DBMS Performance Monitoring
Performance Monitoring Goals

- Monitoring should check that the performance-influencing database parameters are correctly set and if they are not, it should point to where the problems are.
- Alternatively, you can sit tight and wait for the inevitable angry users’ complaints.

Monitoring (preventive method)

OR

Correct problems when detected (reactive method)
How does one monitor a DBMS?

• By extracting relevant performance indicators, (counters, gauges and details of internal DBMS’s activities)
• By comparing the obtained values of these indicators against ideal values
• But… there are many indicators!
A Consumer-Producer Chain of a DBMS’s Resources

High Level Consumers

Intermediate Resources/Consumers

Primary Resources

probing spots for indicators

sql

commands

PARSER OPTIMIZER

EXECUTION SUBSYSTEM

DISK SYBSYSTEM

CACHE MANAGER

LOGGING SUBSYSTEM

MEMORY

CPU

DISK/CONTROLLER

NETWORK
Recurrent Patterns of Problems

Effects are not always felt first where the cause is!

- An overloading high-level consumer
- A poorly parameterized subsystem
- An overloaded primary resource
A Systematic Approach to Monitoring

Extract indicators to answer the following questions

- **Question 1:** Are critical queries being served in the most efficient manner?
- **Question 2:** Are subsystems making optimal use of resources?
- **Question 3:** Are there enough primary resources available?
Investigating High Level Consumers

• Answer question 1:
 “Are critical queries being served in the most efficient manner?”

1. Identify the critical queries
2. Analyze their access plans
3. Profile their execution
Identifying Critical Queries

Critical queries are usually those that:

• Take a long time
• Are frequently executed

Often, a user complaint will tip us off.
Event Monitors to Identify Critical Queries

- If no user complains...
- Capture usage measurements at end of each query and then sort by usage x time.
- Less overhead than other type of tools because indicators are usually by-product of operations monitored and are accessed in a convenient time.
- Typical measures include CPU used, IO used, locks obtained etc.
An example Event Monitor

- CPU indicators sorted by Oracle’s Trace Data Viewer
- Similar tools: DB2’s Event Monitor and MSSQL’s Server Profiler
Diagnose Expensive Queries: analyzing access plans

- SQL commands are translated into an internal executable format before they are processed.
- After parsing, the optimizer enumerates and estimates the cost of a number of possible ways to execute that query.
- The best choice, according to the existing statistics, is chosen.
Access Plan Explainers to Analyze Plans

- Explainers usually depict an access plan as a (graphical) single-rooted tree in which sources at the leaf end are tables or indexes, and internal nodes are operators.

- These form an assembly line (actually tree) of tuples!

- Most explainers will let you see the estimated costs for CPU consumption, I/O, and cardinality of each operator. If you see something strange, change an index.
An example Plan Explainer

• Access plan according to MSSQL’s Query Analyzer
• Similar tools: DB2’s Visual Explain and Oracle’s SQL Analyze Tool
Finding Strangeness in Access Plans

What to pay attention to on a plan

- Access paths for each table
- Sorts or intermediary results
- Order of operations
- Algorithms used in the operators

Index Tuning
Query Tuning
Profiling a Query’s Execution

• A query was found critical but its plan looks okay. What’s going on? Put it to run. (We just did in the previous example.)

• Profiling it would determine the quantity of the resources used by a query and assessing how efficient this use was

• Resources
 – DBMS subsystems: cache, disk, lock, log
 – OS raw resources: CPU
Performance Monitors to Profiling Queries

• Access or compute performance indicators’ values at any time

• Many, many flavors
 – Generic (all indicators) or Specific (indicators of a given subsystem or a given query)
 – Snapshot, Continuous, or Alarm modes
 – Textual or Graphical
An example
Performance Monitor (query level)

- Details of buffer and CPU consumption on a query’s report according to DB2’s Benchmark tool
- Similar tools: MSSQL’s SET STATISTICS switch and Oracle’s SQL Analyze Tool

Statement number: 1
select C_NAME, N_NAME
from DBA.CUSTOMER join DBA.NATION on C_NATIONKEY = N_NATIONKEY
where C_ACCTBAL > 0

Number of rows retrieved is: 136308
Number of rows sent to output is: 0
Elapsed Time is: 76.349 seconds

... Buffer pool data logical reads = 272618
Buffer pool data physical reads = 131425
Buffer pool data writes = 0
Buffer pool index logical reads = 273173
Buffer pool index physical reads = 552
Buffer pool index writes = 0
Total buffer pool read time (ms) = 71352
Total buffer pool write time (ms) = 0
...

Summary of Results
==================
Elapsed Agent CPU Rows Rows
Statement # Time (s) Time (s) Fetched Printed
1 76.349 6.670 136308 0
An example
Performance Monitor (system level)

• An IO indicator’s consumption evolution (qualitative and quantitative) according to DB2’s System Monitor

• Similar tools: Window’s Performance Monitor and Oracle’s Performance Manager
Investigating High Level Consumers: Summary

Find critical queries

Investigate lower levels

Found any?

Answer Q1 over them

Overconsumption?

Tune problematic queries
Investigating Primary Resources

• Answer question 3:
 “Are there enough primary resources available for a DBMS to consume?”

• Primary resources are: CPU, disk/controllers, memory, and network

• Analyze specific OS-level indicators to discover bottlenecks.

• A system-level Performance Monitor is the right tool here.
CPU Consumption Indicators at the OS Level

Sustained utilization over 70% should trigger the alert. System utilization shouldn’t be more than 40%. DBMS (in a non-dedicated machine) should be getting a decent time share.

© Dennis Shasha, Alberto Lerner, Philippe Bonnet 2004
Disk Performance Indicators at the OS Level

- **Wait queue**
 - **Average Queue Size**
 - **New requests** → **Wait queue**
 - Should be close to zero
 - Wait times should also be close to zero

- **Disk Transfers /second**
 - Idle disk with pending requests?
 - Check controller contention.
 - Also, transfers should be balanced among disks/controllers

© Dennis Shasha, Alberto Lerner, Philippe Bonnet 2004
Memory Consumption Indicators at the OS Level

Page faults/time should be close to zero. If paging happens, at least not DB cache pages.

% of pagefile in use (it’s used a fixed file/partition) will tell you how much memory is “lacking”.

© Dennis Shasha, Alberto Lerner, Philippe Bonnet 2004
Investigating Intermediate Resources/Consumers

• Answer question 2:
 “Are subsystems making optimal use of resources?”

• Main subsystems: Cache Manager, Disk subsystem, Lock subsystem, and Log/Recovery subsystem

• Similarly to Q3, extract and analyze relevant Pis

• A Performance Monitor is usually useful, but sometimes specific tools apply
Cache Manager Performance Indicators

<table>
<thead>
<tr>
<th>Table scan</th>
<th>If page is not in the cache, readpage (logical) generate an actual IO (physical). Ratio of readpages that did not generate physical IO should be 90% or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>readpage()</td>
<td></td>
</tr>
<tr>
<td>Table scan</td>
<td></td>
</tr>
<tr>
<td>Page reads/writes</td>
<td>Pages are regularly saved to disk to make free space. # of free slots should always be > 0</td>
</tr>
</tbody>
</table>

Cache Manager

- **Pick victim strategy**
- **Data Pages**
- **Free Page slots**
- **If page is not in the cache, readpage (logical) generate an actual IO (physical). Ratio of readpages that did not generate physical IO should be 90% or more**
- **Pages are regularly saved to disk to make free space. # of free slots should always be > 0**
Disk Manager Performance Indicators

Row displacement: should kept under 5% of rows

Free space fragmentation: pages with few space should not be in the free list

Data fragmentation: ideally files that store DB objects (table, index) should be in one or few (<5) contiguous extents

File position: should balance workload evenly among all disks
Lock Manager Performance Indicators

Deadlocks and timeouts should be virtually inexistent or extremely low (no more than 1% of the transactions).

Lock wait time for a transaction should be a small fraction of the whole transaction time. Number of locks on wait should be a small fraction of the number of locks on the lock list.
Investigating Intermediate and Primary Resources: Summary

- Answer Q3
- Problems at OS level?
 - yes: Tune low-level resources
 - no: Proceed to Answer Q2

Answer Q2
- Problems at subsystems?
 - yes: Tune subsystems
 - no: Investigate upper level

Tune subsystems

© Dennis Shasha, Alberto Lerner, Philippe Bonnet 2004
Conclusion

• Monitoring a DBMS’s performance can be done in a systematic way
 – The consumption chain helps distinguishing problems’ causes from their symptoms
 – Existing tools help extracting relevant performance indicators
 – The three questions guide the whole monitoring process