
Course Notes for IAIP, Fall 2005

Rune Møller Jensen, Tarik Hadzic, and Peter Tiedemann

Department of Computer Science, IT University of Copenhagen,
Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark
{rmj,tarik,peter}@itu.dk

1 List of errors and inaccuracies

This errata list covers chapter 1 to 6 of the book which were used in the course Efficient AI Programming (IAIP) taught at the IT University of Copenhagen in the fall 2005.

1.1 page 16, join (inaccuracy)

The operative definition of join is imprecise. It is not fully clear that for every tuple in R_S all matching tuples in R_S are included in $R_S \bowtie R_T$.

1.2 page 19, o-notation (error)

The definition of $o(g(n))$ at the bottom of the page 19 is imprecise. It lacks the existential quantifier in the definition. So, instead of

$$o(g(n)) = \{f(n) : \text{for any positive constant } c \text{ and } n_0, \quad 0 \leq f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0\}$$

it should say:

$$o(g(n)) = \{f(n) : \text{for any positive constant } c \text{ there exists } n_0, \quad 0 \leq f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0\}$$

1.3 page 33 (typo)

The columns are indexed by X_i’s domains and the rows by X_j’s domain.

it should say:

The **rows** are indexed by X_i’s domains and the **columns** by X_j’s domain.
1.4 page 36 (typo)

... two values \{true, false\} or \{0, 1\}.

It should say:

... two values \{true, false\} or \{1, 0\}.

1.5 page 38 (error)

... \(M_1 \rightarrow (A \land C \rightarrow X)\).

It should say:

... \(M_1 \rightarrow (A \land C \leftrightarrow X)\).

1.6 page 44, Figure 2.11 (error)

\[D_1 = \{1, 3\} \]

It should say:

\[D_1 = \{2, 3\} \]

1.7 page 58, Figure 3.6 (typo)

... AC-2 is applied.

It should say:

... AC-3 is applied.

1.8 page 60, AC-4 algorithm (error)

Line 10 of AC-4 algorithm presented in Figure 3.7 allows selection of tuple \((x_j, a_j) \in S(x_i, a_i)\) even though it has been previously selected and added to list \(M\). Therefore, instead:

10 : for each \((x_j, a_j)\) in \(S(x_i, a_i)\)

It should say:

10 : for each \((x_j, a_j)\) in \(S(x_i, a_i)\) and \((x_j, a_j) \notin M\)

1.9 page 88, Proposition 4.1 (inaccuracy)

It is clear that a tree has induced width 1. However, that a graph with induced width 1 is a tree seems to imply an unusual definition of trees that does not require the graph to be connected.
1.10 page 101, Theorem 4.4 (typo)

\((j < i)\)

it should say:

\((j \leq i)\)

1.11 page 108, (typo)

... The induced width along \(d_1\) and \(d_2\) are 3 and 2, respectively...

it should say:

... The induced width along \(d_2\) and \(d_1\) are 3 and 2, respectively...

1.12 page 108, Figure 4.17 (error)

This figure seems to wrongly eliminate \(C\) before \(D\). Furthermore, there are errors in the tables.

1.13 page 125, Figure 4.18 (inaccuracy)

“The constraints can be organized to permit finding a tuple of a given constraint in worst-case logarithmic time:...” But on page 133 it can be done in \(O(1)\). What is the difference in the underlying data structure?

1.14 page 133, procedure Select-Value-Forward-Checking (error)

In the test “If \(D'_k\) is empty” the domains are reset but the algorithm does not break out of the for loop to try another element in \(D'_i\). This must be done to ensure correctness of the approach.

1.15 page 139, procedure DVFC (error)

Remove the first line “\(i \leftarrow i + 1\) (step forward to \(x_S\))”.

1.16 page 158, Definition 6.7 (inaccuracy)

Notice that the ancestors of \(x\) on page 86 section 4.1 were defined as the parents of \(x\).

1.17 page 160, Definition 6.8 (inaccuracy)

For the Graph-Based-Backjumping procedure to make sense (e.g., instantiating \(l_i\) to \(\text{anc}(x_i)\)) and for Theorem 6.1 on page 161 to be correct, the relevant dead-end set for internal dead-ends must also include the ancestor set of the internal dead-end node itself.