Advanced Database Technology
Anna Östlin Pagh and Rasmus Pagh
IT University of Copenhagen
Spring 2004

Geometric index structures

April 15, 2004

Based on GUW Chapter 14.0-14.3,
[Arge01] Sections 1, 2.1 (persistent B-trees), 3-4 (static versions only), 4.1, 9.
Today's lecture

- Practical issues
- Multidimensional data
- Commonly used (heuristic) geometric index structures
- Persistent B-trees
- Stabbing query problem
- Planar point location
- The logarithmic method
Practical issues

• Hand-ins
• Course evaluation (9 out of 22)
 – Exercise sessions
 – Trial exam
 – The book
 – Scientific articles
 – Language
• Extra exercise hour(s) in May/June
• 4-week projects/thesis projects
Multidimensional data

Geometric data is one, two, or three dimensional, but also all relational data can be seen as multidimensional data.

- A relation with k attributes can be seen as a k-dimensional space.
- A tuple can be seen as a point in the k-dimensional space. The coordinates for the point are the values for the attributes.
2-d range query

Given the relation:

```
Student(Name, age, enrolled_year)
```

Find all students aged 30 to 40 who started to study before 2004.

```
SELECT Name
FROM Student
WHERE age<=30 AND age>=40 and enrolled_year<2004;
```
Geometric index structures

Hash-like indexes
• Grid files (*)
• Partitioned hash functions

Tree-based indexes
• Multiple-key indexes (*)
• kd-trees (*)
• Quad trees
• R-trees (*)

These indexes are heuristic, i.e., they are not (proved to be) worst case efficient.
Queries on geometric data

• **Partial match queries**: look up all points matching one or more attributes.

• **Range queries**: look up all points within a range for one or more attributes.

• **Nearest-neighbor**: find the point nearest to a query point.

• **Where-am-I**: given data in the form of geometric objects, find the objects that intersect the query point.
Grid files

• Simple idea:
 – Split each dimension into intervals.
 – Put each point into a bucket corresponding to the intervals it lies in (Ex: GUW p. 677).

• Overflow handling as in hash tables.

• Supports partial match queries, range queries, and nearest neighbor queries (how?)

• Bad case: All data along “diagonal” - need many grid lines (in internal memory) to avoid large buckets.

• Empty buckets? No problem, just hash!
Multiple-key index

• Index for several attributes A, B, C,...:
 – Group index attributes as a tuple (A,B,C,...)
 – Order among tuples is **lexicographic**.
 – Make B-tree index according to this order.
 – (Note: Different exposition in GUW).

• Efficiently supports partial match queries on a **prefix** of the attributes (corresponds to a range query).

• Bad case: Partial match query on non-prefix, e.g., search for single value of last attribute.
kd-trees

- Short for “k-dimensional search tree”.
- Change from ordinary search trees:
 - Each node is associated with a dimension.
 - An internal node partitions the points of its subtree along its dimension.
 - Dimensions rotate down the tree: 1, 2, ..., k, 1, 2, ..., (Ex: GUW p. 691)
- Supports partial match queries, range queries and nearest neighbor queries.
- Bad case: Many points with same value in some dimension makes it impossible to split points well along this dimension.
R-trees

• In a B-tree each interior node:
 – Corresponds to a 1-dimensional range.
 – “Knows” the ranges of its children.
• In an **R-tree** each interior node:
 – Corresponds to a k-dimensional rectangle.
 – “Knows” the rectangles of its children.
• Supports partial match queries, range queries and nearest neighbor queries,…
• Flexible: All kinds of geometric objects (not just points) fit into rectangles.
• Unspecified (and hard): Maintaining “good” rectangles.
Persistent data structure

- A persistent data structure supports queries on previous versions of the data structure.
- A query specifies a time, e.g., “Was element x in the data structure at time t”?
- Updates are only supported at current time, not in an earlier version.
- Possible solution: Copy the data structure when it is updated. (Inefficient!)
- Similar to the concept of temporal databases.
Persistent B-trees

- One data structure representing **all versions** of the B-tree.
- Elements have an **existence interval**: it exists from the time of insertion until time of deletion (or until now if it is still in the current version).
- Nodes in the B-tree also have an **existence interval**.
- Nodes and elements are **alive** in their existence intervals.
- **Invariant**: A node contains \(\Theta(B) \) alive children in its existence interval.
- **Note**: Nodes alive at time \(t \) make up a B-tree for elements alive at time \(t \).
Searching and updates in persistent B-trees

- **Searching for x at time t** can be done as usually in time $O(\log_B N)$ in the tree consisting of nodes alive at time t.

- **Insertion of x** is similar to normal insertion in a B-tree. If x should be inserted in leaf l, and l is full, then we have to maintain the new invariant. (Blackboard)

- **Deletion**: The element is not deleted, but the time interval is updated. This may cause a violation of the invariant. (Read yourself)
Time and space for persistent B-trees

- **Construction**: Insert elements one by one: N insertions take $O(N \log_B N)$ I/Os.
- In fact, construction can be done in $O(N/B \log_{M/B}(N/B))$ I/Os (not curriculum).
- **Space**: $O(N/B)$ blocks.
- **Note**: N is the total number of elements, both alive and deleted elements.
Problem session

Why are we talking about persistent B-trees in a lecture on geometric data?

• How can we use a persistent B-tree to represent 2-d (geometric) data?
• Given a set of points in 2-d, how can we perform a 3-sided, 2-d range query using the persistent B-tree?
Stabbing query problem

- Data structure for a set of intervals (1-d).
- Query: Report all intervals containing point q.
- Static version.
- Use *the logarithmic method* to get a dynamic data structure supporting insertions of intervals.
Stabbing query problem (cont.)

• Use a persistent B-tree with intervals as elements and interval endpoints as times.

• *Sweep* the intervals from left to right.

• Insert an interval when the sweep line reaches it left endpoint.

• Delete an interval when the sweep line reaches the right endpoint.

• **Construction time:** \(O(N/B \log_{M/B}(N/B))\)

• **Query:** Report all elements alive at time \(q\). \(O(\log_B N + T/B)\). (\(T=\)output size)
Planar point location

- Given a planar subdivision with N vertices.
- We want a data structure supporting:
 - **Query**: “Which region contains point $q=(x,y)$?”
- Assume: Enough to find one segment of the region (the one straight above q).
Planar point location (cont.)

- Idea: Use a persistent B-tree.
- Segments are elements.
- A segment exists in the time interval from left x-coordinate to right x-coordinate.
- Search at time x ($q=(x,y)$). How do we find the right segment?
Problem session

• Segments can not be ordered (in a given direction) in general. Why not?
• We need an order of the segments to search in the B-tree. Which segments do we need to compare?
• How can it be done?
Planar point location (cont.)

• Search for “segment” $q=(x,y)$, in the persistent B-tree at time x.
• A point can be compared to a segment.

• Search time: $O(\log_B N)$ I/Os.
• Construction time: $O(N \log_B N)$ I/Os.
• Space: linear ($O(N/B)$ blocks).
The logarithmic method

- A general method to make many static data structures dynamic.

- Internal memory version:
 - Partition the N elements into \(\log N \) sets of size \(2^0, 2^1, 2^2, \ldots \).
 - Build a static data structure for each set, denoted \(D_0, D_1, D_2, \ldots \).
 - Every query has to query each of the sets.
 - Insertion: Find first empty \(D_i \). Build the structure \(D_i \) with all elements in the \(D_j \)'s for \(j<i \) and the new element.
 - Note: \(2^0 + 2^1 + \ldots + 2^{i-1} = 2^i - 1 \)
 - Amortized cost: \(x \) is in at most \(\log_2 N \) d.s.
The logarithmic method - external memory

• $\log_B N$ subsets
• D_i has size at most B^i

• **Query**: Query all structures.
• **Insertion**: Insert in smallest D_i where $|D_1| + |D_2| + ... + |D_i| < B^i$. The new data structure for D_i contains all elements in D_j, $j \leq i$, and the new element.
• **Deletion**: Mark elements deleted.
The logarithmic method - external memory (cont.)

Analysis:

• Assume a static structure with construction cost $T(N)$ and query cost $Q(N)$.

• **Query time:** $O(\sum \log_B^N Q(|D_i|))$. If $Q(N) = O(\log_B N)$ then the query time is $O(\log_B^2 N)$.

• **Amortized cost of insertion:**
 - Note 1: D_i may be smaller than B^i, and it is rebuilt more than once. Hence an element may be in D_i during several rebuilds.
 - Note 2: At least B^{i-1} new elements in D_i each rebuild.
 - Note 3: An element never moves "down".
 - Assume $T(N) = O(N/B \log_B N)$ then insertion costs $O(\log_B^2 N)$ I/Os, amortized. (Blackboard.)