Quantified Boolean Formulas

Note for IAIP Fall 2005
Rune M. Jensen
IT University of Copenhagen
August 11, 2005

Quantified Boolean Formulas (QBF) [1] provides a concise notation for complex operations on Boolean formulas which we will use extensively to define BDD operations. QBF is ordinary propositional logic extended with quantification of Boolean variables.

Definition 1 (QBF syntax) Given a set $V = \{v_1, \cdots, v_n\}$ of propositional variables, $QBF(V)$ formulas are inductively defined by

- every variable in V is a formula,
- if f and g are formulas, then so are $\neg f$, $f \land g$, and $f \lor g$, and
- if f is a formula and $v \in V$, then $\exists v \cdot f$ and $\forall v \cdot f$ are formulas.

A truth assignment for $QBF(V)$ is a function $\sigma : V \to \mathbb{B}$. We will use the notation $\sigma(v \leftarrow a)$ for the truth assignment defined by

$$
\sigma(v \leftarrow a)(w) = \begin{cases}
 a & \text{if } v = w \\
 \sigma(w) & \text{otherwise}.
\end{cases}
$$

Definition 2 (QBF Semantics) If f is a formula in $QBF(V)$ and σ is a truth assignment, we will write $\sigma \models f$ to denote that f is true under the assignment σ. The relation \models is defined inductively in the obvious manner

- $\sigma \models v$ iff $\sigma(v) = \text{true}$,
- $\sigma \models \neg f$ iff $\sigma \not\models f$,
- $\sigma \models f \lor g$ iff $\sigma \models f$ or $\sigma \models g$,
- $\sigma \models f \land g$ iff $\sigma \models f$ and $\sigma \models g$,
- $\sigma \models \exists v \cdot f$ iff $\sigma(v \leftarrow \text{false}) \models f$ or $\sigma(v \leftarrow \text{true}) \models f$,
- $\sigma \models \forall v \cdot f$ iff $\sigma(v \leftarrow \text{false}) \models f$ and $\sigma(v \leftarrow \text{true}) \models f$.

For a vector $\vec{v} = (v_1, \cdots, v_m)$ of propositional variables in V, we define the abbreviations

$$
\exists \vec{v}. f \equiv \exists v_1. (\cdots (\exists v_m. f) \cdots)
$$

(1)

$$
\forall \vec{v}. f \equiv \forall v_1. (\cdots (\forall v_m. f) \cdots).
$$

(2)

The *support* of a formula f is the set of variables that f depends on $\{v \in V \mid f|_{v\leftarrow \text{true}} \neq f|_{v\leftarrow \text{false}}\}$.

References