
Meta Logical Frameworks and QPQ
Position Paper

Carsten Schürmann

Yale University
New Haven, CT, USA
carsten@cs.yale.edu

Deductive software as opposed to numerical software is gaining more and
more importance in industrial applications. Numerical software can be found in
components prevalent in control systems that are built into cars, trains, space
vehicles, and plants, recognition systems for voice, vision, and access control,
but also our internet infrastructure such as load balancing servers, and routers.
Regarding fault tolerance, safety, security, and correctness, many branches of
industry are employing or are thinking of employing deductive software such as
model checkers, theorem provers, type checkers, and counter example generators
to improve designs cost-efficiently before releasing a product.

Complementary to the functionality commonly associated with deductive
software is the question of how to represent derivations, proofs, traces of model
checkers, counter examples, and other non-numerical domains if at all. Due
to efficiency reasons, many implementations of theorem provers refrain from
the explicit creation and maintenance of deductions, making it more difficult,
almost impossible to connect and import deductions from one component to
another, and consequently render independent third party verification of deduc-
tions impossible. For others that do, deductions are merely mathematical objects
that can be manipulated, constructed, deconstructed, combined, exchanged, in-
spected and satisfy far reaching mathematical properties and laws.

The structure of deductions is in general richer then that of numbers. Ques-
tions about how to represent axioms, inference rules, hypotheses, conclusions,
formulas, terms, quantifiers, and judgments, are often a matter of personal choice
and preference, leading to a significant amount of syntactical and semantical
ambiguity and prohibiting the free exchange and sharing of deductive objects
among software components, or entire software systems. In fact once committed
to a particular representation, interfacing a deductive software system to an-
other component can be prohibitively difficult, and the associated cost is often
thought to outweigh the expected benefits.

The deductions prevalent in deductive software components range from deriva-
tions in various logics, such as, temporal, first-order, or modal logics, to witness
traces of model checkers. Ultimately, deductions should have adequate repre-
sentations in software and should not only be described by the properties they
satisfy. Of course, all of this complexity is mirrored in the deductions as well as
the deductive software components whose implementations are tedious and often
difficult to get right. Model checkers, for example, exploit symmetry properties
to prune the state space, and theorem provers employ various optimization tech-



niques to make proof search feasible. The soundness of an implementation can
be difficult to show, especially in the model checking case where it hinges on a
complete traversal of the state space.

A source code repository such as QPQ in form of a passive digital library will
clearly be of interest to many contemporary industrial applications. However, if it
were also active in that it offers source code related functionality, as for example,
operators that combine a heterogeneous set of software components into one
single component that share one common data structure by means of partial
evaluators and semantics preserving source code transformers, we can hope for a
tighter integration of components, efficiency benefits, portability, and simplified
maintainability. Combining deductive software components that are written in
different programming languages but share the same core data structures can be
a real challenge and requires semantic modeling of each programming language,
with sound transformations into and from the semantic domain.

The interaction of heterogeneous software components adds another level of
complexity to the repository of deductive software. While many safety properties
can be inferred directly from a software component (given an appropriate seman-
tic model of the programming language involved), there are others, often relevant
for security, privacy, and secrecy, that can only be inferred from communication
infrastructure or the protocols that are used to communicate between software
component. CORBA or COM and DCOM, for example, are popular software ar-
chitectures used in practice that interconnect remote applications and facilitate
the exchange of data. Their meta-theoretic properties, however, remain informal
and can in general not be used when reasoning about the behavior of a software
system.

We therefore conjecture that a source code repository such as QPQ should
distinguish between the correctness of data representations, the correctness of
the functionality of a software component, and the correctness of the the com-
munication infrastructure. To tackle these challenges, we advocate the use of
meta-logical frameworks that provide

1. A rich, uniform, expressive, representation language to represent deductions.
Logical frameworks, in particular LF [HHP93], are designed as a meta-
language for representing logics, and therefore lend themselves as prime
candidates for encoding deductions. More research is necessary to scale the
present techniques to capture the semantics of real world programming lan-
guages, including Java, C#, ML, Haskell or Mathematica, and model the
underlying communication infrastructure.

2. Tools to help analyze deductions, deductive software and their properties.
Special-purpose reasoning tools that are custom-made for the underlying
logical framework ensure that the source code of deductive software entered
into the QPQ satisfies the accompanying meta theoretical claims. One ex-
ample is the special-purpose theorem prover implemented in Twelf [Sch00]
for LF.

3. Tools that can convert between different deductions, mapping them from
one logical formalism into another. Different software components employ

2



different deductive systems and often one can be converted into another, for
example, by subsumption or because two logics have different but equivalent
formulations. One could also speculate that ultimately these conversion tools
are useful for faithfully converting source programs from one programming
language into another.

Even without automated reasoning techniques, a digital library based on
QPQ must make source code available at a “suitable” level of abstraction. Pro-
gramming language idiosyncrasies, global state, and other programming lan-
guage related particularities make it often difficult to distinguish the essential
from the unimportant, and consequently leave informal human software verifica-
tion time consuming, tricky, and error prone. Consider, for example, the LINUX
approach to open source. Although the source code can be inspected and an-
alyzed by everybody, buffer overflow vulnerabilities in servers and exploits of
faulty protocols persist to be hard problems. On the other hand, if its source
code could be made accessible on higher levels of abstraction, automatic inspec-
tion and certification processes may arguably have better chances to success.

And finally, a digital library based on QPQ will have the most significant
impact, if it also offers configuration management capabilities. Updates of de-
ductive software should progress as autonomously as possible, while preserving
the prescribed properties by the client side. This task includes again reasoning
about deductive software and their properties. A sophisticated and reliable con-
figuration management system seems to play a key role in the deployment and
acceptance of such a repository.

In conclusion, deductions are becoming the new primitive data objects of
coming generations of industrial software applications. I therefore advocate that
a part of the research effort on digital libraries for deductive software should
focus on the underlying theories, principles, and meta logical frameworks that
model, analyze, reason, and verify deductions, programming languages, and com-
munication infrastructures.

References

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the Association for Computing Machinery, 40(1):143–184,
January 1993.

[Sch00] Carsten Schürmann. Automating the Meta-Theory of Deductive Systems. PhD
thesis, Carnegie Mellon University, 2000. CMU-CS-00-146.

3


