Advanced Database Technology

March 6, 2003

INDEXING II

Lecture based on [GUW, 13.4] and [Pagh03, sec. 4]

Slides based on
Notes 05: Hashing and more
for Stanford CS 245, fall 2002
by Hector Garcia–Molina
Hashing in a nutshell

key $\rightarrow h(\text{key})$

Hash function

Hash table

Buckets
Hashing as primary index

key → h(key)

Note on terminology:
The word "indexing" is often used synonymously with "B–tree indexing".
Today we discuss hashing as primary index. Can always be transformed to a secondary index using indirection, as above.
Choosing a hash function

Book’s suggestions (p. 650):

• Key = ‘x₁ x₂ … xₙ’, n byte character string:
 \[h(\text{Key}) = (x_1 + x_2 + \ldots + x_n) \mod b \]

• Key is an integer:
 \[h(\text{Key}) = \text{Key} \mod b \]

PROBLEM SESSION
Find examples of key sets that make these functions behave badly
Another approach (not mentioned in book):

• Choose h at random from some set of functions.

• This can make the hashing scheme behave well regardless of the key set.

• E.g., "universal hashing" makes chained hashing perform well (in theory and practice).

• Details out of scope for this course...
Insertions and overflows

INSERT:

h(a) = 1
h(b) = 2
h(c) = 1
h(d) = 0
h(e) = 1

overflow block
Deletions

Delete:

e
f
c

d

0 1 2 3
Analysis – external chained hashing
(assuming truly random hash functions)

• N keys inserted, each block (bucket) in the hash table can hold B keys.

• Suppose the hash table has size $N/\alpha B$, i.e., "is a fraction α full".

• Expected number of overflow blocks:
 $$(1-\alpha)^{-2} \cdot 2^{-\Omega(B)} N$$ (proof omitted!)

• Good to have many keys in each bucket (an advantage of secondary indexes).
Sometimes life is easy...

- If B is sufficiently large compared to N, all overflow blocks can be kept in internal memory.
- Lookup in 1 I/O.
- Update in 2 I/Os.
Coping with growth

- Overflows and global rebuilding
- Dynamic hashing
 - Extendible hashing
 - Linear hashing
 - Uniform rehashing
Extendible hashing

Two ideas:
(a) Use i of b bits output by hash function

$$h(K) \rightarrow \underbrace{00110101}_{b}$$

$h(K)[i]$ \hspace{1em} (i changes over time)

(b) Look up pointer to record in a directory.
Extendible hashing example

$h(K)$ is 4 bits, 2 keys/bucket. In examples we assume $h(K) = K$.

Insert 1010

New directory
Example continued

Insert:

0111
0000

directory

i = 2
Example continued

Insert: 1001

Directory
Extendible hashing deletion

Straightforward:
Merge blocks, and halve directory if possible (reverse insert procedure).
Analysis – extendible hashing
(assuming truly random hash functions)

• \(N\) keys inserted, each block (bucket) in the hash table can hold \(B\) keys.
• Blocks are about 69% full on average (proof omitted!)
• Expected size of directory is around \(\frac{4N^{1+1/B}}{B}\) (proof omitted!)
• Again: Good to have large \(B\).
Problem session

Compare extendible hashing to a sparse index:

• When is one more efficient than the other?
• Consider various combinations of N, B and M (internal memory).
Linear hashing
– another dynamic hashing scheme

Two ideas:
(a) Use i (low order) bits of $h(K)$

(b) Hash table grows one bucket at a time
Linear hashing example

$b=4$ bits, $i=2$, 2 keys/bucket

- insert 0101
- can have overflow chains!

If $h(K)[i] \leq m$: Look at bucket $h(k)[i]

Otherwise: Look at bucket $h(k)[i] - 2^{i-1}$
Linear hashing example, cont.

$b=4$ bits, $i=2$, 2 keys/bucket

$m = 01$ (max used block)

• Insert 0101

Future growth buckets
Linear hashing example, cont.
b=4 bits, i = 2, 2 keys/bucket

\[i = 2 \]

\[m = 11 \text{ (max used block)} \]
When to expand the hash table?

• Keep track of the fraction $\alpha = (N/B)/m$
• If too close to 1 (e.g. $\alpha > 0.8$), increase m.
Performance of linear hashing

• Avoids using an index, lookup often 1 I/O.
• No good **worst-case** bound on lookups.
• Similar to chained hashing, except for the way hash values are computed.
• **Unfortunately**: Keys not placed uniformly in the table, so worse performance than in regular chained hashing.
Uniform rehashing
–yet another dynamic hashing scheme

Basic idea:
• Suppose $h(K) \in [0;1)$ – NB! A real number
• Look for key in bucket $\lfloor h(K) \cdot (m+1) \rfloor$
• Increase/decrease m by a factor $1+\varepsilon$, where $\varepsilon>0$ can be any constant – can be done by scanning the hash table.

See [Pagh03] for details on how to avoid real numbers.
B–tree vs hash indexes

- Hashing good to search given key, e.g.,
 `SELECT * FROM R WHERE A = 5`
- Indexing (using B–trees) good for range searches, e.g.,
 `SELECT * FROM R WHERE A > 5`
- More applications to come...
Claim in book (p. 652): "Hash tables do not support range queries"

– True, but they can be used to answer range queries in $O(1 + Z/B)$ I/Os, where Z is the number of results. (Alstrup & Rauhe, 2001)

– Theoretical result, out of scope for ADBT.
Summary

• External hash tables support lookup of keys and updates in O(1) I/Os, expected.
• The actual constant (typically 1, 2, or 3) is a major concern (compare to B–trees).
• Growth management: Extendible hashing, linear hashing, uniform rehashing.