nothing can be specialized
 - Eg x static (known) but n dynamic in power(n,x)
 - Static computation under dynamic control, dangerous
- Infinitely large "specialized" programs
- Very large specialized programs, no speedup
 - Subsequent compilation/code generation slow
 - Many instruction cache misses
- Inadequate binding-time separation
 - Variables that "should" be static become dynamic
- Lots of research on these problems since 1985
 - For Scheme, Prolog, C, ML, Java, C#, ...
 - The toy Scheme0 specializer used here is very simple
- Specialization, spreadsheets, graphics processors