 QUERY

 COMPILATION II

 Lecture based on [GUW, 16.4-16.7]

 Slides based on
 Notes 06-07: Query execution Part I-II
 for Stanford CS 245, fall 2002
 by Hector Garcia-Molina
Overview: Physical query planning

- We assume that we have an **algebraic expression** (tree), and consider:
 - Simple estimates of the **size** of relations given by subexpressions.
 - **Statistics** that improve estimates.
 - Choosing an **order** for operations, using various optimization techniques.
 - Completing the **physical query plan**.
Estimating sizes of relations

The **sizes** of intermediate results are important for the choices made when planning query execution.

- Time for operations grow (at least) linearly with size of (largest) argument.
- The total size can even be used as a crude estimate on the running time.
Statistics for computing estimates

The book suggests several statistics on relations that may be used to (heuristically) estimate the size of intermediate results.

- **T(R):** # tuples in R
- **S(R):** # bytes in each R tuple
- **B(R):** # blocks to hold all R tuples
- **V(R, A):** # distinct values in R for attribute A
Size estimates for $W = R_1 \times R_2$

$T(W) = T(R_1) \times T(R_2)$

$S(W) = S(R_1) + S(R_2)$

Question: How good are these estimates?
Size estimate for $W = \sigma_{A=a}(R)$

$S(W) = S(R)$

$T(W) = ?$
Some possible assumptions

- Values in select expression $A = a$ (or at least one of them) are **uniformly distributed** over the possible $V(R,A)$ values.
- As above, but with uniform distribution over domain with $\text{DOM}(R,A)$ values.
- **Zipfian** distribution of values.
Selection cardinality

$\text{SC}(R, A) = \text{expected } \# \text{ records that satisfy equality condition on } R.A$

$\text{SC}(R, A) = \left\{ \begin{array}{c}
\frac{T(R)}{V(R, A)} \\
\frac{T(R)}{\text{DOM}(R, A)}
\end{array} \right\}
\begin{aligned}
\cdot \text{ under first assumption} \\
\cdot \text{ under 2nd assumption}
\end{aligned}$
Size estimate for $W = \sigma_{A \geq a}(R)$

$T(W) = ?$

- Suggestion # 1: $T(W) = T(R)/2$.
- Suggestion # 2: $T(W) = T(R)/3$.
- Suggestion # 3 (not in book): Be consistent with equality estimate.
Example:
Consistency with 2nd equality estimate.

<table>
<thead>
<tr>
<th>R</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min=1</td>
</tr>
<tr>
<td></td>
<td>Max=20</td>
</tr>
</tbody>
</table>

\[W = \sigma_{A \geq 15} (R) \]

\[f = \frac{20-14}{20} \] (fraction of range)

\[T(W) = f \times T(R) \]
Problem session

Consider the natural join operation $R_1 \bowtie R_2$ on two relations R_1 and R_2 with join attribute A.
- If values for A are uniformly distributed on $\text{DOM}(R_1,A)=\text{DOM}(R_2,A)$ values, what is the expected size of $R_1 \bowtie R_2$?
- What can you say if values for A are instead uniform on respectively $V(R_1,A)$ and $V(R_2,A)$ values?
- What if A is primary key for R_1 and/or R_2?
Crude estimate

Values uniformly distributed over domain

This tuple matches $T(R2)/\text{DOM}(R2,A)$ so

$$T(W) = \frac{T(R2) \cdot T(R1)}{\text{DOM}(R2, A)} = \frac{T(R2) \cdot T(R1)}{\text{DOM}(R1, A)}$$

Assume the same
General crude estimate

Let $W = R_1 \triangleright \triangleleft R_2 \triangleright \triangleleft R_3 \triangleright \triangleleft \ldots \triangleright \triangleleft R_k$

$$T(W) = \frac{T(R_1) T(R_2) \ldots T(R_k)}{\text{DOM}(R_1,A)^{k-1}}$$

Symmetric wrt. the relations. A rare property...
"Better" size estimate for $W = R_1 \gg |\gg | R_2$

Assumption: Containment of value sets

$V(R_1,A) \leq V(R_2,A) \Rightarrow$ Every A value in R1 is in R2

$V(R_2,A) \leq V(R_1,A) \Rightarrow$ Every A value in R2 is in R1
Computing $T(W)$ when $V(R1,A) \leq V(R2,A)$

<table>
<thead>
<tr>
<th>R1</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Take 1 tuple

<table>
<thead>
<tr>
<th>R2</th>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 tuple matches with $\frac{T(R2)}{V(R2,A)}$ tuples...

so $T(W) = \frac{T(R2) \times T(R1)}{V(R2, A)}$
Multiple join attributes

The previous estimates are easily extended to several join attributes A_1, \ldots, A_j:

- New assumption: Values are independent.
- Under assumption 1, the joint values in attributes are uniformly distributed on $V(R,A_1)$ $V(R,A_2)$... $V(R,A_j)$ values.
- Under assumption 2, they are uniform on $\text{DOM}(R,A_1)$ $\text{DOM}(R,A_2)$... $\text{DOM}(R,A_j)$ values.
Other estimates use similar ideas

\[\Pi_{AB}(R). \] Sec. 16.4.2

\[\sigma_{A=a \land B=b}(R). \] Sec. 16.4.3

Union, intersection, duplicate elimination, difference. Sec. 16.4.7
Improved estimates through histograms

- **Idea**: Maintain more info than just $V(R,A)$.
- **Histogram**: Number of values in each of a number of intervals.

![Histogram Bar Chart]

- < 11
- 11-17
- 18-22
- 23-30
- 31-41
- > 42
Problem session

Consider how histograms could be used when estimating the size of:

- A selection.
- A natural join.

You may assume that both relations have histograms using the same intervals.
Maintaining statistics

- There is a cost to maintaining statistics.
- Book recommends recomputing "once in a while" (don't change rapidly).
- Recomputation may be operator-controlled.

Question: How does one compute the statistics \((V(R,A), \text{histogram})\) of a relation?
Choosing a physical plan

Option 1: "Branch and bound".

- Generate
- Prune
- Estimate Cost (using size est.)

Pick Min

Estimate Cost

Prune

Generate

Query

Plans
Choosing a physical plan

Option 2: "Dynamic programming".

- Find best plans for subexpressions in bottom-up order.

- Might find several best plans:
 - The best plan that produces a sorted relation wrt. a later join or grouping attribute.
 - The best plan in general.
Choosing a physical plan

Options 3, 4, ...:
Other (heuristic) techniques from optimization.
- Greedy plan selection.
- Hill climbing.
- ...
Order for grouped operations

- Recall that we **grouped** commutative and associative operators, e.g.
 \[R_1 \bowtie R_2 \bowtie R_3 \bowtie \ldots \bowtie R_k. \]

- For such expressions we must choose an evaluation order (a parenthesized expression), e.g.
 \[(R_1 \bowtie R_4) \bowtie (R_3 \bowtie \ldots) \ldots (\ldots \bowtie R_k). \]
Order for grouped operations

- Book recommends considering just **left balanced** expressions
 \[\ldots (((R4 |><| R2) |><| R7) |><| \ldots) |><| Rk.\]
- This gives **k!** possible expressions.
- Considering all possible expressions gives around **2^k k!** possibilities - not so many more.
Choosing final algorithms

- Usually best to use existing indexes.
- Sometimes building indexes or sorting on the fly is advantageous.
- Sorting based algorithms may beat hashing based algorithms if one of the relations is already sorted.
- Just do the calculation and see!
Pipelining and materialization

- Some algorithms (e.g. σ implemented as a scan) require little internal memory.

- **Idea:** Don't write result to disk, but feed it to the next algorithm immediately.

- Such **pipelining** may make many algorithms run "at the same time".

- Sometimes even possible with algorithms using more memory, such as sorting.
Influencing the query plan

- One of the great thing about DBMSs is that the user does not need to know about query compilation/optimization.
- ...unless things turn out to run too slowly - then manual tuning may be needed.
- Tuning can use statistics and query plans to suggest the creation of certain indexes, for example.
Summary

- **Size estimation** (using statistics) is an important part of query optimization.
- Given size estimates and a relational algebra expression, **query optimization** essentially consists of computing the (estimated) cost of all possible query plans.
- Other issues are **pipelining** and memory usage during execution.