In this week’s hand-in we consider clustering indexes and non-clustered indexes. In a clustering index we assume that all tuples with the same clustering-values are stored in at most $O(c)$ blocks, where c is the minimum possible number of blocks to store them in. In a non-clustered index only pointers to tuples are stored in the index structure (e.g., in the leaves of the B-tree).

1. We want to do a select operation $\sigma_{a_i=374}(R)$, where a_i is an attribute of R. Denote by $t = |\sigma_{a_i=374}(R)|$, the number of tuples in the result.

Consider four types of indexes for R on a_i:

(a) Hash index, which is a clustering index.
(b) Hash index, not clustered.
(c) B-tree index, which is a clustering index.
(d) B-tree index, not clustered.

Denote by u the number of tuples of R that hash to the same bucket as 374, and by n the degree of the B-tree.

What is the worst case I/O-complexity (as a function of $|R|$, t, u, and n) of select using each of the four types of indexes?

2. We want to do join, $R(X,Y) \bowtie S(Y,Z)$, where Y is a primary key. There is a hash index on Y for R (clustering index). The number of buckets is much larger than the number of blocks in main memory and one block suffices to store each bucket. There is a B-tree index on Y for S (also a clustering index).

Consider three algorithms for join:

(a) Scan S: for each tuple $s \in S$ look up the join-value for s in the index of R.
(b) Sort R and merge the two relations (as in the sorting based algorithms) using the sorted order in the B-tree index of S.
(c) Scan R: for each tuple $r \in R$ look up the join-value for r in the index of S.

For which sizes of R, S, and the main memory M is (a), (b), or (c) the most efficient (I/O-complexity)? (Assume that R and S are both too large to fit in main memory.)

Other exercises for discussion on March 20

1. GUW 15.3.4 on page 737.
2. GUW 15.5.4 on page 756.
3. GUW 15.7.2 on page 770.