Advanced Databases / Database Tuning
F2010

Introduction
Today

• Questionnaire
• Trends
• What you will learn and How
• Some logistics
Questionnaire

https://spreadsheets.google.com/viewform?hl=en&formkey=dGhZaFl6Y2lzaVRwVU1pRTNhZVV1M1E6MA
Today

• Questionnaire
• Trends
• What you will learn and How
• Some logistics
Big Data

How much data is there?

- 2007 ~ 281 EB (exabytes)
 10E18 bytes
- 2023 ~ Avogadro's number
 6x10E23 byte
 ~ 0.1 yottabyte
An Exponential World

Over 10 years:

- 10x better access time
- 10x more bandwidth
- 100x more capacity
- 4000x lower media price
- Scan takes 10x longer
- Data on disk is accessed 25x less often (on average)

Slide courtesy of Jim Gray
DBMS Timeline

File-Based Applications
- Ad-hoc
- Efficient
- Un-manageable

Hierarchical / Network Systems
- Imperative
- Navigational

Relational Systems
- DataIndependance
- Transaction support
- New features
- System R, Oracle, DB2, SqlServer, Postgres, MySQL, ...

Analytics (Map-reduce)

OLTP (main-memory store)

OLAP (Column stores)
Today

- Questionnaire
- Trends
- What you will learn and How
- Some logistics
A **System** is a set of interconnected components that has an expected behaviour observed at the interface with its environment.

Coping with complexity:

- Modularity
- Abstractions
- Layering
- Hierarchy
- Iteration

Three Fundamental Abstractions

- **Storage**: read (name) -> value; write (name, value)
- Interpreter
- Communication
Activity of making a database application run faster:
– Faster means higher throughput (or response time)
– Avoiding transactions that create bottlenecks or avoiding queries that run for hours unnecessarily is a must
Why Database Tuning?

• Troubleshooting:
 – Make managers and users happy given an application and a DBMS

• Capacity Sizing:
 – Buy the right DBMS given application requirements

• Application Programming:
 – Coding your application for performance
What is great about DB2 v9.7

DB2 9.7 Feature Overview

- **Application Freedom**
 - SQL Procedure Language (SQL PL) enhancements
 - Oracle Application Enablement Made Easy
 - Application development enhancements and changes

- **Service Level Confidence**
 - Workload management enhancements
 - High availability and resiliency enhancements
 - Manageability enhancements
 - Performance enhancements
 - Database administration changes
 - Security enhancements and changes

- **XML Insight**

- **Storage TCO Reduction**
 - Enhanced Compression

Slide courtesy of M. Obrecht
How about DB2 9.7 Performance?

Performance Enhancements

- **Statement Concentrator**
 - Promotes sharing of access plans
- **LOB inlining**
 - Save storage space and improve I/O performance
- **Scan sharing**
 - Better workload concurrency and performance without requiring any expensive hardware upgrades
- **Distribution map supports larger data warehouses**
 - In DB2 Cobra, the distribution map has grown from 4096 (4 KB) entries to 32,768 (32 KB) entries in one column.
 - This increase greatly reduces the potential for data skew issues, thus enabling warehouses to grow far larger.

Slide courtesy of M. Obrecht
Simplistic Case

The following query runs too slowly

select *
from R
where R.a > 5;

What do you do?
Database Tuning

Principle # 1: Think Globally, Fix Locally
Intended Learning Outcomes

After the course the student should be able to:

(1) Analyze the performance impact of design choices within a database system (indexing, query optimization, concurrency control and recovery)

(2) Analyze and Compare the characteristics of different data models (relational, sequence, array)

(3) Analyze and Compare the characteristics of distributed and parallel data management architectures (e.g., database management system, column store, cluster/grid data processing)

(4) Design and execute experiments to evaluate a data management system performance
What you will learn

• Scientific Method (4)
 – Cycle of hypothesis, experimentation, analysis.

• Relational Database Internals
 – Architecture, data structures and algorithms.
 – Necessary for tuning purposes

• Tuning Principles for RDBMS (2)

• Beyond Relational DBMS
 – Architectures (3) and Data Models (2)
 – Much relevant for Scientific Data
How you will learn

• Lectures
 – Archi, Data model, Database internals, Tuning principles.

• Exercises
 – Paper. Understanding of lecture material.

• Experiments
 – Understanding of tuning principles.
 – Exercise of scientific method.

• Assignments (test as exercise / experiments)

• Project
 – sanitized tuning case study where you will use experiments to define/justify your tuning choices
Today

• Questionnaire
• Trends
• What you will learn and How
• Some logistics
Grades

• SDVN based on 3 assignments
• SDBT based on Project
 – 3 assignments are mandatory (need to have done to get a grade)
Text Book

- SL Books should have it (slbooks.dk)
Lectures and Exercises

• Lectures start at 9am
 – never again 8:30 from now on

• Class organized in units (mix of lectures and exercises/experiments):
 – Intro, architecture, data models, tuning the guts, index tuning, query tuning, tuning the application interface
 – Course plan on home page

• No units after easter
 – SDVM is done
 – SDBT full focus on project.
Amazon-IBM EC2

• Grant from IBM/Amazon to use IBM software on the cloud infrastructure from Amazon for experiments
 - More on this next time.
 - Docs on the course web page under Experiments.

• You need to create an account on Amazon WS http://aws.amazon.com/
 - You secure with a credit card
 - You get a $100 credit voucher from Philippe so that you don't pay for the use that corresponds to this class.