
A Meta Linear Logical Framework

Andrew McCreight and Carsten Schürmann

Yale University
New Haven, CT, USA

{aem|carsten}@cs.yale.edu

Abstract. Over the years, logical framework research has produced var-
ious type theories designed primarily for the representation of deductive
systems. Reasoning about these representations requires expressive spe-
cial purpose meta logics, that are in general not part of the logical frame-
work. In this work, we describe L+

ω , a meta logic for the linear logical
framework LLF [CP96] and illustrate its use via a proof of the admis-
sibility of cut in the sequent calculus for the tensor fragment of linear
logic.

1 Introduction

Logical frameworks are meta languages designed for representing various formal
systems prevalent in programming language semantics, logics, and protocol de-
sign. By definition, logical frameworks are logic independent. This means they
are concerned primarily with the way systems are represented, and not neces-
sarily with how to reason about their properties. In this spirit, advanced logical
frameworks may incorporate linear types to model resource aware formal sys-
tems, such as programming languages with effects, ordered types for systems
that access resources in a particular order, and even monadic types to capture
concurrency.

The absence of meta logics that facilitate reasoning about encodings in a log-
ical framework is a severe impediment to the deployment and acceptance of the
technology among researchers and scientists as well as developers and industry.
Consequently, the prevalent use of logical framework technology is as a represen-
tation language for one particular logic that is then used to describe and reason
about the object systems in question. Higher-order logic is a popular candidate
used in Isabelle/HOL [Pau94] and Twelf/HOL [App01] which have been instru-
mental in the formal study of programming languages, such as Java [NvO98],
hardware verification [Har97], and protocol verification [Pau97], and many oth-
ers. Higher-order logic is well-understood, clean, expressive, and when enriched
with induction principles a good choice for many applications. However, it limits
the ways in which the respective systems are encoded, and therefore cannot take
advantage of the advanced representation technology provided by modern logical
frameworks.

This means that a different and possibly better scalable approach to model-
ing object systems lies in the direct use of a logical framework without taking a

detour through other logics. In this setting properties and proofs are expressed in
special purpose meta logics, tailored to a particular underlying logical framework,
designed solely for the purpose of reasoning and not modeling. A logical frame-
work together with a meta logic defines a meta logical framework.M+

ω [Sch00],
for example, is a meta logic designed for the logical framework LF [HHP93].

In this work, we describe a special purpose meta logic for the linear logi-
cal framework LLF [CP96], resulting in a meta linear logical framework. LLF’s
distinguishing feature over LF is a set of linear operators capable of handling
depletable resources. LLF has been successfully employed in representing and ex-
perimenting with a variety of security and authentication protocols [CDL+99].
Although the theory behind LLF is well-understood, this is to our knowledge
the first research towards a sound meta logic for LLF that is also amenable to
automated proof search.

The soundness of the meta linear logical framework is based on a realizabil-
ity argument. We develop a meta logic together with a system of proof terms
that compute effectively with LLF objects and argue that each proof term corre-
sponds to a total function. Though the two necessary syntactic criteria to ensure
termination and coverage are not described in this paper, we stipulate that they
exist.

The quest for meta logics for various logical frameworks is not new. The
FOλ∆IN system [MM97], for example, relies on a sequent calculus for first-order
logic extended by definition and natural number induction and supports the
encoding of frameworks based on hereditary Harrop formulas, and even linear
logic [McD97]. In FOλ∆IN , however, induction is limited to natural numbers,
whereas L+

ω supports induction over canonical derivations in LLF (that are in-
ductively defined). In this respect it differs also from a meta-logical framework
based on rewriting logic [BCM00] because it lacks initial models. This work
extends the methodology that led to M+

ω [Sch00] to the linear case.
The paper is organized in the following way: in Section 2 we review the linear

logical framework LLF and illustrate its representational expressiveness in terms
of a sequent calculus for the tensor fragment of linear logic. Next, in Section 3,
we explain informally what it means to reason about derivations. We use as an
example the proof of the theorem that cuts are admissible. In Section 4, we
present a formal meta-logic L+

ω that serves as the formalization of theorems as
well as meta-theoretic proofs. L+

ω ’s soundness is shown in Section 5 before we
conclude in Section 6 and assess results.

2 The Linear Logical Framework LLF

A logical framework [Pfe99] is a meta language suitable for representing deduc-
tive systems that are commonplace in programming language, logic, and type
theory research, and are used to describe operational semantics, type systems,
proof theories, and program transformers.

The logical framework LF [HHP93], for example, provides dependent types,
a conceptually weak function space, and canonical forms, which render it an el-

2

ax
A =⇒ A

Γ1 =⇒ C,∆1 Γ2, C =⇒ ∆2
cut

Γ1, Γ2 =⇒ ∆1,∆2

Γ,A,B =⇒ ∆
⊗L

Γ,A⊗B =⇒ ∆

Γ1 =⇒ A,∆1 Γ2 =⇒ B,∆2
⊗R

Γ1, Γ2 =⇒ A⊗B,∆1,∆2

Fig. 1. Tensor fragment of linear logic

egant tool for adequate encodings of judgments as types, derivations as objects,
and hypothetical judgments as functions. For example, the well-known deriv-
ability judgment for classical logic of the form A1, . . . , An =⇒ B1, . . . , Bn can
be represented in LF as a function of the form

neg A1 . . .→ neg An → pos B1 . . .→ pos Bm → #.

neg and pos are families of types, representing assumptions to the left and right
of the ` symbol, respectively, while # is a type that stands for the empty se-
quent. Encoding lists of assumptions this way instead of making them explicit
as lists has several advantages, namely that lookup and substitution are directly
supported by LF through variables names and β-reduction, which renders the
formal description of inference brief, concise, and readable.

One limitation of LF is that it confines encodings to the intuitionistic prop-
erties of the LF function space. In classical logic, no assumption can be re-
tracted within a derivation. But this is exactly what one might want for other
applications, such as programming with state [CP96], or the analysis of security
protocols [CDL+99].

The linear logical framework LLF [CP96] therefore extends the logical frame-
work LF [HHP93] by resource handling constructs from linear logic [Gir87] with
βη as definitional equality [Coq91]. It distinguishes binding constructs for in-
tuitionistic assumptions from those of linear ones. The linear function space is
denoted with A−◦B. There is no dependent linear function space. As an exam-
ple, consider the representation of the tensor fragment of classical linear logic
depicted in Figure 1. The rules cut and ⊗R illustrate how resources on either side
of the sequent symbol are distributed as resources to either of the two premisses.
A derivation can only then be closed by ax if the left and the right context con-
tain a single formula A. A sequence A1, . . . , An =⇒ B1, . . . , Bn in linear logic is
therefore represented as an object of type

neg A1−◦ . . . −◦ neg An−◦ pos B1−◦ . . . −◦ pos Bm−◦#,

where each of the inference rules is represented as a constant in LLF as shown in
Figure 2. As usual, we omit the leading Π-quantifiers for inferable types. LLF’s
meta theory guarantees the existence of β-normal, η-long canonical forms [VC02]
used in order to establish the adequacy of this encoding.

3

ax : neg A−◦pos A−◦#. cut : (pos C −◦#)−◦ (neg C −◦#)
−◦#.

tensorR : (pos A−◦#)−◦ (pos B−◦#) tensorL : (neg A−◦neg B−◦#)
−◦ (pos (A⊗B)−◦#). −◦ (neg (A⊗B)−◦#).

Fig. 2. Encoding of Figure 1 in LLF

3 Meta Linear Logical Reasoning

All of linear logic, including the exponential quantifiers, enjoy the cut-elimination
property. This is relatively easy to prove by hand, aside from the multitude of
cases to be considered, but it is difficult to carry out such an argument in a
formal setting. If we still want to take advantage of the elegant encoding, what
kind of formal setting shall we use? What kind of induction principles are valid,
which are preferable, and how do they interact with linearity? What kind of
logic is most appropriate: first-order, higher-order, temporal, modal?

In the absence of a good answer, these questions have prompted us to de-
velop the meta logic L+

ω for the linear logical framework LLF. L+
ω extends the

meta-logic M+
ω for LF developed by the second author [Sch00] into the LLF

setting. L+
ω is first-order, intuitionistic, and not linear. Aside from >, it does not

define any logical constant symbols. It does however inherit proofs by induction
over arbitrary higher-order types without the restrictive positivity condition, in-
cluding those that take advantage of both linear and intuitionistic assumptions.
Furthermore, it supports quantification over LLF contexts.

To illustrate the logic, we consider the proof that cuts are admissible in the
tensor fragment of linear logic depicted in Figure 1.

Theorem 1 (Admissibility of cut). If P :: Γ1 =⇒ C,∆1 and Q :: Γ2, C =⇒
∆2 then Γ1, Γ2 =⇒ ∆1, ∆2.

Proof. By lexicographic structural induction on the subformula A and simulta-
neously on P and Q [Pfe94]. We show only the essential case between ⊗R and
⊗L. The remaining cases can be found in Appendix A.

P :: Γ ′1, Γ
′′
1 =⇒ A⊗B,∆′1, ∆′′1 (by assumption)

P1 :: Γ ′1 =⇒ A,∆′1 (by assumption)
P2 :: Γ ′′1 =⇒ B,∆′′1 (by assumption)
Q :: Γ2, A⊗B =⇒ ∆2 (by assumption)
Q1 :: Γ2, A,B =⇒ ∆2 (by assumption)
R1 :: Γ ′1, Γ2, B =⇒ ∆′1, ∆2 (by ind. hyp. on P1,Q1)
R :: Γ ′1, Γ

′′
1 , Γ2 =⇒ ∆′1, ∆

′′
1 , ∆2 (by ind. hyp. on P2,R1)

Formulas, Contexts, and Worlds. The guiding design principle of our system is
to focus meta-theoretic reasoning around canonical form derivations and well-
formedness derivations of contexts, and not simply terms and contexts. In LF

4

and LLF alike, every term has a canonical form that can be inductively defined.
Our first-order quantifiers range therefore over canonical forms M : (γ . A) and
context variables γ ∈ (γ′ .Φ). For the sake of naming, γ must be valid in γ′ and
of type Φ. Here’s the formalization of Theorem 1:

∀γ1 ∈ (· . Φ).∀γ2 ∈ (γ1 . Φ).∀C : (· . o).
∀P : (γ1 . pos C → #).∀Q : (γ2 . neg C → #).
∃R : (γ1, γ2 .#).>

(1)

where

Φ = ((λA : o.∃n : neg A. ε) + (λA : o.∃p : pos A. ε))∗. (2)

The first two quantifiers in (1) range over contexts γ1 (valid in the empty context
·) and γ2 (valid in γ1). γ1 represents simultaneously the list of hypotheses Γ1 and
∆1, while γ2 represents Γ2 and ∆2. Φ is the type (or world) of these contexts,
which ensures that γ1 and γ2 only contain assumptions of the form “pos A” and
“neg A”. Worlds are regular expressions that force a regular structure on contexts
and organize them in blocks as exhibited by (2). “+” denotes alternative, “∗”
repetition, and each block starting with ∃ is parameterized by formula A : o.
The ε marks the end of the block. For example,

p1 : pos A1, p2 : pos A2, n3 : neg A3 ∈ Φ.

Worlds have been extensively studied in prior work by the second author [Sch01].
In (1), C ranges over closed formulas, P over sequent derivations in γ1 with
formula C on the left, and Q over sequent derivations in γ2 with formula C on
the right. R stands for the result derivation, necessarily valid in the union of γ1

and γ2.

Proofs. Proofs in L+
ω are derivations in a sequent style system. However, to

best understand the intricacies of the logical system, we present proofs as func-
tions that act as realizers, comparable to a Curry-Howard isomorphism style
argument. In our example, Formula (1) is interpreted as a function type and
its proof as a total function that maps contexts ∆1, ∆2, and LLF derivations
·; · ` C : o, ·;∆1 ` P : pos C → #, and ·;∆2 ` Q : neg C → # into a derivation
·;∆1, ∆2 ` R : #.

This particular realizer is best presented by cases, closely following the out-
line of the proof of Theorem 1. Again we only discuss the essential case depicted
in Figure 3. The other cases are given in the Appendix B. As for syntactic sugar,
we stay as closely as possible to that of a functional programming language,
omitting details that do not enhance the reader’s understanding. Figure 3 illus-
trates the novel and distinct features of L+

ω including pattern-matching against
linear patterns, hypothetical reasoning, and context splitting . The remainder of
this section is structured according to the two most important features “ca” has
to satisfy to qualify as a proof: coverage and termination.

5

fun ca (γ′1, γ
′′
1) γ2 (A⊗B)

(λ̂p :pos (A⊗B). tensorRˆ(γ′1 . P1)ˆ(γ′′1 . P2)ˆp)

(λ̂n :neg (A⊗B).

tensorLˆ(γ2 . (λ̂n1 :neg A. λ̂n2 :neg B.Q1ˆn1ˆn2))ˆn) =
new
α :: (γ′1, γ2 . ∃n : neg B. ε)

in
let

val 〈R1, 〈〉〉 = caγ′1 (γ2, α : ∃n : neg B. ε) A
P1

(λ̂n1 :neg A.Q1ˆn1ˆπt(α)])
val 〈R, 〈〉〉 = caγ′′1 (γ′1, γ2) B

P2

(λ̂n :neg B.R1[n/πt(α)])
in
〈R, 〈〉〉

end
end

Fig. 3. Admissibility of cut, essential case

Coverage. Contrary to common practice, quantifiers and functions range over
canonical form derivations of terms, which has several advantages. First, context
and type information are directly accessible, second, canonical forms are induc-
tively defined and can therefore be interpreted as patterns, and third, they form
equivalence classes among all β-normal η-long equivalent LLF terms.

Consequently, contexts are resources that can be passed around, matched
against, split, and combined. We write γ for variables that range over contexts.
The first two arguments to “ca” are the context patterns (γ′1, γ

′′
1) and γ2. How

the context is split into γ′1 and γ′′1 is determined by how the two contexts are
being used. This is fixed by ascribing context information to the two variables P1

and P2 bound in the fourth argument to “ca”: (λ̂p :pos (A⊗B). tensorRˆ(γ′1 .
P1)ˆ(γ′′1 .P2)ˆp). Context and type ascription are features of the syntax we have
chosen to present proofs in L+

ω , with counterparts in the formal development of
L+
ω in Section 4.

The challenge is to verify that “ca” covers all cases. Canonical forms are
patterns and in the interest of completeness, two additional cases (that are de-
scribed in Appendix B) related to “tensorR” must be considered, depending on
if p is consumed in P1 or P2.

Termination. “ca” must be total in order to be considered a proof. Therefore
any evaluation of “ca”, independent of what arguments applied, must terminate.
Consider the body of “ca” in Figure 3. The two recursive calls to “ca” correspond
to appeals of the induction hypothesis in the proof of Theorem 1, yielding result
objects R1 and R, respectively.

6

The first instruction is the new instruction that introduces a new hypotheses
of type neg B. Recall from the proof of Theorem 1, that R1 is a result of the
induction hypothesis applied to P1 and Q1, which is parametric in B. Since
hypothetical arguments are encoded via higher-order functions, “ca” can only
execute a recursive call after traversing the binder (λ̂n2 :neg B). In general one
can only do this by applying it to a new parameter n2 : neg B, in form of the
(so called module) declaration

α :: (γ′1, γ2 . ∃n : neg B. ε). (3)

α is a new variable, that ranges over blocks of new parameters, and is similar
to x in [Sch01]. Intuitively, one can think of a block as a temporary list of new
constant symbols that act as placeholders within the body of new. The γ′1, γ2

resolve all ambiguities related to the naming of α. We write πt to project the
head of the list, and πm for the tail. πt(α), for example, is a new name for the
newly introduced parameter, and should be used instead of n2.

The first recursive call cuts P1 and Q1 with cut-formula A. Eventually, the
computation will finish and the resulting derivation R1 will use all resources of
the set γ′1, γ2, α : ∃n : neg B. ε, which corresponds directly to the informal proof.
Recall that γ′1 represents assumption lists Γ ′1 and ∆′1, γ2 the assumption lists
Γ2 and ∆2, and α to the additional hypothesis B that occurs to the left of the
sequence arrow.

The other recursive call for cutting P2 and R1 is similar to the first except
that this time the cut formula is B. R1 is parametric in πt(α), which is subse-
quently replaced by a linear variable n before the second recursive call is invoked.
Replacements of this kind are supported in L+

ω , expressed by substituting n for
πt(α). The resulting R is valid in γ′1, γ

′′
1 , γ2, and does therefore not depend on

α. Hence, it can safely escape the scope of new.
“ca” terminates because the arguments that correspond to derivations P

and Q are smaller with respect to a well-founded lexicographical order on the
cut formula and simultaneously on P and Q. In this work, we consider only
lexicographic and simultaneous extensions of the subterm ordering. In particular
the first recursive call terminates because A and B are subterms of A⊗B.

4 The Meta Logic L+
ω

We begin now with the formal description of our proposed meta logic L+
ω . The

guiding design principle that we have chosen to follow prescribes a rigorous dis-
tinction between two levels. The linear logical framework LLF forms one level and
includes an advanced type system with a linear function type constructor, addi-
tive pairs, and top. LLF serves purely as a representation language for objects
that we plan to reason about in L+

ω , such as, for example, the sequent calculus
for the tensor fragment of linear logic, as presented in Section 2. The meta logic
L+
ω defines the other level. It provides the syntactic and proof-theoretic means

to express properties about encodings in LLF and their respective proofs if they
should exist.

7

(Kinds) K ::= type | Πu : A. K
(Types) A,B ::= a | A M | Πu : A. B | A−◦ B | A & B | >
(Objects) M,N ::= n[ρ] | c | b | λu : A. M | M N | λ̂u : A. M | M ∧N

| 〈M,N〉 | π1M | π2M | 〈〉

(Parameters) b ::= u | πtm

(Signatures) Σ ::= · | Σ, a : K | Σ, c : A
(Contexts) Γ,∆ ::= · | Γ, γ ∈ Φ | Γ, b : A
(Context Subst.) ρ ::= · | ρ, γ/γ | ρ,M/b

Fig. 4. LLF (variant) syntax

Following the general philosophy underlying this and other meta logical
frameworks [Sch00,BCM00] the clear distinction between a language of represen-
tation and a language of proofs is essential. Both levels are layered hierarchically
which means that the meta logic can access encodings in LLF, construct, decon-
struct, compute canonical forms, and appeal to the structural properties that
are part of LLF. LLF on the other side does not have any access to theorems
and proofs, a restriction which eventually permits us to prove the soundness of
L+
ω .

4.1 Syntactic Categories

The linear logical framework LLF. Our version of LLF that poses as foundation
of L+

ω deviates slightly from the standard formulation of LLF [CP96]. Nothing
has changed with respect to layering LLF into objects, types, and kinds. In fact,
the level of types, and kinds are completely untouched, the only changes are on
the object level.

The parametric nature of canonical derivations as seen from L+
ω requires us

to distinguish between local variables that are introduced via abstraction inside
a term and variables that stand for an object whose existence is guaranteed by
some meta-logical property. For example, an L+

ω theorem may assert the exis-
tence of derivations P or Q in (1) that ought to be accessible from within LLF,
just as p that is locally bound. Variables of this kind are quite common, represent
in fact canonical form derivations, and are denoted with n. To fit n into LLF, it
must occur in form of closure under substitution ρ. ρ serves as explicit substitu-
tion that is applied to an instantiation of n only during run time. Our extension
of LLF with meta-variables occurring under separate contexts with explicit sub-
stitutions is similar to a system developed for a different purpose [PP03] (from
which we borrow the syntax for the meta-variable binders). Other parameters,
such as projections πt(α) from module variables α (see (3)), are also visible to
LLF, and are in fact treated no differently than u.

Recall from the function from Figure 3, that LLF derivations are also para-
metric in terms of context variables γ that can occur within the intuitionistic

8

(Mod. Kinds) k ::= sig | Πu : A. k
(Mod. Sigs) s ::= ε | ∃u : A. s | λu : A.s
(Modules) m ::= α | πmm

(Worlds) Φ ::= s | Φ∗ | Φ1 + Φ2

(Environments) χ ::= · | χ, γ ∈ Φ | χ, α : s

(Formulas) F ::= ∀ n :: (χ . A). F | ∀γ ∈ (χ . Φ). F | ∃ n :: (χ . A). F | >>
(Programs) P ::= Λ n :: (χ . A). P | Λγ ∈ (χ . Φ). P | P M | P χ

| 〈〈χ .M ;P 〉〉 | 〈〈〉〉 | case Ω | x | µ x ∈ F. P | ν α :: (χ . s). P

(Cases) Ω ::= · | Ω, (Ψ ` σ 7→ P)

(Contexts) Ψ ::= · | Ψ, n :: (χ . A) | Ψ, γ ∈ (χ . Φ) | Ψ, x ∈ F | Ψ, α :: (χ . s)
(Substitutions) σ ::= · | σ,M/n | σ, χ/γ | σ, P/x | σ,m/α

Fig. 5. L+
ω syntax

context Γ or the linear context ∆. Those variables represent in general non-
empty context extensions, that must be carefully handled by LLF, especially in
the axiom case that requires the linear context to contain exactly one hypothesis.
(see Appendix C for the rules defining our version of LLF).

In summary, the main differences between our and the standard formula-
tion of LLF are explicit substitutions, context variables, and a mechanism to
make hypothetical derivations available to LLF. These additions do not change
the fundamental properties of LLF because during runtime each n, α and γ is
instantiated by an appropriate LLF variables and LLF contexts, respectively.

The meta logic L+
ω . Figure 5 describes the syntactic categories for the meta

logic L+
ω . Worlds, made out of module signatures, are abstract descriptions of

environments (see, for example, (2)). They assert a structure on the context that
will be encountered during runtime, but can be exploited within proofs [Sch01]
as illustrated by cases 2 and 3 in the definition of “ca” in Appendix A.

Each module has a module kind. If the body of a module does not contain
any free variables, the module is said to be of kind sig. If it does, the variables
should be properly abstracted, and the module is then of dependent module kind.
The world Φ from (2), for example, is defined in terms of (λA : o.∃n : neg A. ε),
which is of module kind (ΠA : o. sig).
L+
ω is a first-order meta-logic that is custom designed for LLF. Similar to

M+
ω [Sch00] its syntactic categories consist of formulas, programs, and cases. The

most notable change however is that quantifiers range over canonical derivations
in LLF valid in individual contexts χ that may be split, passed to the induction
hypothesis, and eventually joined with other contexts.

For various reasons, foremost the soundness proof of L+
ω , which we discuss

in Section 5, each inference rule of L+
ω is endowed with a proof term, a so called

program. The first two programs defined in Figure 5 are functions ranging over
canonical LLF derivations and contexts, respectively. The next two programs

9

are applications of a canonical form M and a valid context χ. 〈〈χ . M ;P 〉〉 is a
proof term for an existential formula, pairing a canonical derivation of an LLF
term with a program. Next, we have unit, a case construct with cases Ω, a
program variable x, a recursion operator, and finally a new operator. Case and
recursion are necessary to represent inductive proofs over the canonical forms in
LLF. The formulation of cases (Ω, (Ψ ` σ 7→ P)) can be explained as follows.
The substitution σ is a pattern, with free variables in Ψ , while P is a program
that may contain free variables declared in Ψ . We will explain the form of case
programs when we discuss the proof theory of L+

ω in Section 4.4.
The function depicted in Figure 3 is actually a program presented using a

lot of syntactic sugar. Without the syntactic sugar, it would be of the form

Λγ1 :: (· . Φ). Λγ2 :: (γ1 . Φ). ΛC :: (· . o).
ΛP :: (γ1 . pos C −◦#). ΛP :: (γ1 . neg C −◦#).

case Ω

with (Ω, (Ψ ` σ 7→ P)) ∈ Ω where Ψ , σ, and P are defined as follows:

Ψ = γ′1 :: (· . Φ), γ′′1 :: (γ′1 . Φ), γ2 :: (γ′1, γ
′′
1 . Φ), A :: (· . o), B :: (· . o),

P1 :: (γ′1 . pos A−◦#), P2 :: (γ′′1 . pos B−◦#),
Q1 :: (γ2 . neg A−◦ neg B−◦#)

σ = (γ′1, γ
′′
1)/γ1, γ2/γc, (A⊗B)/C

(λ̂p :pos (A⊗B). tensorRˆ(γ′1 . P1)ˆ(γ′′1 . P2)ˆp)/P,
(λ̂n :neg (A⊗B). tensorLˆ(γ2 . (λ̂n1 :neg A. λ̂n2 :neg B.Q1ˆn1ˆn2))ˆn)/Q

P = ν(α :: (γ′1, γ2 . ∃n : neg B. ε)).P ′

P ′ is the program that corresponds to the remaining let construct, expressed as
two nested case statements, which we omit in the interest of space.

4.2 Splitting

One of the contributions of this paper is the idea of splitting a context χ that is
associated with the canonical derivations bound on the meta-level into the pair
of contexts Γ ;∆ required by LLF. Some of the declarations in χ will be sorted
into Γ and treated intuitionistically, some will end up in ∆ and treated linearly,
and some may not occur in either. The filtering of the declarations is controlled
by a binary predicate P on LLF types. Γ and ∆ are created using different
predicates. This pair of predicates must guarantee the minimal requirement that
the resulting Γ ;∆ is a valid LLF context.

Splitting is defined in two stages. First the block structure of χ is separated
into individual parameters via flattening (see the definition of bbm : scc and bbχcc
in Figure 6). Second, the relevant declarations for either context Γ and ∆ are
selected via the narrowing operation (bscPA, bwcPA, bΦcPA and bΓ cPA). We write
bbχccPA for narrowing composed with flattening (bbbχcccPA) when defining the proof
theory for L+

ω in Section 5.
A good choice for each P is one based on the subordination relation [Vir99].

It flags all declarations that may occur in the type of another declaration as

10

bbm : εcc = ·
bbm : ∃u : A. scc = πtm : A, bbπmm : [πtm/u]scc

bb·cc = ·
bbχ, γ ∈ Φcc = bbχcc, γ ∈ Φ
bbχ, α : scc = bbχcc, bbα : scc

bεcPA = ε
b∃u : B. scPA = ∃u : B. bscPA if P (B,A)
b∃u : B. scPA = bscPA if not P (B,A)

bλu : A.wcPA = λu : A.bwcPA
bΦ∗cPA = (bΦcPA)∗

bΦ1 + Φ2cPA = bΦ1cPA + bΦ2cPA

b·cPA = ·
bΓ, γ ∈ ΦcPA = bΓ cPA, γ ∈ bΦcPA
bΓ, b : BcPA = bΓ cPA, b : B if P (B,A)
bΓ, b : BcPA = bΓ cPA if not P (B,A)

Fig. 6. Flattening and narrowing modulo P

intuitionistic assumptions, and all others (that may actually occur in the object)
as linear ones. In all our examples regarding LLF, this choice of predicates was
sufficient. If the P for the intuitionistic environment holds for all pairs of LLF
types, and the P for the linear environment holds for none, L+

ω reduces to a
meta-logic of the logical framework LF [HHP93].

4.3 Semantics of L+
ω

The semantic entailment for L+
ω is written in terms of |=, a relation that is defined

in this section. The main challenge of this relation is to define the meaning of a
formula whose quantifiers do not simply range over contexts or terms, but over
the respective derivations of canonicity.

|= ∀γ ∈ (χ . Φ). F iff |= [χ′/γ]F for all · ;χ ` χ′ : Φ
|= ∀ n :: (χ . A). F iff |= [M/x]F for all ·; bbχcc≺:

A ; bbχcc≺̂A . M : A
|= ∃ n :: (χ . A). F iff |= [M/x]F for some ·; bbχcc≺:

A ; bbχcc≺̂A . M : A
|= >>

Variable capture is a problem in a meta logic of this generality, which is solved
in our system by requiring that context variables can only be instantiated by
contexts that are well-formed in χ. Also, the treatment of linear resources is quite
complex. A universal quantifier ranging over LLF objects actually ranges over all
canonical form derivations of that object valid in explicit intuitionistic and linear
contexts that can be derived from χ via the standard transformation, described
in Figure 4.2. The existential is the dual to the universal quantifier, and true is
always valid. In the remainder of the paper we give a proof theoretic explanation
of this semantics and argue for the soundness of the system in Section 5.

4.4 Proof theory for L+
ω

L+
ω is designed as a logic, but the soundness proof to be presented in Section 5

requires it to change its face and become a type theory of total functions. This
type theory is defined in Figure 7 for L+

ω ’s two typing judgments Ψ ` P ∈ F

11

Ψ ; bbχcc≺:
A . A : type

Ψ, n :: (χ . A) ` P ∈ F Ψ ; · ` χ : Φ

Ψ ` Λ n :: (χ . A). P ∈ ∀ n :: (χ . A). F

` Φ ok
Ψ, γ ∈ (χ . Φ) ` P ∈ F Ψ ; · ` χ : Φ

Ψ ` Λγ ∈ (χ . Φ). P ∈ ∀γ ∈ (χ . Φ). F

Ψ ` P ∈ ∀ n :: (χ . A). F
Ψ ; bbχcc≺:

A ; bbχcc≺̂A . M : A

Ψ ` P M ∈ [idΨ ,M/n]F

Ψ ` P ∈ ∀γ ∈ (χ . Φ). F Ψ ;χ ` χ′ : Φ

Ψ ` P χ′ ∈ [idΨ , χ
′/γ]F

Ψ ` P ∈ [idΨ ,M/n]F

Ψ ; bbχcc≺:
A ; bbχcc≺̂A . M : A Ψ ; · ` χ : Φ

Ψ ` 〈〈χ .M ;P 〉〉 ∈ ∃ n :: (χ . A). F Ψ ` 〈〈〉〉 ∈ >>
Ψ ` Ω ∈ F

Ψ ` case Ω ∈ F

Ψ ` x ∈ Ψ(x)

Ψ, x ∈ F ` P ∈ F
Ψ ` µ x ∈ F. P ∈ F (∗∗)

Ψ ; bbχcc . s : sig Ψ ; · ` χ : Φ

Ψ, α :: (χ . s) ` P ∈ F Ψ ` F ok

Ψ ` ν α :: (χ . s). P ∈ F
. .

Ψ ` · ∈ F
Ψ ` Ω ∈ F Ψ ′ . σ : Ψ Ψ ′ ` P ∈ [σ]F

Ψ ` Ω, (Ψ ′ ` σ 7→ P) ∈ F
(∗)

Fig. 7. Derivability in L+
ω

for programs and Ψ ` Ω ∈ F for cases. Regarding the judgments that are used
in this Figure but not defined so far, Ψ ;Γ ;∆ . M : A and Ψ ;Γ . A : K are
the standard LLF typing judgments, given in Appendix C. Ψ ;χ′ ` χ : Φ is a
judgment that decides that χ is a valid context in world Φ, and it is defined
in Appendix D. Also defined in Appendix D, Ψ ;Γ B s : sig characterizes valid
module signatures s. and Ψ ′ B σ : Ψ defines valid substitutions mapping objects
valid in Ψ into objects valid in Ψ ′.

The subordination relation on type families A ≺: B is a relation suitable
for narrowing, that decides if objects of A can occur as an index to B, and
A ≺̂ B is the related subordination relation deciding if objects of type A can
occur in objects of type B, but never at the type level. For more information,
consult [Vir99].

The first four rules in Figure 7 are introduction and elimination rules for
the universal quantifiers. The fifth rule is the introduction rule for existentials.
Existential elimination is a special case of the case rules defined in below the
dotted line [Sch01], and need not be introduced individually. The typing rule
for unit is standard. Ω, the argument to case, is a list of all of the cases (which
must all have the same type). The type of a variable x can be inferred from the
context, and recursion is standard. The rule for ν extends Ψ by a new declaration
of a module signature, however, it must be guaranteed that α does not escape its
scope, by requiring that the type of the body not contain the new declaration.

12

Unbounded recursion and a case construct without cases indicate, that with-
out further side condition, L+

ω may contain partial and non-terminating func-
tions. We attach therefore the following side conditions

1. for all Ψ ′′ . σ′ : Ψ , there exists a Ψ ′′ . σ′′ : Ψ ′, such that σ′′ ◦ σ = σ′ (*)
2. and all occurrences of x in P terminate (**)

to the respective rules in Figure 7 that enforce totality. Syntactic criteria exist,
but we cannot give them here in the interest of space.

5 Meta Theory of L+
ω

That every function in L+
ω is total is a sufficient and necessary condition for the

soundness of L+
ω . The argument relies on a small-step operational semantics that

is given in Appendix E. First, some notation. We define evaluation environments
E to be those Ψ binding only block variables α. Next, we extend the set of
programs with a closure {σ;P}, in which σ is a substitution that maps P from
whatever environment it is well-typed under into the outer environment. The
evaluation judgment E ` P → P ′ relates a program P to the outcome of a
single evaluation step P ′. For a sequence of zero or more evaluation steps, we
write E ` P →∗ P ′. The set of values is V .

V ::= Λ n :: (χ . A). P | Λγ ∈ (χ . Φ). P | 〈〈χ .M ;V 〉〉 | 〈〈〉〉

For functions, applications, existentials and fixed points, evaluation proceeds
in the standard fashion. The evaluation of a closure {σ;P} is essentially car-
rying out a single step of lazily applying the substitution σ to P . This is done
because eager substitution is not sound in the presence of case. Evaluation of
(case Ω, (Ψ ` σ′ 7→ P)) in a closure proceeds by attempting to generate a sub-
stitution σ′′ that, when composed with σ′, is equivalent to the σ of the closure.
If one is found, then evaluation of P continues in a closure under σ′′. The eval-
uation of ν α :: (χ . s). P proceeds by evaluating P until it becomes a value.
When it finally becomes a value, the ν binding is pushed into any non-values (as
occur in a function) that may exist in the value. The following properties hold.

Theorem 2 (Type preservation). If E ` P ∈ F and E ` P → P ′ then
E ` P ′ ∈ F .

Proof. By induction on the structure of the evaluation relation. The cases for ν
rely on the fact that the type of the body of the ν must not use the bound block
variable. This allows the ν to be pushed inward while preserving the type. The
substitution cases rely on the soundness of the substitution of σ into χ, A, M
and x. ut

Theorem 3 (Progress). If E ` P ∈ F then either P is a value or E ` P → P ′.

13

Proof. By induction on the structure of the typing derivation. The progress proof
uses the fact that E binds only block variables, and on the usual canonical forms
lemma. It also relies on the coverage condition holding, which ensures that the
program (case ·) is never evaluated. ut

Theorem 4 (Termination). If E ` P ∈ F then E ` P →∗ V .

Proof. By induction on the typing derivation, keeping track of the instantiations
of the values bound by reductions of µ, using the termination condition. ut

Theorem 5 (Soundness). If · ` P ∈ F then |= F .

Proof. By induction on F , using Theorems 2, 3 and 4. ut

6 Conclusion

We have described the meta-logic L+
ω for the linear logical framework LLF.

LLF is useful for the representation of formal systems that rely on a notion of
deletable resource. Surprisingly many such systems can be represented in LLF,
among them programming languages with effect, state transition system, such as
the infamous blocks world often used in AI, and of course also resource oriented
logics such as linear logic itself.

The meta-logic L+
ω is custom-made for LLF, which means, that incorporates

knowledge about linear assumptions, how they are consumed, split in the mul-
tiplicative, and duplicated in the additive fragment. It enables the formalization
of meta-theoretic properties, the mechanization of reasoning about LLF encod-
ings, and leads to relatively short proof terms. The soundness of L+

ω follows
from a realizability argument that shows that every function in L+

ω is total, i.e.
it terminates and covers all cases.

In future work, we plan to implement a proof checker and an automated
theorem prover for L+

ω , and consider extensions to the ordered logical framework
and the concurrent logical framework.

References

[App01] Andrew W. Appel. Foundational proof-carrying code. In 16th Annual
IEEE Symposium on Logic in Computer Science (LICS ’01), pages 247–258,
Boston, USA, June 2001.

[BCM00] David Basin, Manuel Clavel, and Jos Meseguer. Rewriting logic as a met-
alogical framework. In Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), pages 55–80. Springer-Verlag LNCS 1974,
2000.

[CDL+99] Iliano Cervesato, Nancy Durgin, Patrick D. Lincoln, John C. Mitchell, and
Andre Scedrov. A Meta-Notation for Protocol Analysis. In 12th Computer
Security Foundations Workshop — CSFW-12, pages 55–69, Mordano, Italy,
28–30 June 1999. IEEE Computer Society Press.

14

[Coq91] Thierry Coquand. An algorithm for testing conversion in type theory. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages 255–
279. Cambridge University Press, 1991.

[CP96] Iliano Cervesato and Frank Pfenning. A linear logical framework. In
E. Clarke, editor, Proceedings of the Eleventh Annual Symposium on Logic in
Computer Science, pages 264–275, New Brunswick, New Jersey, July 1996.
IEEE Computer Society Press.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
[Har97] John Harrison. Floating point verification in HOL Light: The exponential

function. Technical Report 428, University of Cambridge Computer Labo-
ratory, 1997.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the Association for Computing Machinery, 40(1):143–184,
January 1993.

[McD97] Raymond McDowell. Reasoning in a Logic with Definitions and Induction.
PhD thesis, University of Pennsylvania, 1997.

[MM97] Raymond McDowell and Dale Miller. A logic for reasoning with higher-
order abstract syntax: An extended abstract. In Glynn Winskel, editor,
Proceedings of the Twelfth Annual Symposium on Logic in Computer Science,
pages 434–445, Warsaw, Poland, June 1997.

[NvO98] Tobias Nipkow and David von Oheimb. Java-light is type-safe — definitely.
In L. Cardelli, editor, Conference Record of the 25th Symposium on Prin-
ciples of Programming Languages (POPL’98), pages 161–170, San Diego,
California, January 1998. ACM Press.

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer-Verlag
LNCS 828, 1994.

[Pau97] Lawrence C. Paulson. Proving properties of security protocols by induction.
In Proceedings of the 10th Computer Security Foundations Workshop, pages
70–83. IEEE Computer Society Press, June 1997.

[Pfe94] Frank Pfenning. A structural proof of cut elimination and its representation
in a logical framework. Technical Report CMU-CS-94-218, Department of
Computer Science, Carnegie Mellon University, November 1994.

[Pfe99] Frank Pfenning. Logical frameworks. In Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning. Elsevier Science Pub-
lishers, 1999. In preparation.

[PP03] Brigitte Pientka and Frank Pfenning. Optimizing higher-order pattern uni-
fication. In CADE-19, Miami Beach, Florida, July 2003. To appear.

[Sch00] Carsten Schürmann. Automating the Meta-Theory of Deductive Systems.
PhD thesis, Carnegie Mellon University, 2000. CMU-CS-00-146.

[Sch01] Carsten Schürmann. Recursion for higher-order encodings. In Laurent Fri-
bourg, editor, Proceedings of the Conference on Computer Science Logic
(CSL 2001), pages 585–599, Paris, France, August 2001. Springer Verlag
LNCS 2142.

[VC02] Joseph C. Vanderwaart and Karl Crary. A simplified account of the metathe-
ory of linear lf. Electronic Notes in Theoretical Computer Science, 70(2),
2002.

[Vir99] Roberto Virga. Higher-Order Rewriting with Dependent Types. PhD thesis,
Department of Mathematical Sciences, Carnegie Mellon University, 1999.
Forthcoming.

15

A Admissibility of Cut: Informal Proof

Theorem 6 (Admissibility of cut). If P :: Γ1 =⇒ C,∆1 and Q :: Γ2, C =⇒
∆2 then R :: Γ1, Γ2 =⇒ ∆1, ∆2.

Proof. by lexicographic structural induction on the subformula A and simulta-
neously on the P,Q.

Case: ⊗R with ⊗L.
P :: Γ ′1, Γ

′′
1 =⇒ A⊗B,∆′1, ∆′′2 (by assumption)

P1 :: Γ ′1 =⇒ A,∆′1 (by assumption)
P2 :: Γ ′′1 =⇒ B,∆′′2 (by assumption)
Q :: Γ2, A⊗B =⇒ ∆2 (by assumption)
Q1 :: Γ2, A,B =⇒ ∆2 (by assumption)
R1 :: Γ ′1, Γ2, B =⇒ ∆′1, ∆2 (by ind. hyp. on P1,Q1)
R :: Γ ′1, Γ

′′
1 , Γ2 =⇒ ∆′1, ∆

′′
2 , ∆2 (by ind. hyp. on P2,R1)

Case: ax with all other rules
P :: A =⇒ A (by assumption)
Q,R :: Γ2, A =⇒ ∆2 (by assumption)

Case: All other rules with ax

P,R :: Γ1 =⇒ A,∆1 (by assumption)
Q :: A =⇒ A (by assumption)

Case: ⊗R with all other rules. Cut formula: left premiss.
P :: Γ ′1, Γ

′′
1 =⇒ A⊗B,C,∆′1, ∆′′1 (by assumption)

P1 :: Γ ′1 =⇒ A,C,∆′1 (by assumption)
P2 :: Γ ′′1 =⇒ B,∆′′1 (by assumption)
Q :: Γ2, C =⇒ ∆2 (by assumption)
R1 :: Γ ′1, Γ2 =⇒ A,∆′1, ∆2 (by ind. hyp. on P1,Q)
R :: Γ ′1, Γ

′′
1 , Γ2 =⇒ A⊗B,∆′1, ∆′′1 , ∆2 (by ⊗R on R1,P2)

Case: ⊗R with all other rules. Cut formula: right premiss.
P :: Γ ′1, Γ

′′
1 =⇒ A⊗B,C,∆′1, ∆′′1 (by assumption)

P1 :: Γ ′1 =⇒ A,∆′1 (by assumption)
P2 :: Γ ′′1 =⇒ B,C,∆′′1 (by assumption)
Q :: Γ2, C =⇒ ∆2 (by assumption)
R2 :: Γ ′′1 , Γ2 =⇒ B,∆′′1 , ∆2 (by ind. hyp. on P2,Q)
R :: Γ ′1, Γ

′′
1 , Γ2 =⇒ A⊗B,∆′1, ∆′′1 , ∆2 (by ⊗R on P1,R2)

Case: ⊗L with all other rules.
P :: Γ ′1, A⊗B =⇒ C,∆′1 (by assumption)
P ′ :: Γ ′1, A,B =⇒ C,∆′1 (by assumption)
Q :: Γ2, C =⇒ ∆2 (by assumption)
R′ :: Γ ′1, Γ2, A,B =⇒ ∆′1, ∆2 (by ind. hyp. on P ′,Q)
R :: Γ ′1, Γ2, A⊗B =⇒ ∆′1, ∆2 (by ⊗L on R′)

16

B Admissibility of Cut: Formal Proof

dec ca : ∀γ1 ∈ Φ.∀γ2 ∈ Φ.∀(C : (· . o)).
∀(P : (γ1 . pos C → #)).∀(Q : (γ2 . neg C → #)).
∃(R : (γ1, γ2 .#)).>

fun ca (γ′1, γ
′′
1) γ2 (A⊗B) (λ̂p :pos (A⊗B). tensorRˆP1ˆP2ˆp)

(λ̂n :neg (A⊗B). tensorLˆ(λ̂n1 :neg A. λ̂n2 :neg B.Q1ˆn1ˆn2)ˆn) =
new
α :: (γ′1, γ2 . ∃n : neg B. ε)

in
let

val 〈R1, 〈〉〉 = ca γ′1 (γ2, α : ∃n : neg B. ε) A P1

(λ̂n :neg A.Q1ˆn1ˆπt(α))
val 〈R, 〈〉〉 = ca γ′′1 (γ′1, γ2) B P2

(λ̂n :neg B.R1[n/πt(α)])
in
〈R, 〈〉〉

end
end

| ca (α : ∃n : neg A. ε) γ2 C (λ̂p :pos C. axˆπt(α)ˆp) (λ̂n :neg C.Qˆn)
= 〈Qˆ(πt(α)), 〈〉〉

| ca γ1 (α : ∃p : pos A. ε) C (λ̂p :pos C.Pˆp) (λ̂n :neg C. axˆnˆπt(α))
= 〈Pˆ(πt(α)), 〈〉〉

| ca (γ′1, γ
′′
1 , α : ∃p : pos (A⊗B). ε) γ2 C

(λ̂p :pos C. tensorRˆ(λ̂p′ :pos A.P1ˆpˆp′) ˆP2ˆ(πt(α))) Q =
new
α′ :: (γ′1, γ2 . ∃p : pos A. ε)

in
let

val 〈R1, 〈〉〉 = ca (γ′1, α
′ : ∃p : pos A. ε) γ2 C

(λ̂p :pos C.P1ˆpˆ(πt(α′))) Q
in
〈tensorRˆ(λ̂p :pos A.R1[p/(πt(α′))])ˆP2ˆ(πt(α))), 〈〉〉

end
end

17

| ca (γ′1, γ
′′
1 , α : ∃p : pos (A⊗B). ε) γ2 C

(λ̂p :pos C. tensorRˆP1ˆ(λ̂p′ :pos B.P2ˆpˆp′)ˆ(πt(α))) Q =
new
α′ :: (γ′′1 , γ2 . ∃p : pos B. ε)

in
let

val 〈R2, 〈〉〉 = ca (γ′′1 , α
′ : ∃p : pos B. ε) γ2 C

(λ̂p :pos C.P2ˆpˆ(πt(α′))) Q
in
〈tensorRˆP1ˆ(λ̂p :pos A.R2[p/πt(α′)])ˆ(πt(α))), 〈〉〉

end
end

| ca (γ1, α : ∃n : neg (A⊗B). ε) γ2 C

(λ̂p :pos C. tensorLˆ(λ̂n1 :neg A. λ̂n2 :neg B.
P ′ˆpˆn1ˆn2)ˆ(πt(α))) Q =

new
α1 :: (γ1, γ2 . ∃n : neg A. ε)
α2 :: (γ1, γ2, α1 : ∃n : neg A. ε . ∃n : neg B. ε)

in
let

val 〈R′, 〈〉〉 = ca (γ1, α1 : ∃n : neg A. ε, α2 : ∃n : neg A. ε) γ2 C

(λ̂p :pos C.P ′ˆpˆ(πt(α1))ˆ(πt(α2)) Q)
in
〈tensorLˆ(λ̂n1 :neg A. λ̂n2 :neg B.

R′[n1/πt(α1), n2/πt(α2)])ˆ(πt(α)); 〈〉〉
end

end

C Typing in LLF

C.1 Kind Formation

Judgment form: Ψ ;Γ . K : kind

Ψ ;Γ . type : kind
Ψ ;Γ . A : type Ψ ;Γ, u : A . K : kind

Ψ ;Γ . Πu : A. K : kind

C.2 Type Typing

Judgment form: Ψ ;Γ . A : K

18

Ψ ;Γ . a : Σ(a)
Ψ ;Γ . A : Πu : A. K Ψ ;Γ ; · . M : A

Ψ ;Γ . A M : [idΓ ,M/u]K

Ψ ;Γ . A : type Ψ ;Γ, u : A . B : type
Ψ ;Γ . Πu : A. B : type

Ψ ;Γ . A : type Ψ ;Γ . B : type
Ψ ;Γ . A−◦ B : type

Ψ ;Γ . A : type Ψ ;Γ . B : type
Ψ ;Γ . A & B : type Ψ ;Γ .> : type

C.3 Object Typing

Judgment form: Ψ ;Γ ;∆ .M : A

Ψ(n) = (χ . A) Ψ ;Γ ′;∆′ . ρ : bbχcc≺:
A ; bbχcc≺̂A

Ψ ;Γ ′;∆′ . n[ρ] : [ρ]A

Ψ ;Γ ; · . c : Σ(c) Ψ ;Γ ; · . b : Γ (b) Ψ ;Γ ; b : A . b : A

Ψ ;Γ, u : A;∆ .M : B
Ψ ;Γ ;∆ . λu : A. M : Πu : A. B

Ψ ;Γ ;∆ .M : Πu : A. B Ψ ;Γ ; · . N : A
Ψ ;Γ ;∆ .M N : [idΓ , N/u]B

Ψ ;Γ ;∆,u : A .M : B

Ψ ;Γ ;∆ . λ̂u : A. M : A−◦ B
Ψ ;Γ ;∆1 . M : A−◦ B Ψ ;Γ ;∆2 . N : A

Ψ ;Γ ;∆1, ∆2 . M
∧N : B

Ψ ;Γ ;∆ .M : AΨ ;Γ ;∆ . N : B
Ψ ;Γ ;∆ . 〈M,N〉 : A & B

Ψ ;Γ ;∆ .M : A & B

Ψ ;Γ ;∆ . π1M : A

Ψ ;Γ ;∆ . 〈〉 : >
Ψ ;Γ ;∆ .M : A & B

Ψ ;Γ ;∆ . π2M : B

D L+
ω Typing

D.1 Module Signature Typing.

Judgment form: Ψ ;Γ . s : k

Ψ ;Γ . ε : sig

Ψ ;Γ . A : type Ψ ;Γ, u : A . s : sig
Ψ ;Γ . ∃u : A. s : sig

Ψ ;Γ . A : type Ψ ;Γ, u : A . s : sig
Ψ ;Γ . λu : A.s : Πu : A. k

D.2 World Formation.

Judgment form: ` Φ ok

·; · . s : k
` s ok

` Φ ok
` Φ∗ ok

` Φ1 ok ` Φ2 ok
` Φ1 + Φ2 ok

19

D.3 Block Context Formation.

Judgment form: Ψ ;χ′ ` χ : Φ

Ψ ;χ ` · : Φ∗
Ψ(γ) = (χ . Φ)

Ψ ;χ ` ·, (γ ∈ Φ) : Φ
Ψ ; bbχcc . s : sig
Ψ ;χ ` ·, (α : s) : s

Ψ ;χ ` χ′ : [M/u]w Ψ ; · . A : type Ψ ; bbχcc; · . M : A
Ψ ;χ ` χ′ : λu : A.w

Ψ ;χ0 ` χ1 : Φ Ψ ;χ0, χ1 ` χ2 : Φ∗

Ψ ;χ0 ` χ1, χ2 : Φ∗

Ψ ;χ ` χ′ : Φ1

Ψ ;χ ` χ′ : Φ1 + Φ2

Ψ ;χ ` χ′ : Φ2

Ψ ;χ ` χ′ : Φ1 + Φ2

D.4 Formula validity

Judgment form: Ψ ` F ok

Ψ ; bbχcc≺:
A . A : type Ψ, n :: (χ . A) ` F ok Ψ ; · ` χ : Φ

Ψ ` ∀ n :: (χ . A). F ok

` Φ ok Ψ, γ ∈ (χ . Φ) ` F ok Ψ ; · ` χ : Φ′

Ψ ` ∀γ ∈ (χ . Φ). F ok

Ψ ; bbχcc≺:
A . A : type Ψ, n :: (χ . A) ` F ok Ψ ; · ` χ : Φ

Ψ ` ∃ n :: (χ . A). F ok

Ψ ` >> ok

D.5 Context formation

Judgment form: ` Ψ ok

` · ok

` Ψ ok
Ψ ; bbχcc≺:

A . A : type Ψ ; · ` χ : Φ
` Ψ, n :: (χ . A) ok

` Ψ ok Ψ ; · ` χ : Φ ` Φ ok
` γ ∈ (χ . Φ) ok

` Ψ ok Ψ ` F ok
` Ψ, x ∈ F ok

` Ψ ok Ψ ; bbχcc . s : sig Ψ ; · ` χ : Φ
` Ψ, α :: (χ . s) ok

20

D.6 Substitution wellformedness

Judgment form: Ψ ′ . σ : Ψ

Ψ ′ . · : ·

Ψ ′ . σ : Ψ Ψ ′; bb[σ]χcc≺:
[σ]A; bb[σ]χcc≺̂[σ]A . M : [σ]A

Ψ ′ . (σ,M/n) : (Ψ, n :: (χ . A))

Ψ ′ . σ : Ψ Ψ ′; [σ]χ ` χ′ : Φ
Ψ ′ . (σ, χ′/γ) : (Ψ, γ ∈ (χ . Φ))

Ψ ′ . σ : Ψ Ψ ′ ` P ∈ [σ]F
Ψ ′ . (σ, P/x) : Ψ, x ∈ F

Ψ ′ . σ : Ψ Ψ ′; [σ]χ . m : [σ]s
Ψ ′ . (σ,m/α) : Ψ, α :: (χ . s)

E Operational Semantics

E.1 Congruence Rules

E ` P → P ′

E ` P M → P ′ M
E ` P → P ′

E ` P χ→ P ′ χ
E ` P → P ′

E ` 〈〈χ .M ;P 〉〉 → 〈〈χ .M ;P ′〉〉

E,α :: (χ . s) ` P → P ′

E ` ν α :: (χ . s). P → ν α :: (χ . s). P ′

E.2 Enclosure rules

E ` (Λ n :: (χ . A). P) M → {idE ,M/n;P}

E ` (Λγ ∈ (χ . Φ). P) χ→ {idE , χ/γ;P}

E ` case Ω → {idE ; case Ω} E ` µ x ∈ F. P → {idE ;µ x ∈ F. P}

21

E.3 Substitution Rules

E ` {σ;Λ n :: (χ . A). P} → Λ n :: ([σ]χ . [σ]A). {σ, n/n;P}

E ` {σ;Λγ ∈ (χ . Φ). P} → Λγ ∈ ([σ]χ . Φ). {σ, γ/γ;P}

E ` {σ;P M} → {σ;P} ([σ]M) E ` {σ;P χ} → {σ;P} ([σ]χ)

E ` {σ; 〈〈χ .M ;P 〉〉} → 〈〈[σ]χ . [σ]M ; {σ;P}〉〉

E ` {σ;x} → [σ]x

σ′′ ◦ σ′ = σ
E ` {σ; case (Ω, (Ψ ` σ′ 7→ P))} → {σ′′;P}

E ` {σ; case (Ω, (Ψ ` σ′ 7→ P))} → {σ; case Ω}

E ` {σ;µ x ∈ F. P} → {σ, (µ x ∈ F. P)/x;P}

E ` {σ; ν α :: (χ . s). P} → ν α :: ([σ]χ . [σ]s). {σ, α/α;P}

E ` {σ; 〈〈〉〉} → 〈〈〉〉 E ` {σ; {σ′;P}} → {σ ◦ σ′;P}

E.4 Block Abstraction Rules

E ` ν α :: (χ . s). 〈〈〉〉 → 〈〈〉〉

E ` ν α :: (χ . s). 〈〈χ′ . M ;P 〉〉 → 〈〈χ′ . M ; ν α :: (χ . s). P 〉〉

E ` ν α :: (χ . s). Λ n :: (χ′ . A). P → Λ n :: (χ′ . A). ν α :: (χ . s). P

E ` ν α :: (χ . s). Λγ ∈ (χ′ . Φ). P → Λγ ∈ (χ′ . Φ). ν α :: (χ . s). P

22

