Approximate Furthest Neighbor in
High Dimensions

Rasmus Pagh, Francesco Silvestri, Johan Sivertsen, and
Matthew Skala

October 13, 2015

IT UNIVERSITY OF COPENHAGEN

J. Sivertsen

Approximate Furthest Neighbor in High Dimensions



Agenda

v

Annulus Query
The Furthest Neighbor Problem
Techniques and results

v

v

v

Experiments

v

Open problems

J. Sivertsen Approximate Furthest Neighbor in High Dimensions Outline 2/20



Annulus query

Definition

Given S C RY a query point g and parameters r, w > 1 return x
such that = < |[x — ql[2 < wr.
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Annulus query

Definition

Given S C RY a query point g and parameters r, w > 1 return x
such that = < |[x — ql[2 < wr.

Applications in recommender systems.
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The Furthest Neighbor Problem

Let S C RY. Given some g € R? find x with max ||x — q||».
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Sublinear Furthest Neighbor

» For g € {0,1}¢:
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Sublinear Furthest Neighbor

» For g € {0,1}¢:
» Furthest Neighbor —g = Nearest Neighbor g [Goel et al.,"09]
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Sublinear Furthest Neighbor

» For q € {0,1}9:
» Furthest Neighbor —g = Nearest Neighbor g [Goel et al.,"09]

» Sublinear time Nearest Neighbor breaks SETH [Williams,'04],
[Alman & WilIiams,'lS]
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Approximate Furthest Neighbor

Let S C RY. Given some g € RY, let x be the furthest neighbor.
Return x” such than ||x’ — q|| > @. We call this c-FN.
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Related work

Though not nearly as popular as Nearest Neighbor there is notable
prior work on Furthest neighbor.

Paper c Query Time

Bespamyatnikh '96 c¢>1  O((1+ ;)% 1)

Goel et al. '01 c>Vv2 O(d?)

Indyk et al. '03 c>1 O dlogt=1I/2(n)log; 5(d)loglogy . s d)
(.‘2

This paper c>1 O IogT_%(n)(d + log n)
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Indyk et al. '03 c>1 O dlogt=1I/2(n)log; 5(d)loglogy . s d)
(.‘2
This paper c>1 O IogT_%(n)(d + log n)
> Split tree

» Minimum enclosing ball
» Random Projections, binary search

» Random Projections, single query
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Random Projections
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Random Projections

Lemma (Distance preservation)

ai - (x1 — x2) ~ N(0,1)[|x1 — x2]|2 (1)

ai = {g1,&,..,84} where g; ~ N(0,1)
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Crossing the threshold

near

far

> a;(r — q)
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Crossing the threshold

Lemma (Threshold projection)
JA

c?/2-1/3 7

lo
s , for |[x —qlla <r/c

Pria-(x—q) > A] <

Par[a-(x—q)zA]Z(l—o(l)) for ||x = 1|]2 > r/c

nl/c?’

near

> a;(x—q)
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Data structure

Points are stored in their projection order. We use £ = 2nt/e®

projections and store the top m points in each.

L5 L2 €T3 L1 T
————+———-0-————0————-0————>a1:p

L5 T3 T1 T2 T
Sie[@] ————+———-0-————0————-0————>a2;1;

i) T3 T Is T
—————0————-0-————0————-0————»0,33;

m=1+ 62€log02/2_1/3 n

O(¢md) space
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Query procedure

» Create an empty priority queue PQ.

Sielq)

L5 L2 €3 Z1

—————o————-o-————o————o————»a,{x

rs  x3 Ty T2 T

S —-e - ()T

Ty T3 T1 Tp T

STt ———e-—-> (3
m

PQ
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Query procedure

» Create an empty priority queue PQ.
» Add the £ = 2n'/<* points .
» Points are added with priority a; - x — a; - q.

Z5 Z2 Z3
————————*——— - — —
Z5 Zs3 Z1
Sie[é] ————————*——— - — — ——+a§x PQ
Ty x3 11 T
————————*——— - — — --*>a3xr
m
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Query procedure

» Create an empty priority queue PQ.
2 .
» Add the ¢ = 2n/<" points .
» Points are added with priority a; - x — a; - q.
> Take out the top priority element and examine its distance to
qg.
» If it is not far enough away take its neighbor on the projection
it came from.
xIs ) X3 €T T
—————————*——— & — — — ———baljp _____
- -7 T
Is I3 X1
Sie[é] ———— - - ——— ———>ag;(; PQ
— T2
X2 I3 X1
———— - — - —— - —— — ———>a3;[;
m
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Query procedure

v vy

Create an empty priority queue PQ.

Add the ¢ = 2n'/<* points .

Points are added with priority a; - x — a; - gq.

Take out the top priority element and examine its distance to
q.

If it is not far enough away take its neighbor on the projection
it came from.

. 2 /y__ .
» We will look at at most m = 1 + e2(log n¢/2=1/3 points.
xIs X9 X3 €T T
———————— ——— & —— — = ayr______
- - \\‘
Ts z3 Zy1
Sie[é] ————————— e ——— ———>ag;(; PQ
— X9
T2 z3 Ty
————————*——— - — — --*>a3xr
m
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Query procedure

» Create an empty priority queue PQ.
» Add the £ = 2n'/<* points .
» Points are added with priority a; - x — a; - q.
> Take out the top priority element and examine its distance to
q.
» If it is not far enough away take its neighbor on the projection
it came from.
> We will look at at most m = 1 + e2/log n<"/2=1/3 points.
» Time O£+ m(d + log¥))
Siep e T P
— T2
Z2 Zs3 Z1
i S e U alls ¢ 8
m

J
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Theoretical results

Corollary (Failure probability)

Pr[Missing the far point] < (1 —1/n%/<*)t < 1/€.
Pr[Too many close points| < Pr[EIogc2/2_1/3 n>m<1/e’.

near

> a;(x—q)

¢ =2nt/¢
m=1+ el
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Theoritical results

Theorem (Approximate Furthest Neighbor)

There exists a datastructure for c — FN over any set S € R? of at
most n points, such that:

> Queries take O(n'/<*d) time.
> The data structure uses O(n*+1/<d) space.

With probability of success at least 1 —2/e? > 0.72
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Experimental results

NASA dataset d = 128

1.5
l range/quartiles/median

1.4 sampl¢ mean

uery-independent --f------ee-
1.3 F % |

=S| L1

0 5 10 15 20 25 30

approximation achieved (c)

projections and points examined (£ = m)

Fig. 3. Experimental results for SISAP nasa database
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Experimental results
Normally distributed dataset d = 10

= L5
g range/quartiles/median .
Z 14 sample mean A
5 query-independent ----seeeeee
] 1.3 +
g
= 1.2 | i
=)
g
% 1.1 |
2
> 1
0 5 10 15 20 25 30

projections and points examined (¢ = m)

Fig. 2. Experimental results for 10-dimensional normal distribution

Query Independent: Use same size m set for all query points.
Relation to convex hull.
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Combining these techniques with LSH gets:

Theorem (Annulus query)

There exists a data structure for (c, w, r)-AAQ over any set
S € RY of at most n points, such that:

g . . == 2
» Queries can be answered in time O(nf’“/C )

> The data structure takes space O(n"+P+1/<*) in addition to
storing S.

The failure probability of the data structure is less than 0.98.
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Open problems

» Expand the random projection technique to other spaces.
General Metric, Hamming?
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Open problems

» Expand the random projection technique to other spaces.
General Metric, Hamming?

» Use furthest neighbor to improve LSH output sensitivity?
» Improve the space usage?
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Thank you!
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Thank you!
Questions?
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