Mandatory Exercise 1

Hand in 23-2-2005, before 12:00
in the pigeon hole of Mikkel
Bundgaard in the Dept. of
Theoretical CS, 4C corner
Part 1

- Write a CCS expression $T(\text{start}, \text{stop}, \text{join})$ denoting the LTS:

 \[
 \begin{array}{ccc}
 \text{Created} & \xrightarrow{\text{start}} & \text{Alive} \\
 & \xrightarrow{\text{stop}} & \\
 & \xrightarrow{\text{stop}} & \text{Dead} \\
 & \xrightarrow{\text{join}} & \\
 & \xrightarrow{t} & \\
 \end{array}
 \]

 where t is the special label for an “internal” transition. The action join represents that the main program can wait for the Thread to finish by the join() method.

- Write the expression in the syntax of Mobility Workbench, and verify that the syntax is correct.
Part 2

- Draw the LTS for the CCS process

TwoThreads(startA,stopA,joinA,startB,stopB,joinB) =

\[t.(T<startA,stopA,joinA> \parallel t.(T<startB,stopB,joinB>)) \]

where T is the thread you defined in part 1. Explain in your own words how this expression models a Java program that creates two Java Threads.

- How many states would the LTS have if 3 threads was created? (Extra non-mandatory exercise, a bit more difficult: How many states would the LTS have if k threads was created?)

- Step through the first 3 steps of the process in MWB
Part 3

• **Draw the LTS for the CCS process**
 TwoThreads(printfinished) =

 (^startA,startB,joinA,joinB,stopA,stopB)(
 t.(T<startA,stopA,joinA> |
 t.(T<startB,stopB,joinB> |
 'startA.'startB.'joinA.'joinB.'printfinished.0)))

 where T is the thread you defined in part 1. Explain in your own words what this process expression models.

• **Give a formal inference of two of the transitions of the process, at least one that uses the SYNC rule.**