Programs as data
Higher-order functions,
polymorphic types,
and type inference

Peter Sestoft
Monday 2013-09-16
Plan for today

- Higher-order functions in F#
- A higher-order functional language
- F# mutable references
- Polymorphic types
 - Informal procedure
 - Type rules
 - Unification
 - The union-find data structure
 - Type inference algorithm
- Variant generic types in Java and C#
 - Java use-side variance
 - C# 4.0 declaration-side variance
Higher-order functions and anonymous functions in F#

• A higher-order function takes another function as argument

```fsharp
let rec map f xs =
    match xs with
    | []    -> []
    | x::xr -> f x :: map f xr
```

```fsharp
let mul2 x = 2.0 * x;;
map mul2 [4.0; 5.0; 89.0];;
```

• Anonymous functions

```fsharp
map (fun x -> 2.0 * x) [4.0; 5.0; 89.0]
```

```fsharp
map (fun x -> x > 10.0) [4.0; 5.0; 89.0]
```
Function types in C#

• Delegate types

```csharp
delegate R Func<R>()
delegate R Func<A1,R>(A1 x1)
delegate R Func<A1,A2,R>(A1 x1, A2 x2)
```

• Anonymous method expressions

```csharp
delegate(int x) { return x>10; }
delegate(int x) { return x*x; }
```

C# 3.0

F#
Uniform iteration over a list

```ocaml
let rec sum xs =  
  match xs with  
  | []    -> 0  
  | x::xr -> x + sum xr

let rec prod xs =  
  match xs with  
  | []    -> 1  
  | x::xr -> x * prod xr

let rec foldr f xs e =  
  match xs with  
  | []    -> e  
  | x::xr -> f x (foldr f xr e)
```

- Generalizing 0/1 to e, and +/* to f:

  ```ocaml```
  ```
 foldr ◊ (x₁::x₂::...::xₙ::[]) e = x₁ ◊ (x₂ ◊ (... ◊ (xₙ ◊ e) ...))
  ```

  The foldr function replaces :: by f, and [] by e:
F# mutable references

• A reference is a cell that can be updated

```fsharp
let r = ref 177
!r
(r := !r+1; !r)
!r
```

Create int reference
Dereference
Assign to reference

• Useful for generation of new names etc:

```fsharp
let nextlab = ref -1;;
let newLabel () = (nextlab := 1 + !nextlab;
 "L" + string (!nextlab));;
newLabel();;
newLabel();;
newLabel();;
newLabel();;
```
Higher-order micro-ML/micro-F#

• Higher-order functional language
  – A function may be given as argument:
    ```
 let twice g x = g(g x)
    ```
  – A function may be returned as result
    ```
 let add x = let f y = x+y in f
 let addtwo = add 2
 let x = 77
 addtwo 5
    ```

• Closures are needed:
  – The function returned must enclose the value of
    f’s parameter x – has nothing to do with later x

• Same micro-ML syntax: Fun/Absyn.fs
Interpretation of a higher-order language

- The closure machinery is already in place
- Just redefine function application:

```ocaml
define eval (e : expr) (env : value env) : value =
 match e with
 | ... |
 | Call(eFun, eArg) ->
 let fClosure = eval eFun env
 in match fClosure with
 | Closure (f, x, fBody, fDeclEnv) ->
 let xVal = eval eArg env
 let fBodyEnv =
 (x, xVal) :: (f, fClosure) :: fDeclEnv
 in eval fBody fBodyEnv
 | _ -> failwith "eval Call: not a function"
```
ML/F#-style parametric polymorphism

Each expression has a compile-time type
The type may be *polymorphic* (‘many forms’) and have multiple *type instances*
Type generalization and specialization

• If f has type \((\alpha \to \text{int})\) and \(\alpha\) appears nowhere else, the type gets generalized to a type scheme written \(\forall \alpha.(\alpha \to \text{int})\):

\[
\text{let } f \ x = 1
\]

• If f has type scheme \(\forall \alpha.(\alpha \to \text{int})\) then \(\alpha\) may be instantiated by/specialized to any type:

\[
\begin{align*}
f \ 42 & \quad f: \text{int} \to \text{int} \\
f \ \text{false} & \quad f: \text{bool} \to \text{int} \\
f \ [22] & \quad f: \text{int list} \to \text{int} \\
f \ (3,4) & \quad f: \text{int*int} \to \text{int}
\end{align*}
\]
Polymorphic type inference

- F# and ML have polymorphic type inference
- Static types, but not explicit types on functions

\[ \alpha \beta \]

\[
\begin{align*}
\text{let twice } g \ y &= g (g \ y) \\
(\beta \rightarrow \beta) &\rightarrow (\beta \rightarrow \beta) \\
\alpha &= \beta \rightarrow \delta \\
\beta &= \delta \rightarrow \epsilon \\
\end{align*}
\]

- We generalize \( \beta \), so twice gets the type scheme \( \forall \beta. (\beta \rightarrow \beta) \rightarrow (\beta \rightarrow \beta) \), hence “\( \beta \) may be any type”

\[
\begin{align*}
\text{let } \text{mul2 } y &= 2 * y \\
\text{mul: int } \rightarrow \text{ int} \\
\text{twice mul2 } 11 \\
\text{twice : (int->int)->(int->int)}
\end{align*}
\]
Basic elements of type inference

• “Guess” types using type variables $\alpha, \beta, \ldots$
• Build and solve “type equations” $\alpha = \beta \rightarrow \delta \ldots$
• Generalize types of let-bound variables/funs. to obtain type schemes $\forall \beta. (\beta \rightarrow \beta) \rightarrow (\beta \rightarrow \beta)$
• Specialize type schemes at variable use

• This type system has several names:
  – ML-polymorphism
  – let-polymorphism
Restrictions on ML polymorphism, 1

• Only let-bound variables and functions can have a polymorphic type

• A parameter’s type is never polymorphic:

```ml
let f g = g 7 + g false
```

Ill-typed: parameter g never polymorphic

• A function is not polymorphic in its own body:

```ml
let rec h x =
 if true then 22
 else h 7 + h false
```

Ill-typed: h not polymorphic in its own body
Restrictions on ML polymorphism, 2

• Types must be finite and non-circular

\[
\text{let rec } f \ x = f \ f
\]

f not polymorphic in its own body

• Guess \( x \) has type \( \alpha \)
• Then \( f \) must have type \( \alpha \rightarrow \beta \) for some \( \beta \)
• But because we apply \( f \) to itself in \( (f \ f) \), we must have \( \alpha = \alpha \rightarrow \beta \)
• But then \( \alpha = (\alpha \rightarrow \beta) \rightarrow \beta = ((\alpha \rightarrow \beta) \rightarrow \beta) \rightarrow \beta = \ldots \) is not a finite type
• So the example is ill-typed
Restrictions on ML polymorphism, 3

- A type parameter that is used in an enclosing scope cannot be generalized

```ml
let f x = let g y = if x=y then 11 else 22 in g false in f 42
```

- Reason: If this were well-typed, we would compare \( x = 42 \) with \( y = \text{false} \), not good...

\[ \alpha = \beta \]

\[ \alpha \text{ bound in outer scope, cannot generalize } \beta \]

\[ \text{Ill-typed: function } g \text{ not polymorphic} \]
Joint exercises

- Which of these are well-typed, and why/not?

```ocaml
let f x = 1
in f f
```

```ocaml
let f g = g g
```

```ocaml
let f x =
 let g y = y
 in g false
in f 42
```

```ocaml
let f x =
 let g y = if true then y else x
 in g false
in f 42
```
Type rules for ML-polyomorphism

\[
\frac{\rho \vdash i : \text{int}}{\rho \vdash \text{b} : \text{bool}}
\]

\[
\frac{\rho(x) = \forall \alpha_1, \ldots, \alpha_n. t}{\rho \vdash x : [t_1/\alpha_1, \ldots, t_n/\alpha_n]t}
\]

\[
\frac{\rho \vdash e_1 : \text{int} \quad \rho \vdash e_2 : \text{int}}{\rho \vdash e_1 + e_2 : \text{int}}
\]

\[
\frac{\rho \vdash e_1 : \text{int} \quad \rho \vdash e_2 : \text{int}}{\rho \vdash e_1 < e_2 : \text{bool}}
\]

\[
\frac{\rho \vdash e_r : t_r \quad \rho[x \mapsto \forall \alpha_1, \ldots, \alpha_n.t_r] \vdash e_b : t}{\rho \vdash \text{let } x = e_r \text{ in } e_b \text{ end} : t}
\quad \alpha_1, \ldots, \alpha_n \text{ not free in } \rho
\]

\[
\frac{\rho \vdash e_1 : \text{bool} \quad \rho \vdash e_2 : t \quad \rho \vdash e_3 : t}{\rho \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t}
\]

\[
\rho[x \mapsto t_x, f \mapsto t_x \rightarrow t_r] \vdash e_r : t_r \quad \rho[f \mapsto \forall \alpha_1, \ldots, \alpha_n.t_x \rightarrow t_r] \vdash e_b : t
\quad \alpha_1, \ldots, \alpha_n \text{ not free in } \rho
\]

\[
\frac{\rho \vdash \text{let } f x = e_r \text{ in } e_b \text{ end} : t}{\rho \vdash e_1 : t_x \rightarrow t_r \quad \rho \vdash e_2 : t_x}{\rho \vdash e_1 \; e_2 : t_r}
\]

Specialize from typescheme

Generalize to typescheme
Joint exercises

• Draw the type trees for some of these

```ocaml
let x = 1
 in x < 2
```

```ocaml
let f x = 1
 in f 2 + f false
```

```ocaml
let f x = 1
 in f f
```
Programming type inference

• Algorithm W (Damas & Milner 1982) with many later improvements
• Symbolic type equation solving by
  – Unification
  – The union-find data structure
• “Not free in $\rho$” formalized by binding levels:

\[
\begin{align*}
\alpha &: 0 \\
\beta &: 0 \\
\text{let } f \ x &= \ \cdots
\end{align*}
\]

\[
\begin{align*}
\alpha &= \beta \\
\text{let } g \ y &= \text{if } x = y \text{ then } 11 \text{ else } 22 \\
\text{in } g \text{ false}
\end{align*}
\]

\[
\text{in } f \ 42
\]

• Since $\beta$-level < g-level, do not generalize $\beta$
### Unification of two types, unify($t_1, t_2$)

<table>
<thead>
<tr>
<th>Type $t_1$</th>
<th>Type $t_2$</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>int</td>
<td>No action</td>
</tr>
<tr>
<td>bool</td>
<td>bool</td>
<td>No action</td>
</tr>
<tr>
<td>$t_{1x} \rightarrow t_{1r}$</td>
<td>$t_{2x} \rightarrow t_{2r}$</td>
<td>unify($t_{1x}, t_{2x}$) and unify($t_{1r}, t_{2r}$)</td>
</tr>
<tr>
<td>$\alpha$</td>
<td>$\alpha$</td>
<td>No action</td>
</tr>
<tr>
<td>$\alpha$</td>
<td>$\beta$</td>
<td>Make $\alpha = \beta$</td>
</tr>
<tr>
<td>$\alpha$</td>
<td>$t_2$</td>
<td>Make $\alpha = t_2$ unless $t_2$ contains $\alpha$</td>
</tr>
<tr>
<td>$t_1$</td>
<td>$\beta$</td>
<td>Make $\beta = t_1$ unless $t_1$ contains $\beta$</td>
</tr>
<tr>
<td>All other cases</td>
<td></td>
<td>Failure, type error!</td>
</tr>
</tbody>
</table>
The union-find data structure

- A graph of nodes (type variables) divided into disjoint classes
- Each class has a representative node
- Operations:
  - New: create new node (type variable)
  - Find(n): find representative of node n’s class
  - Union(n1,n2): join the classes of n1 and n2
Type inference for micro-ML, 1

let rec typ (lvl : int) (env : tenv) (e : expr) : typ =
match e with
| CstI i -> TypI
| CstB b -> TypB
| Var x -> specialize lvl (lookup env x)
| ...
Type inference for micro-ML, 2

```ocaml
let rec typ (lvl : int) (env : tenv) (e : expr) : typ =
 match e with
 | Prim(ope, e1, e2) ->
 let t1 = typ lvl env e1
 let t2 = typ lvl env e2
 match ope with
 | "*" -> (unify TypI t1; unify TypI t2; TypI)
 | "+") -> (unify TypI t1; unify TypI t2; TypI)
 | "=" -> (unify t1 t2; TypB)
 | "<" -> (unify TypI t1; unify TypI t2; TypB)
 | "&" -> (unify TypB t1; unify TypB t2; TypB)
 | _ -> failwith ("unknown primitive " ^ ope)
```

\[
\begin{align*}
\Gamma \vdash e_1 : \text{int} & \quad \Gamma \vdash e_2 : \text{int} \\
\hline \\
\Gamma \vdash e_1 + e_2 : \text{int} \\
\hline \\
\Gamma \vdash e_1 : \text{int} & \quad \Gamma \vdash e_2 : \text{int} \\
\hline \\
\Gamma \vdash e_1 < e_2 : \text{bool}
\end{align*}
\]
let rec typ (lvl : int) (env : tenv) (e : expr) : typ =
match e with
| If(e1, e2, e3) ->
  let t2 = typ lvl env e2
  let t3 = typ lvl env e3
  unify TypB (typ lvl env e1);
  unify t2 t3;
  t2

\[
\rho \vdash e_1 : \text{bool} \quad \rho \vdash e_2 : t \quad \rho \vdash e_3 : t \\
\rho \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t
\]
let rec typ (lvl : int) (env : tenv) (e : expr) : typ =
  match e with
  | ... |
  | Let(x, eRhs, letBody) ->
    let lvl1 = lvl + 1
    let resTy = typ lvl1 env eRhs
    let letEnv = (x, generalize lvl resTy) :: env
    typ lvl letEnv letBody
  | ... |

\[ \rho \vdash e_r : t_r \quad \rho[x \mapsto \forall \alpha_1, \ldots, \alpha_n.t_r] \vdash e_b : t \quad \alpha_1, \ldots, \alpha_n \text{ not free in } \rho \]

\[ \rho \vdash \text{let } x = e_r \text{ in } e_b \text{ end} : t \]
Properties of ML-style polymorphism

• The type found by the inference algorithm is the most general one: the *principal type*
• Consequence: Type checking can be modular
• Types can be large and type inference slow:

```ocaml
let id x = x
let pair x y p = p x y
let p1 p = pair id id p
let p2 p = pair p1 p1 p
let p3 p = pair p2 p2 p
let p4 p = pair p3 p3 p
let p5 p = pair p4 p4 p
```

• In practice types are small and inference fast
Type inference in C# 3.0

- No polymorphic generalization
- Can infer parameter type of anonymous function from context: `xs.Where(x=>x*x>5)`
- Cannot infer type of anonymous function
- Parameter types in methods
  - must be declared
  - cannot be inferred, because C# allows method overloading ...

```csharp
var x = "hello"; // Inferred type: String
... x.Length ...
x = 17; // Type error
```
Polymorphism (generics) in Java and C#

• Polymorphic types

```java
interface IEnumerable<T> { ... }
class List<T> : IEnumerable<T> { ... }
struct Pair<T,U> { T fst; U snd; ... }
delegate R Func<A,R>(A x);
```

• Polymorphic methods

```java
void Process<T>(Action<T> act, T[] xs)
```

```csharp
void Process<T>(Action<T> act, T[] arr)
```

• Type parameter constraints

```java
void Sort<T>(T[] arr) where T : IComparable<T>
```

```csharp
void Sort<T extends Comparable<T>>(T[] arr)
```
Variance in type parameters

• Assume Student subtype of Person

```csharp
void PrintPeople(IEnumerable<Person> ps) { ... }
```

```csharp
IEnumerable<Student> students = ...;
PrintPeople(students);
```

Java and C# 3 say NO: Ill-typed!

• C# 3 and Java:
  – A generic type is invariant in its parameter
  – I<Student> is not subtype of I<Person>

• Co-variance (co=with):
  – I<Student> is subtype of I<Person>

• Contra-variance (contra=against):
  – I<Person> is subtype of I<Student>
Co-/contra-variance is unsafe in general

• Co-variance is unsafe in general

```csharp
List<Student> ss = new List<Student>();
List<Person> ps = ss;
ps.Add(new Person(...));
Student s0 = ss[0];
```

Wrong!
Because would allow writing Person to Student list

• Contra-variance is unsafe in general

```csharp
List<Person> ps = ...;
List<Student> ss = ps;
Student s0 = ss[0];
```

Wrong!
Because would allow reading Student from Person list

• But:
  – co-variance OK if we *only read* (output) from list
  – contra-variance OK if we *only write* (input) to list
Java 5 wildcards

• Use-side co-variance

```java
void PrintPeople(ArrayList<? extends Person> ps) {
 for (Person p : ps) { … }
}
…
PrintPeople(new ArrayList<Student>());
```

• Use-side contra-variance

```java
void AddStudentToList(ArrayList<? super Student> ss) {
 ss.add(new Student());
}
…
AddStudentToList(new ArrayList<Person>());
```
Co-variance in interfaces (C# 4)

• When an I<T> only produces/outputs T’s, it is safe to use an I<Student> where a I<Person> is expected

• This is co-variance

• Co-variance is declared with the out modifier

```csharp
interface IEnumerable<out T> {
 IEnumerator<T> GetEnumerator();
}
interface IEnumerator<out T> {
 T Current { get; }
}
```

• Type T can be used only in output position; e.g. not as method argument (input)
Contra-variance in interfaces (C# 4)

• When an I<T> only consumes/inputs T’s, it is safe to use an I<Person> where an I<Student> is expected
• This is contra-variance
• Contra-variance is declared with `in` modifier

```csharp
interface IComparer<in T> {
 int Compare(T x, T y);
}
```

• Type T can be used only in `input` position; e.g. not as method return type (output)
Variance in function types (C# 4)

• A C# delegate type is
  – co-variant in return type (output)
  – contra-variant in parameters types (input)

• Return type co-variance:

  ```
 Func<int, Student> nthStudent = ...
 Func<int, Person> nthPerson = nthStudent;
  ```

• Argument type contra-variance:

  ```
 Func<Person, int> personAge = ...
 Func<Student, int> studentAge = personAge;
  ```

• F# does not support co-variance or contra-variance (yet?)
Reading and homework

• This week’s lecture:
  – PLC sections A.11-A.12 and 5.1-5.5 and 6.1-6.7
  – Exercises 6.1, 6.2, 6.3, 6.4, 6.5

• No lecture next week

• Next lecture, **Monday 30 September**:
  – PLCSD chapter 7
  – Strachey: Fundamental Concepts in ...
  – Kernighan & Richie: The C programming language, chapter 5.1-5.5