
Under consideration for publication in Math. Struct. in Comp. Science

Categorical Models for Abadi-Plotkin’s Logic
for Parametricity

LARS BIRKEDAL1† and RASMUS E. MØGELBERG2

1 IT University of Copenhagen, Denmark,
2 IT University of Copenhagen, Denmark.

Received 17 February 2005

We propose a new category-theoretic formulation of relational parametricity based on a

logic for reasoning about parametricity given by Abadi and Plotkin (Plotkin and Abadi,

1993). The logic can be used to reason about parametric models, such that we may prove

consequences of parametricity that to our knowledge have not been proved before for

existing category-theoretic notions of relational parametricity. We provide examples of

parametric models and we describe a way of constructing parametric models from given

models of the second-order lambda calculus.

Contents

1 Introduction 3
2 Abadi & Plotkin’s logic 5

2.1 Second-order λ-calculus 5
2.2 The logic 7
2.3 Definable relations 7
2.4 The axioms 9

3 APL-structures 12
3.1 Soundness 17
3.2 Completeness 21

4 Parametric APL-structures 23
5 Consequences of parametricity 25

5.1 Dinaturality 25
5.2 Products 27
5.3 Coproducts 29
5.4 Initial algebras 31
5.5 Final coalgebras 35
5.6 Generalizing to strong fibred functors 38

† Corresponding Author. Full address: IT University of Copenhagen, Rued Langgaards Vej 7, DK-2300

Copenhagen S, Denmark. Email: birkedal@itu.dk. This work was partly supported by the Danish
Technical Research Council under grant no.: 56–00–0309

L. Birkedal and R.E. Møgelberg 2

6 Concrete APL-structures 41
6.1 A parametric non-well-pointed APL-structure 43

7 Comparing with Ma & Reynolds notion of parametricity 44
8 A parametric completion process 45

8.1 Internal models for λ2 46
8.2 Input for the parametric completion process 47
8.3 The completion process 48
8.4 The APL-structure 53

9 Parametric Internal Models 58
10 Conclusion 59
Appendix A Composable Fibrations 60
References 64

Categorical Models for Parametricity 3

1. Introduction

The notion of parametricity for models of polymorphic type theories intuitively states
that a function of polymorphic type behaves the same way on all type instances. Reynolds
(Reynolds, 1983) discovered that parametricity is central for modeling data abstraction
and proving representation independence results. The idea is that a client of an abstract
data type is modeled as a polymorphic function; parametricity then guarantees that
the client cannot distinguish between different implementations of the abstract data
type. Reynolds also observed that parametricity can be used for encoding (inductive and
coinductive) data types. See (Wadler, 1989; Mitchell, 1996) for expository introductions.

In 1983 Reynolds gave a precise formulation of parametricity called relational para-
metricity for set-theoretic models (Reynolds, 1983). It basically states that a term of
polymorphic type preserves relations between types: if term u has type

∏
α : Type. σ and

R : Rel(τ, τ ′) is a relation between τ and τ ′, then

u(τ)(σ[R])u(τ ′),

where σ[R] is a relational interpretation of the type σ defined inductively over the struc-
ture of σ. Equivalently, parametricity could be defined as the identity extension property:
for all terms u, v of type σ(~α),

u(σ[~eqα])v ⇐⇒ u = v.

However, Reynolds himself later proved that set-theoretic models do not exist (Reynolds,
1984) in classical set-theory (it was later discovered that set theoretic models do exist
in some models of intuitionistic set theory (Pitts, 1987; Pitts, 1989)). In 1992 Ma and
Reynolds (Ma and Reynolds, 1992) then gave a new formulation of parametricity phrased
in terms of more general models (PL-categories of Seely (Seely, 1987)). One may formu-
late Ma and Reynolds’ notion in the language of λ2-fibrations† as follows. The fibration
E → B is parametric with respect to a given logic on E if there exist a reflexive graph
of λ2-fibrations, whose restriction to the fibres over the terminal object is the reflexive
graph

E1
// LR(E1)oo

oo

of logical relations with domain, codomain maps and the middle map mapping a type to
the identity on that type. (See (Ma and Reynolds, 1992; Jacobs, 1999) for more details.)

In recent work by Birkedal and Rosolini on parametric domain-theoretic models it
became clear that this is not the right categorical formulation of parametricity: it appears
that the definition does not allow one to prove the expected consequences of parametricity
such as data abstraction and the encoding of data types. Indeed, these consequences have
only been proved for specific models, see, e.g., (Wadler, 1989; Hasegawa, 1994), using
specific properties of the models.

In this article we propose a new category-theoretic formulation of parametricity, called
a parametric APL-structure, which does allow one to prove the expected properties of

† A λ2-fibration is a fibration with enough properties to model second-order lambda calculus, see,
e.g., (Jacobs, 1999).

L. Birkedal and R.E. Møgelberg 4

parametricity in general. We build upon a logic for reasoning about parametricity given
by Abadi and Plotkin (Plotkin and Abadi, 1993). In this logic one can formulate para-
metricity as a schema and prove the expected consequences of parametricity. An APL-
structure is a category-theoretic model of Abadi and Plotkin’s logic, for which we prove
soundness and completeness, thereby answering a question posed in (Plotkin and Abadi,
1993, Page 5). Each APL-structure contains a model of the second-order lambda calculus,
which we may reason about using the logic.

We also provide a completion process that given an internal model of λ2 (see (Hyland
et al., 1990; Robinson and Rosolini, 1994)) produces a parametric APL-structure. In
special cases, the λ2-fibration of this APL-structure is the one obtained in (Robinson and
Rosolini, 1994) and thus we prove that the models obtained in (Robinson and Rosolini,
1994) in fact satisfy the consequences of parametricity (as expected, but not shown in
the literature before).

The consequences of parametricity proved earlier for specific models (Hasegawa, 1994;
Wadler, 1989; Dunphy, 2004) all seem to use well-pointedness, i.e., the property, that
morphisms f : A → B are determined by their values on global elements a : 1 → A.
For parametric APL-structures, we do not need to use well-pointedness to prove the
expected consequences of parametricity. Loosely speaking, the point is that our notion
of parametric APL-structure includes an appropriate extensional logic to reason with.
In loc. cit., the ambient world of set theory is used as the logic and thus extensionality
there amounts to asking for well-pointedness. We provide a family of concrete parametric
APL-structures, including non-well pointed ones. Thus parametricity is useful for proving
consequences also for non-well-pointed models.

In subsequent papers we will show how to modify the parametric completion process
to produce domain-theoretic parametric models and how to extend the notion of APL-
structure to include models of polymorphic linear lambda calculus (Plotkin, 1993).

The remainder of the paper is organized as follows. In Section 2, we recall Abadi and
Plotkin’s logic. The reader is warned that our version of the logic is slightly different
from the one described in (Plotkin and Abadi, 1993). In Section 3 we define the notion
of an APL-structure. We prove soundness and completeness with respect to Abadi and
Plotkin’s logic in sections 3.1 and 3.2. Section 4 defines the internal language of an APL-
structure and we define the notion of a parametric APL-structure. We also demonstrate
in Section 5 how to use the internal language to show consequences of parametricity
in parametric APL-structures. Section 5 mainly contain proofs of well-known results in
Abadi & Plotkin’s logic. However, since these proofs are by no means trivial, and to our
knowledge do not appear in the literature, and since we think they are of general interest,
we include them here.

Section 6 contains a definition of a concrete parametric APL-structure, and we also
mention a non-well-pointed parametric APL-structure. Section 7 contains a comparison of
our notion of parametricity with the one defined by Ma & Reynolds (Ma and Reynolds,
1992). The parametric completion process is described in Section 8. Since an internal
model of λ2 in a quasitopos has ambient logic corresponding to most of the constructions
in Abadi & Plotkin’s logic, there exists a natural APL-structure incorporating it, so we
may formulate the question if this model is parametric. This is done in Section 9.

Categorical Models for Parametricity 5

Appendix A contains definitions and theory concerning composable fibrations, i.e.,
pairs of fibrations such that the codomain of the first is the domain of the second. In
particular, we study the case of fibrations F→ E→ B where F→ E is a logic fibration,
and we study what is needed for it to model quantification along vertical maps in E and
quantification along maps in B. The definitions of this appendix are used in the definition
of an APL-structure.

Acknowledgments. We would like to acknowledge helpful discussions with Alex
Simpson and Martin Hyland and the constructive comments of the two anonymous ref-
erees.

2. Abadi & Plotkin’s logic

We first recall Abadi & Plotkin’s logic for reasoning about parametricity, originally de-
fined in (Plotkin and Abadi, 1993). We will use a slightly modified version of the logic.

Abadi & Plotkin’s logic is basically a second-order logic on the second-order λ-calculus
(λ2). Thus we begin by calling to mind the second order λ-calculus (a more formal
presentation can be found in e.g. (Jacobs, 1999)).

2.1. Second-order λ-calculus

Well-formed type expressions in second-order λ-calculus are expressions of the form:

α1 : Type, . . . , αn : Type ` σ : Type

where σ is built up from the αi’s using products (1, σ × τ), arrows (σ → τ) and quan-
tification over types. The latter means that if we have a type

α1 : Type, . . . , αn : Type ` σ : Type,

then we may form the type

α1 : Type, . . . , αi−1 : Type, αi+1 : Type, . . . , αn : Type `
∏
αi : Type. σ : Type

We do not allow repetitions in the list of α’s, and we call this list the kind context. It is
often denoted simply Ξ or ~α. We use σ, τ, ω to range over the set of types.

The terms in λ2 are of the form:

Ξ | x1 : σ1, . . . , xn : σn ` t : τ

where the σi and τ are well-formed types in the kind context Ξ. The list of x’s is called
the type context and is often denoted Γ. As for kind contexts we do not accept repetition
in type contexts.

The grammar for raw terms is:

t ::= x | λx : σ.t | t(t) | ? | 〈t, t〉 | πt | π′t | Λα : Type. t | t(σ)

corresponding to variables, λ-abstraction, function applications, an element of unit type,
pairing and projections on product types and second-order λ-abstractions and type appli-
cations. We use s, t, u to range over the set of terms, and as usual we consider α-equivalent

L. Birkedal and R.E. Møgelberg 6

Ξ | Γ, x : σ ` t : τ Ξ | Γ ` u : σ
β-reduction

Ξ | Γ ` (λx : σ. t)u = t[u/x]

Ξ, α | Γ ` t : τ Ξ ` σ : Type Ξ | Γwell-formed
β-reduction

Ξ | Γ ` (Λα : Type. t)σ = t[σ/α]

Ξ | Γ ` t : σ → τ
η-reduction

Ξ | Γ ` λx : σ. (tx) = t

Ξ | Γ ` t :
∏
α : Type. σ

η-reduction
Ξ | Γ ` Λα : Type. (tα) = t

Ξ | Γ ` t : σ Ξ | Γ ` u : τ

Ξ | Γ ` π〈t, u〉 = t

Ξ | Γ ` t : σ Ξ | Γ ` u : τ

Ξ | Γ ` π′〈t, u〉 = u

Ξ | Γ ` t : σ × τ

Ξ | Γ ` 〈πt, π′t〉 = t

Ξ | Γ ` t : 1

Ξ | Γ ` t = ?

Ξ | Γ ` t = t′ : σ Ξ | Γ, x : σ ` u : τ
replacement

Ξ | Γ ` u[t/x] = u[t′/x]

Ξ | Γ, x : σ ` t = s : τ

Ξ | Γ ` λx : σ. t = λx : σ. s

Ξ, α | Γ ` t = s Ξ | Γ well-formed

Ξ | Γ ` Λα. t = Λα. s

Fig. 1. Rules for external equality

terms equal. Most of the formation rules are well known from the simply-typed λ-calculus;
here we just recall the two additional rules for type abstraction and type application:

Ξ, α : Type | Γ ` t : σ
Ξ | Γ is well-formed

Ξ | Γ ` Λα : Type. t :
∏
α : Type. σ

Ξ | Γ ` t :
∏
α : Type. σ Ξ ` τ : Type

Ξ | Γ ` t(τ) : σ[τ/α]

What we have described above is called the pure second-order λ-calculus. In general
we will consider second-order λ-calculi based on polymorphic signatures (Jacobs, 1999,
8.1.1). Informally one may think of such a calculus as the pure second-order λ-calculus
with added type-constants and term-constants. For instance one may have a constant
type for integers or a constant type for lists α ` lists(α) : Type. We will be particularly
interested in the internal language of a λ2-fibration (see Section 3) which in general will
be a non-pure calculus.

2.1.1. Equality We consider an equality theory on second-order λ-calculus called external
equality. It is the least equivalence relation given by the rules in Figure 1.

Categorical Models for Parametricity 7

2.2. The logic

Abadi & Plotkin’s logic can be built on top of any second-order lambda calculus (based
on any polymorphic signature), so in the following we will assume that we are given one
such.

Formulas of Abadi & Plotkin’s logic live in contexts of elements of λ2 and relations on
types of λ2. The contexts look like

Ξ | Γ | R1 : Rel(τ1, τ ′1), . . . , Rn : Rel(τn, τ ′n),

where Ξ | Γ is a context of second-order λ-calculus and the τi and τ ′i are well-formed types
in context Ξ, for all i. The list of R’s is called the relational context and is often denoted
Θ. In this context as in the other contexts we do not accept repetitions of variable names.
It is important to notice that the relational and type contexts are independent of each
other in the sense that one does not affect whether the other is well-formed.

Formulas are given by the syntax:

φ ::= (t =σ u) | ρ(t, u) | φ ⊃ ψ | ⊥ | > | φ ∧ ψ | φ ∨ ψ | ∀α : Type. φ |

∀x : σ. φ | ∀R : Rel(σ, τ). φ | ∃α : Type. φ | ∃x : σ. φ | ∃R : Rel(σ, τ). φ,

where ρ is a definable relation (to be discussed below).
In the following we give formation rules for the above. First we have internal equality

Ξ | Γ ` t : σ Ξ | Γ ` u : σ

Ξ | Γ | Θ ` (t =σ u) : Prop

Notice here the notational difference between t = u and t =σ u. The former denotes
external equality and the latter is a formula in the logic. The rules for ⊃, ∨ and ∧ are
the usual ones. >, ⊥ are formulas in any context.

We have the formation rules for universal quantification:

Ξ | Γ, x : σ,Γ′ | Θ ` φ : Prop

Ξ | Γ,Γ′ | Θ ` ∀x : σ. φ : Prop

Ξ | Γ | Θ, R : Rel(σ, τ),Θ′ ` φ : Prop

Ξ | Γ | Θ,Θ′ ` ∀R : Rel(σ, τ). φ : Prop

Ξ, α,Ξ′ | Γ | Θ ` φ : Prop
Ξ,Ξ′ | Γ | Θ is well-formed

Ξ,Ξ′ | Γ | Θ ` ∀α : Type. φ : Prop

The same formation rules apply to the existential quantifier.

2.3. Definable relations

Definable relations are given by the grammar:

ρ ::= R | (x : σ, y : τ).φ | σ[~ρ].

A definable relation ρ always has a domain and a codomain, and we write ρ : Rel(σ, τ) to
denote that ρ has domain σ and codomain τ . There are 3 rules for this judgement. The

L. Birkedal and R.E. Møgelberg 8

first two are

Ξ | Γ | Θ, R : Rel(σ, τ),Θ′ ` R : Rel(σ, τ)

Ξ | Γ, x : σ, y : τ | Θ ` φ : Prop

Ξ | Γ | Θ ` (x : σ, y : τ). φ : Rel(σ, τ).
In the second rule above the variables x, y become bound in φ. For example, we have the
equality relation eqσ defined as (x : σ, y : σ). x =σ y and the graph relation of a function
〈f〉 = (x : σ, y : τ). fx =τ y if f : σ → τ .

The last rule for definable relations is

α1, . . . , αn ` σ : Type Ξ | Γ | Θ ` ρ1 : Rel(τ1, τ ′1), . . . , ρn : Rel(τn, τ ′n)

Ξ | Γ | Θ ` σ[~ρ] : Rel(σ(~τ), σ(~τ ′)).

The notation is a bit ambiguous, since by σ[~ρ] we mean to substitute each ρi for αi in
σ, and so the order of the α’s and the ρ’s is important. A more precise notation would
have been σ[ρ1/α1, . . . , ρn/αn], but we choose to use the more convenient σ[~ρ].

Observe that σ[~ρ] is a syntactic construction and is not obtained by substitution. In
(Plotkin and Abadi, 1993) σ[~ρ] is defined inductively from the structure of σ, but in our
case this is not enough, since we will need to form σ[~ρ] for type constants σ in Section 4.
The inductive definition of (Plotkin and Abadi, 1993) is reflected in the rules (12)-(15)
below. We call σ[~ρ] the relational interpretation of the type σ.

If ρ : Rel(σ, τ) is a definable relation, we may apply it to terms of the right types. This
gives the last formation rule for formulas

Ξ | Γ | Θ ` ρ : Rel(σ, τ) Ξ | Γ ` t : σ, u : τ

Ξ | Γ | Θ ` ρ(t, u) : Prop.

We will also write tρu for ρ(t, u).

Lemma 2.1. Suppose Ξ | Γ ` Θ, R : Rel(σ, τ) ` φ : Prop and Ξ | Γ | Θ ` ρ : Rel(σ, τ) are
well-formed. Then

Ξ | Γ | Θ ` φ[ρ/R] : Prop

is well-formed.

Proof. Easy induction on the structure of φ.

Remark 2.2. Abadi & Plotkin’s logic is designed for reasoning about binary relational
parametricity. For reasoning about other arities of parametricity (such as unary para-
metricity), one can easily replace binary relations in the logic by relations of other arities.
In the case of unary parametricity, for example, one would then have an interpretation
of types as predicates. See also (Takeuti, 1998; Wadler, 2004)

We introduce the short notation ρ ≡ ρ′ for definable relations ρ : Rel(σ, τ), ρ′ : Rel(σ, τ)
as ∀x : σ, y : τ. ρ(x, y) ⊃⊂ ρ′(x, y). Notice that we use ⊃⊂ for biimplication.

We can take exponents, products and universal quantification of relations. These con-
structions will turn out to define categorical exponents, products and quantification in a

Categorical Models for Parametricity 9

Ξ: Ctx Ξ ` σ : Type Ξ | Γ: Ctx

Ξ | Θ: Ctx Ξ | Γ ` t : σ Ξ | Γ ` t = u

Ξ | Γ | Θ ` φ : Prop Ξ | Γ | Θ ` ρ : Rel(σ, τ) Ξ | Γ | Θ | φ1, . . . , φn ` ψ

Fig. 2. Types of judgements

category of relations (see Lemma 3.7). For now, the reader should just consider the next
three definitions as shorthand notation.

If ρ : Rel(σ, τ) and ρ′ : Rel(σ′, τ ′) we may define a definable relation:

(ρ→ ρ′) : Rel((σ → σ′), (τ → τ ′))

as

ρ→ ρ′ = (f : σ → σ′, g : τ → τ ′).∀x : σ.∀y : τ. (xρy ⊃ (fx)ρ′(gy))

We may also take the product of ρ and ρ′:

ρ× ρ′ : Rel((σ × σ′), (τ × τ ′))

as

ρ× ρ′ = (x : σ × σ′, y : τ × τ ′). (πx)ρ(πy) ∧ (π′x)ρ′(π′y)

If

Ξ, α, β | Γ | Θ, R : Rel(α, β) ` ρ : Rel(σ, τ)

is well-formed and Ξ | Γ | Θ and Ξ, α ` σ : Type and Ξ, β ` τ : Type we may define:

Ξ | Γ | Θ ` ∀(α, β,R : Rel(α, β)). ρ : Rel((
∏
α : Type. σ), (

∏
β : Type. τ))

as

(t :
∏
α : Type. σ, u :

∏
β : Type. τ).∀α, β : Type.∀R : Rel(α, β). (tα)ρ(uβ).

2.4. The axioms

Figure 2 sums up the types of judgements we have in the logic. The last judgement in the
figure says that in the given context, the conjunction of the formulas φ1, . . . , φn implies
ψ.

Having specified the language of Abadi & Plotkin’s logic, it is time to specify the
axioms and the rules of the logic. We have all the axioms of propositional logic plus the
rules specified below.

We have rules for ∀-quantification:

Ξ, α | Γ | Θ | Φ ` ψ
==================== Ξ | Γ | Θ ` Φ
Ξ | Γ | Θ | Φ ` ∀α : Type.ψ

(1)

Ξ | Γ, x : σ | Θ | Φ ` ψ
================== Ξ | Γ | Θ ` Φ
Ξ | Γ | Θ | Φ ` ∀x : σ.ψ

(2)

L. Birkedal and R.E. Møgelberg 10

Ξ | Γ | Θ, R : Rel(τ, τ ′) | Φ ` ψ
======================== Ξ | Γ | Θ ` Φ
Ξ | Γ | Θ | Φ ` ∀R : Rel(τ, τ ′).ψ

(3)

The double bars mean that these are double rules, i.e., the condition on the bottom
implies the one on top and vice versa.

Rules for ∃-quantification:

Ξ, α | Γ | Θ | φ ` ψ
==================== Ξ | Γ | Θ ` ψ
Ξ | Γ | Θ | ∃α : Type.φ ` ψ

(4)

Ξ | Γ, x : σ | Θ | φ ` ψ
================= Ξ | Γ | Θ ` ψ
Ξ | Γ | Θ | ∃x : σ.φ ` ψ

(5)

Ξ | Γ | Θ, R : Rel(τ, τ ′) | φ ` ψ
======================== Ξ | Γ | Θ ` ψ
Ξ | Γ | Θ | ∃R : Rel(τ, τ ′).φ ` ψ

(6)

We have substitution rules

Ξ, α | Γ | Θ | Ψ ` φ Ξ ` σ : Type

Ξ | Γ[σ/α] | Θ[σ/α] | Ψ[σ/α] ` φ[σ/α]
(7)

Ξ | Γ, x : σ | Θ | Ψ ` φ Ξ | Γ ` t : σ

Ξ | Γ | Θ | Ψ[t/x] ` φ[t/x]
(8)

Ξ | Γ | Θ, R : Rel(σ, τ) | Ψ ` φ Ξ | Γ | Θ ` ρ : Rel(σ, τ)

Ξ | Γ | Θ | Ψ[ρ/R] ` φ[ρ/R]
(9)

The substitution axiom:

Ξ | Γ | Θ | > ` ∀α, β : Type.∀x, x′ : α.∀y, y′ : β.∀R : Rel(α, β).
R(x, y) ∧ x =α x

′ ∧ y =β y
′ ⊃ R(x′, y′)

(10)

External equality implies internal equality:

Ξ | Γ ` t = u : σ

Ξ | Γ | Θ | > ` t =σ u
(11)

We omit the obvious rules stating that internal equality is an equivalence relation. The
following rules concern the interpretation of types as relations.

Ξ | Γ | Θ | > ` ∀x, y : 1. x1y (12)

~α ` αi Ξ | Γ | Θ ` ~ρ : Rel(~τ , ~τ ′)

Ξ | Γ | Θ | > ` αi[~ρ] ≡ ρi

(13)

~α ` σ → σ′ Ξ | Θ ` ~ρ : Rel(~τ , ~τ ′)

Ξ | Γ | Θ | > ` (σ → σ′)[~ρ] ≡ (σ[~ρ]→ σ′[~ρ])
(14)

Categorical Models for Parametricity 11

~α `
∏
β. σ(~α, β) Ξ | Θ ` ~ρ : Rel(~τ , ~τ ′)

Ξ | Γ | Θ | > ` (∀β. σ(~α, β))[~ρ] ≡ ∀(β, β′, R : Rel(β, β′)). σ[~ρ,R])
(15)

Finally we have

Ξ | Γ, x : σ, y : τ | Θ ` φ : Prop Ξ | Γ ` t : σ, u : τ

Ξ | Γ ` ((x : σ, y : τ). φ)(t, u) ⊃⊂ φ[t, u/x, y].
(16)

Using this rule, we may prove a bijective correspondence between definable relations
and propositions with two free variables considered up to provable equivalence. The
bijection maps a definable relation ρ to the formula ρ(x, y) with free variables x, y and a
formula φ with free variables x, y to the definable relation (x, y). φ.

Lemma 2.3. Suppose Ξ | Γ | Θ ` ρ : Rel(σ, τ) and Ξ | Γ, x : σ, y : τ | Θ ` φ : Prop. Then

Ξ | Γ, x : σ, y : τ | Θ | > ` φ ⊃⊂ ((x : σ, y : τ). φ)(x, y)

and

Ξ | Γ | Θ | > ` ρ ≡ (x : σ, y : τ). ρ(x, y).

Proof. The first statement above is just a reformulation of (16), and for the second we
need to prove that

∀x : σ, y : τ. ((x : σ, y : τ). ρ(x, y))(x, y) ⊃⊂ ρ(x, y)

which is also an easy consequence of (16).

We would also like to mention the extensionality schemes:

(∀x : σ. t x =τ u x) ⊃ t =σ→τ u

(∀α : Type. t α =τ u α) ⊃ t =∏
α : Type.τ u.

These are taken as axioms in (Plotkin and Abadi, 1993), but we shall not take these
as axioms as we would like to be able to talk about models that are not necessarily
extensional.

Lemma 2.4. The substitution axiom above implies the replacement rule:

Ξ | Γ | Θ | Φ ` t =σ t
′ Ξ | Γ, x : σ ` u : τ

Ξ | Γ | Θ | Φ ` u[t/x] =τ u[t′/x]

Proof. Instantiate the substitution axiom with the definable relation

ρ = (y : σ, z : σ). u[y/x] =τ u[z/x].

Clearly Φ ` ρ(t, t), so since t =σ t
′, we have Φ ` ρ(t, t′) as desired.

Lemma 2.5 (Weakening, Exchange). If Ξ | Γ | Θ | Ψ ` φ is provable in the logic,
and if further Ξ′ | Γ′ | Θ′ is a context obtained from Ξ | Γ | Θ by permuting the order of
the variables in the contexts, and possibly adding variables, then

Ξ′ | Γ′ | Θ′ | Ψ ` φ

is also provable in the logic.

L. Birkedal and R.E. Møgelberg 12

3. APL-structures

In this section we define the notion of an APL-structure, which is basically a category-
theoretic formulation of a model of Abadi & Plotkin’s logic. We also show how to interpret
the logic in an APL-structure. We use the definitions and results of Appendix A.

But first we recall the notion of a λ2-fibration, which is basically a model of λ2.

Definition 3.1. A fibration Type → Kind is a λ2-fibration if it is fibred cartesian
closed, has a generic object Ω ∈ Kind, products in Kind, and simple Ω-products, i.e.,
right adjoints

∏
π to the reindexing functors π∗ for projections π : Ξ× Ω→ Ξ.

Remark 3.2. In a λ2 fibration, for a map f : Ξ→ Ω in Kind, we will use the notation
f̂ to denote the object of TypeΞ corresponding to f , and likewise for σ ∈ TypeΞ we
write σ̂ : Ξ→ Ω for the map corresponding to σ.

Definition 3.3. A pre-APL-structure consists of

1 Fibrations:

Prop

r

��
Type

p

$$I
IIIIIIII

� � I // Ctx

q

��
Kind

where

— p is a λ2-fibration.

— q is a fibration with fibred products

— (r, q) is an indexed first-order logic fibration (Definition A.4) which has products
and coproducts with respect to Ξ × Ω → Ξ in Kind (Definition A.5) where Ω is
the generic object of p.

— I is a faithful product preserving map of fibrations.

2 a contravariant morphism of fibrations:

Type×Kind Type U //

((QQQQQQQQQQQQ Ctx

{{vvvvvvvvv

Kind

3 a family of bijections

ΨΞ : HomCtxΞ(ξ, U(σ, τ))→ Obj (Propξ×I(σ×τ))

for σ and τ in TypeΞ and ξ in CtxΞ, which

— is natural in the ξ, σ, τ

— commutes with reindexing functors; that is, if ρ : Ξ′ → Ξ is a morphism in Kind

Categorical Models for Parametricity 13

and u : ξ → U(σ, τ) is a morphism in CtxΞ, then

ΨΞ′(ρ∗(u)) = (ρ̄)∗(ΨΞ(u))

where ρ̄ is the cartesian lift of ρ.

Notice that Ψ is only defined on vertical morphisms.

By a contravariant functor of fibrations, we mean a functor of fibrations, which is
contravariant in each fibre.

Remark 3.4. Item 3 implies that (U(1Ξ, 1Ξ))Ξ∈Kind is an indexed family of generic
objects. If, on the other hand, we have an indexed family of generic objects (ΣΞ)Ξ∈Kind

and Ctx is cartesian closed, then we may define U to be Σ−×− and thereby get items
2 and 3 for free. In general, however, Ctx will not be cartesian closed. In particular, in
the syntactic model described below in the proof of completeness Ctx is not cartesian
closed.

Remark 3.5. Below we will describe how the U(σ, τ) is used to model the object of
relations from σ to τ . To model a version of Abadi & Plotkin’s logic for unary or any
other arity of parametricity as in Remark 2.2, the functor U should have corresponding
arity and the domain and codomain of the bijection Ψ should be changed accordingly.

We now explain how to interpret all of Abadi & Plotkin’s logic, except for the relational
interpretation of types, in a pre-APL-structure. First we recall the interpretation of λ2

in a λ2-fibration.
A type α1 . . . αn ` αi is interpreted as the object of Type over Ωn corresponding to the

i’th projection Ωn → Ω. For a type α1 . . . αn ` σ, we have [[
∏
αi. σ]] =

∏
π[[~α ` σ]], where

π is the projection forgetting the i’th coordinate. Since each fibre of the λ2-fibration is
cartesian closed, we may interpret the constructions of the simply typed λ-calculus using
fibrewise constructions.

If Ξ, α | Γ ` t : τ is a term and Ξ ` Γ is well-formed, then we may interpret the
term Ξ | Γ ` Λα. t :

∏
α. τ as the morphism corresponding to [[Ξ, α | Γ ` t : τ]] under the

adjunction π∗ a
∏

π.
To interpret Ξ | Γ ` t σ, notice that [[Ξ ` σ]] corresponds to a map

̂[[Ξ ` σ]] : [[Ξ]]→ Ω.

The morphism [[Ξ | Γ ` t :
∏
α. τ]] corresponds by the adjunction π∗ a

∏
π to a morphism

in the fibre over [[Ξ]]× Ω. We reindex this morphism along

〈id [[Ξ]], ̂[[Ξ ` σ]]〉 : [[Ξ]]→ [[Ξ]]× Ω

to get [[Ξ | Γ ` t σ]].
Relational contexts are interpreted in Ctx as:

[[Ξ | R1 : Rel(σ1, τ1), . . . , Rn : Rel(σn, τn)]] = U([[σ1]], [[τ1]])× . . .× U([[σn]], [[τn]]),

where [[σi]], [[τi]] are the interpretations of the types in Type as described above.
We aim to define [[Ξ | Γ | Θ ` φ]] as an object of Prop over [[Ξ | Γ | Θ]], which we

L. Birkedal and R.E. Møgelberg 14

define to be I([[Ξ | Γ]])× [[Ξ | Θ]]. We proceed by induction on the structure of φ. We use
the short notation [[Ξ | Γ | Θ ` t : τ]] for the composition

[[Ξ | Γ | Θ]] π // I([[Ξ | Γ]])
I([[Ξ|Γ`t : τ]]) // I([[Ξ ` τ]]) ,

and we will in the following leave obvious isomorphisms involving products implicit.
If we define ∆X : X → X ×X to be the diagonal map, then

[[Ξ | x : σ, y : σ | − ` x =σ y : Prop]] =
∐

∆I([[σ]])
(>)

and
[[Ξ | Γ | Θ | t =σ u]] =

〈[[Ξ | Γ | Θ ` t]], [[Ξ | Γ | Θ ` u]]〉∗[[Ξ | x : σ, y : σ | − ` x =σ y : Prop]].

∀x : A.φ and ∀R : Rel(σ, τ).φ are interpreted using right adjoints to reindexing functors
related to the appropriate projections in Ctx. Likewise ∃x : A.φ and ∃R : Rel(σ, τ).φ are
interpreted using left adjoints to the same reindexing functors.
∀α.φ and ∃α.φ are interpreted using respectively right and left adjoints to π̄∗ where π̄

is the lift of the projection π : [[Ξ, α : Type]]→ [[Ξ]] in Kind to Ctx.
Definable relations are interpreted as maps in Ctx. To be more precise, a definable rela-

tion Ξ | Γ | Θ ` ρ : Rel(σ, τ) is interpreted as a morphism from [[Ξ | Γ | Θ]] to U([[σ]], [[τ]]).
The definable relation Ξ | Γ | Θ, R : Rel(σ, τ),Θ′ ` R : Rel(σ, τ) is interpreted as the
projection. We define

[[Ξ | Γ | Θ ` (x : σ, y : τ). φ : Rel(σ, τ)]] = Ψ−1[[Ξ | Γ, x : σ, y : τ | Θ ` φ]].

We define the interpretation of application of definable relations to terms as follows:

[[Ξ | Γ, x : σ, y : τ | Θ ` ρ(x, y)]] = Ψ([[Ξ | Γ | Θ ` ρ : Rel(σ, τ)]]).

Finally

[[Ξ | Γ | Θ ` ρ(t, u)]] =
〈π, id , [[Ξ | Γ | Θ ` t]], [[Ξ | Γ | Θ ` u]], π′〉∗[[Ξ | Γ, x : σ, y : τ | Θ ` ρ(x, y)]]

where π : [[Ξ | Γ | Θ]]→ I[[Ξ | Γ]] and π′ : [[Ξ | Γ | Θ]]→ [[Ξ | − | Θ]] are the projections. As
usual, we have left out some obvious isomorphisms here.

To interpret the relational interpretation of types we need a little more structure. First
we consider a fibration

Relations→ RelCtx,

that can be defined for every pre-APL-structure. RelCtx is defined as the pullback

RelCtx //

��

Ctx

��
Kind×Kind

× // Kind

If Θ is an object of RelCtx projecting to (Ξ,Ξ′) ∈ Kind×Kind, we will write it as
Ξ,Ξ′ | Θ. The fibre of Relations over Ξ,Ξ′ | Θ is

objects Triples (σ, τ, ρ), where σ is an object in TypeΞ, τ is an object in TypeΞ′

Categorical Models for Parametricity 15

and ρ is a map ρ : Θ → U(π∗σ, (π′)∗τ), where π, π′ are the projections
out of Ξ× Ξ′.

morphisms A morphism from (σ, τ, ρ) to (σ′, τ ′, ρ′) is a pair of morphisms (s, t),
such that s : σ → σ′ and t : τ → τ ′, and

Ψ(U(π∗t, (π′)∗s) ◦ ρ′) ≤ Ψ(ρ)

where the ordering refers to the fibrewise ordering on Prop.

Reindexing (σ, τ, ρ) along a vertical map Θ′ → Θ in RelCtx (vertical with respect
to Kind × Kind) is given by composition. Reindexing with respect to lifts of maps
(ω, ω′) : (Ξ1,Ξ′

1)→ (Ξ2,Ξ′
2) is given by reindexing in Ctx→ Kind.

Remark 3.6. In the internal language, objects of Relations are simply relations

Ξ,Ξ′ | Θ ` ρ : Rel(σ(Ξ), τ(Ξ′)),

and a morphism from ρ : Rel(σ(Ξ), τ(Ξ′)) to ρ′ : Rel(σ′(Ξ), τ ′(Ξ′)) is simply a pair of
morphisms t : σ → σ′ in TypeΞ and s : τ → τ ′ in TypeΞ′ such that

∀x, y. ρ(x, y) ⊃ ρ′(t x, s y).

We clearly have two functors RelCtx→ Kind defined by mapping (Ξ,Ξ′,Θ) to Ξ and
Ξ′ respectively, and we also have two functors Relations → Type defined by mapping
(φ, σ, τ) to σ and τ respectively.

Lemma 3.7. The fibration Relations→ RelCtx is a λ2-fibration, and the maps men-
tioned above define a pair of maps of λ2 fibrations

Type

��

Relations
∂1

oo
∂0oo

��
Kind RelCtx.

∂1

oo
∂0oo

Proof. The category RelCtx has products:

(Ξ1,Ξ′
1,Θ)× (Ξ2,Ξ′

2,Θ
′) =

(Ξ1 × Ξ2,Ξ′
1 × Ξ′

2, (π, π)∗Θ× (π′, π′)∗Θ′).

where (π, π) : (Ξ1 × Ξ2,Ξ′
1 × Ξ′

2) → (Ξ1,Ξ′
1) is the projection, and (π′, π′) is the other

evident projection.
The fibration has a generic object (Ω,Ω, U(îdΩ, îdΩ)), since morphism into this from

(Ξ,Ξ′,Θ) in RelCtx consists of pairs of types (f : Ξ → Ω, g : Ξ′ → Ω) and vertical
morphisms from Θ to U(f̂ , ĝ). These are exactly the objects of Relations.

The constructions for fibred products, fibred exponents and simple Ω-products are
simply the rules for products, exponents and universal quantification of relations in Abadi
& Plotkin’s logic formulated in the internal language of the model, which we will describe
in Section 4. One can either interpret these constructions in the pre-APL-structure, and
prove directly that these constructions have the desired properties, or one can use the

L. Birkedal and R.E. Møgelberg 16

fact that pre-APL-structures interpret these constructions soundly (Theorem 3.10) and
reason in the internal logic.

Here we give the rest of the proof reasoning in the internal logic. Suppose ρ : Rel(σ, τ)
and ρ′ : Rel(σ′, τ ′) and ω : Rel(σ′′, τ ′′) are objects in some fibre of Relations. Then a
vertical morphism from ω to

ρ× ρ′ : Rel((σ × σ′), (τ × τ ′)),

defined as

(x, x′)ρ× ρ′(y, y′) = xρy ∧ x′ρ′y′,

is a pair of maps t : σ′′ → σ × σ′ and u : τ ′′ → τ × τ ′ such that

∀x, y. xωy ⊃ π(tx)ρπ(uy) ∧ π′(tx)ρ′π′(uy),

which is the same as a pair of maps from ω into ρ and ρ′ respectively.
Likewise maps from ω into

(ρ→ ρ′) : Rel((σ → σ′), (τ → τ ′)),

defined as

f(ρ→ ρ′)g = ∀x : σ∀y : τ(xρy ⊃ (fx)ρ′(gy)),

are in one-to-one correspondence with maps from ω × ρ to ρ′.
Given new relations Ξ,Ξ′ | Θ ` ω : Rel(σ, σ′) and

Ξ, α; Ξ′, β | Θ, R : Rel(α, β) ` ρ : Rel(τ, τ ′),

we have defined

Ξ,Ξ′ | Θ ` ∀(α, β,R : Rel(α, β)). ρ : Rel((
∏
α : Type. τ), (

∏
β : Type. τ ′))

as

(t :
∏
α. τ,

∏
β. τ ′).∀α, β : Type.∀R : Rel(α, β). (tα)ρ(uβ).

We need to show that this defines a right adjoint to weakening. The idea is that the
correspondence between maps will be the same as in Type → Kind. In this fibration,
the correspondence is given as follows, a map Ξ, α | − ` t : σ → τ with Ξ ` σ : Type

corresponds to Ξ | − ` t̂ : σ →
∏
α. τ where t̂ = λx : σ.Λα. (tx). We will show, that (t, u)

preserves relations iff (t̂, û) does. It is clear that

Ξ, α; Ξ′, β | x : σ, y : σ′ | Θ, R : Rel(α, β) | xωy ` (tx)ρ(uy)

iff

Ξ,Ξ′ | x : σ, y : σ′ | Θ | xωy ` ∀α, β : Type.∀R : Rel(α, β). (t̂ x α)ρ(û y β),

which establishes the bijective correspondence.

Definition 3.8. An APL-structure is a pre-APL-structure for which the graph of 3.7

Categorical Models for Parametricity 17

can be extended to a reflexive graph of λ2-fibrations

Type

��

J // Relations
∂1

oo
∂0oo

��
Kind J // RelCtx,

∂1

oo
∂0oo

i.e., there exists a map J of λ2-fibrations such that ∂0J = id = ∂1J .

Remark 3.9. There is a functor from Relations to Prop mapping an object (σ, τ, ρ)
to Ψ(ρ). In the following we often use that functor implicitly.

We need to show how to interpret the rule

α1, . . . , αn ` σ(~α) : Type Ξ | Γ | Θ ` ρ1 : Rel(τ1, τ ′1), . . . , ρn : Rel(τn, τ ′n)

Ξ | Γ | Θ ` σ[~ρ] : Rel(σ(~τ), σ(~τ ′))

in an APL-structure.
Since J preserves products and generic objects, J([[~α ` σ(~α)]]) is a definable relation of

the form [[~α; ~β | − | ~R : Rel(~α, ~β) ` J(σ) : Rel(σ(~α), σ(~β))]]. It thus makes sense to define

[[~α, ~β | − | ~R : Rel(~α, ~β) ` σ[~R] : Rel(σ(~α), σ(~β))]]

to be J([[~α ` σ(~α) : Type]]), so now all we need to do is reindex this object. Given types
Ξ ` ~τ ,~τ ′ : Type, we define

[[Ξ | − | ~R : Rel(~τ , ~τ ′) ` σ[~R] : Rel(σ(~τ), σ(~τ ′))]]

to be

〈 ̂[[Ξ ` ~τ]], ̂[[Ξ ` ~τ ′]]〉∗[[~α; ~β | − | ~R : Rel(~α, ~β) ` σ[~R] : Rel(σ(~α), σ(~β))]].

Finally, given definable relations Ξ | Γ | Θ `~ρ : Rel(~τ , ~τ ′) we define

[[Ξ | Γ | Θ ` σ[~ρ] : Rel(σ(~τ), σ(~τ ′))]] =
[[Ξ | − | ~R : Rel(~τ , ~τ ′) ` σ[~R] : Rel(σ(~τ), σ(~τ ′))]] ◦ [[Ξ | Γ | Θ ` ~ρ : Rel(~τ , ~τ ′)]].

3.1. Soundness

We have now completed showing how to interpret all constructions of the language of
Abadi and Plotkin’s logic in APL-structures. We consider an implication Ξ | Γ | Θ |
φ1, . . . , φn ` ψ to hold in the model if∧

i

[[Ξ | Γ | Θ ` φi]] ` [[Ξ | Γ | Θ ` ψ]],

where ` above refers to the fibrewise ordering in Prop.

Theorem 3.10 (Soundness). In any APL-structure the interpretation defined above
is sound with respect to the axioms and rules specified in Section 2.4, i.e., all axioms
hold in the model, and for all rules, if the hypothesis holds in the model, then so does the

L. Birkedal and R.E. Møgelberg 18

conclusion. In any pre-APL structure the interpretation of the part of the logic excluding
the relational interpretation of terms is sound.

We will only prove the first part of Theorem 3.10, i.e., soundness for APL-structures.
The proof of soundness for pre-APL structures is basically the same. For the proof we
need the following lemmas:

Lemma 3.11. If Ξ | Γ ` t : σ then

[[Ξ | Γ | Θ ` φ[t/x]]] = (I〈id [[Ξ|Γ]], [[t]]〉 × id [[Ξ|Θ]])∗[[Ξ | Γ, x : σ | Θ ` φ]]

Proof. We will prove the statement of the lemma and the statement

[[Ξ | Γ | Θ ` ρ[t/x] : Rel(τ, τ ′)]] =
[[Ξ | Γ, x : σ | Θ ` ρ : Rel(τ, τ ′)]] ◦ (I〈id [[Ξ|Γ]], [[t]]〉 × id [[Ξ|Θ]]),

for all definable relations ρ, by simultaneous induction on the structure of φ and ρ. We
only do a few cases and leave the rest to the reader.

Case ρ = σ[~ρ′]:

[[Ξ | Γ | Θ ` σ[~ρ′][t/x]]] = [[Ξ | Γ | Θ ` σ[~ρ′[t/x]]]] =
[[Ξ | − | ~R ` σ[~R]]] ◦ [[~ρ[t/x]]]

Since by induction [[~ρ[t/x]]] = [[~ρ]] ◦ (I〈id [[Ξ|Γ]], [[t]]〉 × id [[Ξ|Θ]])), we are done.
Case ρ = (y : τ, z : τ ′). φ:

[[Ξ | Γ | Θ ` ρ[t/x]]] = Ψ−1([[Ξ | Γ, y : τ, z : τ ′ | Θ ` φ[t/x]]]),

which by induction is equal to

Ψ−1(〈π[[Γ]], [[t]], π[[y : τ,z : τ ′|Θ]]〉∗[[Ξ | Γ, x : σ, y : τ, z : τ ′ | Θ ` φ]]).

By naturality of Ψ this is equal to

Ψ−1([[Ξ | Γ, x : σ, y : τ, z : τ ′ | Θ ` φ]]) ◦ 〈π[[Γ]], [[t]], π[[Θ]]〉 =
[[Ξ | Γ, x : σ | Θ ` ρ]]) ◦ 〈π[[Γ]], [[t]], π[[Θ]]〉

as desired.
Case φ = ρ(u, s)

Using naturality of Ψ as before, one can prove that

[[Ξ | Γ, y : τ, z : τ ′ | Θ ` ρ(y, z)[t/x]]] =
(I〈id [[Ξ|Γ,y : τ,z : τ ′]], [[t]]〉 × id [[Ξ|Θ]])∗[[Ξ | Γ, y : τ, z : τ ′, x : σ | Θ ` ρ(y, z)]].

The general case follows from the fact that in a λ2-fibration

[[Ξ | Γ ` u[t/x]]] = [[Ξ | Γ ` u]] ◦ 〈id , [[Ξ | Γ ` t]]〉.

Case φ = ∀α : Type. ψ:
We need to show that

[[Ξ | Γ | Θ ` ∀α : Type. ψ[t/x]]] =
(I〈id [[Ξ|Γ]], [[t]]〉 × id [[Ξ|Θ]])∗[[Ξ | Γ, x : σ | Θ | ∀α : Type. ψ]].

Categorical Models for Parametricity 19

Let π denote the cartesian lift of the projection [[Ξ, α]]→ [[Ξ]]. Then by induction we
have that the left hand side of the equation is∏

π(I〈idΓ, [[t]]〉 × idΘ)∗[[Ξ, α | Γ, x : σ | Θ ` ψ]].

Consider the square

[[Ξ, α | Γ | Θ]] π //

I〈idΓ,[[t]]〉×idΘ

��

[[Ξ | Γ | Θ]]

I〈idΓ,[[t]]〉×idΘ

��
[[Ξ, α | Γ, x : σ | Θ]] π // [[Ξ | Γ, x : σ | Θ]].

This square commutes since π is a natural transformation from π∗ to id , and it is a
pullback by (Jacobs, 1999, Exercise 1.4.4). The Beck-Chevalley condition relative to
this square gives the desired result.

Lemma 3.12. If Ξ | Γ | Θ ` φ : Prop, then

[[Ξ | Γ, x : σ | Θ ` φ]] = π∗[[Ξ | Γ | Θ ` φ]],

where π : [[Ξ | Γ, x : σ | Θ]]→ [[Ξ | Γ | Θ]] is the projection.

Lemma 3.13. If Ξ ` σ : Type then

[[Ξ | Γ[σ/α] | Θ[σ/α] ` φ[σ/α]]] = 〈id [[Ξ]], [[σ]]〉
∗
[[Ξ, α : Type | Γ | Θ ` φ]],

where the vertical line in 〈id [[Ξ]], [[σ]]〉 denotes the cartesian lift.

Proof. Notice first that a corresponding reindexing lemma for interpretation of λ2 in
λ2-fibrations tells us that

〈id [[Ξ]], [[σ]]〉∗[[Ξ, α | Γ | Θ]] = [[Ξ | Γ[σ/α] | Θ[σ/α]]].

The rest of the proof is by induction over the structure of φ, and since it resembles the
proof of Lemma 3.11 closely we leave it to the reader.

Lemma 3.14. If Ξ | Γ | Θ ` φ then

[[Ξ | Γ | Θ ` φ]] = π∗Ξ,α→Ξ[[Ξ, α | Γ | Θ ` φ]]

Proof. The proof is almost the same as for Lemma 3.13.

Lemma 3.15. If Ξ | Γ | Θ ` ρ : Rel(τ, τ ′) is a definable relation, then

[[Ξ | Γ | Θ ` φ[ρ/R]]] = (〈id [[Ξ|Γ|Θ]], [[ρ]]〉)∗[[Ξ | Γ | Θ, R : Rel(τ, τ ′) ` φ]]

Proof. The lemma should be proved simultaneously with the statement

[[Ξ | Γ | Θ ` ρ′[ρ/R]]] =
[[Ξ | Γ | Θ, R : Rel(τ, τ ′) ` ρ′]] ◦ (〈id [[Ξ|Γ|Θ]], [[ρ]]〉)

for all definable relations ρ′, by structural induction on φ and ρ′. We leave the proof to
the reader, as it closely resembles the proof of (3.11).

L. Birkedal and R.E. Møgelberg 20

Lemma 3.16. If Ξ | Γ | Θ ` φ : Prop, then

[[Ξ | Γ | Θ, R : Rel(σ, τ) ` φ]] = π∗[[Ξ | Γ | Θ ` φ]],

where π : [[Ξ | Γ | Θ, R : Rel(σ, τ)]]→ [[Ξ | Γ | Θ]] is the projection.

We are now ready to prove soundness.

Proof of Theorem 3.10 The rules for quantification (1)- (6) follow directly from the
fact that the interpretation of ∀ and ∃ are given by right, respectively left adjoints to
weakening functors. The substitution rules (7) - (9) are sound by Lemmas 3.11, 3.13 and
3.15.

For the substitution axiom (10) we will only prove

[[α, β | x, x′ : α, y : β | R : Rel(α, β) ` x =α x
′]] ≤

[[α, β | x, x′ : α, y : β | R : Rel(α, β) ` R(x, y) ⊃ R(x′, y)]].

Once this is done, the rest of the proof amounts to doing the same thing in the sec-
ond variable. We will for readability write simply [[α]], [[β]], [[R]] for [[α, β ` α]], [[α, β ` β]],
[[α, β | − | R : Rel(α, β)]].

If we let π1, π2, π3, π4 denote the projections out of

[[α, β | x, x′ : α, y : β | R : Rel(α, β)]] =
[[α, β ` α]]2 × [[α, β ` β]]× U([[α, β ` α]], [[α, β ` β]])

we can formulate what we aim to prove as

〈π1, π2〉∗(
∐

∆[[α]]
(>)) ≤ 〈π1, π3〉∗Ψ(id [[R]]) ⊃ 〈π2, π3〉∗Ψ(id [[R]]),

where ∆ denotes the diagonal map.
Using the Beck-Chevalley condition on the square

[[α]]× [[β]]× [[R]]
∆[[α]]×id

//

π1

��

[[α]]2 × [[β]]× [[R]]

〈π1,π2〉
��

[[α]]
∆[[α]] // [[α]]2

we get

〈π1, π2〉∗(
∐

∆[[α]]
(>)) =

∐
∆[[α]]×id [[β]]×[[R]]

(>).

Now the result follows from using the adjunction and the fact that

〈π1, π3〉 ◦ (∆[[α]] × id [[β]]×[[R]]) = 〈π2, π3〉 ◦ (∆[[α]] × id [[β]]×[[R]]).

External equality implies internal equality (11) since the model of λ2 included in the
model is sound. Internal equality is clearly an equivalence relation.

The axioms concerning types as relations (12) - (15) follow from the fact that J is
required to be a morphism of λ2 fibrations and that the λ2 structure in Relations →
RelCtx is given by the interpretation of products and quantification of relations. For

Categorical Models for Parametricity 21

instance soundness of the (15) is proved as follows:

[[~α, ~α′ | − | ~R : Rel(~α,~α′) ` (
∏
β. σ)[~R]]] =

J([[~α `
∏
β. σ]]) =

[[~α, ~α′ | ~R : Rel(~α, ~α′) ` (∀γ, γ′, S : Rel(γ, γ′)). σ[~R, S]]]

where the second equality holds since J preserves simple Ω-products.
Finally, to prove soundness of rule (16), it suffices to prove soundness of

Ξ | Γ, x : σ, y : τ | Θ | > ` ((x : σ, y : τ). φ)(x, y) ⊃⊂ φ,

but
[[Ξ | Γ, x : σ, y : τ | Θ ` ((x : σ, y : τ). φ)(x, y)]] =

Ψ([[Ξ | Γ | Θ ` (x : σ, y : τ). φ]]) =
Ψ ◦Ψ−1([[Ξ | Γ, x : σ, y : τ | Θ ` φ]]) = [[Ξ | Γ, x : σ, y : τ | Θ ` φ]].

3.2. Completeness

The Soundness Theorem (3.10) allows us to reason about APL-structures using Abadi &
Plotkin’s logic. The Completeness Theorem below states that any formula that holds in
all APL-structures, is provable in the logic. This allows us to reason about the logic using
the class of APL-structures. However, since the APL-structure below is constructed from
the logic, this does not say much. Instead, one should view the Completeness Theorem
as stating that the class of APL-structures is not too restrictive; it completely describes
the logic.

Theorem 3.17 (Completeness). There exists an APL-structure with the property
that any formula of Abadi & Plotkin’s logic based on pure λ2 that holds in the structure
may be proved in the logic.

Proof. We construct the APL-structure syntactically, giving the categories in question
the same names as in the diagram of item 1 in Definition 3.3.

— The category Kind has sequences of the form α1 : Type, . . . , αn : Type as objects,
where we identify these contexts up to renaming (in other words, we may think of
objects as natural numbers). A morphism from Ξ into α1 : Type, . . . , αn : Type is a
sequence of types (σ1, . . . , σn) such that all σi are well-formed in context Ξ.

— Objects in the fibre of Type over Ξ are well-formed types in this context, where we
identify types up to renaming of free type variables. Morphisms in this fibre from σ

to τ are equivalence classes of terms t such that Ξ | − ` t : σ → τ where we identify
terms up to external equality. Reindexing with respect to morphisms in Kind is by
substitution.

— The category Ctx has as objects in the fibre over Ξ well-formed contexts of Abadi
& Plotkin’s logic: Ξ | Γ | Θ, where we again identify such contexts up to re-
naming of free type-variables. A vertical morphism from Ξ | Γ | Θ to Ξ | Γ′ |
R1 : Rel(σ1, τ1), . . . , Rn : Rel(σn, τn) is a pair, consisting of a morphism Ξ | Γ→ Ξ | Γ′

L. Birkedal and R.E. Møgelberg 22

in the sense of morphisms in Type and a sequence of definable relations (ρ1, . . . , ρn)
such that Ξ | Γ | Θ ` ρi : Rel(σi, τi). We identify two such morphisms represented by
the same type morphism and the definable relations (ρ1, . . . , ρn) and (ρ′1, . . . , ρ

′
n) if,

for each i, ρi ≡ ρ′i is provable in the logic. one. Reindexing is by substitution.
— The fibre of the category Prop over a context Ξ | Γ | Θ has as objects formulas in

that context, where we identify two formulas if they are provably equivalent. These
are ordered by entailment in the logic. Reindexing is done by substitution, that is,
reindexing with respect to lifts of morphisms from Kind is done by substitution
in Kind-variables, whereas reindexing with respect to vertical maps in Ctx is by
substitution in type variables and relational variables.

It is straightforward to verify that this structure satisfies item 1 of Definition 3.3. The
only non-obvious thing to verify here is existence of products and coproducts in Prop
with respect to vertical maps in Ctx.

Suppose (~t, ~ρ) represents a morphism from Ξ | ~x : ~σ | ~R to Ξ | ~y : ~τ | ~S. Then we can
define the product functor in Prop by:∏

(~t,~ρ)(Ξ | ~x : ~σ | ~R ` φ(~x, ~R)) =
Ξ | ~y : ~τ | ~S ` ∀~x.∀~R(~t~x = ~y ∧ (~ρ(~x, ~R) ≡ ~S) ⊃ φ(~x, ~R)).

We define coproduct as: ∐
(~t,~ρ)(Ξ | ~x : ~σ | ~R ` φ(~x, ~R)) =

Ξ | ~y : ~τ | ~S ` ∃~x.∃~R.~t~x = ~y ∧ ~ρ(~x, ~R) ≡ ~S ∧ φ(~x, ~R).

The functor Uof item 2 is defined as

U(σ, τ) = R : Rel(σ, τ)

and

U(t : σ → σ′, u : τ → τ ′) = Ξ | R : Rel(σ′, τ ′) ` (x : σ, y : τ). R(tx, uy)

The map Ψ maps a definable relation Ξ | Γ | Θ ` ρ : Rel(σ, τ) to the proposition
Ξ | Γ, x : σ, y : τ | Θ ` ρ(x, y) : Prop, which is a bijection by Lemma 2.3.

We have defined a pre-APL-structure. The category RelCtx obtained from this pre-
APL structure has as objects ~α, ~β | Γ | Θ. The fibre of Relations over an object ~α, ~β |
Γ | Θ in RelCtx is:

Objects Equivalence classes of definable relations

~α, ~β | Γ | Θ ` ρ : Rel(σ(~α), τ(~β)).

Morphisms A morphism from ρ : Rel(σ(~α), τ(~β)) to ρ′ : Rel(σ′(~α), τ ′(~β)) is a pair of
morphisms t : σ → σ′, u : τ → τ ′ such that it is provable that

∀x : σ.∀y : τ. ρ(x, y) ⊃ ρ′(tx, uy).

In the reflexive graph of Lemma 3.7, the functor from Kind to RelCtx acts on objects
as

α1, . . . , αn 7→ α1, . . . , αn;β1, . . . , βn | R1 : Rel(α1, β1), . . . , Rn : Rel(αn, βn)

Categorical Models for Parametricity 23

and it takes a morphism ~σ : ~α → ~α′ to the triple (~σ(α), ~σ(β), ~σ[~R]). Notice that this
defines a morphism since

~α, ~β | ~R : Rel(~α, ~β) ` σi[~R] : Rel(σi(~α), σi(~β))

This really defines the object part of the functor from Type to Relations since it
must preserve λ2-structure. So this functor takes a type ~α ` σ to

~α; ~β | ~R : Rel(~α, ~β) ` σ[~R] : Rel(σ(~α), σ(~β)).

The functor maps a morphism ~α | x : σ ` t : τ to the pair (λx : σ. t, λx : σ. t). This
defines a morphism in Relations since the Logical Relations Lemma (Plotkin and Abadi,
1993, Lemma 2) implies that

~α; ~β | ~R : Rel(~α, ~β) | x : σ(~α), y : σ(~β) ` σ[~R](x, y) ⊃ τ [~R](t, t[β/α][y/x]).

One may easily verify that the functors above define a reflexive graph of λ2-fibrations.
Now, by definition, a formula holds in this APL-structure iff it is provable in Abadi &

Plotkin’s logic.

Remark 3.18. The Completeness Theorem only states completeness for Abadi & Plotkin’s
logic based on the pure λ2. The reason for this is that the proof uses the Logical Relations
Lemma, which is proved in (Plotkin and Abadi, 1993) by structural induction on terms.
In the case of general calculi, one must know that the Logical Relations Lemma holds
for term-constants in the language to be able to prove completeness.

4. Parametric APL-structures

Given an APL-structure, we may consider the internal logic of the model (to be defined
precisely below), and formulate parametricity as a schema in this logic. For technical
reasons we will define parametric APL-structures as APL-structures not only satisfying
the parametricity schema, but also extensionality and very strong equality (A.7). For
parametric APL-structures, we can derive consequences of parametricity using Abadi &
Plotkin’s logic, as in (Plotkin and Abadi, 1993). For many of these proofs extensionality is
needed, and we need very strong equality to deduce from theorems in Abadi & Plotkin’s
logic to category theoretic theorems, as we will see in Section 5. This is the reason why we
propose parametric APL-structures as a category-theoretic definition of parametricity.

The internal language of an APL-structure is simply Abadi & Plotkin’s logic on the
internal language of the λ2-fibration (see (Jacobs, 1999)), with the ordering relation in a
fibre of Prop defined as φ ` ψ iff [[φ]] ` [[ψ]] holds in the model. Using the internal language
we may express properties of the APL-structure, and ask whether these properties hold
in the logic.

Definition 4.1. The extensionality schemes in the internal language of an APL-structure
are the schemes

− | − | − ` ∀α, β : Type.∀t, u : α→ β. (∀x : α.tx =β ux) ⊃ t =α→β u, (17)

Ξ | − | − ` ∀f, g : (Πα : Type. σ). (∀α : Type.fα =σ gα) ⊃ f =Πα : Type.σ g, (18)

L. Birkedal and R.E. Møgelberg 24

where in (18) σ ranges over all types such that Ξ, α ` σ : Type.

Lemma 4.2. For any APL-structure, very strong equality (Definition A.7) implies ex-
tensionality.

Proof. We can formulate extensionality equivalently as the rules

Ξ | Γ, x : σ | Θ ` t =τ u

Ξ | Γ | Θ ` λx : σ. t =σ→τ λx : σ. u

Ξ, α : Type | Γ | Θ ` f =σ g

Ξ | Γ | Θ ` Λα.Type. f =Πα : Type.σ Λα.Type. g

If internal equality is the same as external equality then these rules hold by the rules for
external equality in Figure 1.

Definition 4.3. The schema

∀~α : Type.∀u, v : σ. (u(σ[eq~α])v ⊃⊂ u =σ v)

is called the Identity Extension Schema. Here σ ranges over all types such that ~α `
σ : Type.

Definition 4.4. A parametric APL-structure is an APL-structure with very strong
equality – and hence extensionality – satisfying the Identity Extension Schema.

Remark 4.5. If we write out the interpretation of the Identity Extension Schema, we
get a category-theoretical formulation of the notion of parametric APL-structure. It is
an APL-structure with very strong equality, extensionality and in which for all types
~α ` σ : Type,

(id [[~α`σ]]2 × [[~α | − | − ` ~eqα]])∗J([[~α ` σ]]) = [[~α | x : σ, y : σ | − ` x =σ y]].

Definition 4.6. For any type β, ~α ` σ(β, ~α) we can form the parametricity schema:

∀~α : Type.∀u : (
∏
β. σ).∀β, β′ : Type.∀R : Rel(β, β′). (u β)σ[R, eq~α](u β′)

in the empty context.

Proposition 4.7. The Identity Extension Schema implies the parametricity schema.
Thus the parametricity schema holds in any parametric APL-structure.

Proof. Since

~α | u :
∏
β : Type. σ(β, ~α) | − ` u =∏

β : Type.σ
u

always holds in the model, by the Identity Extension Schema, we know that

~α | u :
∏
β : Type. σ(β, ~α) | − ` u(

∏
β : Type. σ)[eq~α]u

holds, but by the Axiom (15) this means that

~α | u :
∏
β : Type. σ(β, ~α) ` ∀β, β′∀R : Rel(β, β′). (u β)(σ[R, eq~α])(u β′)

holds as desired.

Categorical Models for Parametricity 25

Without assuming parametricity we can prove the logical relations lemma:

Lemma 4.8 (Logical Relations Lemma). For any APL-structure the Logical Rela-
tions Schema

− | − | − ` tσt
holds, where t ranges over all closed terms of closed type, i.e., − | − ` t : σ.

Proof. The lemma is really just a restatement of the requirement that

J : Type→ Relations

is a functor. Let us write out the details.
A closed term t of closed type σ corresponds in the model to a map t : 1→ σ in Type1,

and by definition of the interpretation

[[− | x : σ, y : σ | − ` xσy]] = J(σ).

The fact that J is required to be a functor, means exactly that the pair (t, t) should
define a map in Relations, i.e., the formula

− | − | − ` ∀x, y : 1. x1y ⊃ tσt

should hold in the model. Since the relational interpretation of 1 is simply the constantly
true relation, we get the statement of the lemma.

Remark 4.9. The Logical Relations Lemma suspiciously resembles the Identity Exten-
sion Schema. For a closed term of open type: ~α | − ` t : σ, the Logical Relations Lemma
implies (Λα. t)

∏
~α. σ(Λα. t), so that tσ[eq~α]t. However, since this only holds for closed

terms t, we do not have the formula

∀t : σ. tσ[eq~α]t,

which is the formula that we will need to prove consequences of parametricity.

5. Consequences of parametricity

As mentioned in the introduction to Section 4 we may use Abadi & Plotkin’s logic to
derive consequences of parametricity in parametric APL-structures. In this section we
exemplify how to do so. Through our examples, it should become apparent how exten-
sionality and very strong equality play important roles in the proofs of the consequences.

The proofs of the consequences are based on theorems about Abadi & Plotkin’s logic
stated in (Plotkin and Abadi, 1993). For completeness, we have written out proofs of
these theorems, often inspired by (Hasegawa, 1994). What is new here, is just that we
show how to conclude from the logic to the APL-structures.

5.1. Dinaturality

We shall use the following definition very often.

L. Birkedal and R.E. Møgelberg 26

Definition 5.1. We say that ~α ` σ : Type is an inductively constructed type, if it can
be constructed from free variables ~α and closed types using the type constructors of λ2,
i.e., ×,→ and

∏
α..

For example, if σ is a closed type then
∏
α. σ × α is an inductively constructed type.

However, some models may contain types that are not inductively constructed! For ex-
ample, in syntactical models, any basic open type, such as the type α ` lists(α) is not
inductively constructed.

We define the notion of positive and negative occurrences of a type variable α in
an inductively constructed type σ inductively over the structure of σ as follows. The
type variable α occurs positively in α. The positive occurrences of α in σ × τ are the
positive occurrences of α in σ and the positive occurrences of α in τ . Likewise for negative
occurrences. The positive occurrences of α in σ → τ are the positive occurrences of α in
τ and the negative occurrences of α in σ. The negative occurrences are the negative in τ
and the positive in σ. The positive and negative occurrences of α in

∏
β. σ are the same

as for σ, if α 6= β. There are no positive or negative occurrences of α in
∏
α. σ since we

only consider free occurrences of a type variable.
Suppose σ(α, β) is an inductively constructed type with all free variables in α, β such

that α occurs only negatively and β occurs only positively in σ. We may then for f : α→
α′ and g : β → β′ define a morphism

σ(f, g) : σ(α′, β)→ σ(α, β′)

inductively over the structure of σ as in (Plotkin and Abadi, 1993).
It is well-known that Dinaturality is a consequence of parametricity, but we include

the proof for completeness.

Lemma 5.2 (Dinaturality). In a parametric APL-structure, the dinaturality schema

∀α, β.∀f : α→ β. σ(idα, f) ◦ (·)α =∏
α.(σ(α,α))→σ(α,β)

σ(f, idβ) ◦ (·)β

holds. Here (·)α denotes the term λu : (
∏
α. σ(α, α)). u(α).

Proof. Suppose f : α→ β. By extensionality it suffices to prove that, for any u :
∏
α. σ(α, α),

σ(idα, f)u(α) =σ(α,β) σ(f, idβ)u(β).

Instantiating the Logical Relations Lemma with the types

α, β, γ, δ ` (α→ β)× (γ → δ)
α, β, γ, δ ` σ(β, γ)→ σ(α, δ)

and
t = Λα, β, γ, δ. λω : (α→ β)× (γ → δ). σ(πω, π′ω) :∏
α, β, γ, δ. (α→ β)× (γ → δ)→ σ(β, γ)→ σ(α, δ)

we get

α, β, γ, δ, α′, β′, γ′, δ′ | x : (α→ β)× (γ → δ), y : (α′ → β′)× (γ′ → δ′) |
R1 : Rel(α, α′), R2 : Rel(β, β′), R3 : Rel(γ, γ′), R4 : Rel(δ, δ′) |

x(R1 → R2)× (R3 → R4)y ` σ(πx, π′x)(σ[R2, R3]→ σ[R1, R4])σ(πy, π′y).

Categorical Models for Parametricity 27

Recall the notation 〈f〉 for the graph of the function f defined as (x : α, y : β). f(x) =β y.
If we set α, β, γ, α′ to α and set δ, β′, γ′, δ′ to β and let R1 = eqα, R2 = R3 = 〈f〉 and
R4 = eqβ , then we get

x(eqα → 〈f〉)× (〈f〉 → eqβ)y ` σ(πx, π′x)(σ[〈f〉, 〈f〉]→ σ[eqα, eqβ])σ(πy, π′y).

If we set x = 〈idα, f〉 and y = 〈f, idβ〉 then since idα(eqα → 〈f〉)f and f(〈f〉 → eqβ)idβ

we obtain

σ(idα, f)(σ[〈f〉, 〈f〉]→ σ[eqα, eqβ])σ(f, idβ).

Since the parametricity schema tells us that

u(α)σ[〈f〉, 〈f〉]u(β),

it follows that

σ(idα, f)(u(α))(σ[eqα, eqβ])σ(f, idβ)u(β),

but by the Identity Extension Schema this is just

σ(idα, f)(u(α)) =σ(α,β) σ(f, idβ)u(β).

5.2. Products

Consider the type T =
∏
α. α→ α. The term Λα. λx : α. x inhabits T . Thus

Proposition 5.3. In any model of λ2 the type T defines a fibred weak terminal object.

Theorem 5.4. In a parametric APL-structure, the proposition

∀u : T. (u =T Λα. λx : α. x)

holds in the internal logic.

Proof. By extensionality it suffices to prove that

α : Type | u : T, x : α ` (uα)x =α x.

Consider the relation

α : Type | u : T, x : α ` ρ = (y : α, z : α). y =α x : Rel(α, α).

By parametricity we have

α : Type | u : T, x : α ` (u α)(ρ→ ρ)(u α),

but this means that

α : Type | u : T, x : α ` y =α x ⊃ (u α)y =α x.

Theorem 5.5. In a parametric APL-structure, T defines a fibred terminal object of
Type→ Kind.

L. Birkedal and R.E. Møgelberg 28

Proof. Suppose u : σ → T is a morphism in the fibre. By the above theorem and
extensionality, u is internally equal to λy : σ.Λα. λx : α. x. By very strong equality we
have external equality between u and λy : σ.Λα. λx : α. x. So T is a terminal object.

For two types σ and τ in the same fibre, consider

σ×̂τ =
∏
α. ((σ → τ → α)→ α).

We use ×̂ to distinguish this definition from the usual fibrewise product denoted ×.
We will show that ×̂ defines a weak product in the fibre, and that in parametric APL-
structures it defines a genuine product.

Let projections π : σ×̂τ → σ and π′ : σ×̂τ → τ be defined by

πx = x σ (λx : σ. λy : τ. x)
π′x = x τ (λx : σ. λy : τ. y)

and let pair : σ → τ → σ×̂τ be defined by

pair x y = Λα. λf : σ → τ → α. f x y

If f : α→ σ and g : α→ β, we will write 〈f, g〉 for λx : α. pair (f x) (g x) . Then

π ◦ 〈f, g〉 = λx : α. (pair (f x) (g x)) σ (λx : σ. λy : τ. x) = λx : α. f x = f

and likewise

π′ ◦ 〈f, g〉 = g

This proves:

Proposition 5.6. In any model of λ2 the construction ×̂ defines a fibrewise weak prod-
uct.

Theorem 5.7. For any parametric APL-structure the proposition

∀σ, τ. 〈π, π′〉 =σ×̂τ idσ×̂τ

holds in the internal logic.

Proof. For any f : σ → τ → α define f∗ : σ×̂τ → α as

f∗ x = x α f.

Suppose z : σ×̂τ . By parametricity, for any relation R : Rel(α, β),

(z α)((eqσ → eqτ → R)→ R)(z β).

Now, for any f : σ → τ → α,

f∗(pair x y) = pair x y α f = f x y,

i.e.,

pair(eqσ → eqτ → 〈f∗〉)f,
which means that

(z σ×̂τ pair)〈f∗〉(z α f).

Categorical Models for Parametricity 29

In other words,

f∗(z σ×̂τ pair) =α z α f.

Since the left hand side of this equation simply is

(z σ×̂τ pair) α f,

we get by extensionality since α, f were arbitrary,

z σ×̂τ pair =σ×̂τ z.

Suppose now that we are given f : σ → τ → α. We construct g : σ×̂τ → α by

g z = f (π z) (π′ z)

Then pair(eqσ → eqτ → 〈g〉)f since

g (pair x y) = f (π ◦ pair x y)(π′ ◦ pair x y) = f x y

Parametricity now states that for any z : σ×̂τ

(z σ×̂τ)((eqσ → eqτ → 〈g〉)→ 〈g〉)(z α).

Thus (z σ×̂τ pair)〈g〉(z α f) and since (z σ×̂τ pair) =σ×̂τ z we have

f (π z) (π′ z) = g z =α z α f.

By extensionality

λz : σ×̂τ.Λα. λf : σ → τ → α. f (π z) (π′ z) =σ×̂τ→σ×̂τ

λz : σ×̂τ.Λα. λf : σ → τ → α. z α f = idσ×̂τ .

But the left hand side of this equation is just 〈π, π′〉.

Theorem 5.8. In any parametric APL-structure, ×̂ defines a fibrewise product in Type→
Kind.

Proof. Since clearly 〈π ◦ f, π′ ◦ f〉 = 〈π, π′〉 ◦ f any map into σ×̂τ is uniquely deter-
mined by its composition with π and π′ by Theorem 5.7 and very strong equality.

5.3. Coproducts

For the empty sum we define

I =
∏
α. α.

Proposition 5.9. In any model of λ2, I defines a fibred weak initial object.

Proof. Suppose σ is a type over some Kind object Ξ. The interpretation of the term
x : I ` xσ is a morphism from I to σ in the fibre over Ξ.

Theorem 5.10. In a parametric APL-structure, the proposition

∀u : I.⊥

holds in the internal logic of the model.

L. Birkedal and R.E. Møgelberg 30

Proof. Parametricity says

∀u :
∏
α. α.∀α, β : Type.∀R : Rel(α, β). u(α)Ru(β)

Instantiate this with the definable relation

(x : 1, y : 1).⊥ : Rel(1, 1)

Theorem 5.11. In a parametric APL-structure, I defines a fibred initial object of
Type→ Kind.

Proof. Given two morphisms u, v : I → σ we have

(∀x : I.⊥) ` (∀x : I. ux =σ vx) ` (u =I→σ v),

so, by very strong equality, we have u = v.

Given two types σ and τ we define

σ + τ =
∏
α. (σ → α)→ (τ → α)→ α

and introduce combinators inlσ,τ : σ → σ + τ , inrσ,τ : τ → σ + τ and

casesσ,τ :
∏
α. ((σ → α)→ (τ → α)→ (σ + τ)→ α)

by
inlσ+τ (a) = Λα. λf : σ → α. λg : τ → α. f(a),
inrσ+τ (a) = Λα. λf : σ → α. λg : τ → α. g(a),

casesσ+τ α f g ω = ω α f g.

Now, suppose we are given two morphisms t : σ → α and u : τ → α. Then we may
define [u, t] = casesσ,τ α t u : σ + τ → α and we then have

[u, t] ◦ inlσ,τ (x) = inlσ,τ x α t u = t(x)

and likewise

[u, t] ◦ inrσ,τ (y) = inrσ,τ x α t u = u(y)

so we have proved the following proposition.

Proposition 5.12. For any model of λ2, the operation + defines a fibred weak coprod-
uct.

We will prove that in a parametric APL-structure, σ + τ is in fact a coproduct.

Theorem 5.13. In a parametric APL-structure, the proposition

∀α, σ, τ : Type.∀h : σ + τ → α. h =σ+τ→α [h ◦ inlσ+τ , h ◦ inrσ+τ]

holds.

Proof. We will first prove that

[inlσ+τ , inrσ+τ] =σ+τ idσ+τ .

Categorical Models for Parametricity 31

Instantiating the parametricity schema for ω : σ+ τ with the relation 〈f〉 we get that,
for any f : α→ β and all a : σ → α and β : τ → α,

f(ω α a b) =β ω β (f ◦ a) (f ◦ b).

Now consider any a′ : σ → α and b′ : τ → α and set f : σ + τ → α to

f(u) = u α a′ b′.

If we set a above to inl and b to inr we get

(ω (σ + τ) inl inr) α a′ b′ =β ω α (f ◦ inl) (f ◦ inr). (19)

Since

f ◦ inl(x) = inl(x) α a′ b′ = a′(x),

for all x : σ, and likewise f ◦ inr(y) = b′(y), for y : τ , (19) reduces to

(ω(σ + τ) inl inr) α a′ b′ =β ω α a
′ b′.

By extensionality this implies

(ω(σ + τ)inl inr) =σ+τ ω,

and using extensionality again we obtain

[inlσ+τ , inrσ+τ] =σ+τ→σ+τ idσ+τ . (20)

Finally, by the parametricity condition on cases, we have for any h : σ + τ → α that

h(cases(σ + τ) inl inr ω) =α cases α (h ◦ inl) (h ◦ inr) ω,

so by extensionality and (20),

h =σ+τ→α [h ◦ inl, h ◦ inr].

Theorem 5.14. In any parametric APL-structure, + defines a fibred coproduct of
Type→ Kind.

Proof. Using very strong equality, Theorem 5.13 tells us that maps out of σ + τ are
uniquely determined by their compositions with inl and inr.

5.4. Initial algebras

Definition 5.15. Consider a fibred functor

E

��@
@@

@@
@@

T // E

��~~
~~

~~
~

B.

An indexed family of initial algebras for the functor T is a family

(inΞ : T (σΞ)→ σΞ)Ξ∈Obj B

L. Birkedal and R.E. Møgelberg 32

such that each inΞ is an initial algebra for the restriction of T to the fibre over Ξ and
the family is closed under reindexing. If each inΞ is only a weak initial algebra we call it
a family of weak initial algebras.

Suppose α ` σ : Type is an inductively constructed type (see Definition 5.1) in which α
occurs only positively. Then σ(α) can be considered a functor in each fibre (Plotkin and
Abadi, 1993). Actually, in (Plotkin and Abadi, 1993) Abadi & Plotkin construct a term

t :
∏
α, β : Type. (α→ β)→ σ(α)→ σ(β),

which internalizes the morphism part of the functor σ. This term is an example of what
we later on call a polymorphic strength (see Definition 5.29).

The type σ induces a fibred functor

Type //

$$I
IIIIIIII Type

zzuuuuuuuuu

Kind

mapping Ξ ` τ to Ξ ` σ(τ). In this section we study families of initial algebras for such
functors.

First we prove the graph lemma:

Lemma 5.16. If α ` σ is an inductively constructed type in a parametric APL-structure
in which α occurs only positively, interpreted as a fibred functor as in (Plotkin and Abadi,
1993), then the formula

∀α, β : Type.∀f : α→ β. σ[〈f〉] ≡ 〈σ(f)〉

holds in the internal language of the model, where, as usual, ρ ≡ ρ′ is short for

∀x, y. ρ(x, y) ⊃⊂ ρ′(x, y).

Proof. Since the polymorphic strength t mentioned above is parametric, we have, for
any pair of relations ρ : Rel(α, α′) and ρ′ : Rel(β, β′),

t α β((ρ→ ρ′)→ (σ[ρ]→ σ[ρ′]))t α′ β′. (21)

If we instantiate this with ρ = eqα, ρ′ = 〈f〉 for some map f : α→ β, we get

t α α((eqα → 〈f〉)→ (eqσ(α) → σ[〈f〉]))t α β,

using the Identity Extension Schema. Since idα(eqα → 〈f〉)f , and since t α β f = σ(f)
and t α α idα = σ(idα) = idσ(α) we get

idσ(α)(eqσ(α) → σ[〈f〉])σ(f),

that is,

∀x : σ(α). x(σ[〈f〉])σ(f)x.

Thus we have proved 〈σ(f)〉 implies σ[〈f〉].
To prove the other direction, instantiate (21) with the relations ρ = 〈f〉 and ρ′ = eqβ

Categorical Models for Parametricity 33

for f : α→ β. Since f(〈f〉 → eqβ)idβ ,

σ(f)(σ[〈f〉]→ eqσ(β))idσ(β).

So for any x : σ(α) and y : σ(β) we have x(σ[〈f〉])y implies σ(f)x = y. In other words,
σ[〈f〉] implies 〈σ(f)〉.

We shall now define a family of initial algebras for the functor induced by σ. In each
fibre TypeΞ we may define the type

µα. σ(α) =
∏
α. ((σ(α)→ α)→ α)

with combinators

fold :
∏
α. ((σ(α)→ α)→ µβ. σ(β)→ α)

and

in : σ(µα. σ(α))→ µα. σ(α)

given by

fold α f z = z α f

and

in z = Λα. λf : σ(α)→ α. f(σ(fold α f)z).

Theorem 5.17. In any model of second-order λ-calculus the family

(Ξ ` in : σ(µα. σ(α))→ µα. σ(α))Ξ

is a family of weak initial algebras for σ.

Proof. Given any algebra f : σ(α)→ α in any fibre, the diagram

σ(µα. σ(α)) in //

σ(fold α f)

��

µα. σ(α)

fold α f

��
σ(α)

f // α

is commutative since

(fold α f) ◦ in z = in z αf = f(σ(fold α f) z)

and

f ◦ σ(fold α f) z = f(σ(fold α f) z).

We will show that in a parametric APL-structure, (Ξ ` in)Ξ actually is a family of
initial algebras. First we prove a lemma.

Lemma 5.18. In a parametric APL-structure, the formula

fold µα. σ(α) in =µα.σ(α)→µα.σ(α) idµα.σ(α)

holds in the internal logic.

L. Birkedal and R.E. Møgelberg 34

Proof. Consider an arbitrary element ω : µα. σ(α) and a map f : α → β. The para-
metricity condition then gives

(ω α)((σ[〈f〉]→ 〈f〉)→ 〈f〉)(ω β).

Since Lemma 5.16 tells us that σ[〈f〉] ≡ 〈σ(f)〉, this means that, if a : σ(α) → α and
b : σ(β)→ β have the property that

∀x : σ(α). f(a x) =β b(σ(f) x)

(that is, if f is a morphism of algebras), then

f(ω α a) =β ω β b.

Consider now an arbitrary algebra k : σ(α) → α and instantiate the above with the
algebra morphism fold α k from in to k, to get

fold α k(ω µα. σ(α) in) =α ω α k.

Since the left hand side of this equation is (ω µα. σ(α) in) α k, we get by extensionality
that

ω µα. σ(α) in =µα.σ(α) ω

and therefore, using extensionality again,

fold µα. σ(α) in =µα.σ(α)→µα.σ(α) idµα.σ(α),

as required.

Theorem 5.19. Suppose g : µα. σ(α) → α induces a map between algebras from in to
f : σ(α)→ α in a parametric APL-structure. Then

g =µα.σ(α)→α fold α f

holds in the internal logic.

Proof. Since g is a map of algebras, the parametricity condition on an arbitrary
ω : µα. σ(α) entails as in the proof of Lemma 5.18 that

g(ω µα. σ(α) in) =α ω α f

and therefore the result follows from extensionality since, by Lemma 5.18,

ω µα. σ(α) in = (fold µα. σ(α) in) ω =µα.σ(α) ω

and, moreover,

ω α f = (fold α f) ω.

Theorem 5.20. In a parametric APL-structure, (Ξ ` in)Ξ is a family of initial algebras
for σ.

Proof. Using very strong equality Thm 5.19 gives uniqueness of algebra morphisms
out of in.

Categorical Models for Parametricity 35

Remark 5.21. Consider the case of an inductively constructed type α, β ` σ(α, β) in
which α and β occur only positively. For each closed type τ we may consider the type
α ` σ(α, τ) and the analysis above gives us a family of initial algebras for this functor.
Moreover, for each morphism f : τ → τ ′ between closed types we get a morphism of
algebras induced by initiality:

σ(µα. σ(α, τ), τ)

inτ

��

//___ σ(µα. σ(α, τ ′), τ)

σ(id,f)

��
σ(µα. σ(α, τ ′), τ ′)

inτ′

��
µα. σ(α, τ) //_____ µα. σ(α, τ ′).

For example, if we consider the type α, β ` 1+α×β, then for any τ , we get lists(τ) =
µα. (1 + α× τ) and, for any f : τ → τ ′, the induced morphism is the familiar morphism
map f : lists(τ)→ lists(τ ′), which applies f to each element in a list.

5.5. Final coalgebras

In this section we consider the same setup as in Section 5.4, that is, α ` σ : Type is an
inductively constructed type in which α occurs only positively. As before σ defines a
fibred endofunctor on Type→ Kind.

Definition 5.22. Consider a fibred functor

E

��@
@@

@@
@@

T // E

��~~
~~

~~
~

B.

An indexed family of final coalgebras for the functor T is a family

(outΞ : σΞ → T (σΞ))Ξ∈Obj B

such that each outΞ is a final coalgebra for the restriction of T to the fibre over Ξ and
the family is closed under reindexing. If each outΞ is only a weak final coalgebra we call
it a family of weak final coalgebras.

In this section we define a family of weak final coalgebras for σ and prove that for
parametric APL-structures it is in fact a family of final coalgebras. First we need to
define existential quantification in each fibre as∐

α. σ(α) =
∏
α. (

∏
β. (σ(β)→ α))→ α

and the combinator pack :
∏
α. (σ(α)→

∐
β. σ(β)) by

pack α x = Λβλf :
∏
α. (σ(α)→ β). f α x.

L. Birkedal and R.E. Møgelberg 36

In each fibre we define the type

να. σ(α) =
∐
α. ((α→ σ(α))× α) =

∏
α. (

∏
β. (β → σ(β))× β → α)→ α

with combinators

unfold :
∏
α. ((α→ σ(α))→ α→ (να. σ(α)))

and

out : να. σ(α)→ σ(να. σ(α))

defined as

unfold α f x = pack α 〈f, x〉
and

out(x) = x σ(να. σ(α)) (Λαλ〈f, x〉 : ((α→ σ(α))× α). σ(unfold α f)(f x)).

Theorem 5.23. In any model of second-order λ-calculus (Ξ ` out)Ξ is a family of weak
final coalgebras for σ.

Proof. Consider a coalgebra f : α→ σ(α) in any fibre. Then

α
f //

unfold α f

��

σ(α)

σ(unfold α f)

��
να. σ(α) out // σ(να. σ(α))

commutes since

out(unfold α f z) = out(pack α 〈f, z〉) =
(pack α 〈f, z〉) (σ(να. σ(α))) (Λαλ〈f, x〉 : ((α→ σ(α))× α). σ(unfold α f)(f x))

= σ(unfold α f)(f z)

Lemma 5.24. In a parametric APL-structure,

unfold να. σ(α) out

is internally equal to the identity on να. σ(α).

Proof. Set h = unfold να. σ(α) out in the following.
By parametricity, for any k : α→ β,

unfold α(〈k〉 → σ[〈k〉])→ (〈k〉 → eqνα.σ(α))unfold β.

Hence, since σ[〈k〉] ≡ 〈σ(k)〉 by Lemma 5.16, if

k : (f : α→ σ(α))→ (g : β → σ(β))

is a morphism of coalgebras, then

unfold α f =α→να.σ(α) (unfold β g) ◦ k.

Categorical Models for Parametricity 37

So since h is a morphism of coalgebras from out to out we have h = h2. Intuitively, all
we need to prove now is that h is “surjective”.

Consider any g :
∏
α. ((α → σ(α)) × α → β). By parametricity and Lemma 5.16, for

any coalgebra map k : (f : α→ σ(α))→ (f ′ : α′ → σ(α′)), we must have

∀x : α. g α 〈f, x〉 =β g α
′ 〈f ′, k(x)〉.

Using this on the coalgebra map unfold α f from f to out we obtain

∀x : α. g α〈f, x〉 =β g να. σ(α)〈out, unfold α f x〉.

In other words, if we define

k :
∏
α. ((α→ σ(α))× α→ τ),

where τ = (να. σ(α)→ σ(να. σ(α)))× να. σ(α), to be

k = Λα. λ〈f, x〉 : (α→ σ(α))× α. 〈out, unfold α f x〉,

then

∀α. g α =(α→σ(α))×α→β (g να. σ(α)) ◦ (k α). (22)

Now, suppose we are given α, α′, R : Rel(α, α′) and terms f, f ′ such that

f((R→ σ[R])×R→ β)f ′.

Then, by (22) and parametricity of g

g α f =β g α
′ f ′ =β (g να. σ(α))(k α′ f ′),

from which we conclude

g(∀(α, β,R : Rel(α, β)). ((R→ σ[R])×R→ 〈g να. σ(α)〉))k.

This implies that for any x : να. σ(α) by parametricity we have

x β g =β g να. σ(α) (x τ k).

Thus, since g was arbitrary, we may apply the above to g = k and get

x τ k =τ k να. σ(α) (x τ k) = 〈out, unfold να. σ(α) π(x τ k) π′(x τ k)〉.

If we write

l = λx : να. σ(α). unfold να. σ(α) π(x τ k) π′(x τ k),

then since k is a closed term, so is l, and from the above calculations we conclude that
we have

∀β. ∀g :
∏
α. (α→ σ(α))× α→ β. x β g =β g να. σ(α) 〈out, l x〉.

Now, finally

h(l x) = unfold να. σ(α) out (l x) =
pack να. σ(α) 〈out, l x〉 =

Λβ. λg :
∏
α. ((α→ σ(α))× α→ β). g να. σ(α) 〈out, l x〉 =να.σ(α)

Λβ. λg :
∏
α. ((α→ σ(α))× α→ β). x β g = x

L. Birkedal and R.E. Møgelberg 38

where we have used extensionality. Thus l is a right inverse to h, and we conclude

h x =να.σ(α) h
2(l x) =να.σ(α) h(l x) =να.σ(α) x.

Theorem 5.25. In a parametric APL-structure, (Ξ ` out)Ξ is a family of final coalgebras
for σ.

Proof. Consider a map of coalgebras into out:

α
f //

g

��

σ(α)

σ(g)

��
να. σ(α) out // σ(να. σ(α)).

By parametricity of unfold we have

unfold α f =α→να.σ(α) (unfold να. σ(α) out) ◦ g =α→να.σ(α) g.

Very strong equality then implies uniqueness of coalgebra morphisms into out as desired.

5.6. Generalizing to strong fibred functors

In this section, our aim is to generalize the results of Sections 5.4 and 5.5 to initial
algebras and final coalgebras for a more general class of fibred functors, than the one
defined by inductively constructed types. To be able to use the internal logic of the model,
however, we need the fibred functor to be “internalized” in the internal logic.

Consider a fibred functor

Type F //

$$J
JJJJJJJJ Type

zzttttttttt

Kind.

Since Type→ Kind has a generic object T ∈ TypeΩ ((Jacobs, 1999, Definition 5.2.8)),
there is for every I ∈ Kind a map

φI : TypeI → HomKind(I,Ω)

such that φI(X) is the unique map, such that φI(X)∗T is vertically isomorphic to X.
Now,

F (X) ∼= F (φI(X)∗T) ∼= φI(X)∗F (T).

Thus we have proved the following lemma.

Lemma 5.26. Every fibred functor F : Type → Type is naturally isomorphic to a
functor, whose object part is defined as X 7→ φI(X)∗σ for some σ ∈ TypeΩ. In the
internal language the object part of such a functor is written as τ 7→ σ(τ).

Categorical Models for Parametricity 39

In the following, we shall assume that F has this form and simply denote F by σ.
Thus we can always represent the object part of a functor in the internal language. To

represent the morphism part, we need to use strong functors.

Definition 5.27. An endofunctor T : B → B on a cartesian closed category is called
strong if there exists a natural transformation tσ,τ : τσ → TτTσ preserving identity and
composition:

1
îdσ //

îdT σ ""D
DD

DD
DD

DD σσ

tσ,σ

��
TσTσ

σσ1
2 × σ

σ2
3

comp //

t×t

��

σσ1
3

t

��
TσTσ1

2 × TσTσ2
3

comp // TσTσ1
3 .

The natural transformation t is called the strength of the functor T .

One should note that t in the definition above represents the morphism part of the
functor T in the sense that it makes the diagram

1
f̂ //

T̂ f ""D
DDDDDDD τσ

tσ,τ

��
TτTσ

commute, for any morphism f : σ → τ . This follows from the commutative diagram

1
îd

$$
îd

@@
@

��@
@@

f̂

��

σσ t //

fσ

��

TσTσ

TfT σ

��
τσ t // TτTσ.

Definition 5.28. A strong fibred functor is a fibred endofunctor

E

��?
??

??
??

T // E

����
��

��
�

B

on a fibred ccc, for which there exists a fibred natural transformation t from the fibred
functor (−)(+) to T (−)T (+) satisfying commutativity of the two diagrams of Definition
5.27 in each fibre. The natural transformation t is called the strength of the functor T .

In this definition, one should of course check that the two functors (−)(+) and T (−)T (+)

L. Birkedal and R.E. Møgelberg 40

— a priori only defined on the fibres — in fact define fibred functors

Type×Kind Type //

((QQQQQQQQQQQQ Type

zzttttttttt

Kind.

But this is easily seen. Notice also that T is not required to preserve the fibred ccc-
structure and that the components of t are preserved under reindexing since t is a fibred
natural transformation.

Definition 5.29. A fibred endofunctor

Type σ //

$$I
IIIIIIII Type

zzuuuuuuuuu

Kind,

defined on objects by τ 7→ σ(τ) for a type σ ∈ TypeΩ as above, is polymorphically
strong if there exists a term

t :
∏
α, β : Type. (α→ β)→ σ(α)→ σ(β)

such that the family (tαβ)(α,β)∈Type×KindType is a strength of the functor σ in the sense
of Definition 5.28. The term t is called the polymorphic strength of σ.

Example 5.30. An inductively constructed type with one free variable α ` σ : Type,
where α occurs only positively, defines a polymorphically strong fibred functor: see Sec-
tion 5.4.

But in many situations one may want to reason about other polymorphically strong
fibred functors than the ones defined by types modeled in λ2. For example, if the λ2-
fibration of the APL-structure models other type constructions than the ones from λ2

for which there are natural functorial interpretations, one may want to prove existence
of initial algebras for functors induced by types in this extended language.

For polymorphically strong fibred functors we can also reason about their morphism
part in the internal language. For instance, we may write

α, β | f : α→ β ` t α β f : σ(α)→ σ(β)

to express the application of a functor σ with strength t to a morphism f .
Furthermore, since the morphism part of the functor is represented by a polymorphic

term, we can use parametricity to reason about it. For instance, we may prove the
following generalization of Lemma 5.16.

Lemma 5.31 (Graph Lemma). For any parametric APL-structure, if σ is a polymor-
phically strong fibred endofunctor Type→ Type, then the formula

∀α, β : Type.∀f : α→ β. σ[〈f〉] ≡ 〈σ(f)〉

Categorical Models for Parametricity 41

holds in the internal language of the APL-structure, where ρ ≡ ρ′ is short for

∀x, y. ρ(x, y) ⊃⊂ ρ′(x, y).

The proof of this lemma is the same as the proof of Lemma 5.16.

Corollary 5.32. For any parametric APL-structure, the morphism part of a polymor-
phically strong fibred endofunctor σ is uniquely determined by the object part.

Proof. By Lemma 5.31, y = σ(f)(x) iff xσ[〈f〉]y.

Theorem 5.33. In a parametric APL-structure, any polymorphically strong fibred func-
tor T : Type→ Type has

— A family of initial algebras defined as in Section 5.4
— A family of final coalgebras defined as in Section 5.5

Proof. The proofs work exactly as in Sections 5.4 and 5.5 since we may express the
functor T in the internal language, as described above.

The fact that these initial algebras and final coalgebras are preserved by reindexing
follows from the fact that the strengths t are preserved.

6. Concrete APL-structures

In this section we define a concrete parametric APL-structure based on a well-known
variant of the per-model (see, for instance, (Jacobs, 1999, Section 8.4)).

The diagram of Definition 3.3 in the concrete model is:

UFam(RegSub(Asm))

r

��
PFam(Per)

p

))TTTTTTTTTTTTTTTT
� � I // UFam(Asm)

q

��
PPer

(23)

The fibration p is the fibration of (Jacobs, 1999, Def. 8.4.9); we repeat the definition
here. In the following, Per and Asm, will denote the sets of partial equivalence relations
and assemblies respectively on the natural numbers (see (Jacobs, 1999)).

The category PPer is defined as

Objects Natural numbers.
Morphisms A morphism f : n → 1 is a pair (fp, fr)where fp : Pern → Per is any

map and

fr ∈
∏

~R,~S∈Pern

[∏
i≤n P (N/Ri × N/Si)→ P (N/fp(~R)× N/fp(~S)

]
is a map that satisfies the identity extension condition: fr(

−→
Eq) = Eq. A

morphism from n to m is an m-vector of morphism from n to 1.

We can now define PFam(Per) as the indexed category with fibre over n defined as

L. Birkedal and R.E. Møgelberg 42

Objects morphisms, n→ 1 of PPer.
Morphisms a morphism from f to g is an indexed family of maps (α~R)~R∈Pern where

α~R : N/fp(~R)→ N/gp(~R)

are tracked uniformly, i.e., there exists a code e such that, for all ~R
and [n] ∈ N/fp(~R), α~R([n]) = [e · n]. Further, the morphism α should
respect relations, that is, if Ai ⊂ N/Ri × N/Si and (a, b) ∈ fr(~A) then
(α~R(a), α~S(b)) ∈ gr(~A).

Reindexing is by composition.
Next we define the fibration q. The fibre category UFam(Asm)n is defined as

Objects all maps f : Pern → Asm.
Morphisms a morphism from f to g is an indexed family of maps (α~R)~R∈Pern where

α~R : f(~R)→ g(~R)

are maps between the underlying sets of the assemblies that are tracked
uniformly, i.e. there exists a code e such that for all ~R and all i ∈ f(~R)
and all a ∈ Ef(~R)(i) we have e · a ∈ Eg(~R)(α~R(i)).

Reindexing is again by composition.
Finally we can define the category UFam(RegSub(Asm)) as

Objects An object over f is any family of subsets (A~R ⊆ f(~R))~R, where by
subset we mean subset of the underlying set of the assembly.

Morphisms In each fibre the morphisms are just subset inclusions.

Reindexing is defined as follows: Suppose φ : f → g is a morphism in UFam(Asm)
projecting to qφ : n→ m in PPer. By definition this is a map in the fibre of UFam(Asm)
over n from f to (qφ)∗(g). Such morphisms are given by indexed families of maps

φ~R : f(~R)→ g ◦ (qφ)p(~R)

ranging over ~R ∈ Pern so we can define

φ∗(A~S ⊂ g(~S))~S∈Perm = (φ−1
~R

(Ag◦(qφ)p(~R)))~R∈Pern

The inclusion I is obtained by projecting (fp, fr) to fp using the inclusion of Per into
Asm.

Lemma 6.1. p is a λ2-fibration.

Proof. This is (Jacobs, 1999, Prop. 8.4.10). The ccc-structure is given by a pointwise
construction, and 1 is clearly a generic object. For a type f : n + 1 → 1 we define∏
f : n→ 1 as

(
∏
f)p(~R) = {(a, a′) | ∀U, V ∈ Per.∀B ⊆ N/U × N/V

a ∈ |fp(~R,U)| and a′ ∈ |fp(~R, V)| and
([a], [a′]) ∈ fr

(~R,U),(~R,V)
(~Eq~R, B)}

Categorical Models for Parametricity 43

and

(
∏
f)r

~R×~S
(~A) = {([a]∏(f)p(~R), [a

′]∏(f)p(~S)) | ∀U, V ∈ Per.∀B ⊆ N/U × N/V
([a]fp(~R,U), [a

′]fp(~S,V)) ∈ f
r
(~R,U),(~S,V)

(~A,B)}

for ~A ⊆ ~R× ~S.

Theorem 6.2. The diagram (23) defines a parametric APL-structure.

We do not prove Lemma 6.2 directly. Instead, we will show in Remark 8.27 that (23)
is a special case of the parametric completion process of Section 8.

Remark 6.3. In the above model we use nothing special about the PCA N so the
same construction applies to pers and assemblies over any PCA. All the lemmas above
generalize, so that in the general case we also obtain a parametric APL-structure.

6.1. A parametric non-well-pointed APL-structure

We may generalize the construction above even further to the case of relative realizability.
Suppose we are given a PCA A and a sub-PCA A]. We can then define the APL-structure
as above with pers and assemblies over A, with the only exception that morphisms in
PFam(Per) and UFam(Asm) should be uniformly tracked by codes in A]. All the
proofs of section 6 generalize so that we obtain:

Proposition 6.4. For any PCA A and sub-PCA A] the diagram

UFam(RegSub(Asm(A,A])))

r

��
PFam(Per(A,A]))

p

++VVVVVVVVVVVVVVVVVV
� � I // UFam(Asm(A,A]))

q

��
PPer(A,A])

defines a parametric APL-structure.

However, one may also prove:

Proposition 6.5. The fibre PFam(Per(A,A]))0 is in general not well-pointed.

Proof. Consider a per of the form {(a, a)}, for a ∈ A \A]. There may be several maps
out of this per, but it does not have any global points.

Proposition 6.4 tells us that all the theorems of Section 5 apply, such that the λ2-
fibration PFam(Per(A,A])) → PPer(A,A]) has all the properties that we consider
consequences of parametricity. This should be compared to (Dunphy, 2004) in which a
family of parametric models is presented (with another definition of “parametric model”)
and the consequences of parametricity are proved only for the well-pointed parametric
models.

L. Birkedal and R.E. Møgelberg 44

7. Comparing with Ma & Reynolds notion of parametricity

In this section we compare the notion of parametricity presented above with Ma &
Reynolds’ notion of parametricity (Ma and Reynolds, 1992) (see also (Jacobs, 1999)).
This latter notion was the first proposal for a general category theoretic formulation of
parametricity and is perhaps the most well-known.

To define parametricity in the sense Ma & Reynolds, consider first a situation where
we are given a λ2-fibration E // B and a logic on the types given by an indexed
first-order logic fibration

D // E // B .

Consider the category of relations on closed types LR(E1) defined as

LR(E1) //

��

D1

��

// D

��
E1 × E1

× // E1
� � // E

where by 1 we mean the terminal object of B. In this case we have a reflexive graph of
categories

E1
// LR(E1)oo

oo
,

where the functor going left to right maps a type to the identity on that type. By reflexive
graph we mean that the two compositions starting and ending in E1 are identities.

Definition 7.1. The λ2-fibration

E

��
B

is parametric in the sense of Ma & Reynolds with respect to D → E if there exists a
λ2-fibration F → C and a reflexive graph of λ2 fibrations

E

��
B

 //

F

��
C

oo

oo

such that the restriction to the fibres over the terminal objects becomes

E1
// LR(E1)oo

oo
.

Given an APL-structure, we have a logic over types given by the pullback of Prop
along I. We also have a reflexive graph giving the relational interpretation of all types.
It is natural to ask what kind of parametricity we obtain by requiring that the reflexive
graph giving the relational interpretation of types satisfies the requirements of Definition
7.1.

First we notice that Relations1 = LR(E1), and that the two maps going from

Categorical Models for Parametricity 45

Relations to E1 are in fact the domain and codomain maps, as required, so the re-
quirements of Definition 7.1 only effect the nature of the map J .

The last requirement of Definition 7.1 says exactly that, for all closed types σ,

J([[σ]]) = [[eqσ]].

Consider now an open type ~α ` σ : Type and a vector of closed types ~τ . Then, since J
is a map of fibrations, we have

J([[σ(~τ)]]) = J([[~τ]]∗[[~α ` σ]]) = J([[~α ` σ]]) ◦ [[eq~τ]] = [[σ[eq~τ]]].

In other words, the model satisfies a weak form of Identity Extension Schema:

Definition 7.2. The schema

∀u, v : σ(~τ). (uσ[eq~τ]v) ⊃⊂ u =σ(~τ) v

where ~α ` σ ranges over all types and ~τ ranges over all closed types is called the weak
identity extension schema.

We will briefly mention which of the consequences of parametricity mentioned in Sec-
tion 5 that hold under assumption of the weak Identity Extension Schema.

First we notice that the weak Identity Extension Schema implies the parametricity
schema

∀u : (
∏
β : Type. σ(β, τ2, . . . , τn)). u(∀β. σ[β, eqτ2

, . . . , eqτn
])u

in the case where the τi are closed types.
Using only this weak version of the parametricity schema, we can still prove existence

of terminal and initial types, since in these cases we only need to use parametricity on
the closed types T and I.

The proofs of existence of products and coproducts, however, fail when σ and τ are
open types, since we need to use the parametricity condition on the open types σ×̂τ and
σ + τ .

The case of initial algebras goes through, since the proof only uses parametricity of
µα. σ(α),which is a closed type. The proof of Lemma 5.24, however, uses parametricity
of the type

∏
α. ((α → σ(α)) × α → β) where β is a type variable, so this proof does

not go through with only the weak parametricity schema. In other words, in the setting
of reflexive graphs as in Definition 7.1, we do not have a proof of existence of final
coalgebras.

See also (Robinson and Rosolini, 1994) for a related discussion.

8. A parametric completion process

In this section we give a description of a parametric completion process that given a
model of λ2 internal to some category satisfying certain requirements produces a para-
metric APL-structure. The construction is related to the parametric completion process
of (Robinson and Rosolini, 1994) in the sense that the process that constructs the λ2-
fibration contained in the APL-structure generated by our completion process is basically

L. Birkedal and R.E. Møgelberg 46

the parametric completion process of (Robinson and Rosolini, 1994) (only the setup varies
slightly). This means that if the ambient category is a topos, then the parametric com-
pletion process of (Robinson and Rosolini, 1994) produces models parametric in our new
sense which then satisfies the consequences of parametricity of Section 5. This fact is no
surprise, but, to our knowledge, it has not been proved in the literature.

The concrete model of Section 6 is a result of the parametric completion process
described in this section. Before describing the completion process we recall the theory
of internal models of λ2.

8.1. Internal models for λ2

Suppose we are given a locally cartesian closed category E. Given a full internal category
D of E we may consider the externalization D

Fam(D)

��
E

.

We shall denote by D0 the object of objects, and by D1 the object of morphisms of D.
The fibre over Ξ ∈ E is the internal functor category from Ξ considered as a discrete
category to D, i.e., objects are morphisms Ξ → D0 and morphism are morphisms of E:
Ξ→ D1.

Proposition 8.1. Suppose D is a full internally cartesian closed category that has right
Kan extensions for internal functors F : Ξ → D along projections Ξ ×D0 → Ξ. Then
the externalization of D is a λ2-fibration.

Proof. Since D is internally cartesian closed, its externalization has cartesian closed
fibres preserved under reindexing (Jacobs, 1999, Corollary 7.3.9). Clearly D0 is a generic
object for the fibration.

Polymorphism is modeled using the Kan extensions, since for any type σ : Ξ×D0 → D
the right Kan extension of σ along π : Ξ×D0 → Ξ is the functor

∏
α. σ in the diagram

Ξ×D0
σ //

π

��

D

Ξ.

∏
α.σ

;;w
w

w
w

w

The universality condition for the right Kan extension then gives the bijective correspon-
dence

Nat(τ ◦ π, σ) ∼= Nat(τ,
∏
α. σ)

between the sets of natural transformations. Since π∗τ = τ ◦π, for τ : Ξ→ D, this states
exactly that the right Kan extension provides the right adjoint to π∗, as required.

To show that the Beck-Chevalley condition is satisfied, we need to show that for
u : Ξ′ → Ξ we have

u∗(
∏
α. σ) ∼=

∏
α. ((u× id)∗σ),

Categorical Models for Parametricity 47

that is,

(
∏
α. σ) ◦ u ∼=

∏
α. (σ ◦ (u× id)).

By Lemma 8.2 below, we may write out the values of these two functors on objects A ∈ Ξ′

as limits:

((
∏
α. σ) ◦ u)(A) = lim←−

u(A)→π(A′)

σ(A′) (24)

(
∏
α. (σ ◦ u× id))(A) = lim←−

A→πA′′

σ(u× id(A′′)). (25)

In (24) we take the limit over all maps f : u(A)→ π(A′) in the discrete category Ξ. But
since this is a discrete category, such maps only exist in the case π(A′) = u(A), so (24)
can be rewritten as ∏

D′∈D0
σ(u(A), D′).

Likewise (25) can be rewritten as∏
D′′∈D0

σ(u(A), D′′),

proving that the Beck-Chevalley condition is satisfied.

Lemma 8.2. Suppose the Kan extension RKH(F) in the diagram

L H //

F

��

H

RKH(F)����
��

��
�

F

exists. If L, H are discrete, then RKH(F) is given as a pointwise limit construction (as
in (Mac Lane, 1971, Theorem 1, p.237)).

Proposition 8.1 justifies the following definition.

Definition 8.3. An internal category D of a locally cartesian closed category E is called
an internal model of λ2 if it satisfies the assumptions of Proposition 8.1.

8.2. Input for the parametric completion process

The parametric completion process takes the following ingredients as input:

1 A quasitopos E
2 An internal model D of λ2 in E.

We will further assume that the inclusion

Fam(D) //

##G
GGGGGGGG E→

cod~~}}
}}

}}
}}

E

L. Birkedal and R.E. Møgelberg 48

which we have already assumed is full and faithful, preserves products and is closed
under regular subobjects. The latter means that for each object E ∈ E, the fibre category
Fam(D)E is closed under regular subobjects as a subcategory of E/E.

The logic RegSubE → E of regular subobjects induces a logic on E→ by

Q //

��

RegSubE

��
E→ dom // E,

which, by Lemma A.8, makes the composable fibration

Q // E→ cod // E ,

an indexed first-order logic fibration with an indexed family of generic objects, simple
products and simple coproducts.

Let Σ be the regular subobject classifier of E. We can now form an internal fibration‡

by using the Grothendieck construction on the functor (d ∈ D) 7→ Σd, with Σd ordered
pointwise. We think of this fibration as the internalization of RegSubE → E restricted
to D and write it as a : Q→ D. Notice that since D is closed under regular subobjects,
Q→ D is a subfibration of the subobject fibration on D, and since its externalization is
simply the restriction of Q → E→, it is closed under the logical operations >,∧,⊃,∀,=
from the regular subobject fibration.

Associated to the model given by D there is a canonical pre-APL- structure

Q

��
Fam(D)

$$I
III

III
III

// E→

��
E

(26)

To this we can associate, as usual, the fibration of relations denoted by RelationsD →
RelCtxD.

8.3. The completion process

We define the category LR(D) to have as objects logical relations of D in the logic of Q
and as morphisms pairs of morphisms in D that preserve relations.

Lemma 8.4. The category LR(D) is an internal cartesian closed category of E.

‡ By internal fibration, we mean an internal functor, whose externalization is a fibration. By an internal

fibration having structure such as ∧,⊃, ∀, = we mean that the externalization has the same (indexed)
structure

Categorical Models for Parametricity 49

Proof. We set

LR(D)0 = {(X,Y, φ) ∈ D0 ×D0 ×Q0 | a(φ) = X × Y }

and
LR(D)1 =

∐
(X,Y,φ),(X′,Y ′,φ′)∈LR(D)0

{(f, g) ∈ D1 ×D1 |
f : X → X ′ ∧ g : Y → Y ′ ∧ φ ≤ (f × g)∗φ′}.

For the cartesian closed structure we define:

(X,Y, φ)× (X ′, Y ′, φ′) = (X ×X ′, Y × Y ′, φ× φ′),

where φ× φ′((x, x′), (y, y′)) = φ(x, y) ∧ φ′(x′, y′), and

(X,Y, φ)→ (X ′, Y ′, φ′) = (X → X ′, Y → Y ′, φ→ φ′),

where

φ→ φ′(f, g) = ∀x ∈ X∀y ∈ Y (φ(x, y) ⊃ φ′(f(x), g(y))).

Let

G = · // ·oo
oo

be the generic reflexive graph category, and consider the functor category EG. Since it is
well known that Cat(EG) ∼= Cat(E)G and CCCat(EG) ∼= CCCat(E)G it follows that

Lemma 8.5. D // LR(D)oo
oo

is an internal cartesian closed category of EG.

We now aim to prove that D // LR(D)oo
oo

is an internal model of λ2. By the lemma,
all that remains is to prove that there are right Kan extensions for internal functors from
Ξ×D0

// Ξ′ × LR(D0)oo
oo

to D // LR(D)oo
oo

along projections to Ξ // Ξ′oo
oo

. This
is the same a saying that the fibration

Fam(Dn // LR(D)n
oo
oo

)→ EG

has right adjoints to reindexing functors along projections.
We first consider the simpler case with spans in stead of reflexive graphs. Let R(D)

denote the internal category

LR(D)
∂0

����
��

��
�

∂1

��8
88

88
88

D D

inside EΛ, where Λ is the obvious category.
An object of Fam(R(D)) is a triple of maps (f, g, ρ) such that

LR(D)0

����
��

��
�

��9
99

99
99

Θ

��3
33

33
33

����
��
��
�

ρ 22fffffffffff

D0 D0

Ξ0

f 33fffffffffff Ξ1

g 22eeeeeeeeeeeeee

(27)

L. Birkedal and R.E. Møgelberg 50

commutes. Since LR(D)0 is the object of all relations on objects of D, the idea is that
we can consider such a triple as a definable relation

[[Ξ0,Ξ1 | Θ ` ρ : Rel(f(Ξ0), g(Ξ1))]],

i.e., an object of RelationsD. We will make this intuition precise in Lemma 8.6.
A vertical morphism in the category Fam(R(D)) from (f, g, ρ) to (f ′, g′, ρ′) is by

definition a triple consisting of a morphism from f to f ′, a morphism from g to g′

and a morphism from ρ to ρ′. But since morphisms in LR(D) are pairs of morphisms
preserving relations, and since the triple of morphisms is required to make the obvious
diagram commute, we can consider such a morphism as a pair (s : f → f ′, t : g → g′)
such that

∀A ∈ Θ.∀x : f(∂0(A)), y : g(∂1(A)). ρ(x, y) ⊃ ρ′(s∂0(A)(x), t∂1(A)(y)),

as interpreted in the internal language of the quasi-topos, where ⊃ refers to the internal
ordering in Q.

Lemma 8.6. There is an isomorphism of fibrations
Fam(R(D))

��
EΛ

 ∼= //

RelationsD

��
RelCtxD

Proof. Unwinding the definition of RelCtxD, we find that the objects are triples

(Ξ0,Ξ1,Ξ) together with maps Ξ→ Ξ0×Ξ1 in E. A map from Ξ→ Ξ0×Ξ1 to Ξ′ → Ξ′
0×Ξ′

1

is a triple ρ : Ξ → Ξ′, f : Ξ0 → Ξ′
0, g : Ξ1 → Ξ′

1 making the obvious diagram commute.
Thus RelCtxD

∼= EΛ.
Objects in RelationsD are given as morphism in RelCtxD into the interpretation of

α, β | R : Rel(α, β) in (26). But the interpretation of this is easily seen to be∐
α,β∈D0

Σα×β → D0 ×D0,

and since LR(D)0 =
∐

α,β∈D0
Σα×β we get a bijective correspondence between ob-

jects of RelationsD and objects of Fam(R(D)). For morphisms, a vertical morphism
in Fam(R(D)) from (f, g, ρ) to (f ′, g′, ρ′) is by the above discussion a pair of morphisms
t : f → f ′, s : g → g′ satisfying ρ ⊃ (t × s)∗ρ′, which is exactly the same as a vertical
morphism in RelationsD.

Lemma 8.7. All internal functors
Ξ

444 ��

��
Ξ0 Ξ1

×R(D)0 → R(D) have right Kan extensions

along the projection to
Ξ

444 ��

��
Ξ0 Ξ1

Proof. The statement to be proved is equivalent to the statement that the fibration on
the left hand side of the isomorphism of Lemma 8.6 has simple products. Since we know
that the fibration on the right of the isomorphism has simple products, we are done.

Categorical Models for Parametricity 51

Let us now consider the case that we are really interested in. We shall assume that we
are given a functor (f t, fr) in EG:

Ξ′ × LR(D)0
π //

∂1

��
∂0

��

fr

##G
GGGGGGGGGGGGGGGGGGGG Ξ′

∂1

��
∂0

��
Ξ×D0

ft

##G
GGGGGGGGGGGGGGGGGGGGG

I

OO

π // Ξ

I

OO

LR(D)

∂1

��
∂0

��
D,

I

OO

(28)

and we would like to find a right Kan extension of (f t, fr) along (π, π) (notice that we
have used the notation ∂0, ∂1, I for the structure maps of all objects of EG - this should
not cause any confusion, since it will be clear from the context which map is referred
to). Let us call this extension (

∏
par f

t,
∏

par f
r). An obvious idea is to try the pair

(
∏
f t,

∏
fr) provided by Lemma 8.7. However,

∏
par f

r should commute with I, and we
cannot know that

∏
fr will do that. Consider

∏
fr(I(A)) for some A ∈ Ξ:∏̄

fr(I(A))
��

��∏
f t(A)×

∏
f t(A).

If we pull this relation back along the diagonal on
∏
f t(A) we get a subobject

|
∏
fr(I(A))| // // ∏ f t(A)

(called the field of
∏
fr(I(A))). Logically, |

∏
fr(I(A))| is the set {x ∈

∏
f t(A) | (x, x) ∈∏̄

fr(I(A))}, so if we restrict
∏
fr(I(A)) to this subobject, we get a relation relation

containing the identity relation. The other inclusion will be easy to prove. Thus the idea
is to let

∏
par f

t be the map that maps A to |
∏
fr(I(A))|, and let

∏
par f

r(R) be the
relation obtained by restricting

∏
fr(R) to

∏
par f

t(∂0(R))×
∏

par f
t(∂1(R)).

Theorem 8.8. For (f t, fr), (π, π) as in (28), the right Kan extension of (f t, fr) along
(π, π) exists.

Proof. We will define
∏

par f
t(A) as the pullback

(
∏

par f
t)(A)
��

��

// (
∏
fr)(I(A))
��

��∏
f t(A) ∆ // ∏ f t(A)×

∏
f t(A)

L. Birkedal and R.E. Møgelberg 52

where ∆ is the diagonal map. We define
∏

par f
r(R) for R ∈ Ξ′, to be the pullback

(
∏

par f
r)(R)
��

��

// (
∏
fr)(R)
��

��∏
par f

t(∂0R)×
∏

par f
t(∂1R) // // ∏ f t(∂0R)×

∏
f t(∂1R).

First we will show that
∏

par f
r(I(A)) = I(

∏
par f

t(A)) for all A. Logically∏
par f

r(I(A)) = {(x, y) ∈
∏
fr(I(A)) | (y, y), (x, x) ∈

∏
fr(I(A))} ⊇

{(x, x) | x ∈ |
∏
fr(I(A))|} = I(

∏
par f

t(A))

To prove the other inclusion suppose (x, y) ∈
∏

par f
r(I(A)) ⊆

∏
fr(I(A)). Then for any

σn+1 ∈ D0,

(x, y) ∈ π∗(
∏
fr)(I(A), I(σn+1)).

Let εA,σn+1 denote the appropriate component of the counit for π∗ a
∏

. Then

(εA,σn+1x, εA,σn+1y) ∈ π∗(
∏
fr)(I(A), I(σn+1)) = I(f t(A, σn+1)),

so εA,σn+1x = εA,σn+1y. Since
∏
f t(A) is the product of f t(A, σn+1) over σn+1 in D0,

and εA,σn+1 is simply the projection onto the σn+1-component, εA,σn+1x = εA,σn+1y for
all σn+1 implies x = y as desired.

Finally we will show that
∏

par provides the desired right adjoint. Recall that a mor-
phism from (gt, gr) to (ht, hr), where

Ξ′ gr

//

∂1

��
∂0

��

LR(D)0

∂1

��
∂0

��
Ξ

I

OO

gt

// D0

I

OO

and likewise (ht, hr) is a morphism s : gt → ht preserving relations. In the internal
language this means that for each A ∈ Ξ we have a map sA : gt(A) → ht(A) such that
for R with ∂0(R) = A, ∂1(R) = B, (x, y) ∈ gr(R) implies (sA(x), sB(y)) ∈ hr(R).

Now, from Lemma 8.7 we easily derive a one-to-one correspondence between maps
(gt, gr)→ (

∏
f t,

∏
fr) and maps (gt ◦π, gr ◦π)→ (f t, fr). Since

∏
par f

t(A) ⊆
∏
f t(A),

for this correspondence to carry over, we only need to check that if s denotes a map
from (gt ◦ π, gr ◦ π) to (f t, fr), and s̃ the adjoint correspondent to s, then s̃ preserves
relations, and if x ∈ gt(A), then s̃(x) ∈

∏
par f

t(A). But since (x, x) ∈ gr(I(A)) =
I(gt(A)), we must have (s̃(x), s̃(x)) ∈

∏
fr(I(A)), so s̃(x) ∈

∏
par f

t(A) as desired. For
the preservation of relations, suppose (x, y) ∈ gr(R). Then

(s̃(x), s̃(y)) ∈
∏
fr(R) ∩

∏
par f

t(∂0R)×
∏

par f
t(∂1R) =

∏
par f

r(R).

Corollary 8.9. The fibration Fam(LR(D) // Doo
oo

)→ EG is a λ2-fibration.

Categorical Models for Parametricity 53

Remark 8.10. If E is a topos then Q is the subobject fibration on D, and T → K is
in fact the model of λ2 that Robinson and Rosolini prove to be parametric in the sense
of reflexive graphs (Definition 7.1) in (Robinson and Rosolini, 1994). One interesting
difference however, is that (Robinson and Rosolini, 1994) considered only models of λ2

that satisfied a “suitability for polymorphism” condition stating that the model is closed
under LR(D)0-products. In our setup, this condition is replaced by the condition that
the regular subobject fibration models ∀, and that the internal category D is closed under
regular subobjects.

Remark 8.11. Consider a morphism ξ between types f and g in the model T → K.
At first sight, such a morphism is a pair of morphism (ξ0, ξ1) with ξi : fi → gi. But
morphisms in LR(D) are given by pairs of maps in D, and commutativity of

LR(D)n
0

ξ1 //

∂i

��

LR(D)1

∂i

��
Dn

0

ξ0 // D1

tells us that ξ1 must be given by (ξ0, ξ0). Thus morphisms between types are morphisms
between the usual interpretations of types preserving the relational interpretations.

8.4. The APL-structure

In this section we embed the λ2 fibration of Corollary 8.9 into a full parametric APL-
structure.

Consider the functor (·)0 : EG → E that maps a diagram X0
// X1oo

oo
to X0, and

consider the pullback of (26) along (·)0:

P

��
T � � //

 B
BB

BB
BB

B C

��
EG.

(29)

Lemma 8.12. The functor (·)0 extends to a morphism of fibrations:

Fam
(

LR(D)OO
����

D

)
(·)0 //

��

Fam(D)

��
EG

(·)0 // E.

Proof. The required map maps an object(
X1OO
����

X0

)
//
(

LR(D)0OO
����

D0

)

L. Birkedal and R.E. Møgelberg 54

of Fam
(

LR(D)0OO
����

D0

)
to the object X0

// D0 of Fam(D). Likewise for morphisms.

As a consequence of Lemma 8.12 we can extend (29) to

P

��
Fam

(
LR(D)0OO

����
D0

)
//

((QQQQQQQQQQQQQQ
T � � //

��;
;;

;;
;;

;;
C

��
EG.

(30)

If we erase T from (30) we obtain the diagram

P

��
Fam

(
LR(D)OO
����

D

)
� � I //

$$I
IIIIIIII

C

��
EG.

(31)

Theorem 8.13. The diagram (31) defines a parametric APL-structure.

We will prove Theorem 8.13 in a series of lemmas.

Corollary 8.14. If D is an internal model of λ2 in a topos, which is closed under
subobjects, then the parametric completion process of (Robinson and Rosolini, 1994)
provides a λ2-fibration that satisfies the consequences of parametricity provable in Abadi
& Plotkin’s logic.

Proof. This follows from Remark 8.10.

Remark 8.15. The types (the objects of Fam
(

LR(D)OO
����

D

)
) in the APL-structure (31) are

morphisms (
LR(D)0OO

����
D0

)n

→
(

LR(D)0OO
����

D0

)
in EG. Thus types contain both the usual interpretation (the map f0 : Dn

0 → D0)
and a relational interpretation (the map f1 : LR(D)n

0 → LR(D)0). But since the map

Fam
(

LR(D)0OO
����

D0

)
→ T forgets the relational interpretation, the logic on types, given by P,

is given only by the logic on the usual interpretation of the types. To be more precise, a
logical relation in the model of (31) between types f and g is a relation in the sense of
the logic Q between

∐
~d∈Dn

0
f0(~d)→ Dn

0 and
∐

~d∈Dn
0
g0(~d)→ Dn

0 .

Categorical Models for Parametricity 55

Notice also that the relational interpretation of a type (given by f1) is in a sense
parametric since the diagram

LR(D)n
0

f1 // LR(D)0

Dn
0

f0 //

i

OO

D0

i

OO

is required to commute. This is basically the reason why the APL-structure is parametric.

Remark 8.16. One may restrict the APL-structure of (31) to the full subcategory of
EG on powers of the generic object. This way one obtains a λ2-fibration in which Type

is the only kind. To prove that this defines a parametric APL-structure, one will need to
change the proof presented here slightly to obtain the reflexive graph.

Lemma 8.17. C → K is fibred cartesian closed and I is a faithful product-preserving
functor.

Proof. The first statement follows from the fact that E→ → E is a fibred cartesian
closed fibration.
I is a restriction of the composition

Fam
(

LR(D)OO
����

D

)

((QQQQQQQQQQQQQQ

// T

��:
::

::
::

::
� � // C′

��
EG

.

The map T→ C′ is the pullback of the inclusion of the externalization of a full internal
cartesian closed category into E→. This is faithful and product preserving by assumption.

The map Fam
(

LR(D)OO
����

D

)
→ T is the map that maps

f :
(

LR(D)0OO
����

D0

)n

→
(

LR(D)iOO
����

Di

)
to f0 : Dn

0 → Di (for i = 0, 1 denoting objects and morphisms respectively). Since
product structure of internal categories of graph categories is given pointwise, this map
clearly preserves fibred products.

As mentioned in Remark 8.11, a morphism from f to g with

f, g :
(

LR(D)0OO
����

D0

)n

→
(

LR(D)0OO
����

D0

)
is just a map from f0 to g0 preserving relations. Thus the first map is also faithful.

Lemma 8.18. The composable fibration P → C → K is an indexed first-order logic
fibration with an indexed family of generic objects. Moreover, the composable fibration
has simple products, simple coproducts and very strong equality.

L. Birkedal and R.E. Møgelberg 56

Proof. The composable fibration P→ C→ K is a pullback of Q→ E→ → E which has
the desired properties according to Lemma A.8. All of this structure is always preserved
under pullback, except simple products and coproducts. These are preserved since the
map K→ E preserves products.

As in Remark 3.4 we can now construct the functor U as needed in Definition 3.3.
Thus we have:

Proposition 8.19. The diagram (31) defines a pre-APL-structure with very strong
equality.

Consider the graph W :
·
OO

����
·

·
OO

����
·

·
mmmmm
vv QQQQQ

((

where we assume that the two graphs included are reflexive graphs. The graph W:

LR(D)
OO

����
D

LR(D)
OO

����
D

LR(D)
mmmmm
vv QQQQQ

((

defines an internal category in EW .
An object of Fam(W) can be denoted by a triple (f, g, ρ), where f and g are types in

the same fibre (that is, objects of Fam
(

LR(D)OO
����

D

)
in the same fibre) and ρ is a morphism

LR(D)n
0 → LR(D)0 such that the diagram

LR(D)0

����
��

��
��

��7
77

77
77

7
LR(D)n

0

��9
99

99
99

����
��

��
�

ρ 22ffffffffff

D0 D0

Dn
0

f0
22eeeeeeeeeeeeeee Dn

0

g0
22eeeeeeeeeeeeee

(32)

commutes.
Now, as noted in Remark 8.15 types in the pre-APL structure (31) are given by both

an ordinary interpretation of types and a relational interpretation of types, but relations
between types are just given by relations between the ordinary interpretation of types.
Thus we may think of such triples as objects of the form

[[~α, ~β | ~R : Rel(~α, ~β) ` φ(R) : Rel(f(~α), g(~β))]]

in the category Relations as formed from the pre-APL structure (31), in the same way
as in Lemma 8.6.

Note that since we have proved that the diagram (31) defines a pre-APL-structure, we
can reason about it using the parts of Abadi & Plotkin’s logic not involving the relational
interpretation of types. In the following we shall use this to work in the internal language
of the pre-APL-structure.

Categorical Models for Parametricity 57

Proposition 8.20. There is an isomorphism of fibrations:
Fam(W)

��
EW

 ∼= //

Relations

��
RelCtx

Proof. The argument is essentially the same as the proof of Lemma 8.6.

Lemma 8.21. The graph W is an internal model of λ2 in EW .

Proof. This is a consequence of Proposition 8.20.

Proposition 8.22. There is a reflexive graph of λ2-fibrations
Fam

(
LR(D)OO
����

D

)

��
EG

 //

Fam(W)

��
EW

oo

oo

Remark 8.23. The reflexive graph in (Robinson and Rosolini, 1994) arises this way,
although the setup of (Robinson and Rosolini, 1994) is slightly different.

Proof. An object of Fam(W) is a map in EW
Ξ1OO

����
Ξ2

Ξ4OO

����
Ξ5

Ξ3

mmmmm
vv QQQQQ

((

→

LR(D)0OO

����
D0

LR(D)0OO

����
D0

LR(D)0
mmmmm
vv QQQQQ

((

 .

Let us denote such objects as triples (f, g, ρ) where f :
(

Ξ1OO
����

Ξ2

)
→

(
LR(D)0OO

����
D0

)
, g :

(
Ξ4OO
����

Ξ5

)
→(

LR(D)0OO
����

D0

)
and ρ : Ξ3 → LR(D)0 . The domain and codomain maps of the postulated

reflexive graph map (f, g, ρ) to f and g respectively, and the last map maps f to (f, f, f1).
The domain and codomain map preserve simple products since from the viewpoint of

Proposition 8.22 these are just the domain and codomain map of Lemma 3.7. The middle
map component of the simple products in Fam(W) → EW is computed by computing
the simple products as in Lemma 8.7 and then restricting the the right domain and
codomain. Since this is the same as the computation of the relational part of the simple

products of Fam
(

LR(D)OO
����

D

)
, the last map of the reflexive graph also commutes with simple

products.

Proposition 8.24. The pre-APL-structure (31) has a full APL-structure.

Proof. This follows from Proposition 8.22 and Proposition 8.20.

Lemma 8.25. The APL-structure (31) satisfies extensionality.

L. Birkedal and R.E. Møgelberg 58

Proof. The model has very strong equality, which implies extensionality (4.2).

Lemma 8.26. The APL-structure (31) satisfies the identity extension axiom.

Proof. Consider a type f with n free variables. We need to show that

〈idΩn , idΩn〉∗J(f) ◦ [[~α | − | − ` eq~α]] = [[~α ` eqf(~α)]].

The map J is defined as the composition of two maps. The first map maps f to (f, f, f1) :
LR(D)n

0OO

����
Dn

0

LR(D)n
0OO

����
Dn

0

LR(D)n
0

mmmmm
vv QQQQQ

((

→

LR(D)0OO

����
D0

LR(D)0OO

����
D0

LR(D)0
mmmmm
vv QQQQQ

((

 .

Since f makes the diagram

LR(D)n
0

����

f1 // LR(D)0

����
Dn

0

OO

f0 // D0

OO

commute we know that f1(eq~α) = eqf0(~α).

Theorem 8.13 is now the collected statement of 8.19 8.24, 8.25 and 8.26.

Remark 8.27. As mentioned in the introduction to this section, the concrete APL-
structure of Section 6 can be considered as a result of the parametric completion process.
If we consider the internal category Per in the category Asm of assemblies, then using
the parametric completion process on this data we obtain the APL-structure of Section 6.
To see this, we need to use the fact that there exists an isomorphism of fibrations

UFam(Asm)

''NNNNNNNNNNN

∼= // Asm→

zztttttttttt

Asm.

This proves Theorem 6.2.

9. Parametric Internal Models

The definition of APL-structure admittedly asks for a substantial amount of structure. In
this section we sketch how much of that structure may be derived in the case of internal
models of λ2.

Let E be a quasi-topos and let j be a local operator (also known as closure operator
or Lawvere-Tierney topology) on E. We write Ej for the full subcategory of j-sheaves, a
for the associated sheaf functor, I for the inclusion of j-sheaves, and η for the natural
transformation Id → I a.

Let C be an internal model of λ2 E. Then aC is an internal category in Ej and
η : C→ aC is an internal functor.

Categorical Models for Parametricity 59

Consider the following diagram:

P

��

// S

��

// RegSubEj

��
Fam(C)

&&LLLLLLLLLLLL
I // Fam(Ej)

��

// Ej
→

��

dom // Ej

E a
// Ej

(33)

where I is the functor induced by the composition of the internal functor η : C → aC
and the inclusion of the externalization of C into Ej

→ is faithful.
Suppose that

— the internal functor η : C→ aC is faithful,
— the internal category aC is a subcategory of Ej (i.e., the inclusion of the external-

ization of C into Ej
→ is faithful).

Then the functor I in the above diagram is faithful and the leftmost part of the dia-
gram (33) (the part going down and left from P) is a pre-APL-structure, and we can thus
define that the internal λ2 model C in E is parametric with respect to j if this
pre-APL-structure is a parametric APL-structure.

One should, of course, think of j as specifying the logic with respect to which the
model is parametric.

The completion process presented in the previous section takes a full internal λ2 model
in a quasi-topos F and produces an internal model in E = FG with j on E such that F = Ej

(the associated sheaf functor a takes
X1OO
����

X0

to X0) and which satisfies the two items above

ensuring that I is faithful. The results in the previous section then show that the internal
model in F is parametric with respect to this j.

This description of parametric internal models allows us to state precisely the (still)
open problem of whether there exists parametric models that are inherently parametric
(not constructed though a completion process):

Problem 9.1. Does there exist a full internal λ2 model in a quasi-topos E that is
parametric with respect to the trivial topology j (such that Ej = E) ?

10. Conclusion

We have defined the notion of an APL-structure and proved that it provides sound and
complete models for Abadi and Plotkin’s logic for parametricity, thereby answering a
question posed in (Plotkin and Abadi, 1993, page 5). We have also defined a notion of
parametric APL-structures, for which we can prove the expected consequences of para-
metricity using the internal logic. The consequences proved in this document are existence
of inductive and coinductive datatypes. These consequences have, to our knowledge not
been proved in general for models parametric in the sense of Ma & Reynolds, but only
for specific models.

L. Birkedal and R.E. Møgelberg 60

We have presented a family of parametric models, some of which are not well-pointed.
This means that our notion of parametricity is useful also in the absence of well-pointedness.

We have provided an extension of the parametric completion process of (Robinson and
Rosolini, 1994) that produces parametric APL-structures. This means that for a large
class of models, we have proved that the parametric completion of Robinson and Rosolini
produce models that satisfy the consequences of parametricity.

In subsequent papers we will show how to modify the parametric completion process
to produce domain-theoretic parametric models and how to extend the notion of APL-
structure to include models of polymorphic linear lambda calculus (Plotkin, 1993).

Appendix A. Composable Fibrations

This appendix is concerned with the theory of composable fibrations, by which we simply
mean pairs of fibrations such that the codomain of the first is the domain of the second
fibration. This appendix contains definitions referred to in the text.

Suppose we are given a composable fibration:

F
p // E

q // B

We observe that

— The composite qp is a fibration. This is easily seen from the definition.
— If p and q are cloven, we may choose a cleavage by lifting u twice to u for each I in

Obj F and u : X → qpI.
— If p, q are split the composite fibration will be split since vu = v ◦ u = v ◦ u.

Thus in the case above we may consider the composable fibration as a doubly indexed
category, and reindexing in F with respect to u in B is given by u∗

The lemmas below refer to the fibrations p, q above.

Definition A.1. We say that (ΩA)A∈Obj B is an indexed family of generic objects for the
composable pair of fibrations (p, q) if for all A, ΩA ∈ Obj EA is a generic object for the
restriction of p to EA and if the family is closed under reindexing, ie., for all morphisms
u : A→ B in B, u∗(ΩB) ∼= ΩA.

Before we define the concept of an indexed first-order logic fibration, we recall the
definition of first-order logic fibration from (Jacobs, 1999) .

Definition A.2. A fibration p : F→ E is called a first-order logic fibration if

— p is a fibred preorder that is fibred bicartesian closed.
— E has products.
— p has simple products and coproducts, i.e., right, respectively left adjoints to reindex-

ing functors induced by projections, and these satisfy the Beck-Chevalley condition.
— p has fibred equality, i.e., left adjoints to reindexing functors induced by id × ∆ :

I × J → I × J × J , satisfying the Beck-Chevalley condition.

Readers worried about the Frobenius condition should note that this comes for free in
fibred cartesian closed categories.

Categorical Models for Parametricity 61

Definition A.3. We say that (p, q) has indexed (simple) products/coproducts/equality
if each restriction of p to a fibre of q has the same satisfying the Beck-Chevalley condition,
and these commute with reindexing, i.e., if u is a map in B then there is a natural
isomorphism ū∗

∏
f
∼=

∏
u∗f ū

∗ or ū∗
∐

f
∼=

∐
u∗f ū

∗ (this can also be viewed as a Beck-
Chevalley condition).

Definition A.4. We say that (p, q) is an indexed first order logic fibration if p is a
fibrewise bicartesian closed preorder, and (p, q) has indexed simple products, indexed
simple coproducts and indexed equality.

We can also talk about composable fibrations (p, q) simply having products, coprod-
ucts, etc. This should be the case if the composite qp has (co-)products, but we should
also require the right Beck-Chevalley conditions to hold. Notice that since u∗ in qp is the
same as ū∗ in p we can write the product as either

∏
u in qp or

∏
ū in p.

Definition A.5. We say that the composable fibration (p, q) has products / coproducts
if for each map u : I → J in B, and each object X ∈ EJ the reindexing functor ū∗ : FX →
Fu∗X has a right / left adjoint. Moreover, these (co)-products must satisfy the Beck-
Chevalley condition for two sorts of diagram corresponding to reindexing in B and E
respectively. First if

H
v //

a

��

K

b

��
I

u // J

is a pullback diagram in B, then by (Jacobs, 1999, Exercise 1.4.4)

a∗u∗X
v̄ //

ā

��

b∗X

b̄

��
u∗X

ū // X

is a pullback diagram in E, and we require that the Beck-Chevalley condition is satisfied
with respect to this diagram. Second, if f : Y → X is a vertical map in E, then the
Beck-Chevalley condition should be satisfied with respect to the diagram

u∗Y
ū //

u∗f

��

Y

f

��
u∗X

ū // X

(34)

which by the way is a pullback by (Jacobs, 1999, Exercise 1.4.4).
The composable fibration (p, q) has simple (co-)products if it has (co-)products with

respect to projections as defined above.
In the case of the APL-structures, the logical content of the Beck-Chevalley condition

for diagrams of the form (34) will be that

(∀α : Type. φ)[t/x] = ∀α : Type. (φ[t/x]).

L. Birkedal and R.E. Møgelberg 62

Definition A.6. We say that a first-order logic fibration has very strong equality if
internal equality in the fibration implies external equality.

Definition A.7. We say that the indexed first order logic fibration (p, q) has very strong
equality if each restriction of p to a fibre of q has.

The next lemma gives a way of obtaining indexed first-order logic fibrations.

Lemma A.8. Suppose Q′ → E is a first-order logic fibration with a generic object on
a locally cartesian closed category E. Suppose further, that Q′ → E has products and
coproducts with respect to maps A×B A′ → A from pullback diagrams

A×B A′ //

��

A

��
A′ // B,

and coproducts with respect to maps

idC ×B ∆A : C ×B ×A→ C ×B A×B A,

all satisfying the Beck-Chevalley condition. Then the composable fibration

Q // E→ cod // E ,

where Q→ E→ is the pullback

Q //

��

Q′

��
E→ dom // E,

is an indexed first-order logic fibration with an indexed family of generic objects, simple
products and simple coproducts. Moreover, if Q′ → E has very strong equality, so does
the composable fibration.

Proof. The fibred bicartesian structure exists since the fibres of Q→ E→ are the fibres
of Q′ → E. This structure is clearly preserved by reindexing.

The fibrewise product of A→ B and A′ → B in E→ is A×B A′ → B with projection

A×B A′ π //

##H
HHHHHHHH A

����
��

��
��

B

.

The indexed (co-)product along this map in Q → E→ is the (co-)product along π in
E, which exists by assumption. For the Beck-Chevalley condition for vertical pullbacks,

Categorical Models for Parametricity 63

recall that the domain functor E→ → E preserves pullbacks, so for a vertical map

A′′ f //

 B
BB

BB
BB

B A

��~~
~~

~~
~

B

taking the pullback of π along f in the category E→, and then applying the domain
functor gives the pullback

A′′ ×B A′

��

// A×B A′

��
A′′ f // A

in E, so that the Beck-Chevalley condition in this case reduces to Beck-Chevalley for the
fibration Q′ → E.

To prove that these indexed simple (co-)products commute with reindexing, consider
a map u : B′ → B in E. We need to prove that for the diagram

u∗(A)×B′ u∗(A′)

π
wwooooooooooo

ū //

��

A×B A′

π
{{wwwwwwwww

��

u∗A
ū //

''OOOOOOOOOOOOO A

##H
HH

HH
HH

HH
H

B′ u // B,

we have, for products ū∗
∏

π
∼=

∏
π ū

∗ and for coproducts ū∗
∐

π
∼=

∐
π ū

∗ . But this
follows from the Beck-Chevalley condition in Q′ → E.

Indexed fibred equality is given by coproduct along maps

idC ×B ∆A : C ×B A→ C ×B A×B A,

which are required to exists. As with indexed (co-)products, the Beck-Chevalley condi-
tions reduce to the Beck-Chevalley conditions for Q′ → E.

We define the family of generic objects to be the projections (Σ×B → B)B∈E in E→

where Σ is the generic object of Q → E. This family is clearly closed under reindexing,
and maps

A
h //

f ��?
??

??
??

? Σ×B

π
{{xx

xx
xx

xx
x

B

correspond to maps A→ Σ in E, which correspond to objects of Q′
A
∼= Qf .

We shall prove that we have simple products; simple coproducts are proved similarly.

L. Birkedal and R.E. Møgelberg 64

Suppose π : D ×D′ → D is a projection in E. For f : A→ D in E→, π̄ is the map

A×D′

f×id

��

π // A

f

��
D ×D′ π // D.

Reindexing along this map in Q corresponds to reindexing in Q′ along π : A×D′ → A,
so by existence of simple products in Q′ → E we have a right adjoint π∗ a

∏
π.

We need to prove Beck-Chevalley first for pullbacks in E. In this case a pullback in E

D ×D′′ idD×u //

π′

��

D ×D′

π′

��
D′′ u // D′

lifts to the pullback

D × u∗A

��

id×ū //
π′

wwoooo
D ×A

id×f

��

π′yyrrr
rr

u∗A
ū //

��

A
f

��
D ×D′′

π′

wwppp
pp id×u

// D ×D′

π′yysss
s

D′′
u

// D′

in E→. The Beck-Chevalley condition for this pullback reduces to the Beck-Chevalley
condition for the upper square in Q′ → E which is known to hold.

We should also check that the Beck-Chevalley condition holds in the case of the pull-
back.

A′ ×D′

h×id

yyssssssssss
π̄ //

��

A′

h

����
��

��
��

��

A×D′ π̄ //

%%KKKKKKKKKK A

��?
??

??
??

?

D ×D′ π // D

But again this reduces to the Beck-Chevalley condition for Q′ → E because π̄ is a
projection.

Very strong equality is clearly preserved.

References

Dunphy, B. (2004). Parametricity as a notion of uniformity in reflexive graphs. PhD thesis. 1,

6.1

Dunphy, B. and Reddy, U. S. (2004). Parametric limits. In Proceedings of the 19th IEEE

Symposium on Logic in Computer Science (LICS-04)), pages 242–251.

Categorical Models for Parametricity 65

Hasegawa, R. (1994). Categorical data types in parametric polymorphism. Mathematical Struc-

tures in Computer Science, 4:71–109. 1, 5

Hyland, J., Robinson, E., and Rosolini, G. (1990). The discrete objects in the effective topos.

Proc. London Math. Soc., 3(60):1–36. 1

Jacobs, B. (1999). Categorical Logic and Type Theory, volume 141 of Studies in Logic and the

Foundations of Mathematics. Elsevier Science Publishers B.V. 1, †, 2, 2.1, 3.1, 4, 5.6, 6, 6,

6, 7, 8.1, A, A.5, A

Ma, Q. and Reynolds, J. (1992). Types, abstraction, and parametric polymorphism, part 2.

In Brookes, S., Main, M., Melton, A., Mislove, M., and Schmidt, D., editors, Mathematical

Foundations of Programming Semantics, volume 598 of Lecture Notes in Computer Science,

pages 1–40. Springer-Verlag. 1, 1, 7

Mac Lane, S. (1971). Categories for the Working Mathematician. Springer-Verlag. 8.2

Mitchell, J. (1996). Foundations for Programming Languages. MIT Press. 1

Pitts, A. (1987). Polymorphism is set theoretic, constructively. In Pitt, D. H., Poigné, A., and

Rydeheard, D. E., editors, Category Theory and Computer Science, Proc. Edinburgh 1987,

volume 283 of Lecture Notes in Computer Science, pages 12–39. Springer-Verlag. 1

Pitts, A. M. (1989). Non-trivial power types can’t be subtypes of polymorphic types. In 4th

Annual Symposium on Logic in Computer Science, pages 6–13. IEEE Computer Society Press,

Washington. 1

Plotkin, G. (1993). Second order type theory and recursion. Notes for a talk at the Scott Fest.

1, 10

Plotkin, G. and Abadi, M. (1993). A logic for parametric polymorphism. In Typed lambda

calculi and applications (Utrecht, 1993), volume 664 of Lecture Notes in Comput. Sci., pages

361–375. Springer, Berlin. (document), 1, 2, 2.3, 2.4, 3.2, 3.18, 4, 5, 5.1, 5.4, 5.16, 10

Reynolds, J. (1983). Types, abstraction, and parametric polymorphism. Information Processing,

83:513–523. 1

Reynolds, J. (1984). Polymorphism is not set-theoretic. In Kahn, G., MacQueen, D. B., and

Plotkin, G. D., editors, Semantics of Data Types, volume 173 of Lecture Notes in Computer

Science, pages 145–156. Springer-Verlag. 1

Robinson, E. and Rosolini, G. (1994). Reflexive graphs and parametric polymorphism. In

Abramsky, S., editor, Proc. 9th Symposium in Logic in Computer Science, pages 364–371,

Paris. I.E.E.E. Computer Society. 1, 7, 8, 8.10, 8.14, 8.23, 10

Rosolini, G. (1995). Notes on synthetic domain theory. Draft.

Rummelhoff, I. (2004). Polynat in PER-models. Theoretical Computer Science, 316(1–3):215–

224.

Seely, R. (1987). Categorical semantics of higher-order polymorphic lambda calculus. The

Journal of Symbolic Logic, 52(4):969–989. 1

Takeuti, I. (1998). An axiomatic system of parametricity. Fund. Inform., 33(4):397–432. Typed

lambda-calculi and applications (Nancy, 1997). 2.2

Wadler, P. (1989). Theorems for free! In 4’th Symposium on Functional Programming Languages

and Computer Architecture, ACM, London. 1, 1

Wadler, P. (2004). The Girard-Reynolds isomorphism (second edition). Manuscript. 2.2

	Introduction
	Abadi & Plotkin's logic
	Second-order -calculus
	The logic
	Definable relations
	The axioms

	APL-structures
	Soundness
	Completeness

	Parametric APL-structures
	Consequences of parametricity
	Dinaturality
	Products
	Coproducts
	Initial algebras
	Final coalgebras
	Generalising to strong fibred functors

	Concrete APL-structures
	A parametric non-well-pointed APL-structure

	Comparing with Ma & Reynolds notion of parametricity
	A parametric completion process
	Internal models for 2
	Input for the parametric completion process
	The completion process
	The APL-structure

	Parametric Internal Models
	Conclusion
	 Composable Fibrations
	References

