1 Representation of relations

In this problem we consider a relation \(R(a,b) \), where \(a \) and \(b \) are integers (of type \texttt{INT}). We let \(B > 1 \) denote the number of integers that fits in a disk block. Suppose that \(R \) consists of \(N \) tuples, \(\{(a_1,b_1),\ldots,(a_N,b_N)\} \), sorted such that \(a_1 < a_2 < a_3 < \cdots < a_N \).

There are two natural ways of representing the relation on disk, ordered according to \(a \):

Horizontal: \(a_1, b_1, a_2, b_2, \ldots, a_N, b_N \) (this is the standard order).

Vertical: \(a_1, a_2, \ldots, a_N, b_1, b_2, \ldots, b_N \).

Some DBMSs (“column stores”) allow the use of vertical order. We assume that there are no updates to the data, and it is thus stored as a sequential file. The size \(N \) of the relation is known.

a) How many I/Os are needed to read the \(K \) smallest values of \(a \), i.e., \(a_1, \ldots, a_K \), in each of the two representations? State your answers in terms of \(K \) and \(B \).

b) How many I/Os are needed to read the \(K \) smallest values of \(b \) in each of the two representations? State your answers in terms of \(N, K \), and \(B \).

c) Assume that there in no index on \(R \). How many I/Os are needed to find the tuple with a particular value of \(a \) in each of the two representations? State the worst case number of I/Os for the best algorithms you can think of.

We now consider a third alternative representation, the *multi-sorted* representation. Assume that \(\sqrt{N} \) is an integer. The idea is to change the horizontal representation by partitioning it into \(\sqrt{N} \) intervals of \(\sqrt{N} \) tuples, and sorting each interval according to the value of \(b \). An example instance with \(N = 9 \) is the following (we mark tuples by parentheses and intervals by square brackets for readability):

\[
[(3, 2), (2, 3), (5, 5)], [(5, 4), (13, 9), (11, 10)], [(23, 1), (19, 6), (17, 14)]
\]
Show that in the multi-sorted representation, it is possible to search for a particular value of \(a \), as well as a particular value of \(b \), in at most \(\sqrt{N \log_2 N} \) I/Os (without any index).

A similar effect can be obtained in DBMSs that allow indexes to be partitioned.

2 Indexing in DB2

Find answers to the following question in the DB2 indexing documentation (link on course home page):

1. What is the standard index type created by `CREATE INDEX`?

2. Does DB2 automatically create an index on any primary key? If not, what is the syntax for creating a primary index?

3. Does DB2 allow partitioned indexes?