INDEXING II

Lecture based on [GUW, 13.3-13.4] and [Pagh03, 3.0-3.2+4]

Slides based on
Notes 04: Indexing
Notes 05: Hashing and more
for Stanford CS 245, fall 2002
by Hector Garcia-Molina
Today

- Recap of indexes
- B-trees
- Analysis of B-trees
- B-tree variants and extensions
- Hash indexes
Why indexing?

- Support more efficiently queries like:
 SELECT * FROM R WHERE a=11
 SELECT * FROM R WHERE 0<= b and b<42
- Indexing an attribute (or set of attributes) speeds up finding tuples with specific values.
Indexes in last lecture

- Dense indexes (primary or secondary)
- Sparse indexes (always primary)
- Multi-level indexes

Updates (inserting or deleting a key) caused problems
B-trees

- Can be seen as a general form of multi-level indexes.
- Generalize usual (binary) search trees. *(Do you remember?)*
- Allow efficient insertions and deletions at the expense of using slightly more space.
- Popular variant: B⁺-tree
B+-tree Example

Each node stored in one disk block
Sample internal node

- to keys: < 57
- to keys: $57 \leq k < 81$
- to keys: $81 \leq k < 95$
- to keys: ≥ 95
Sample leaf node:

From internal node

- To record with key 57
- To record with key 81
- To record with key 85

Alternative: Records in leaves
Searching a B⁺-tree

Above: Search path for tuple with key 101.

Question: How does one search for a range of keys?
In textbook’s notation

Leaf:

Internal node:
B$^+$-tree invariants on nodes

- Suppose a node (stored in a block) has space for n keys and $n+1$ pointers.
- Don't want block to be too empty: Should have at least $\lceil(n+1)/2 \rceil$ non-null pointers.
- **Exception**: The root, which may have only 2 non-null pointers.
Other B^+-tree invariants

(1) All leaves at same lowest level (perfectly balanced tree)

(2) Pointers in leaves point to records except for sequence pointer
Insertion into B$^+$-tree

(a) simple case
 - space available in leaf
(b) leaf overflow
(c) non-leaf overflow
(d) new root
(a) Insert key = 32

\[n=3 \]
(b) Insert key = 7

n=3

Insert key = 7

3, 5

3, 7

11

30, 31

100
(c) Insert key = 160

\[n=3 \]
(d) New root, insert 45

```
<table>
<thead>
<tr>
<th>n=3</th>
</tr>
</thead>
</table>
```

```
new root
```

```
1  
2  
3  

10  
12  
20  
25  

30  
32  
40  
45  

40  
45  
40  
40  
45  
```
Deletion from B^+-tree

(a) Simple case - no example
(b) Coalesce with neighbour (sibling)
(c) Re-distribute keys
(d) Cases (b) or (c) at non-leaf
(b) Coalesce with sibling
- Delete 50

n=4
(c) Redistribute keys
- Delete 50
(d) Non-leaf coalesce
- Delete 37
Alternative B+-tree deletion

- In practice, coalescing is often **not** implemented (hard, and often not worth it)
- An alternative is to use tombstones.
- Periodic **global rebuilding** may be used to remove tombstones when they start taking too much space.
Problem session: Analysis of B$^+$-trees

- What is the height of a B$^+$-tree with N leaves and room for n pointers in a node?
- What is the worst case I/O cost of
 - Searching?
 - Inserting and deleting?
B⁺-tree summary

- Height $\leq 1 + \log_{n/2} N$, typically 3 or 4.
- Best search time we could hope for! (To be shown in exercises.)
- If keeping top node(s) in memory, the number of I/Os can be reduced.
- Updates: Same cost as search, except for rebalancing.
More on rebalancing

- The book claims (on page 645): "It will be a rare event that calls for splitting or merging of blocks".
- This is true (in particular at the top levels), but a little hard to see.
- Easier seen for weight-balanced B-trees.
Weight-balanced B-trees
(based on [Pagh03], where n corresponds to B/2)

- Remove the \mathbf{B}^+-tree invariant:
 There must be $\lfloor (n+1)/2 \rfloor$ non-null pointers in a node.

- Add new weight invariant:
 A node at height i must have weight (number of leaves in the subtree below)
 that is between $(n/4)^i$ and $4(n/4)^i$.
 (Again, the root is an exception.)
Weight-balanced B-trees

Consequences of the weight invariant:

- Tree height is $\leq 1 + \log_{n/4} N$ (almost same)
- A node at height i with weight, e.g., $2^{(n/4)^i}$ will not be need rebalancing until there have been at least $(n/4)^i$ updates in its subtree. *(Why?)*
Rebalancing weight

More than $4(n/4)^i$ leaves in subtree \Rightarrow weight balance invariant violated
Rebalancing weight

Node is split into two nodes of weight around $2(n/4)^i$, i.e., far from violating the invariant (details in [Pagh03])
Weight-balanced B-trees

Summary of properties

- Deletions similar to insertions (or: use tombstones and global rebuilding).
- Search in time $O(\log_n N)$.
- A node at height i is rebalanced (costing $O(1)$ I/Os) once for every $\Omega((n/4)^i)$ updates in its subtree.
Problem session

- In internal memory, sorting can be done in $O(n \log n)$ time by inserting the keys into a balanced search tree.
- What is the time complexity of this strategy using B-trees?
- How does it compare with the optimal sorting algorithm we saw earlier?
Other kinds of B-trees

- **String B-trees**: Fast searches even if keys span many blocks. *(April 3 lecture.)*

- **Persistent B-trees**: Make searches in any previous version of the tree, e.g. “find x at time t”. The time for a search is $O(\log_B N)$, where N is the **total** number of keys inserted in the tree.
You may recall that in internal memory, **hashing** can be used to quickly locate a specific key.

The same technique can be used on external memory.

However, advantage over search trees is smaller than internally.
Hashing in a nutshell

key \rightarrow h(key)

Hash function

Typical implementation of buckets: Linked lists
Hashing as primary index

key \rightarrow h(key)

Note on terminology:
The word "indexing" is often used synonymously with "B-tree indexing".
Hashing as secondary index

Today we discuss hashing as primary index. Can always be transformed to a secondary index using indirection, as above.
Choosing a hash function

Book's suggestions (p. 650):

- Key = $x_1 \ x_2 \ldots x_n$, n byte character string:
 \[h(\text{Key}) = (x_1 + x_2 + \ldots x_n) \mod b \]
- Key is an integer: \[h(\text{Key}) = \text{Key} \mod b \]

SHORT PROBLEM SESSION
Find examples of key sets that make these functions behave badly
Choosing a randomized function

Another approach (not mentioned in book):

- Choose h at random from some set of functions.
- This can make the hashing scheme behave well regardless of the key set.
- E.g., "universal hashing" makes chained hashing perform well (in theory and practice).
- Details out of scope for this course...
Insertions and overflows

INSERT:

\begin{align*}
 h(a) &= 1 \\
 h(b) &= 2 \\
 h(c) &= 1 \\
 h(d) &= 0 \\
 h(e) &= 1
\end{align*}
Deletions

Delete:

- e
- f
- c
Analysis - external chained hashing (assuming truly random hash functions)

- N keys inserted, each block (bucket) in the hash table can hold B keys.
- Suppose the hash table has size $N/\alpha B$, i.e., "is a fraction α full".
- Expected number of overflow blocks: $(1-\alpha)^{-2} \cdot 2^{-\Omega(B)} N$ (proof omitted!)
- Good to have many keys in each bucket (an advantage of secondary indexes).
Sometimes life is easy...

- If B is sufficiently large compared to N, all overflow blocks can be kept in internal memory.
- Lookup in 1 I/O.
- Update in 2 I/Os.
Coping with growth

- Overflows and global rebuilding
- Dynamic hashing
 - Extendible hashing
 - Linear hashing
 - Uniform rehashing
Extendible hashing

Two ideas:

(a) Use i of b bits output by hash function

$$h(K) \rightarrow 00110101$$

$h(K)[i]$ (i changes over time)

(b) Look up pointer to record in a directory.
Extendible hashing example

$h(K)$ is 4 bits, 2 keys/bucket. In examples we assume $h(K) = K$.

Insert 1010
Example continued

Insert:

0111
0000

directory

i = 2

00
01
10
11

2
0000
0001

1 2
0001
0111

2
1001
1010

2
1100
Example continued

Let $i = \underline{2}$.

Insert: 1001

- Directory:
 - 0000: 2
 - 0001: 2
 - 0111: 2
 - 1001: 3
 - 1010: 3
 - 1100: 2

$I = 3$
Extendible hashing deletion

Straightforward:
Merge blocks, and halve directory if possible (reverse insert procedure).
Analysis - extendible hashing
(assuming truly random hash functions)

- \(N \) keys inserted, each block (bucket) in the hash table can hold \(B \) keys.
- Blocks are about 69% full on average (proof omitted!)
- Expected size of directory is around \(\frac{4N^{1+1/B}}{B} \) blocks (proof omitted!)
- Again: Good to have large \(B \).
Problem session

Compare extendible hashing to a sparse index:

- When is one more efficient than the other?
- Consider various combinations of N, B and M (internal memory).
Linear hashing
- another dynamic hashing scheme

Two ideas:
(a) Use \(i \) (low order) bits of \(h(K) \)

(b) Hash table grows one bucket at a time
Linear hashing example

\(b=4 \) bits, \(i=2 \), 2 keys/bucket

- If \(h(K)[i] \leq m \): Look at bucket \(h(k)[i] \)
- Otherwise: Look at bucket \(h(k)[i] - 2^{i-1} \)

\[\begin{array}{c|c|c|c}
0000 & 0101 & 1111 & \\
00 & 01 & 10 & 11 \\
\end{array} \]

\(m = 01 \) (max used block)

• Insert 0101
• Can have overflow chains!
Linear hashing example, cont.
b=4 bits, i=2, 2 keys/bucket

\[m = 01 \text{ (max used block)} \]

Future growth buckets

- insert 0101
Linear hashing example, cont.
b=4 bits, i=2, 2 keys/bucket

\[i = 2 \]

\[m = 11 \text{ (max used block)} \]
When to expand the hash table?

- Keep track of the fraction $\alpha = (N/B)/m$
- If too close to 1 (e.g. $\alpha > 0.8$), increase m.
Performance of linear hashing

- Avoids using an index, lookup often 1 I/O.
- No good **worst-case** bound on lookups.
- Similar to chained hashing, except for the way hash values are computed.
- **Unfortunately**: Keys not placed uniformly in the table, so worse performance than in regular chained hashing.
Uniform rehashing
-yet another dynamic hashing scheme

Basic idea:
- Suppose \(h(K) \in [0;1) \) -NB! A real number
- Look for key in bucket \(\lfloor (m+1) \cdot h(K) \rfloor \)
- Increase/decrease \(m \) by a factor \(1+ \varepsilon \), where \(\varepsilon > 0 \) can be any constant - can be done by scanning the hash table.

See [Pagh03] for details on how to avoid real numbers.
B-tree vs hash indexes

- Hashing good to search given key, e.g.,
 SELECT * FROM R WHERE A = 5

- Indexing (using B-trees) good for range searches, e.g.:
 SELECT * FROM R WHERE A > 5

- More applications to come...
Hashing and range searching

- **Claim in book (p. 652):** "Hash tables do not support range queries"
 - True, but they can be used to answer range queries in \(O(1+Z/B)\) I/Os, where \(Z\) is the number of results. (Alstrup, Brodal, Rauhe, 2001; Brodal, Mortensen, Pagh 2004)
- Theoretical result, out of scope for ADBT.
Summary I

- **Indexing** is a "key" database technology.
- **Conventional indexes** sufficient if updates are few.
- **B-trees** (and variants) are more flexible
 - The choice of most DBMSs.
 - Theoretically “optimal”: $O(\log_B N)$ I/Os per operation.
 - Support range queries.
Summary II

- **External hash tables** support lookup of keys and updates in $O(1)$ I/Os, expected.
- The actual constant (typically 1, 2, or 3) is a major concern (compare to B-trees).
- **Growth management:** Extendible hashing, linear hashing, uniform rehashing.