
Exercise 2

In this problem you will think about how contracts and subclassing interact. In order not to
make things too complicated, we will work with a very simple mathematical operation, namely
computing the remainder of a number v to base b. You might remember from high school that
we can write any v as b ∗ i + r, where 0 ≤ r < b. For example, when we consider base 2, we can
write 5 = 2 ∗ 2 + 1. If we think base 10, then 42 = 10 ∗ 4 + 2, and similarly, at base 16, we can
write 50 = 16 ∗ 3 + 2. If we know what b, v, and i are it is particularly easy to compute r, in
the following way

r = v − b ∗ i.

Consider the following class that we give you. Pre and post conditions are spelled out as a
comment to the class Remainder.

class Remainder {
/* Contract:

PRE : b > 0, b * i <= v < b * (i+1)
POST: 0<=return<b */

int rest (int b, int i, int v) {
return (v - b * i);

}
};

Now, consider the five subclasses A, B, C, D, and E in turn. For each class decide, if it the
subclass is valid, which means, if it also honors the contract. If you find that a subclass is valid,
argue why. Not more than a few logical steps are necessary in those cases. If you find that
a subclass is not valid, explain why. Those explanations are best given by a counter example,
such that you show for what numbers b, i, or v a pre condition or post condition is violated.

A. class A extends Remainder {
int rest (int b, int i, int v) {

return (super.rest (b, i, v) / 4);
}

}

B. class B extends Remainder {
int rest (int b, int i, int v) {

return (super.rest (b, i+1, v));
}

}

C. class C extends Remainder {
int rest (int b, int i, int v) {

return (super.rest (b / 2, i, v));
}

}

D. class D extends Remainder {
int rest (int b, int i, int v) {

return (2 * super.rest (b, i, v));

1

}
}

E. class E extends Remainder {
int rest (int b, int i, int v) {

if (super.rest(b,i,v) <= 1) {
return 0;

}
else {

return 1;
}

}
}

2

