SASP/AMP F2008 Hand-in #8:

Static Analysis (esp. Data-Flow Analysis)

Deadline: Wednesday April 9 at 13:00 (hand it in at the lecture or by email before). (I recommend completing it before Monday’s lecture, as we will build on much of this knowledge.)

1) Undecidability:

Prove that the following problem is **undecidable** (using the “reduction principle”):

- what are the possible outputs of a program ‘P’?

Let’s assume output is done via a special statement (the syntax of which is):

\[
\text{STM} ::= \text{output EXP; "\;"}
\]

In addition to carrying out the reduction, you need to explain your reasoning. (Hint: it’s quite similar to the examples you saw in the lecture #17+19, on slides #.) :-)

2) Control-Flow Diagrams:

Give a control-flow diagram (as the ones on slides #31+32) for the “&&”-construction (aka., “lazy conjunction”):

\[
\text{EXP} ::= \text{EXP_1 "&&" EXP_2}
\]

You need to **strictly** adhere to the conventions (of drawing)...:

- **statements** as rectangles (with flow in and out);
- **expressions** as diamonds (with single flow in and with boolean flow out as two distinct paths, one for “true” and one for “false”); and
- **confluence** drawn explicitly as circles (collecting multiple flows of control).

3) Control-Flow Graphs:

Draw a control-flow graph for the following (silly) program fragment:

```c
int N = 5;
int x=input();
int y=input();
for (int i=1; i<N; i++) {
    if (y!=0 && x/y>2) x = x+1;
    else {
        y = y-1;
        while (x>10) x = x/2;
    }
}
output x;
```

(Note: the program isn’t supposed to do anything remotely interesting.)
4) Relations and Partial-Orders:
Consider the subset-of relation over the set \(S = \mathcal{P}(\{ x+1, 2*y, z/3 \}) \) of expressions in a program (written “\(X \subseteq Y \)” if \(X \) is a subset of \(Y \), in short-hand notation). We'd need such a structure in an analysis that tracks “expressions” (e.g., “very busy expressions”-analysis that tracks which expressions have already been computed and haven’t changed since).

Give:
- its signature;
- the relation (specify its members);
- an example of a member of the relation (both w/ and w/o using short-hand); and
- an example of a non-member of the relation (w/ and w/o using short-hand).

Does the set \(S \) and relation form a partial-order? (why or why not?)

Draw a Hasse diagram.

5) Greatest-Lower-Bound:
Define the greatest-lower-bound (binary operator) on sets ‘\([___]\)’ which is analogous to the “least-upper-bound” (binary operator): ‘\(\prod\)’ (cf. slide #16 from the 2nd lecture).

Note: it must be: i) an lower bound and ii) the (i.e., unique) greatest lower bound.

Given a lattice \(L = (S, \subseteq) \); what do the elements ‘\([___]S\)’ and ‘\(\prod S\)’ correspond to?

6) Lattices:

We define the size of a lattice \(|L|\) as how many elements it has.
In general; how many points will a lattice \(L_1 \times L_2 \) have (assuming \(L_1 \) has \(|L_1| = n_1\) elements and \(L_2 \) has \(|L_2| = n_2\) elements)?

7) Monotone Functions and Fixed-Points:
For each of the 3 recursive equations (over the power-lattice: \(P(\{a,b,c\}) \)):

i) \(X = \{a,b\} \)
\(Y = X \cup Y \)

ii) \(X = \{a,b\} \cup Y \)
\(Y = X \setminus \{b\} \)

iii) \(X = \{a,b\} \cup Z \)
\(Y = \{a,c\} \setminus X \)
\(Z = X^c \)

Rewrite the equations to bring them onto form: “\(x = f(x, y) \)” and “\(y = g(x, y) \)”.
Determine whether or not the functions (i.e., ‘\(f \)’ and ‘\(g \)’) involved are monotone.

Then, solve the equations that only use monotone functions (i.e., find the [unique] least fixed point using the fixed-point theorem).