
Proof-Directed Programming
Twelf - A Case Study

Carsten Schürmann
IT University of Copenhagen

joint work with Frank Pfenning

December 18, 2006

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Motto

First there was the invariant,
Then there was the program.

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Our Technical Endeavor

Goal: Implement a theorem prover/proof assistant.

Example:

u
A true

...
p true

negIp,u

¬A true

A true ¬A true
negE

C true

Task 1: Representation of deductive systems.

I Judgments and evidence [Martin-Löf ’98]
I Logical Framework.

Task 2: Reasoning about deductive systems.

I Unification, normalization, theorem proving.

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Sample derivation

Lemma: If A true, then ¬¬A true.

Proof:
u

A true
v

¬A true
negE

p true
negIp,v

¬¬A true

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Logical Frameworks

I Hereditary Harrop formulas.
Isabelle, λProlog

I λΠ (LF).
Automath, LF, Elf, Twelf

I Substructural logical frameworks.
Forum, LLF, OLF

I Equational logic, rewriting.
Maude, ELAN

I Constructive type theories.
ALF, Agda, Coq, LEGO, Nuprl

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Philosophical Foundation

Judgments-as-types There is a one to one correspondence between
constructs of the objects language, and their
canonical representations in the logical framework.
We are only interested in adequate representations,
where every representation is meaningful.

Judgments-as-propositions There is a predicate that states the
relevant property that is true about the
representation of a construct of the object language.
Terms that do not specify the predicate are
meaningless.

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Representation Methodology

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Logical framework LF

I Dependently-typed λ-calculus.

I Function spaces exclusively for representation of variables.

I Definitional equality: β, η rules.

I Every term has a canonical (β-normal, η-long) form.

I Therefore: hypothetical judgments.

I Adequacy.

I Judgments encoded by type families a.

I Inference rules encoded by object constants c .

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Logical framework LF (cont’d)

Kinds K ::= type | A → K

Types A,B ::= a | A → B | Πx : A.B

Objects M,N ::= x | c | M N | λx : A.M

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Signature

Formulas Encoded as wff : type and neg : wff → wff

Judgment pA trueq = type and thus true : wff → type

Rules

p
v

A true
D

p true
negIp,v

¬A true

q

= negI pAq (λp : wff. λv : true pAq. pDq)

and thus

negI : ΠA : wff. (Πp : wff. true A → true p) → true (neg A)

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Signature (cont’d)

p
D1

A true
D2

¬A true
negE

B true

q

= negE pAq pBq pD1q pD2q

and thus

negE : ΠA : wff. true A → ΠB : wff. true (neg A) → true B

Remark: We can always infer A.

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Sample derivation

Lemma: If A true, then ¬¬A true.

Proof:
u

A true
v

¬A true
negE

p true
negIp,v

¬¬A true

In LF: The type true pAq → true (¬¬pAq) is inhabited by
the following object:

(λu : truepAq. negI pAq
(λp : wff. λv : true (neg pAq).

negE pAq (neg pAq) u p v))

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

... and in Twelf

wff : type.
neg : wff -> wff.

true : wff -> type.
negI : ({p:wff} true A -> true p) -> true (neg A).
negE : true A -> {B:wff} true (neg A) -> true B.

s : true A -> true (neg (neg A))
= [u] negI ([p][v] negE u p v).

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Algorithms implemented in Twelf

Inference of implicit arguments.
Type checking algorithm.
Type inference algorithm.
Logic programming interpretation.

I Curry Howard isomorphism via proof search.

I Proving a meta theorem = define judgment and rules.

D :: thm (
D1

N odd) (
D2

M odd)(
D3

N + M = K) (
E

K even)

Mode checking.
Termination checking.
World checking.
Coverage checking.

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Twelf

Implementation LF : One single language for

I representation of deductive systems,
I representation of the meta-theory.

Applications

I Proof-Carrying code. [Necula et al’96, Appel et al’01]

I Proof-Carrying authentication. [Felten et al’00]

I Typed Assembly Language. [Crary’01]

I Logical Relation Proofs. [Sarnat’05]

I Verification of full SML’s internal language. [Crary et al’07]

I ...

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

But how did we implement it?

% mkdir twelf
% cd twelf
% mkdir src
% cd src
% mkdir lambda
% cd lambda
% xemacs intsyn.sig

... and now what?

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Remainder of the talk

Proof-directed programming.

Design Decisions.

Case Study: the Twelf implementation.

Anecdotes.

Conclusion.

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Proof Directed Programming

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Proof Directed Programming

Methodology

Think about the invariants first.

Think about the programs as proof.

Act of Programming

Refine invariants as necessary.

Then refine the code.

Act of Debugging

Don’t run a program to understand its behavior.

Don’t test!

Think about it! [Harper’99]

Don’t run code you haven’t verified yourself.

Empirical case study

Twelf is a product of proof directed programming.

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Idealized Code Quality Metric

#(all function calls) -
#(recursive calls that correspond to inductive steps) -

#(non-recursive calls that correspond to verified lemmas)

Conjecture: Minimal idealized code quality metric implies
maximal code quality.

I Slow but steady. (“days per line” instead “lines per day”)

I Premature optimizations considered harmful.

I Spent as much time on invariants as on code.

I Organized code walks.

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Design Decisions

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Design decisions

Choice of implementation language.

I Functional programming language.
I Imperative programming language.
I Object-oriented programming language.

Principles

I Respect: Code locality.
I Guidance: Typing system.
I Trust: Your invariants.
I Fear: Destructive update on logical variables.

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Design decisions (cont’d)

Choice of variable, constant representation.

I “Named” representation
I de Bruijn encoding [de Bruijn 76]
I Hybrid encoding [Crole et al ’02]
I Nominal [Pitts ’03]
I Higher-order [Church ’40]

Verbosity? Logic variables?

Choice of kinds, types, and expressions.

I Direct.
I Spine calculus. [Cervesato et al. ’97]
I Canonical forms. [Watkins ’04]
I Explicit substitutions. [Abadi et al ’96]
I Pure type systems. [Barendregt ’91]

How much information to represent?
What role do normal forms play?

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Design decisions (cont’d)

Programming a proof assistant is a constraint satisfaction problem

Closed world assumption

I Code extensions, new features, and new
developments invalidate old choices.

I Keep in mind: This is a historical talk about
1997.

I Discard your code often and rewrite!

How to solve this dilemma?

I Experience.
I Learn from the experts.
I Ask an oracle.

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Case Study: the Twelf implementation.

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Design Decisions

de Bruijn indices:

2 instead of y

Explicit substitutions: (simple types)

A,B,C ,D ` 3.1. ↑4: B,D
instead of

a : A, b : B, c : C , d : D ` b/x , d/y : x : B, y : D.

Dependent types:

A,B,C ` 2 : B[↑2]

Spine notation:

negi (pAq; (neg pAq); u; p; v ; nil)
instead of

(((((negi pAq) (neg pAq)) u) p) v)

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Syntactic Categories, Internal Syntax

Variable de Bruin indices k.

Constant indices into an array c .

Logic variable X Γ,V

Head H ::= c | k.

Level L ::= type | kind.

Expression U,V ,W ::= λV .U | ΠV .W | H · S | U · S | X Γ,V |
L | U[σ]

Spine S ::= nil | U;S | S [σ]

Substitution σ ::= F .σ |↑k

Front F ::= U | k
Gamma Γ ::= · | Γ,V

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Typing Judgment: Substitutions and Spines

Γ ` σ : Γ′

shift
Γ,Vk . . .V1 `↑k : Γ

Γ ` F : V [σ] Γ ` σ : Γ′

dot
Γ ` F .σ : Γ′,V

Γ ` S : V >> W

nil
Γ ` nil : V >> V

Γ ` U : V Γ ` S : W [U. ↑0] >> V ′
app

Γ ` U;S : ΠV .W >> V ′

Γ ` σ : Γ′ Γ′ ` S : V >> W
sclo

Γ ` S [σ] : V [σ] >> W [σ]

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Typing Judgments: Heads and Expressions

Γ ` H : V

var
Γ,Vk . . .V1 ` k : Vk [↑k]

Σ(c) = V
const

Γ ` c : V

Γ ` U : V

Γ,V ` U : W
lam

Γ ` λV .U : ΠV .W

Γ,V ` W : U(L)
pi

Γ ` ΠV .W : U(L)

Γ ` H : V Γ ` S : V >> W
root

Γ ` H · S : W

Γ ` U : V Γ ` S : V >> W
redex

Γ ` U · S : W

type
Γ ` type : kind

evar
Γ ` X Γ,V : V

Γ ` σ : Γ′ Γ′ ` U : V
eclo

Γ ` U[σ] : V [σ]

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Back to the sample derivation

Lemma: If A true, then ¬¬A true.

Proof:
u

A true
v

¬A true
negE

p true
negIp,v

¬¬A true

Internal: #1 = wff
#2 = neg
#3 = true
#4 = negI
#5 = negE

s : Π#3 · (A; nil).#3 · (#2 · (#2 · (A; nil); nil); nil)
= λ#3 · (A; nil). (#4 · (A;λ(#1 nil). λ(#3 · (#2 · (A; nil); nil)).

#5 · (A; (#2 · (A; nil)); (3; nil); (2; nil); (1; nil); nil)))

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Derived rules of inference

Substitution expansion

If Γ ` σ : Γ′

then Γ,V [σ] ` 1.σ◦ ↑: Γ′,V (dot1)

fun dot1 (s as Shift (0)) = s

| dot1 s = Dot (Idx(1), comp(s, shift))

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Admissible rules of inference

Subsitution composition

If Γ ` σ : Γ′

and Γ′ ` σ′ : Γ′′

then Γ ` σ′ ◦ σ : Γ′′. (comp)

fun comp (Shift (0), s) = s
| comp (s, Shift (0)) = s
| comp (Shift (n), Dot (Ft, s)) = comp (Shift (n-1), s)
| comp (Shift (n), Shift (m)) = Shift (n+m)

| comp (Dot (F, s), s’) = Dot (fSub(F, s’), comp (s, s’))

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Example: Type inference

Invariant inferExp (Γ, U) ↪→ V ′

If U is in whnf
and Γ ` U : V
then Γ ` V ≡ V ′

otherwise exception Error is raised.

Unfortunately

One cannot prove it directly.

Therefore

Generalize invariant!

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Example: Type inference (cont’d)

Generalization to accommodate explicit substitutions

Invariant
inferExp (Γ, (U, σ)) ↪→ (V ′, σ′)
If U is in whnf
and U contains no logical variables
and Γ ` σ : Γ1

and σ contains no logical variables
and Γ1 ` U : V
then there exists a substitution σ′

and Γ ` σ′ : Γ′

and Γ′ ` V ′ : L
such that Γ ` V [σ] ≡ V [σ′] : L

otherwise exception Error is raised.

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Example: Type inference (cont’d)

fun inferExpW (G, (Uni (L),)) =
(Uni (inferUni L), id)

| inferExpW (G, (Pi ((D,) , V), s)) =
(checkDec (G, (D, s));
inferExp (Decl (G, decSub (D, s)), (V, dot1 s)))

| inferExpW (G, (Root (C, S), s)) =
inferSpine (G, (S, s), whnf (inferCon (G, C), id))

| inferExpW (G, (Lam (D, U), s)) =
(checkDec (G, (D, s));
(Pi ((decSub (D, s), Maybe),
EClo (inferExp (Decl (G, decSub (D, s)),

(U, dot1 s)))), id))

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Comments

I Explicit substitutions and spines pervasively used in Twelf
implementation.

I Pleasant organizing force.

I We’ll justify some of choices through anecdotal evidence.

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Anecdotes

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Anecdote 1: Unification

Head clash (c · S)[σ] ≈ (c · S ′)[τ] if and only if S [σ] ≈ S ′[τ].

Spine calculus exposes head!

Higher-order unification problems

(λV1.U1)[σ] ≈ (λV2.U2)[τ]
if and only if

V1[σ] ≈ V2[τ] and U1[1.σ◦ ↑] ≈ U2[1.τ◦ ↑]

Eta expansion invariant!

Closures (U[σ])[σ′] ≈ U ′[τ] if and only if U[σ ◦ σ′] ≈ U ′[τ].

Explicit substitutions.

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Anecdote 1: Unification (cont’d)

Logic Variables X Γ,V [σ] ≈ U[τ] iff X Γ,V := U[σ ◦ τ−1]

Problem: τ−1 doesn’t always exists.

Consider pattern substitutions. [Miller ’91]

Postpone none-pattern equations as constraints.

Observation: We can make τ−1 always exists that cannot always
be applied:

Example:
(3.5.1. ↑5)−1 = 3. .1. .5 ↑3

[unpublished]

Front F ::= U | k |

undef
Γ ` : V

Observation: Failure of inversion can be pushed into substitutions.

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Anecdote 2: Type Variables

Type reconstruction: Turn [u] negI ([p][v] negE u p v) into

(λu : truepAq. negI pAq
(λp : wff. λv : true (neg pAq).

negE pAq (neg pAq) u p v))

Unification invariant The terms are fully η-expanded.

But Unknown types of omitted arguments.

Thus No type level logic variables.

Solution Two phase algorithm. [Harper et al’02]

1. Approximate types.
2. Reconstruct erased indices.

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Anecdote 3: Logic Variables

Observation Type inference total on canonical forms.

Idea Let X Γ,V logic variable. Γ can always be derived.

And thus datatype Exp =
...
| EVar of (Exp option ref * Exp)
| ...

But... Let’s look at the abstraction algorithm.

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Anecdote 3: Logic Variables (cont’d)

Abstraction Pi-closure of free variables in declarations.

Example Reconstruction of leading omitted {A:wff} for

negE : true A -> {B:wff} true (neg A) -> true B.

Observation In general, we need to access Γ.

· ` A : type under free logic variables K ,X Γ,V

Abstraction Algorithm

1. First, we form a type B, by replacing all
X := λΓ. 1 · (n; n − 1; . . . 1; nil).

2. Second by induction hypothesis on K and Π(ΠΓ.V).B : type,
compute the closed pi-closure.

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Anecdote 3: Logic Variables (cont’d)

But Explicit substitutions and dependencies showstopper!

Recall Invariant of type inference.

Γ′ ` σ : Γ and Γ ` X : V

Problem Given σ and non-empty Γ.

I σ = F .σ′ by assumption.
I Γ ` F : V [σ′] by inversion.
I Γ ` F : W by type inference.
I V = W [σ′−1] only if σ invertible.

Thus First version of Twelf was incomplete.

Moral We spent too much time on doing the wrong thing.

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Anecdote 4: On Explicit Substitutions

Explicit substitutions: [Dowek,Hardin,Kirchner,Pfenning’96]

σ, τ | F · σ | σ ◦ τ | id |↑

Question: declared connectives vs. defined connectives.
Twelf implementation:

Normal form:σ ::= F · σ |↑n

Weakening substitutions.

ω ::= 1.ω◦ ↑| ω◦ ↑| id

Compact normal forms.
Which connectives to take primitive? [CS’01]

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Anecdote 5: Defined Object Constants

Problem When to expand notational definitions?

Crucial Equality algorithms, e.g. unification.

Definition d = U is semantically transparent iff

d · S ≡ d · S ′ if and only if S ≡ S ′

[Pfenning, CS’98]

Requirement All arguments d must occur in rigid positions.

Example d = λc : wff → wff. λp : wff. c · (p; nil) is not valid.

Example neg = λp : wff. imp · (p; false; nil); is valid.

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Quiz:

I How many bugs did we have in the initial compilation of
Twelf?

I What kind of bugs here they?

I Where there any soundness bugs?

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

Conclusion

I Proof directed implementation worked well.

I Required: a few dry runs.

I You need to want to strive for beauty.

I Settle foundations, the rest will fall in place.

I Spines + explicit substitutions are organizing the code.
I What I said here worked also for

I world checking,
I termination checking,
I mode checking,
I or coverage checking.

I We still need to do a codewalk for the next release.

Carsten Schürmann IT University of Copenhagen joint work with Frank PfenningProof-Directed Programming Twelf - A Case Study

