Exercises on “Data-Flow Analysis” (UFPE, Recife, Brazil)

1) Undecidability:
Prove that the following problem is undecidable (using the “reduction principle”):
- what are the possible outputs of a program ‘P’?

Let’s assume output is done via a special statement (the syntax of which is):

```
STM ::= output EXP, ";"
```

In addition to carrying out the reduction, you need to explain your reasoning. (Hint: it’s quite similar to the examples you saw on slides #18+#20 at the lecture.) :-)

2) Control-Flow Diagrams:
Give a control-flow template (as the ones on slides #35+#36) for the "&&"-construction (aka., “lazy conjunction”):

```
EXP ::= EXP1 "&&" EXP2
```

You need to strictly adhere to the conventions (of drawing)...:
- **statements** as rectangles (with flow in and out);
- **expressions** (of type non-boolean) as rectangles (with flow in and out);
- **expressions** (of type boolean) as diamonds (with single flow in and with boolean flow out as two distinct paths, one for “true” and one for “false”); and
- **confluence** drawn explicitly as circles (collecting multiple flows of control).

3) Control-Flow Graphs:
Draw a control-flow graph for the following (silly) program fragment:

```
int N = 5;
int x=input();
int y=input();
for (int i=1; i<N; i++) {
    if (y!=0 && x/y>2) x = x+1;
    else {
        y = y-1;
        while (x>10) x = x/2;
    }
}
output x;
```

(Note: the program isn’t supposed to do anything remotely interesting.)
4) Relations and Partial-Orders:
Consider the subset-of relation over the set $S = \mathcal{P}\{x+1, 2*y, z/3\}$ of expressions in a program (written “$X \subseteq Y$” if X is a subset of Y, in short-hand notation). We’d need such a structure in an analysis that tracks “expressions” (e.g., “very busy expressions”-analysis that tracks which expressions have already been computed and haven’t changed since). Give:
- its signature;
- the relation (specify its members);
- an example of a member of the relation (both w/ and w/o using short-hand); and
- an example of a non-member of the relation (w/ and w/o using short-hand).

Does the set S and relation form a partial-order? (why or why not?)

Draw a Hasse diagram.

5) Greatest-Lower-Bound:
Define the greatest-lower-bound (binary operator) on sets ‘\sqcap’ which is analogous to the “least-upper-bound” (binary operator): ‘\sqcup’ (cf. slide #16 from the 2nd lecture).

Note: it must be: i) an lower bound and ii) the (i.e., unique) greatest lower bound.

Given a lattice $L = (S, \subseteq)$; what do the elements ‘$\sqcap S$’ and ‘$\sqcup S$’ correspond to?

6) Lattices:

```
Draw the lattice:
```

We define the size of a lattice $|L|$ as how many elements it has.

In general; how many points will a lattice $L_1 \times L_2$ have (assuming L_1 has $|L_1| = n_1$ elements and L_2 has $|L_2| = n_2$ elements)?

7) Monotone Functions and Fixed-Points:
For each of the 3 recursive equations (over the power-lattice: $\mathcal{P}\{a,b,c\}$):

i) $X = \{a,b\}$ $Y = X \cup Y$

ii) $X = \{a,b\} \cup Y$ $Y = X \setminus \{b\}$

iii) $X = \{a,b\} \cup Z$ $Y = \{a,c\} \setminus X$ $Z = X^C$

Rewrite the equations to bring them onto form: “$x = f(x, y)$” and “$y = g(x, y)$”.

Determine whether or not the functions (i.e., ‘f’ and ‘g’) involved are monotone.

Then, solve the equations that only use monotone functions (i.e., find the [unique] least fixed point using the fixed-point theorem).