Overview of the Lecture

The structure of the lecture:
- Selected Exercises
- Behavioural Equivalences
 - Trace Equivalence
 - Bisimulation Equivalence
- Examples and MWB
- Equivalence and Congruence Relation
- The Spi Calculus
 - Syntax
 - Structural Equivalence and Reaction relation
- Examples and Properties
- Exercises

Selected Exercises

Show: $\pi(y).0 \ | \ (\nu y)x(z).Q(y, z) \longrightarrow (\nu y')(Q(y'), y)$

Apply the translation to $x(y_1, y_2).P \ | \ \pi(z_1, z_2).Q \ | \ \pi(z'_1, z'_2).Q'$

Evaluate the expressions

- $True_a \ | \ Case_a(P, Q) \longrightarrow P$
- $False_a \ | \ Case_a(P, Q) \longrightarrow Q$
Behavioural Equivalences

- Often systems are informally specified using “behave like” statements
- But how can we formalise behavioural equivalence
- We would like that the equivalence satisfy the following requirements
 1. It should be a reflexive, symmetric, and transitive relation
 2. Processes that may terminate (deadlock) should not be equivalent to processes that may not terminate (deadlock)
 3. It should be a congruence. That is, if a component Q of P is replaced by an equivalent component Q' yielding P', then P and P' should also be equivalent
 4. Two processes should be equivalent iff they satisfy exactly the same properties expressible in a nice modal or temporal logic
 5. (it should abstract from silent actions)

Trace Equivalence (LTS and CCS)

- Note that we work in CCS, since the theory is simpler here
- Processes are trace equivalent exactly when they have the same traces (from their initial state)
- Let $P \overset{a_1 \ldots a_n}{\rightarrow} Q$ if $P \overset{a_1}{\rightarrow} P_1 \overset{a_2}{\rightarrow} \ldots \overset{a_n}{\rightarrow} Q$ for some P_1, \ldots, P_{n-1}
- Let $S(P) = \{ s \in A^* \mid \exists Q. P \overset{\sigma}{\rightarrow} Q \}$ be all traces of P. Then $P \approx_S Q$ if and only if $S(P) = S(Q)$
- $a.b.0 + a.c.0 \approx_S a.(b.0 + c.0)$, but $[a](b)tt$ distinguish the two (so it is not a congruence ($a,b)(_ | \pi,b)$)
- Let $P = aP$ and $Q = P + a.0$. Then $P \approx_S Q$, but Q can deadlock, whereas P cannot.
- Trace equivalence is inadequate for non-deterministic systems

Bisimulation Equivalence — Game Definition

- Board: Transition systems of P and Q
- Material: Two (identical) pebbles, initially on the states P and Q
- Players: R (refuter) and V (verifier), R and V take turns, R moves first.
- R-move: Choose any of the two pebbles
 Take any transition
- V-move: Choose the other pebble
 Take any transition having the same label as the one chosen by R.
- R wins if: V cannot reply to his (or her) last move
- V wins if: R cannot move or the game goes on forever. (i.e., a draw counts as a win for V)

Bisimulation Equivalence

- Two processes should be considered equivalent only if they infinitely can mimic each other
- A relation R is a bisimulation if $P \cap R Q$ then
 - $P \overset{a}{\rightarrow} P'$ implies $\exists Q'. Q \overset{a}{\rightarrow} Q'$ such that $P'RQ'$
 - $Q \overset{a}{\rightarrow} Q'$ implies $\exists P'. P \overset{a}{\rightarrow} P'$ such that $P'RQ'$
- P and Q are bisimilar, $P \sim Q$, if there exists a bisimulation between them
- Theorem \sim implies \approx_S (meaning $\sim \subseteq \approx_S$)
 ($\approx_S \sim$, if LTS is deterministic)
- \approx_S does no imply \sim, why?
Examples

- \(a.b.0 + a.c.0 \neq a.(b.0 + c.0) \)
- \(P \neq Q \), if \(P = a.P \) and \(Q = P + a.0 \)
- So, \(\sim \) captures non-determinism and deadlock, and when choices have been made
- \(a.b.0 + a.c.0 \sim a.c.0 + a.b.0 \) and \(a.(b.0 + c.0) \sim a.(c.0 + b.0) \) because

\[
\{(a.b.0 + a.c.0, a.c.0 + a.b.0), (a.(b.0 + c.0), a.(c.0 + b.0)), (b.0 + c.0, c.0 + b.0), (b.0, b.0), (c.0, c.0), (0, 0)\}
\]

is a bisimulation

- it defines a winning strategy for the verifier in the pebble game

Examples — in MWB

MWB> agent P(a,b,c) = a.b.0 + a.c.0
MWB> agent Q(a,b,c) = a.(b.0 + c.0)
MWB> eqd (a,b,c) P<a,b,c> Q<a,b,c>
The two agents are NOT equal.
MWB> agent R(a) = a.R<a>
MWB> agent S(a) = R<a> + a.0
MWB> eqd (a) R<a> S<a>
The two agents are NOT equal.
MWB> agent P1(a,b,c) = a.c.0 + a.b.0
MWB> eqd (a,b,c) P<a,b,c> P1<a,b,c>
The two agents are equal.
Bisimulation relation size = 4.
MWB> agent Q1(a,b,c) = a.(c.0 + b.0)
MWB> eqd (a,b,c) Q<a,b,c> Q1<a,b,c>
The two agents are equal.
Bisimulation relation size = 3.

MWB — eqd

- The command \(\text{eqd} \ (\text{name}_1, \ldots, \text{name}_n) \ \text{agent1 agent2} \)
 - checks whether \(\text{agent1} \) and \(\text{agent2} \) are strong bisimulation equivalent
 - under the assumption that the names in \((\text{name}_1, \ldots, \text{name}_n) \) are distinct
- We use these names to differentiate the different free names of the term under consideration

Examples cont.

Let \(P = b.0 \mid \pi.c.0, Q = a.b.0 \mid c.0 \), and let \(R = a.b.0 \mid \pi.c.0 \) then

\[
P \sim b.\pi.c.0 + \pi.(b.c.0 + c.b.0) \\
Q \sim a.(b.c.0 + c.b.0) + c.a.b.0 \\
R \sim a.P + \pi.Q + \tau.(b.c.0 + c.b.0) \\
\]

because there exists a bisimulation

\[
\{(P, b.\pi.c.0 + \pi.(b.c.0 + c.b.0)), (R, a.P + \pi.Q + \tau.(b.c.0 + c.b.0)), (Q, a.(b.c.0 + c.b.0) + c.a.b.0), (b.0 \mid c.0, b.0 + c.b.0), (S, S), ((0 \mid S), S), (S, (0 \mid S)) \mid S \in \mathcal{P}\}
\]
Examples cont. — in MWB

MWB>agent P(a,b,c) = b.0 | 'a.c.0
MWB>agent Q(a,b,c) = a.b.0 | c.0
MWB>agent R(a,b,c) = a.b.0 | 'a.c.0

MWB>eqd (a,b,c) P<a,b,c> b.'a.c.0 + 'a.(b.c.0 + c.b.0)
The two agents are equal.
Bisimulation relation size = 6.

MWB>eqd (a,b,c) Q<a,b,c> c.a.b.0 + a.(b.c.0 + c.b.0)
The two agents are equal.
Bisimulation relation size = 6.

MWB>eqd (a,b,c) R<a,b,c> a.P<a,b,c> + 'a.Q<a,b,c> + t.(b.c.0 + c.b.0)
The two agents are equal.
Bisimulation relation size = 10.

Bisimulation is an Equivalence Relation

Often we want equality relations, like ∼, to satisfy certain natural properties.

- An equivalence relation is a binary relation R such that R is
 - reflexive (PRP)
 - symmetric (PRQ implies QRP)
 - transitive (PRQ and QRR implies PRR)

- Theorem ∼ is an equivalence relation, which allows for equational reasoning

Bisimulation is a Congruence

- We would like that equivalent processes are interchangeable inside larger systems.
- A context C is a process expression with a hole [],

 \[C ::= [] \mid 0 \mid \alpha.C \mid C + P \mid P + C \mid C.P \mid P.C \mid (\alpha)C \]

- An equivalence relation R is a congruence if for all C

 \[P \sim R \sim Q \sim C[P] \sim R \sim C[Q] \]

- Remember the definition of structural congruence last time, as the smallest congruence that fulfills certain rules
- Theorem ∼ is a congruence.

Example

- Let \(P = b.0 \mid \pi.c.0 \), \(Q = a.b.0 \mid c.0 \) and let \(R = a.b.0 \mid \pi.c.0 \) then (from before)

 \[P \sim b.\pi.c.0 + \pi.(b.c.0 + c.b.0) \]
 \[Q \sim a.(b.c.0 + c.b.0) + c.a.b.0 \]
 \[R \sim a.P + \pi.\pi + \pi.\pi(b.c.0 + c.b.0) \]

- Since ∼ is a congruence it then follows that R is bisimilar to

 \[a.(b.\pi.c.0 + \pi.(b.c.0 + c.b.0)) + \pi.(a.(b.c.0 + c.b.0) + c.a.b.0) + \pi.(b.c.0 + c.b.0) \]

- Notice, that parallel composition doesn’t occur on the right hand side.
- Theorem (Expansion) For any \(P \) there exists \(Q \) with no parallel components such that \(P \sim Q \).
 Hence, it cannot differentiate concurrency from interleaving
The Spi Calculus

- We augment the pi-calculus with primitives for cryptography
 - A middle ground between specification and implementation
- We use the Spi Calculus for studying authentication protocols (e.g. the explicit representation of the use of cryptography in protocols)
- We model a possible malicious attacker as an arbitrary environment
 - Hence, we need not model the attacker explicitly
- The scoping of the pi-calculus ensures that the environment cannot access restricted channels
 - Restriction and scope extrusion represents the possession and communication of secrets

The Spi-Calculus — Syntax

- To the syntactic category of terms we add
 \{M\}_N the term \(M \) encrypted with the key \(N \)
 - and to processes
 - case \(L \) of \(\{x\}_N \) in \(P \) shared-key decryption

Assumptions

- The only way to decrypt a an encrypted packet is to know the corresponding key
- An encrypted packet does not reveal the key that was used to encrypt it
- The decryption algorithm can check whether a ciphertext was encrypted with the expected key

The pi-Calculus — Syntax

- The syntax of the pi-calculus with pairs and numbers
 - Terms \(L, M, N \) ::= \(n \) name
 \((M, N) \) pair
 \(0 \) zero
 \(suc(M) \) successor
 \(x \) variable
 - Agent \(P, Q, R \) ::= \(0 \) inactive
 \(P \parallel Q \) parallel
 \(P \downarrow Q \) restriction
 \([M is N]P \) replication
 \(let(x, y) = M \text{ in } P \) match
 \(case \ M \ of \ 0 : P \ suc(x) : Q \) integer case
 - case \(L \) of \(\{x\}_N \) in \(P \) shared-key decryption

Structural equivalence is defined in a different way than expected, but gives rise to the same relation (e.g. that it is an equivalence relation is explicitly stated as rules)

\[
\begin{align*}
!P & > P \|!P \\
[M is M]P & > P \\
let(x, y) = (M, N) \text{ in } P & > P[M/x][N/y] \\
\text{case } 0 \text{ of } 0 : P \ suc(x) : Q & > P \\
\text{case } suc(M) \text{ of } 0 : P \ suc(x) : Q & > Q[M/x] \\
\text{case } \{M\}_N \text{ of } \{x\}_N \text{ in } P & > P[M/x]
\end{align*}
\]

However note

\[
\frac{P > Q}{P \equiv Q}
\]
The Spi-Calculus — Reduction Semantics

Reaction Rules \rightarrow.

\[m(x).Q \mid \overline{m}(N).P \rightarrow Q[N/x] \mid P \]

\[Q = P \rightarrow P' \rightarrow Q' \]

\[P \rightarrow P' \rightarrow Q \rightarrow P' \mid Q \]

\[P \rightarrow P' \rightarrow (\nu x)P \rightarrow (\nu x)P' \]

Examples — Protocol and Specification

Protocol

\[A(M) \triangleq (\nu c_{AB})(c_{AS})(c_{AB}).c_{AB}(M) \]

\[S \triangleq c_{AS}(x).c_{SB}(x) \]

\[B \triangleq c_{SB}(x).x(y).F(y) \]

\[\text{Inst}(M) \triangleq (\nu c_{AS})(\nu c_{SB})(A(M) \mid S \mid B) \]

Specification

\[A(M) \triangleq (\nu c_{AB})(c_{AS})(c_{AB}).c_{AB}(M) \]

\[S \triangleq c_{AS}(x).c_{SB}(x) \]

\[B_{\text{spec}} \triangleq c_{SB}(x).x(y).F(M) \]

\[\text{Inst}_{\text{spec}}(M) \triangleq (\nu c_{AS})(\nu c_{SB})(A(M) \mid S \mid B_{\text{spec}}(M)) \]

Examples — Channel Establishment

Message 1 $A \rightarrow S : c_{AB}$ on c_{AS}

Message 2 $S \rightarrow B : c_{AB}$ on c_{SB}

Message 3 $A \rightarrow B : M$ on c_{AB}

For the next slide

- Assume that F is a function that we can apply
- and that bound parameters of the protocol cannot occur free in F

Examples — Satisfied Properties

Authenticity: $\text{Inst}(M) \simeq \text{Inst}_{\text{spec}}(M)$, for any M

So B always applies F to the message M that A sends, an attacker cannot cause B to apply F to some other message.

Secrecy: $\text{Inst}(M) \simeq \text{Inst}(M')$, if $F(M) \simeq F(M')$, for any M, M'

So the message M cannot be read in transit from A to B. If F does not reveal M then the whole protocol does not

These properties hold because of the scoping rules of the pi-calculus
Now we send the message on public channels (so the system can get stuck) using a shared secret key

Message 1 $A \rightarrow B : \{M\}_{K_{AB}}$ on c_{AB}

Protocol

$$A(M) \triangleq c_{AB}(\{M\}_{K_{AB}})$$

$$B \triangleq c_{AB}(x).case \ x \ of \ \{y\}_{K_{AB}} \ in \ F(y)$$

$$Inst(M) \triangleq (\nu K_{AB})(A(M) \ | \ B)$$

Specification

$$A(M) \triangleq c_{AB}(\{M\}_{K_{AB}})$$

$$B_{spec} \triangleq c_{AB}(x).case \ x \ of \ \{y\}_{K_{AB}} \ in \ F(M)$$

$$Inst_{spec}(M) \triangleq (\nu K_{AB})(A(M) \ | \ B_{spec}(M))$$

Examples — Protocol and Specification

Possible 4-week project

Since the Mobility Workbench is not a user friendly tool a possible 4-week project could be to create a new workbench

- Depending on our experience with programming languages, I could supply the code for parsers and lexers
- You can then program the methods for:
 - finding and performing transitions (or reactions)
 - running and visualising the process
 - ...

For more project proposals see (updated soon)

http://www.itu.dk/research/theory/CoMo/student.html
http://www.itu.dk/research/theory/bpl/projects/projectlist.html

Each principal shares a key with the server

Message 1 $A \rightarrow S : \{K_{AB}\}_{K_{AS}}$ on c_{AS}

Message 2 $S \rightarrow B : \{K_{AB}\}_{K_{SB}}$ on c_{SB}

Message 3 $A \rightarrow B : \{M\}_{K_{AB}}$ on c_{AB}

Note that our equivalence is coarse-grained enough to equate $(\nu K)\tau(\{M\})$ and $(\nu K)\tau(\{M'\})$
Exercises — Bisimulation Equivalences

- Why is trace equivalence appropriate for deterministic systems?
- Give the bisimulation of size 10 reported by MWB on slide 13.
- Show a process that does not contain parallel composition and that is bisimulation equivalent to \((a)\{a.0 + (\pi. b.0 \mid a.b.0)\}\).
- Define a bisimulation containing the two processes above.

Exercises — Pi-calculus Semantics

- Step through agent \(P(b,c,d) = (\pi a)(b < a > .0 \mid a(x). x.0) \mid b(c) . c < d > .0\) in MWB, what is going on?
- Eliminate the substitution in \((\nu b)(\pi b.0 + b(x).\pi y.0)\{b/a, b/x, b/y\}\)
- Prove

\((\nu b)(\pi b.P + (\nu c)\pi c.P')\mid a(b).Q \rightarrow (\nu b')(P\{b'/b\} \mid Q\{b'/b\})\)

using the structural congruence and reaction relation from last lecture.

Exercises — SPI Calculus

- Write out the malicious replay attacker from p. 7 on the article
- (and how it can invalidate the authenticity equation)
- Show that the new protocol (Section 3.2.4) cannot be broken by this attacker

Exercises — Do the mandatory Exercise