
Approximate Furthest Neighbor in
High Dimensions

Rasmus Pagh, Francesco Silvestri, Johan Sivertsen, and
Matthew Skala

October 13, 2015

J. Sivertsen Approximate Furthest Neighbor in High Dimensions 1/20



Agenda

I Annulus Query

I The Furthest Neighbor Problem

I Techniques and results

I Experiments

I Open problems

J. Sivertsen Approximate Furthest Neighbor in High Dimensions Outline 2/20



Annulus query

Definition

Given S ⊆ Rd a query point q and parameters r ,w > 1 return x
such that r

w ≤ ||x − q||2 ≤ wr .

x

q

r/w

rw

Applications in recommender systems.
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The Furthest Neighbor Problem

Definition

Let S ⊆ Rd . Given some q ∈ Rd find x with max ||x − q||2.

x

q
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Sublinear Furthest Neighbor

I For q ∈ {0, 1}d :

I Furthest Neighbor −q = Nearest Neighbor q [Goel et al.,’09]

I Sublinear time Nearest Neighbor breaks SETH [Williams,’04],
[Alman & Williams,’15]

J. Sivertsen Approximate Furthest Neighbor in High Dimensions The Furthest Neighbor Problem 5/20



Sublinear Furthest Neighbor

I For q ∈ {0, 1}d :

I Furthest Neighbor −q = Nearest Neighbor q [Goel et al.,’09]

I Sublinear time Nearest Neighbor breaks SETH [Williams,’04],
[Alman & Williams,’15]

J. Sivertsen Approximate Furthest Neighbor in High Dimensions The Furthest Neighbor Problem 5/20



Sublinear Furthest Neighbor

I For q ∈ {0, 1}d :

I Furthest Neighbor −q = Nearest Neighbor q [Goel et al.,’09]

I Sublinear time Nearest Neighbor breaks SETH [Williams,’04],
[Alman & Williams,’15]

J. Sivertsen Approximate Furthest Neighbor in High Dimensions The Furthest Neighbor Problem 5/20



Approximate Furthest Neighbor

Definition

Let S ⊆ Rd . Given some q ∈ Rd , let x be the furthest neighbor.
Return x ′ such than ||x ′ − q|| ≥ ||x−q||c . We call this c-FN.

x

q

J. Sivertsen Approximate Furthest Neighbor in High Dimensions The Furthest Neighbor Problem 6/20



Approximate Furthest Neighbor

Definition

Let S ⊆ Rd . Given some q ∈ Rd , let x be the furthest neighbor.
Return x ′ such than ||x ′ − q|| ≥ ||x−q||c . We call this c-FN.

x

x′
q

J. Sivertsen Approximate Furthest Neighbor in High Dimensions The Furthest Neighbor Problem 6/20



Approximate Furthest Neighbor

Definition

Let S ⊆ Rd . Given some q ∈ Rd , let x be the furthest neighbor.
Return x ′ such than ||x ′ − q|| ≥ ||x−q||c . We call this c-FN.

x

x′
q

||x−q||
c

J. Sivertsen Approximate Furthest Neighbor in High Dimensions The Furthest Neighbor Problem 6/20



Related work

Though not nearly as popular as Nearest Neighbor there is notable
prior work on Furthest neighbor.

Paper c Query Time
Bespamyatnikh ’96 c > 1 O((1 + 1

c−1)d−1)

Goel et al. ’01 c >
√

2 O(d2)

Indyk et al. ’03 c > 1 O(n1/c
2
d log(1−1/c)/2(n) log1+δ(d) log log1+δ d)

This paper c > 1 O(n1/c
2

log
c2

2
− 1

3 (n)(d + log n)

I Split tree

I Minimum enclosing ball

I Random Projections, binary search

I Random Projections, single query
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Random Projections

x1

x2
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Random Projections

Lemma (Distance preservation)

ai · (x1 − x2) ∼ N (0, 1)||x1 − x2||2 (1)

x1

x2

ai = {g1, g2, .., gd} where gj ∼ N (0, 1)
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Crossing the threshold

near

far

ai(x− q)
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Crossing the threshold

Lemma (Threshold projection)

∃∆ :

Pr
a

[a · (x − q) ≥ ∆] ≤ logc
2/2−1/3 n

n
, for ||x − q||2 < r/c

Pr
a

[a · (x − q) ≥ ∆] ≥ (1− o(1))
1

n1/c2
, for ||x − 1||2 ≥ r/c

near

far

∆
ai(x− q)
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Data structure

Points are stored in their projection order. We use ` = 2n1/c
2

projections and store the top m points in each.

aT1 x

aT2 x

aT3 x
x2 x3 x1 x5

x5 x3 x1 x2

x5 x2 x3 x1

Si∈[`]

m = 1 + e2` logc2/2−1/3 n

O(`md) space
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Query procedure
I Create an empty priority queue PQ.

I Add the ` = 2n1/c
2

points .
I Points are added with priority ai · x − ai · q.
I Take out the top priority element and examine its distance to

q.
I If it is not far enough away take its neighbor on the projection

it came from.
I We will look at at most m = 1 + e2` log nc

2/2−1/3 points.
I Time O(` + m(d + log `))

aT1 x

aT2 x

aT3 x
x2 x3 x1 x5

x5 x3 x1 x2

x5 x2 x3 x1

Si∈[`]

m

PQ
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Theoretical results

Corollary (Failure probability)

Pr [Missing the far point] ≤ (1− 1/n1/c
2
)` ≤ 1/e2.

Pr [Too many close points] ≤ Pr [` logc
2/2−1/3 n > m] ≤ 1/e2.

near

far

∆
ai(x− q)

` = 2n1/c
2

m = 1 + e2`
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Theoritical results

Theorem (Approximate Furthest Neighbor)

There exists a datastructure for c − FN over any set S ∈ Rd of at
most n points, such that:

I Queries take Õ(n1/c
2
d) time.

I The data structure uses Õ(n1+1/c2d) space.

With probability of success at least 1− 2/e2 ≥ 0.72
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Experimental results

NASA dataset d = 128
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Experimental results
Normally distributed dataset d = 10

Query Independent: Use same size m set for all query points.
Relation to convex hull.
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Combining these techniques with LSH gets:

Theorem (Annulus query)

There exists a data structure for (c ,w , r)-AAQ over any set
S ∈ Rd of at most n points, such that:

I Queries can be answered in time Õ(nρ+1/c2)

I The data structure takes space Õ(n1+ρ+1/c2) in addition to
storing S .

The failure probability of the data structure is less than 0.98.
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Open problems

I Expand the random projection technique to other spaces.
General Metric, Hamming?

I Use furthest neighbor to improve LSH output sensitivity?

I Improve the space usage?
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Thank you!

Questions?
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