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Abstract

We present an encoding of the synchronous π-calculus in the calculus of Higher-
Order Mobile Embedded Resources (Homer), a pure higher-order calculus with mo-
bile processes in nested locations, defined as a simple, conservative extension of the
core process-passing subset of Thomsen’s Plain CHOCS. We prove that our encod-
ing is fully abstract with respect to barbed bisimulation and sound with respect to
barbed congruence. Our encoding demonstrates that higher-order process-passing
together with mobile resources in (local) named locations are sufficient to express
π-calculus name-passing. The encoding uses a novel continuation passing style to
facilitate the encoding of synchronous communication.
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1 Introduction

The π-calculus [8,7] is, by most people, considered the classic process calcu-
lus for modelling mobile systems. Its most prominent features, compared to
its predecessor CCS, are the communication of names as expressed by the
reduction rule

n(m) . P | n〈o〉 . Q →π {o/m}P | Q

and the creation of local names with static scope. Combined these concepts
provide the π-calculus with most of its expressive power. Notably, by repre-
senting the location of a process by its links, the ability to dynamically change
the communication links between processes makes it possible to model mobile
computing processes.

This account of mobility has been very successful for a decade, but it has
its limitations. Recently, a number of calculi have been proposed, e.g. the
Ambient calculus [1] and the Seal calculus [2], with an explicit representation
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of mobile computing resources in nested locations which is not easy to model
in the π-calculus. Many of the proposed calculi include the name-passing
capability of the π-calculus as well, which increases the complexity of the
calculi. A natural question is if name-passing can be expressed using mobile
computing resources in nested locations alone.

In this paper we present a compositional encoding of the synchronous π-
calculus, and thus name passing, in a pure higher-order calculus with nested
locations, obtained as a simple, conservative extension of the core process-
passing subset of Thomsen’s Plain CHOCS [11]. Thomsen demonstrated that
the π-calculus could be encoded in Plain CHOCS by making crucial use of
explicit name substitution to encode the dynamic linking. The calculus is
a subcalculus of the Homer calculus of Higher-Order Mobile Embedded Re-
sources presented in [5]. The Homer calculus does not have explicit name
substitution. Thus the encoding of [11] cannot be applied in Homer. Homer
introduce mobile computing resources in (local) named locations, and our en-
coding demonstrates that this, together with higher-order process-passing is
sufficient to express π-calculus name-passing without relying on name substi-
tution. The encoding uses a novel continuation passing style to facilitate the
encoding of synchronous communication.

To briefly recall, mobility of processes in Plain CHOCS is introduced by
replacing the name-passing of the π-calculus with process-passing. We will
represent this kind of interaction with the prefixes n〈q〉 (send) and n(x) (re-
ceive), respectively. Here x is a process variable for which the received process
is substituted, as expressed formally by the reduction rule

n〈q〉 . p1 ‖ n(x) . p2 ↘ p1 ‖ p2[q/x] . (1)

As usual, there may be any number of occurrences of x in p2 meaning that
processes may both be discarded and copied, making Plain CHOCS a non-

linear higher-order calculus. However, as also remarked by Thomsen, the
process q cannot start computing before it is moved, and once it has started
computing, it can not be moved again. This is known as code mobility or weak

mobility, as opposed to process mobility or strong mobility, where processes
may move during their computation.

In Homer strongly mobile computing resources in nested locations are in-
troduced by allowing an additional kind of interaction, given by two new
complementary prefixes n〈q〉 (resource) and n(x) (take). The process n〈q〉 . p1

denotes a resource q residing at the location (or address) n which may be
moved or taken by the complementary action prefix, n(x) . p2. Just as for the
previous interaction the synchronisation is expressed by the reduction

n〈q〉 . p1 ‖ n(x) . p2 ↘ p1 ‖ p2[q/x] . (2)

The important difference between the two types of interactions is that the
resource q in n〈q〉 is able to interact with processes outside its location by
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allowing resources to be send down to and taken up from q. In other words, the
state of q may be modified by processes outside the location n. We introduce
this kind of interaction, as in the Mobile Resources (MR) calculus [4], by
allowing sequences as addresses in the downward prefixes take and send. For
instance, using the sequence n1n2 in the address of the take prefix, a resource
q may be taken from the address n2 in a resource running at address n1, as in

n1〈n2〈q〉 . q′ ‖ q′′〉 . p1 ‖ n1n2(x) . p2 ↘ n1〈q′ ‖ q′′〉 . p1 ‖ p2[q/x] .

We allow sequences of names in addresses of the receive and resource prefixes
as well. This permits the physical nested structure of the address space to be
different from the abstract structure

n1n2〈q〉 . p1 ‖ n1n2(x) . p2 ↘ p1 ‖ p2[q/x] .

To summarise, the two dual kinds of process movement allow us to express
mobile resources in a nested location structure that may be moved (and copied)
locally or upwards, and to send passive resources that may be received (and
copied) by a local process or a sub-resource.

The interaction presented above is the only kind of interaction we need for
the results in the present paper. The full Homer calculus [5] also allows for
mobile resources that can make internal reactions. This however requires a
more careful treatment of free names in the semantics. The only other feature
is that of local names as found in the π-calculus and Plain CHOCS. We let
(n)p denote a process p in which the name n is local.

Related Work

Thomsen demonstrated that the recursion and the name-passing of the π-
calculus can be encoded in Plain CHOCS [11] by passing wires instead of
names. An a-wire representing the π-calculus name a is defined as

i? . a?x . c!x . nil + o? . c?x . a!x . nil ,

where i and o are used to indicate whether the wire is used for input or output,
and c is used as an auxiliary forwarder. Thomsen used an encoding scheme
in two levels, resembling the encoding presented in this paper: a structurally
defined encoding translating free names and names bound by an input prefix
into process variables, and names bound by restriction into wires, and on top-
level, an instantiation of the process variables representing free names with
wires.

The most complex part of the encoding is the encoding of prefixes defined
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as

Jx(y) . P K1 =
(

x[c 7→ c′][i 7→ i′][o 7→ o′] | i′!.c′?y.JP K1

)

\c′\i′\o′

Jx〈y〉 . P K1 =
(

x[c 7→ c′][i 7→ i′][o 7→ o′] | o′!.c′!y.JP K1

)

\c′\i′\o′ ,

where (x[c 7→ c′][i 7→ i′][o 7→ o′] | . . .)\c′\i′\o′ uses a explicit substitution
[c 7→ c′][i 7→ i′][o 7→ o′] to localise the wire input for x. This localisation is
essential for the encoding, since the main problem of encoding a first-order
calculi, like the π-calculus, is dynamic linking (the name substitution). The
encoding presented in this paper differs in a crucial way from the encoding
by Thomsen, since Homer does not include the explicit name substitution
of Plain CHOCS. Instead we obtain dynamic linking from the possibility to
communicate with strongly mobile resources in (local) locations.

Zimmer presented in [12] an encoding of the synchronous π-calculus into
a restricted Ambient calculus containing only the mobility primitives and the
hierarchical structure of the ambients, and therefore neither communication
nor name substitution. Much like the presentation in this paper, Zimmer
designed an intermediate calculus πesc (π-calculus with Explicit Substitutions
and Channels), but whereas πesc has explicit variables and channels as part of
the syntax, we follow the path of the πξ calculus [3], also a π-calculus with
explicit substitutions, and consider our processes with respect to one global
environment. Another clear difference between the approach of Zimmer and
ours is that the mobility of Mobile ambients is subjective, and the mobility in
Homer is objective.

The Seal calculus [2] is a calculus with name-passing, non-linear process-
passing and named, nested locations as Homer. But it is not immediately
clear, though, if one can reduce name-passing to processes-passing in Seal,
since scope extension for mobile processes in the Seal semantics depends on
name-passing.

The connection between first-order and higher-order calculi has been ex-
amined in several contexts, most notably in [9], where Sangiorgi shows how
Higher-Order π-calculus, containing both first- and higher-order communica-
tion primitives, can be represented in first-order π-calculus.

We prove the correspondence between the π-calculus and its encoding in
Homer following the same approach as [10], by proving an operational corre-
spondence between π-calculus processes and their encoding in Homer, from
which we can infer full abstractness with respect to barbed bisimulation and
soundness with respect to barbed congruence.

Outline

In Section 2 we present the syntax and reduction semantics of Homer. In Sec-
tion 3 we do the same for the monadic synchronous π-calculus and introduce
a π-calculus with explicit substitutions. We present the encoding and give an
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example of the encoding in Section 4. In Section 5 we prove the operational
correspondence between π-calculus processes and their encoding in Homer, full
abstractness with respect to barbed bisimulation, and soundness with respect
to barbed congruence.

2 Homer

We assume an infinite set of names N ranged over by m and n, and let ñ
range over finite sets of names. We let δ range over non-empty sequences of
names, referred to as addresses. We assume an infinite set of process variables

V ranged over by x and y.

The set P of process expressions is then defined by the grammar:

p, q, r ::= 0
∣

∣ p ‖ q
∣

∣ (n)p
∣

∣ λ . p
∣

∣ x

where the set of prefixes Λ is defined by the grammar:

λ ::=
∣

∣ δ(x) receive a resource at δ and bind it to x
∣

∣ δ(x) take resource from δ and bind it to x
∣

∣ δ〈r〉 send a resource r to δ
∣

∣ δ〈r〉 resource r at δ

The process constructors are the standard constructors from concurrent
process calculi, extended with process variables as in the λ-calculus and Plain
CHOCS. For an introduction to Homer, its semantics, and examples, see [5].

The prefixes δ〈r〉 and δ(x) correspond to the send and receive prefixes in
CHOCS, except from paths and not only names being allowed as addresses.
The new prefixes allowing strong mobility are the prefixes δ〈r〉 and δ(x). We

define δ = δ, and let the restriction operator (n) bind the name n and the
prefixes δ(x) and δ(x) bind the variable x. The sets fn(λ), fn(p) and fv(λ),
fv(p) of free names and free variables are defined accordingly as usual.

We say that a process with no free variables is closed and let Pc denote
the set of closed processes. For any subset P ′ of P we let P ′

/α denote the set
of α-equivalence classes (with respect to both names and variables) of process
expressions. We define the process p[q/x] to be p with all free occurrences
of x replaced by q, if necessary α-converting p such that no free names and
variables in q are bound.

By convenience we omit trailing 0s and hence write λ instead of λ . 0.
We let prefixing and restriction be right associative and bind stronger than
parallel composition. For a set of names ñ = {n1, . . . , nk} we let (ñ)p denote
(n1) · · · (nk)p. We write m̃ñ for m̃ ∪ ñ, always implicitly assuming m̃ ∩ ñ = ∅.
Finally, we will write n for the singleton set {n} when no confusion can occur.
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2.1 Reductions

We provide Homer with a reduction semantics defined through the use of
contexts, structural congruence, and reduction rules.

Structural congruence ≡ is the least congruence on P/α satisfying the fol-
lowing rules.

E1. p ‖ 0 ≡ p E2. (n)0 ≡ 0

E3. p ‖ q ≡ q ‖ p E4. (n)(m)p ≡ (m)(n)p

E5. (p ‖ p′) ‖ p′′ ≡ p ‖ (p′ ‖ p′′) E6. (n)p ‖ q ≡ (n)(p ‖ q), if n 6∈ fn(q)

Contexts C are, as usual, terms with a hole (−), and we write C(p) for the
insertion of p in the hole of context C. Note that free names (and variables)
of p may get bound by insertion of p in the hole of a context. We define fn(C)
as fn(C(0)) and fv(C) as fv(C(0)). Evaluation contexts E are contexts with no
free variables, and whose hole is not guarded by a prefix, nor appear as the
object of a send or resource prefix, i.e.

E ::= (−)
∣

∣ E ‖ p
∣

∣ p ‖ E
∣

∣ (n)E , for p ∈ Pc.

As our calculus allows actions involving terms at depths arbitrarily far
apart, we define a family of path contexts C ñ

γ indexed by a path address γ ∈ N ∗

and a set of names ñ. The path address γ indicates the path under which the
hole of the context is found, and the set ñ indicates the bound names of the
hole. We define the path contexts inductively in ñ and γ by C∅

ε ::= (−) and
whenever p, q ∈ Pc,

Cm̃ñ
γδ ::= Cm̃

γ (δ〈(ñ)(− ‖ p)〉 . q), where m̃ ∩ δ = ∅.

The side condition ensures that none of the names in the path address are
bound. We need to handle scope extension when resources are taken up from
sub-locations. For this purpose we define an open operator on path contexts
Cñ

γ \m̃ inductively by: (−)\m̃ = (−) and

Cñ′

γ (δ〈(ñ)(− ‖ p)〉 . q)\m̃ = C ñ′

γ \m̃(δ〈(ñ\m̃)(− ‖ p)〉 . q) ,

if m̃ ∩ (δ ∪ ñ′ ∪ fn(Cñ′

γ ) ∪ fn(q)) = ∅. The side condition ensures that the
opened names do not equal any names outside the scope. When applied in
the reduction rule, this condition can always be met by α-conversion, and
ensures that we can extend the scope by using the open operator and place
the restriction at the top level.

We finally define ↘ as the least binary relation on Pc/α satisfying the
following rules and closed under all evaluation contexts E and structural con-
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gruence.

(send) γδ〈r〉 . q ‖ Cm̃
γ (δ(x) . p) ↘ q ‖ Cm̃

γ (p[r/x]) , if m̃ ∩ (fn(r) ∪ δ) = ∅

(take) Cm̃
γ (δ〈r〉.q) ‖ γδ(x) . p ↘ (m̃′)(Cm̃

γ \m̃′(q) ‖ p[r/x]) ,

if m̃′ = fn(r) ∩ m̃ and m̃ ∩ δ = ∅

The (send) rule expresses how a passive resource r is sent down to the sub-
location γ, where it is received at the address δ, and substituted into the
receiving process p, possibly in several copies. The side condition guarantees
that no free names of r may be bound by the path context. This can always
be guaranteed by α-conversion, and thus will never block mobility. The (take)
rule captures that a resource r is taken from the sub-location γ, where it
is running at the address δ and substituted into the process p, possibly in
several copies. The open operator is used to extend the scope of the local
names defined in Cm̃

γ that occur free in r. Note that for γ = ε the two rules
reduce to the two reduction rules (1) and (2) given in the introduction.

We may encode general recursion in Homer (up to weak equivalence) using
copyability of resources. The encoding is similar to the one in [11], except that
recursion variables may appear at sublocations which makes the definition
slightly more complicated. Define

rec x . p =def (a)(recax . p) ,

where recax . p = a〈r〉 ‖ r and r = a(x) . p[(a〈x〉 ‖ x)/x], for a 6∈ fv(p).
Intuitively, r places a copy of recax.p at all occurrences of x in p, i.e. recax.p ↘

p[recax . p/x].

3 The Pi-calculus

We present the monadic synchronous π-calculus without summations and
replication. We present its syntax, structural congruence relation, and the
reaction rule. For a much more thorough introduction to and description of
the π-calculus, see e.g. [8,7].

We will in this paper only consider a π-calculus without replication in order
to make the presentation of the encoding and, in particular, the proof of the
encoding succinct. But since we can encode general recursion in Homer and
thereby replication, we can also encode the replication operator.

Even though some of the process constructors of Homer collide with the
constructors of the π-calculus, we will nonetheless use the same symbols, since
any ambiguity can easily be resolved from the context. We let N denote
an infinite set of names and let m, n range over N . The set Pπ of process
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expressions is then defined by the grammar

P, Q ::= 0
∣

∣ P | Q
∣

∣ (νn)P
∣

∣ n〈m〉 . P
∣

∣ n(m) . P

We consider π-calculus terms up to α-conversion and define structural con-

gruence ≡π in the π-calculus as for Homer. We define the reaction relation
→π in terms of evaluation contexts

Eπ ::= (−)
∣

∣ Eπ | P
∣

∣ P | Eπ

∣

∣ (νn)Eπ , for P ∈ Pπ.

→π is then the least binary relation over Pπ satisfying the following rule and
closed under all evaluation contexts Eπ and structural congruence.

(React)
n(m) . P | n〈m′〉 . Q →π {m′/m}P | Q

As usual, we let {n/m}P denote the process P with all free occurrences of m
replaced by n, using α-conversion to avoid that n becomes bound in P .

3.1 Pi-calculus with Explicit Substitutions

We introduce an intermediate calculus: π-calculus with explicit substitutions

to ease the proof of our encoding and to make the intuition of our encoding
clearer. The only way this π-calculus differs from traditional π-calculus is that
we record the substitution occurring in a reaction in a global environment. An
environment σ is associated with a process P , giving rise to the judgement
σ ` P . The substitution is a partial function from names to names, and
we let dom σ (codom σ) denote the domain (codomain) of the function σ.
Furthermore, for a judgement σ ` P we require that dom σ ⊇ fn(P ). We
write idA for the substitution that is the identity on A.

We let Pσ denote the process, where all free names in P have been simulta-
neously substituted according to σ. We let σ[m 7→ n] denote the substitution
σ extended such that m maps to n. Finally, we let Pπσ denote the set of
process judgements.

We define the reaction relation →πσ as before, except with respect to the
following rule, where the first side-condition always can be satisfied by α-
conversion. It guarantees that local names differ from the names already
present in the substitution, in particular the free names of the process.

(Reactσ)
σ ` n(m) . P | n′〈m′〉 . Q →πσ σ[m 7→ σm′] ` P | Q

,

if m 6∈ dom σ ∪ codom σ and σn = σn′

We note that there is an operational correspondence between a traditional
π-calculus term and the corresponding term with explicit substitutions.
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Lemma 3.1 If P = Qσ then P →π P ′ iff σ ` Q →πσ σ′ ` Q′ such that

P ′ = Q′σ′.

4 The Encoding

We adopt the following shorthand for taking a copy of the computing resource
at address n and placing the copy in the variable x as the prefix n.x, defined
as

n . x . p =def n(x) . (n〈x〉 ‖ p)

We encode π-calculus processes with names in N \ {v, c, s, r} as Homer
processes with names in N ] N ′ ] {v, c, s, r}, where N ′ is ranged over by
n′, m′ and we assume the mapping of n ∈ N to n′ ∈ N ′ is a bijection. The
names {v, c, s, r} are used as auxiliary names in the encoding 1 .

We then encode a π-calculus name n as a mobile resource JnK that can
perform two tasks: sending and receiving along the name n.

Sendn = v(x) . c(y) . n〈x〉 . y

Receiven = v(x) . c(y) . n(z) . (a)(a〈x〉 ‖ av〈z〉 . a(z′) . (y ‖ z′))

JnK = s〈Sendn〉 ‖ r〈Receiven〉

The Sendn process can be seen as taking two parameters on the locations v
and c, respectively. On location v it takes the encoding of the name JmK to
send, and on location c the encoding of the continuation JP K, resulting in a
process of the following form n〈JmK〉 . JP K.

Receiven also takes two parameters: on location v it takes a process
Bindb = v(x) . b′〈x〉 responsible for binding the received name, and on lo-
cation c the encoding JQK of the continuation, resulting in a process of the
following form n(z) . (a)(a〈Bindb〉 ‖ av〈z〉 . a(z′) . (JQK ‖ z′)). In parallel these
two processes can perform a synchronisation on the location n, correspond-
ing to the actual π-calculus synchronisation. After the synchronisation the
received name JmK is sent to the Bindb process and finally placed in parallel
with the continuations, resulting in JP K ‖ JQK ‖ b′〈JmK〉.

The encoding of a π-calculus process σ ` P is done at two levels: at
top-level, we translate all names in σ. At the next, we give a compositional
encoding of P . Let Jσ ` P K denote the following

(m̃)
(

JP K ‖ Πn∈dom σ n′〈JσnK〉
)

,

where m̃ = {n′ | n ∈ dom σ and n 6= σn}. Note that the encoding of a name
n (or more precisely, its image under the substitution) is kept as a resource at

1 The set N ′ ∪ {v, c, s, r} is used for readability, one could use the same name for v and c,
and exploit nested names to distinguish between the send and receive methods.
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the address n′. The restriction m̃ restricts the locations of substituted names,
which intuitively are bound to local names. Then the encoding of a π-calculus
process P is defined to be Jidfn(P) ` P K. The encoding J−K of local names,
parallel composition, and the inactive process is given inductively as below.

J(νn)P K = (n)(n′)(JP K ‖ n′〈JnK〉)

JP | QK = JP K ‖ JQK

J0K = 0

We encode the output and input prefixes of the π-calculus as follows

Jn̄〈m〉 . P K = (a)(n′ . x . (a〈x〉 ‖ m′ . y . asv〈y〉 . asc〈JP K〉 . as(x′′) . a(z) . x′′))

Jn(m) . P K = (a)(n′ . x . (m′)(a〈x〉 ‖ arv〈Bindm〉 . arc〈JP K〉 . ar(x′′) . a(z) . x′′))

where Bindm = v(x) . m′〈x〉. As described above, the process Bindm is re-
sponsible for binding the received name to the local name m. Intuitively,
Jn̄〈m〉 . P K first takes a copy of the encoded name at location n′ and keeps it
at the local address a. Then a copy of the encoded name at location m′ is
taken which, together with the continuation JP K, is sent to the Send part of
the encoded name at a. The Send part is then retrieved, and finally the rest
of the encoded name at location a is discarded.

Jn(m) . P K is encoded using the same template, but it is a bit more com-
plicated due to the binding. First and foremost, we restrict the location of the
formal parameter of the input prefix to ensure that this is only available to
the continuation, and that it can be α-converted. Secondly, we use the Bindm

process to create a new location to contain the received, encoded name.

There are several relevant observations to be made from the encoding.
First, our encoding of name substitution relies heavily on the ability to com-
municate with resources in local, named locations in Homer and our ability
to copy resources. We use the ability to communicate with resources in local,
named locations to localise the communication instead of using name substitu-
tion as in the CHOCS encoding. We make use of the non-linearity of Homer to
take a copy of the encoding of a name each time we use it. Secondly, strongly
mobile resources are utilised in several places in the encoding: in the encoding
of Receiven and in the two prefixes where we send resources to local addresses
and let them compute, before taking the resources up again.

Also note that there is a subtle difference between reactions of π-calculus
processes and reactions in our π-calculus with explicit substitutions (and in
the encoding). Reaction in the π-calculus (P →π P ′) can reduce the set of free
names, while this set is preserved in the substitutions and hence remains fixed
in our encoding. Actually, the same situation occurs in Milner and Jensen’s
encoding of the asynchronous π-calculus (without replication and summation)
as a bigraphical reactive system [6].

10



Bundgaard, Hildebrandt and Godskesen

Finally, note how the continuation passing style of the encoding facilitates
the encoding of synchronous communication.

4.1 An Example

As an example of how our encoding properly simulates reactions in the π-
calculus with explicit substitutions, we look at the process

idA ` n̄〈m〉 . m(d) . P | n(f) . f̄〈e〉 . Q →πσ

idA[f 7→ m] ` m(d) . P | f〈e〉 . Q →πσ

idA[f 7→ m][d 7→ e] ` P | Q ,

where A is the set of free names in n̄〈m〉 . m(d) . P | n(f) . f̄〈e〉 . Q. Letting
r = Πn∈A n′〈JnK〉, we get the following reductions

Jn̄〈m〉 . m(d) . P K ‖ Jn(f) . f̄〈e〉 . QK ‖ r ↘ ∗

n〈JmK〉 . Jm(d) . P K ‖ (f ′)(n(z) . (a)(Jf〈e〉 . QKz/f
)) ‖ r ↘ ∗

(f ′)
(

Jm(d) . P K ‖ Jf̄〈e〉 . QK ‖ f ′〈JmK〉 ‖ r
)

↘ ∗

(f ′)(d′)
(

JP K ‖ JQK ‖ d′〈JeK〉 ‖ f ′〈JmK〉 ‖ r
)

= JidA[f 7→ m][d 7→ e] ` P | QK ,

where Jf〈e〉 . QKz/f
= a〈Bindf 〉 ‖ av〈z〉 . a(z′) . (Jf̄〈e〉 . QK ‖ z′) is the part of

the Receiven process that with help from Bindf binds the received name to
the local name f and then runs the continuation Jf̄〈e〉 . QK.

5 Proof of Correspondence

In this section we prove the soundness of the encoding. Following the approach
in [10], we first show that there is an operational correspondence between a
π-calculus process σ ` P and its encoding Jσ ` P K in Homer.

We define strong barbs in a π-calculus term P as usual σ ` P ↓ σn, if
σ ` P can perform an input action with subject n, we define weak barbs,
σ ` P ⇓ n, if σ ` P →∗

πσ↓ n. Correspondingly in Homer, we write p ↓ n if p
can perform a receive action n(m) and p ⇓ n, if p ↘ ∗ ↓ n. We then define
a matching barbed bisimilarity between π-calculus and Homer terms.

Definition 5.1 Matching barbed bisimilarity is the largest relation
.

≈ ⊆ Pπσ/α×

Pc/α, if whenever (σ ` P , q) ∈
.

≈,

• if σ ` P →πσ σ′ ` P ′ then there exists q′ such that q ↘ ∗ q′ and σ′ ` P ′
.

≈ q′

• if q ↘ q′ then there exists P ′ and σ′ such that σ ` P →∗
πσ σ′ ` P ′ and

σ′ ` P ′
.

≈ q′

• if σ ` P ↓ n then q ⇓ n

11
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• if q ↓ n then σ ` P ⇓ n

The main result of this paper is that there is a matching barbed bisimula-
tion between the encoding and the encoded process.

Theorem 5.2 For all π-calculus processes P and substitutions σ, we have

σ ` P
.

≈ Jσ ` P K.

Definition 5.3 Barbed bisimilarity in Homer is the largest symmetric relation
.

≈H on Pc/α, such that whenever p
.

≈H q,

• if p ↓ n then q ⇓ n

• if p ↘ p′, then there exists q′ such that q ↘ ∗ q′ and p′
.

≈H q′

From Thm. 5.2 it follows that the encoding is fully abstract with respect
to barbed bisimulation.

Corollary 5.4 Let
.

≈π denote the standard barbed bisimilarity in π-calculus,

then we have σ ` P
.

≈π σ ` Q iff Jσ ` P K
.

≈H Jσ ` QK.

From the compositionality of the encoding we can prove soundness with
respect to barbed congruence.

Theorem 5.5 Letting CH denote a Homer context, Cπ a π-calculus context, we

have that ∀CH . CH(Jσ ` P K)
.

≈H CH(Jσ ` QK) implies ∀Cπ∀σ′. σσ′ ` Cπ(P )
.

≈π

σσ′ ` Cπ(Q), such that dom σ′ ⊇ fn(Cπ) \ dom σ and dom σ′ ∩ dom σ = ∅.

6 Conclusions and Future Work

In this paper we have presented a novel encoding of the name-passing, and
hence name substitution, of the π-calculus in Homer using process-passing,
strongly mobile resources, named nested locations, and local names. We have
used a continuation passing style to give an elegant encoding of synchronous
communication. We introduced a π-calculus with explicit substitutions to
maintain the set of free names under reaction, and for the purpose of making
the correspondence intuitive. In this paper we described only an encoding of
the finite π-calculus without matching, we will describe how to encode the full
π-calculus, including replication and matching, in a forthcoming paper.

Several interesting questions arise from the work done in this paper. First
and foremost, a logical next step would be to see if it is possible to encode
a version of Homer extended with name-passing in Homer. It is not clear
at this point how to make an encoding like this, or if it is possible at all.
Secondly, it would be interesting to look for a completeness result for the
encoding with respect to barbed congruence. As mentioned in [10], this is a
difficult problem for synchronous calculi. A possible solution could be to use a
labelled bisimulation characterisation of barbed congruence in both π-calculus
and Homer. We explore labelled bisimulation congruence in Homer in [5].

12
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A Reductions of Prefixes

As explained in section 4, our encoding requires several communications in
Homer in order to mimic a single reaction in the π-calculus. We call the
step that corresponds to a reaction in the π-calculus the reaction step, and
the additional steps bookkeeping steps. From the encoding we see that for
an output prefix there are only bookkeeping steps before the reaction step,
whereas for an input prefix there are also bookkeeping steps after the reaction
step.

We index our encoding of a π-calculus prefix to capture the intuition that
a π-calculus prefix corresponds to a sequence of Homer processes. We take
index 0 to be the original translation of the prefix (before any bookkeeping
reductions have occurred in the encoding), i.e. Jn〈m〉 . P K0

σ = Jn〈m〉 . P K and
then define Jn〈m〉 . P Kk such that

Jn〈m〉 . P K0
σ ↘ . . . ↘ Jn〈m〉 . P K6

σ = σn〈JσmK〉 . JP K .

More precisely, given a substitution σ, we define Jn〈m〉 . P Kk
σ, for 0 ≤ k ≤ 6,

as

Jn〈m〉 . P K0
σ = Jn〈m〉 . P K

Jn〈m〉 . P K1
σ = (a)(a〈JσnK〉 ‖ m′ . y . asv〈y〉 . asc〈JP K〉 . as(x′′) . a(z) . x′′)

Jn〈m〉 . P K2
σ = (a)(a〈JσnK〉 ‖ asv〈JσmK〉 . asc〈JP K〉 . as(x′′) . a(z) . x′′)

Jn〈m〉 . P K3
σ = (a)(a

〈

s〈c(y) . σn〈JσmK〉 . y〉 ‖ r〈Receiveσn〉
〉

‖ asc〈JP K〉 . as(x′′) . a(z) . x′′)

Jn〈m〉 . P K4
σ = (a)(a

〈

s〈σn〈JσmK〉 . JP K〉 ‖ r〈Receiveσn〉
〉

‖ as(x′′) . a(z) . x′′)

Jn〈m〉 . P K5
σ = (a)(a

〈

r〈Receiveσn〉
〉

‖ a(z) . σn〈JσmK〉 . JP K)

Jn〈m〉 . P K6
σ = σn〈JσmK〉 . JP K ,

where we have underlined the synchronising prefixes and emphasised some
of the resource boundaries for readability. Notice that in index 0 we need a
location n′ in the environment, in index 1 a location m′, and in index 6 we
need a matching co-action in the environment in order to be able to perform
the reaction.

14
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Similarly, we define Jn(m) . P Kk
σ, for 0 ≤ k ≤ 5, as

Jn(m) . P K0
σ = Jn(m) . P K

Jn(m) . P K1
σ = (a)(m′)(a〈JσnK〉 ‖ arv〈Bindm〉 . arc〈JP K〉 . ar(x′′) . a(z) . x′′)

Jn(m) . P K2
σ = (a)(m′)(a

〈

s〈Sendσn〉 ‖ r〈c(y) . σn(z) . (a)(a〈Bindm〉 ‖

av〈z〉 . a(z′) . (y ‖ z′))〉
〉

‖ arc〈JP K〉 . ar(x′′) . a(z) . x′′)

Jn(m) . P K3
σ = (a)(m′)(a

〈

s〈Sendσn〉 ‖

r〈σn(z) . (a)(a〈Bindm〉 ‖ av〈z〉 . a(z′) . (JP K ‖ z′))〉
〉

‖

ar(x′′) . a(z) . x′′)

Jn(m) . P K4
σ = (a)(m′)(a

〈

s〈Sendσn〉
〉

‖ a(z) . σn(z) . (a)(a〈Bindm〉 ‖

av〈z〉 . a(z′) . (JP K ‖ z′)))

Jn(m) . P K5
σ = (m′)(σn(z) . (a)(JP Kz/m

))

JP K0
e/m

= (m′)(a)(a〈Bindm〉 ‖ av〈JeK〉 . a(z′) . (JP K ‖ z′))

JP K1
e/m

= (m′)(a)(a〈m′〈JeK〉〉 ‖ a(z′) . (JP K ‖ z′)) ,

where JP Kz/m
= a〈Bindm〉 ‖ av〈z〉 . a(z′) . (JP K ‖ z′). Again, notice that in

index 0 we need a location n′ in the environment, and in index 5 we need
a matching co-action in the surrounding environment. JP K0

e/m
and JP K1

e/m

represent the binding steps (to the local name m) after a name JeK has been
input.

B Proof of Correspondence

We consider π-calculus processes in a (pre) normal form in order to ease the
proof.

Definition B.1 A normal form for a π-calculus process P is defined as follows

P = (νñ)
(

I1 | · · · | Ik | O1 | · · · | Om

)

,

where each Ii is on the form x(y) . Pi and each Oi is on the form x〈y〉 . P ′
i ,

both for some x, y, and where P1, . . . , Pk and P ′
1, . . . , P

′
m are in normal form.

Proposition B.2 Every π-calculus term P is structurally congruent to a term

P ′ in normal form.

Definition B.3 A prenormal form for a π-calculus process P is defined as
follows

P = (νñ)
(

I1 | · · · | Ik | O1 | · · · | Om | P1 | · · · | Pl

)

, (?)
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where each Ii is on the form x(y) . P ′
i , and each Oi is on the form x〈y〉 . P ′′

i ,
for some names x, y, and where P ′

1, . . . , P
′
k and P ′′

1 , . . . , P ′′
m are in normal form

and P1, . . . , Pl are in normal form.

It is easy to prove that if P is a π-calculus process on prenormal form
and σ ` P →πσ P ′, then there exists a P ′′ ≡π P ′, and P ′′ is on prenormal
form. Hence, we need only to consider processes on prenormal form, both in
π-calculus with explicit substitutions and their encodings in Homer, and we
do not lose any behaviour because of this.

The processes P1, . . . , Pl will correspond to input prefixes in the encoding,
which have received a value, but have not completed the following bookkeep-
ing. In more detail, we translate processes on prenormal form (?) into the
following Homer processes

Jσ ` P K(i,o,p,e,m) = (m̃)
(

(ñ′)
(

JI1K
i1
σ ‖ · · · ‖ JIkK

ik
σ ‖ JO1K

o1

σ ‖ · · · ‖ JOmKom
σ

‖ JP1K
p1

e1/m1

‖ · · · ‖ JPlK
pl

el/ml

‖ Πn∈ñ n′〈JnK〉
)

‖ r
)

,

(??)
where m̃ = {m′ | m ∈ dom σ and m 6= σm}, ñ′ = {n, n′ | n ∈ ñ} and
r = Πn∈dom σ n′〈JσnK〉. We introduced the notation J−K(i,o,p,e,m), where

• i is the list of indexes of the input prefixes 〈i1, . . . , ik〉 (e.g. for each ij,
0 ≤ ij ≤ 6),

• o is the list of indexes of the output prefixes 〈o1, . . . , om〉 (e.g. for each oj,
0 ≤ oj ≤ 5),

• p is the list of indexes of the preforms 〈p1, . . . , pl〉 (e.g. for each pj, 0 ≤ pj ≤
1), and the lists e and m are lists of names, consisting of the names received
in the input and the local names, respectively. Notice that the length of the
lists p, e, and m must be the same, l.

Proof of Theorem 5.2 (Sketch) Define a relation R, such that for all π-
calculus processes P on the form of (?), all substitutions σ, and for all possible
lists i, o, p, e, m (with respect to P )

σ[m 7→ e] ` P R Jσ ` P K(i,o,p,e,m) .

We show that R is a matching barbed bisimulation. We prove each of the four
conditions of Definition 5.1 separately. In the following cases assume that we
have taken an arbitrary pair from R (e.g. σ[m 7→ e] ` P R Jσ ` P K(i,o,p,e,m)).

First condition: There are four possible cases to consider here. The only
type of synchronisation that can occur is between an output and an input
prefix, and either of these can be in preform. We consider only one of the
cases where neither of the prefixes is in preform.

• We have an input prefix Ii, 1 ≤ i ≤ k, of the form n(m) . P ′ and an output
prefix Oj, 1 ≤ j ≤ m, of the form h〈f〉 . Q′. Without loss of generality,

assume that the form of Q′ is (νñQ)
(

IQ
1 | · · · | IQ

k′ | OQ
1 | · · · | OQ

m′

)

and the
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form of P ′ is (νñP )
(

IP
1 | · · · | IP

k′′ | OP
1 | · · · | OP

m′′

)

, and that σn = σh, σf =
g. After the synchronisation, we have the following expression on prenormal
form

σ[m 7→ e][m 7→ g] ` (ññP ñQ)
(

I1 | · · · | Ii−1 | Ii+1 | · · · | Ik | IQ
1 | · · · | IQ

k′

| IP
1 | · · · | IP

k′′ | O1 | · · · | Oj−1 | Oj+1 | · · · | Om | OP
1 | · · · | OP

m′

| OQ
1 | · · · | OQ

m′′ | P1 | · · · | Pl

)

.

(B.1)
In Homer, our output prefix is on the form Jh〈f〉 . Q′Ki′

σ , so after 6 − i′

reductions we have Jh〈f〉 . Q′K6
σ = σh〈JσfK〉 . JQ′K. For our input prefix

we have Jn(m) . P ′Kj′

σ , so after 5 − j ′ reductions we have Jn(m) . P ′K5
σ =

(m′)(σn(z) . (a)(JP ′Kz/m
)), and hence we have the reductions

Jh〈f〉 . Q′K6
σ ‖ Jn(m) . P ′K5

σ ↘ JQ′K ‖ JP ′K0
g/m

↘

JQ′K ‖ JP ′K1
g/m

↘ (m′)(JQ′K ‖ JP ′K ‖ m′〈JgK〉) .

So we end up with the following Homer process

(m̃)
(

(ñ′ñP
′ñQ

′)
(

JI1Kσ ‖ · · · ‖ JIi−1Kσ ‖ JIi+1Kσ ‖ · · · ‖ JIkKσ ‖ JIQ
1 K0

σ ‖ · · · ‖

JIQ
k′K0

σ ‖ JIP
1 K0

σ ‖ · · · ‖ JIP
k′′K0

σ ‖ JO1Kσ ‖ · · · ‖ JOj−1Kσ ‖ JOj+1Kσ ‖ · · · ‖ JOmKσ

‖ JOP
1 K0

σ ‖ · · · ‖ JOP
m′K0

σ ‖ JOQ
1 K0

σ ‖ · · · ‖ JOQ
m′′K0

σ ‖ JP1Ke1/m1
‖ · · · ‖

JPlKel/ml
‖ Πn∈ñ n′〈JnK〉

)

‖ r
)

,

(B.2)
where ñP

′ = {n, n′ | n ∈ ñP} and ñQ
′ = {n, n′ | n ∈ ñQ}, and m̃ and r

are defined as in (??), since we have just extended σ with [m 7→ g]. Notice
that we have left out the indices on the untouched prefixes, since these are
unchanged. The π-calculus process in (B.1) and the Homer process in (B.2)
are related by R.

Second condition : For the second condition there are again several cases
to consider: either the reduction can come from an intern step of one of the
components of the parallel composition, or a synchronisation between an input
on index 5 and an output on index 6. We present only the last of the cases.

• If the reduction came from a synchronisation between an input Ii on in-
dex 5 (Jl(m) . P ′K5

σ) and an output Oj on index 6 (Jl′〈n〉 . Q′K6
σ), assuming

σl = σl′ and σn = g. Then these can synchronise to become JP ′K0
g/m

and

JQ′K, respectively. Assume without loss of generality, that the form of Q′ is
(νñQ)

(

IQ
1 | · · · | IQ

k′ | OQ
1 | · · · | OQ

m′

)

. Then the entire expression after the
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synchronisation in Homer have this form

(m̃)
(

(ñ′ñQ
′)
(

JI1Kσ ‖ · · · ‖ JIi−1Kσ ‖ JIi+1Kσ ‖ · · · ‖ JIkKσ ‖ JIQ
1 K0

σ ‖ · · · ‖

JIQ
k′K0

σ ‖ JO1Kσ ‖ · · · ‖ JOj−1Kσ ‖ JOj+1Kσ ‖ · · · ‖ JOmKσ ‖ JOQ
1 K0

σ ‖ · · · ‖

JOQ
m′K0

σ ‖ JP1Ke1/m1
‖ · · · ‖ JPlKel/ml

‖ JP ′K0
g/m

‖ Πn∈ñ n′〈JnK〉
)

‖ r
)

,

(B.3)
where ñQ

′ = {n, n′ | n ∈ ñQ}, and m̃ and r are unchanged by the synchroni-
sation. Again, we have left out the indices on the untouched prefixes, since
these are unchanged.

We can match this synchronisation in the π-calculus by performing a
synchronisation between Ii (l(m) . P ′) and Oj (l′〈n〉 . Q′) producing the
following prenormal form

σ[m 7→ e][m 7→ g] ` (ññQ)
(

I1 | · · · | Ii−1 | Ii+1 | · · · | Ik | IQ
1 | · · · | IQ

k′

| O1 | · · · | Oj−1 | Oj+1 | · · · | Om | OQ
1 | · · · | OQ

m′ | P1 | · · · | Pl | P ′
)

.

(B.4)
Notice how the substitution [m 7→ g] corresponds to the process in prenor-
mal form JP ′K0

g/m
, as required by R. Again, the π-calculus process in (B.4)

is related to the Homer process in (B.3) by R.

Third condition: Assume that we have an unrestricted input prefix σ ` P ↓
n, for some n. From the form of our π-calculus expressions, we know that this
can either come from some input prefix Ii, for 1 ≤ i ≤ k, or from one of the
processes in preform Pi, for 1 ≤ i ≤ l. Here we only consider the first case.

• If one of the input prefixes Ii is on the form l(m).P ′, and assuming that σl =
n, then it gives rise to an unrestricted input on n. From the correspondence,
we have Jl(m) . P ′Kj

σ for some j, where 0 ≤ j ≤ 5. Hence Jl(m) . P ′Kj
σ can

make 5 − j reductions and become Jl(m) . P ′K5
σ, and Jl(m) . P ′K5

σ ↓ n.

Fourth condition: We assume that Jσ ` P K(i,o,p,e,m) ↓ n. Considering the
induced prenormal form (??) and the encoding of prefixes, this can only occur,
if an unrestricted receive prefix exists in index 5 (JIiK

5
σ, for some 1 ≤ i ≤ k).

Without loss of generality, we assume that Ii is of the form l(m) . P ′ and that
σl = n). Hence, we have that σ ` P ↓ n. 2
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