
Linearly-used state in models of call-by-value

Rasmus Ejlers Møgelberg1 ? and Sam Staton2 ??

1 IT University of Copenhagen, Denmark
2 Computer Laboratory, University of Cambridge, UK

Abstract. We investigate the phenomenon that every monad is a lin-
ear state monad. We do this by studying a fully-complete state-passing
translation from an impure call-by-value language to a new linear type
theory: the enriched call-by-value calculus. The results are not specific to
store, but can be applied to any computational effect expressible using
algebraic operations, even to effects that are not usually thought of as
stateful. There is a bijective correspondence between generic effects in
the source language and state access operations in the enriched call-by-
value calculus.

From the perspective of categorical models, the enriched call-by-value
calculus suggests a refinement of the traditional Kleisli models of effectful
call-by-value languages. The new models can be understood as enriched
adjunctions.

1 Introduction

Computational effects such as store effects, input/output and control effects are
usually associated with the imperative style of programming, and functional
programming languages exhibiting such behaviour are thought of as “impure”.
However, computational effects can be encapsulated within a purely functional
language by the use of monads [12]. The central idea behind this is to distinguish
between a type of values such as (nat), and a type of computations T (nat) that
may return a value of type nat but can also do other things along the way.
Imperative behaviour can then be encoded using generic effects in the sense of
Plotkin and Power [19]. For example, one can add global store by adding a pair
of terms, assignl : Val → T (1) and derefl : T (Val), for each cell l in the store, or
one can add nondeterminism by adding a constant random : T (1 + 1) computing
a random boolean. Computational effects that can be described using generic
effects are called algebraic and these account for a wide range of effects with the
notable exception of control effects such as continuations.

It is striking that there is no notion of state in the theory of monads. After
all, imperative behaviour is often about changing or branching on the state of
the machine. The notion of state is most naturally associated with certain effects

? Research supported by the Danish Agency for Science, Technology and Innovation.
?? Research supported by EPSRC Fellowship EP/E042414/1 and ANR Projet CHOCO.

2 Rasmus Ejlers Møgelberg and Sam Staton

like store effects, but in this paper we shall see that all algebraic effects can be
viewed in this way.3

The notion of state plays an important role in operational semantics and
Hoare logic. Indeed, Plotkin and Power [15] have suggested that configurations,
i.e. pairs 〈M, s〉 consisting of a term M to be evaluated and the current state s
of the machine, might form a basis for defining general operational semantics.

In this paper we show how the theory of algebraic effects can be formulated
by taking the notion of state as primitive, rather than the notion of monad.
On the syntactic side we introduce the enriched call-by-value calculus (ECBV).
We show that a special state type in ECBV gives rise to a language that is
equivalent to a fine-grained monadic call-by-value calculus (FGCBV) [11]. On
the semantic side we introduce a notion of enriched call-by-value model which
generalises monad models.

Central to our treatment of state is the idea of linear usage: computations can-
not copy the state and save it for later, nor can they discard the state and insert
a new one instead. This special status of the state was already noted by Stra-
chey [25] and Scott [24] and has been developed by O’Hearn and Reynolds [13].

Linear usage of state can be expressed syntactically using a linear state pass-
ing style, in which a stateful computation of type A → B is considered as a
linear map of type !A⊗S (!B⊗S. The type S of states must be used linearly,
but A and B can be used arbitrarily. These type constructions form the basis of
ECBV, which can be considered as a kind of non-commutative linear logic that
is expressive enough to describe the linear usage of state.

Earlier metalanguages for effects, such as the monadic metalanguage [12],
call-by-push-value [10], and the enriched effect calculus [2] have an explicit
monadic type constructor. There is no monadic type constructor in ECBV:
there is a state type S instead. Still, in this fragment one can express all al-
gebraic notions of effects, even the ones that we are not used to thinking of as
“state-like”, using what we call state access operations. For example, the generic
effects assignl, derefl, and random correspond to the following state access
operations:

writel : !Val⊗S (S, readl : S (!Val⊗S, random : S (!(1 + 1)⊗S . (1)

The equivalence of FGCBV and ECBV is proved for extensions of the two calculi
along any algebraic effect theory. The generalisation is formulated using a notion
of effect theory [16] which captures notions of algebraic effects.

The categorical models of ECBV provide a new general notion of model for
call-by-value languages. In brief, an enriched model consists of two categories V
and C such that V has products and distributive coproducts, and C is en-
riched in V with copowers and coproducts. The objects of V interpret ordinary
“value” types, and the objects of C interpret “computation” types (such as the
state type S) which must be used linearly. This class of models encompasses all
Kleisli categories (which have been axiomatised as Freyd categories) and many
3 For this reason we use the terminology “store effects” for the specific (memory access

operations) and reserve “state” for the general notion.

Linearly-used state in models of call-by-value 3

Eilenberg-Moore categories (which provide a natural notion of model for call-
by-push-value and the enriched effect calculus).

Our approach to proving the equivalence of FGCBV and ECBV is semantic.
We show that the traditional models of effectful call-by-value languages, using
monads and Kleisli constructions, form a coreflective subcategory of the models
of ECBV. The state-passing translation is the unit of the coreflection. Our main
semantic result provides a bijective correspondence between comodel structures
on a state object and model structures on the induced linear state monad. This
extends Plotkin and Power’s correspondence between algebraic operations and
generic effects [19] with a third component: state access operations.

The enriched call-by-value calculus is a fragment of the enriched effect cal-
culus (EEC, [2]). In Section 8 we show that EEC is a conservative extension of
ECBV. This shows that the linear state monad translation from FGCBV into
EEC is fully complete: any term of translated type in the target language corre-
sponds to a unique term in the source language. This result indicates that EEC
is a promising calculus for reasoning about linear usage of effects. The related
paper [3] shows how the linear-use continuation passing translation arises from
a natural dual model construction on models of EEC. In fact, from the point of
view of EEC the two translations are surprisingly similar: the linearly used state
translation is essentially dual to the linearly used continuations translation.

Acknowledgements. We thank Alex Simpson for help and encouragement. Also
thanks to Lars Birkedal, Jeff Egger, Masahito Hasegawa, Shin-ya Katsumata
and Paul Levy for helpful discussions.

2 Source calculus: Fine-Grained Call-by-Value

Our source language is a call-by-value language equipped with an equational
theory to be thought of as generated by some operational semantics, as in [14].
We use a variant of fine-grained call-by-value [11], because the explicit separation
of judgements into value and producer judgements fits well with a similar division
in the target language.

We use α to range over type constants. The types are given by the grammar

σ ::= α | 1 | σ × σ | 0 | σ + σ | σ ⇀ σ .

The fine-grained call-by-value calculus (FGCBV) has two typing judgements, one
for values and one for producers. These are written Γ `v V : σ and Γ `p M : σ.
The latter should be thought of as typing computations which produce values
in the type judged but may also perform side-effects along the way. In both
judgements the variables of the contexts are to be considered as placeholders
for values. The function space ⇀ is a call-by-value one, which takes a value and
produces a computation. In fact this language is equivalent to Moggi’s monadic
λc: the type construction (1 ⇀ (−)) is a monad. Typing rules along with equality
rules are given in Figure 1.

4 Rasmus Ejlers Møgelberg and Sam Staton

Γ, x : σ, Γ ′ `v x : σ Γ `v ? : 1

Γ `v V : σ1 × σ2

Γ `v πi(V) : σi

Γ `v V : σi

Γ `v
ini(V) : σ1 + σ2

Γ `v V1 : σ1 Γ `v V2 : σ2

Γ `v 〈V1, V2〉 : σ1 × σ2

Γ `v V : σ1 + σ2 Γ, xi : σi `v Wi : τ (i = 1, 2)

Γ `v
case V of (in1(x1).W1; in2(x2).W2) : τ

Γ `v V : 0

Γ `v
image(V) : σ

Γ `v V : σ

Γ `p
returnV : σ

Γ `p M : σ Γ, x : σ `p N : τ

Γ `p M tox. N : τ

Γ, x : σ `p N : τ

Γ `v λx : σ. N : σ ⇀ τ

Γ `v V : σ ⇀ τ Γ `v W : σ

Γ `p V W : τ

M = ? πi(〈V1, V2〉) = Vi 〈π1(V), π2(V)〉) = V image(V) = W [V/x]

case ini(V) of (in1(x1).W1; in2(x2).W2) = Wi[V/xi] λx : σ. M(V) = M [V/x]

case V of (in1(x1).W [in1(x1)/x]; in2(x2).W [in2(x2)/x]) = W [V/x] λx : σ. (V x) = V

M tox. returnx = M returnV tox. N = N [V/x]

(M tox. N) to y. P = M tox. (N to y. P)

Fig. 1. Fine-grained call-by-value. (Equality rules subject to usual conventions.)

We can define derived case constructs on producer terms:

casep M of (in1(x1).N1; in2(x2).N2)
def= M tox. (case x of (in1(x1).λw : 1. N1; in2(x2).λw : 1. N2))(?)

imagep(M) def= M tox. (image(x)) ?

where z, w are fresh variables. These constructions have derived typing rules

Γ `p M :σ1 + σ2 Γ, xi : σi `p Ni : τ (i = 1, 2)

Γ `p casep M of (in1(x1).N1; in2(x2).N2) : τ

Γ `p M : 0

Γ `p imagep(M) :A
(2)

FGCBV is a skeleton on which one can add specific effects. We will make this
precise in Section 2.1, but we begin with some examples. In the case of global
store, given by some set of cells Loc holding values of some type Val, we add the
following generic effects [19] to FGCBV: for each cell l ∈ Loc, we add producer
term constants derefl and assignl with typing judgements Γ `p derefl : Val
and Γ `p assignl(V) : 1 if Γ `v V : Val. We add to the theory of equality in
Figure 1 the seven equations for global store proposed by Plotkin and Power [18],
for example the two equations

derefl tox. assignl(x) = return (?) (3)
assignl(V) tox. assignl(W) = assignl(W) (4)

Linearly-used state in models of call-by-value 5

which state that reading a cell and then writing the same value is the same as
doing nothing, and that the effect of two writes equals that of the second.

In the case of non-determinism, the generic effect is “random” with typ-
ing judgement Γ `p random : 1 + 1. The equations are perhaps most easily
described using the algebraic operation corresponding to random, defined as
MorN

def= casep random of (in1(x).M ; in2(x).N). The derived typing rule says
that Γ `p M orN :σ if Γ `p M : σ and Γ `p N : σ. There are three equations:
associativity, commutativity and idempotency of “or”.

2.1 Effect theories

We do not want to allow arbitrary extensions of FGCBV. In this section we de-
fine effect theories, which are particularly well-behaved extensions that include
the examples above, of global store and nondeterminism. Effect theories are im-
portant from the semantic point of view because they are a kind of presentation
for enriched algebraic theories, as will be clarified in Section 6.

Plotkin and Pretnar have also defined a notion of effect theory [17, §3]. Their
effect theories can be accommodated in our model. The main difference is in the
presentation: we use generic effects rather than algebraic operations.

By a value signature we shall simply mean a signature for a many-sorted
algebraic theory in the usual sense. This means a set of type constants ranged
over by α, β, and a set of term constants f with a given arity f : (α1, . . . , αn) → β,
where the αi, β range over type constants. We can extend FGCBV along a value
signature by adding the type constants and the typing rule

Γ `v ti :αi (i = 1, . . . , n)

Γ `v f(t1, . . . , tn) :β
(5)

for every term constant f : (α1, . . . , αn) → β in the signature. A value theory is
a value signature with a set of equations, i.e. pairs of terms typable in the same
context Γ `v V = W :β, where V,W are formed only using variable introduction
and the rule (5).

An effect signature consists of a value theory and a set of effect constants each
with an assigned arity e : β̄; ᾱ1 + . . . + ᾱn consisting of a list of type constants
and a formal sum of lists of type constants. FGCBV can be extended along an
effect signature by adding, for every e : β̄; ᾱ1 + . . . + ᾱn a typing judgement

Γ `v V̄ : β̄

Γ `p e(V̄) : ᾱ1 + . . . + ᾱn

(6)

The hypothesis is to be understood as a vector of typing judgements, and in the
conclusion, the vectors ᾱi should be interpreted as the product of the types in
the vector.

For example, the theory for global store has one value type constant Val,
and for each location l ∈ Loc a pair of effect constants (derefl : 1; Val) and
(assignl : Val; 1). In this case term constants in the value theory can be used to

6 Rasmus Ejlers Møgelberg and Sam Staton

add basic operations manipulating values in Val. In the case of nondeterminism,
the effect constant random has arity 1; 1 + 1.

An effect theory comprises an effect signature and a set of equations. The
equations are pairs of producer terms-in-context Γ `p M = N : ᾱ1 + . . . + ᾱn of
a restricted kind. We impose the following restrictions: firstly, Γ must consist
of variables with type constants, i.e., of the form x : α. Secondly, the terms M
and N must be built from a first order fragment of effect terms. This first order
fragment consists of the first nine rules of Figure 1, the derived rules for sum
types in producer terms (2) and the rules (5) and (6).

We write FGCBVE for FGCBV augmented with an effect theory E.

3 Target calculus: Enriched call-by-value

The target language for the linear state translation is a new calculus called the
enriched call-by-value calculus (ECBV), that we now introduce. It is a fragment
of the enriched effect calculus (EEC), which was introduced by Egger et al. [2] as
a calculus for reasoning about linear usage in computational effects. The types of
ECBV can be understood as a fragment of linear logic that is expressive enough
to describe the linear state monad, S (!(−)⊗S. We will not dwell on the
connection with linear logic here.

The enriched call-by-value calculus has two collections of types: value types
and computation types. We use α, β, . . . to range over a set of value type con-
stants, and α, β, . . . to range over a disjoint set of computation type constants.
We then use A,B, . . . to range over value types, and A,B, . . . to range over
computation types, which are specified by the grammar below:

A ::= α | 1 | A× B | 0 | A + B | A (B

A ::= α | 0 | A⊕ B | !A⊗B .

Note that the construction !A⊗B is indivisible: the strings !A and A⊗ B are
not well-formed types. Note also that unlike EEC [2] there is no inclusion of
computation types into value types. Moreover, there are no type constructors
corresponding to F or U as known from CBPV [10].

The enriched call-by-value calculus has two basic typing judgements, written

Γ |− ` t : B and Γ |z : A ` t : B (7)

In the first judgement, B is a value type, and in the second judgement, both A
and B need to be computation types. The second judgement should be thought
of as a judgement of linearity in the variable z : A. The typing rules are given in
Figure 2. In the figure, Γ is an assignment of value types to variables, and ∆ is
an assignment of a computation type to a single variable, as in (7). The equality
theory includes α, β and η rules and is exactly as for EEC [2, Sec. 3].

We can talk about type isomorphisms in ECBV in the usual way. For value
types, an isomorphism A ∼= B is given by two judgements, x : A |− ` t : B and
y : B |− ` u : A, such that u[t/y] = x, t[u/x] = y. For computation types, A ∼= B

Linearly-used state in models of call-by-value 7

Γ, x : A |− ` x : A Γ |z : A ` z : A Γ |− ` ? : 1

Γ |− ` t : A Γ |− ` u : B

Γ |− ` 〈t, u〉 : A× B

Γ |− ` t : A1 × A2

Γ |− ` πi(t) : Ai

Γ |− ` t : Ai

Γ |− ` ini(t) : A1 + A2

Γ |∆ ` t : Ai

Γ |∆ ` ini(t) : A1 ⊕ A2

Γ |− ` t : 0

Γ |− ` image(t) : A

Γ |− ` s : A1 + A2 Γ, xi : Ai |− ` ti : C (i = 1, 2)

Γ |− ` case s of (in1(x1). t1; in2(x2). t2) : C

Γ |∆ ` t : 0

Γ |∆ ` image(t) : A

Γ |∆ ` s : A1 ⊕ A2 Γ |xi : Ai ` ti : C (i = 1, 2)

Γ |∆ ` case s of (in1(x1). t1; in2(x2). t2) : C

Γ |z : A ` t : B

Γ |− ` λz : A. t : A (B

Γ |− ` s : A (B Γ |∆ ` t : A

Γ |∆ ` s[t] : B

Γ |− ` t : A Γ |∆ ` u : B

Γ |∆ ` !t⊗ u : !A⊗B

Γ |∆ ` s : !A⊗B Γ, x : A |z : B ` t : C

Γ |∆ ` let !x⊗ z be s in t : C

Fig. 2. Typing rules for the enriched call-by-value calculus

is witnessed by closed terms of type A (B, B (A composing in both directions
to identities. We note the following type isomorphisms, inherited from EEC:

A ∼= !1⊗A !A⊗ (!B⊗C) ∼= !(A× B)⊗C (8)
0 ∼= !0⊗B (!A⊗C) ⊕ (!B⊗C) ∼= !(A + B)⊗C (9)

Given an effect signature E (Sec. 2.1), we add effects to ECBV as follows.
We assume that there is a distinguished computation type constant S, called the
state type. For each effect constant e : β̄; ᾱ1 + . . . + ᾱn, we add a closed term,
called a state access operation:

e : !β̄⊗S (!(ᾱ1 + · · ·+ ᾱn)⊗S (10)

In order to add the equations from an effect theory to ECBV, we need to
give interpretations to effect terms. In Section 4 we are going to translate all of
FGCBV into ECBV, so we postpone this to there.

We write ECBVS
E for the enriched effect calculus extended over the effect

theory E as described above.

Examples 1. The effect theories of global store and of non-determinism will give
rise to the state access operations readl, writel, and random in (1).

8 Rasmus Ejlers Møgelberg and Sam Staton

Note that readl : S (!Val⊗S returns a state that must be used linearly
and a result value of the read operation that can be used arbitrarily. One of
the equations (3) for global store requires writel(readl(s)) = s; another one (4)
says writel(!v ⊗ (writel(!w ⊗ s))) = writel(!v ⊗ s).

4 The state-passing translation

We now describe the state-passing translation from FGCBV to ECBV. We trans-
late FGCBVE types σ to ECBVS

E value types σ◦:

α◦ = α (σ × τ)◦ = σ◦ × τ◦ 1◦ = 1
(σ ⇀ τ)◦ = !(σ◦)⊗S (!(τ◦)⊗S (σ + τ)◦ = σ◦ + τ◦ 0◦ = 0

The translation takes value type judgements Γ `v V :σ to ECBV judgements
Γ ◦ |− ` V ◦ : σ◦ and it takes producer judgements Γ `p M :σ to ECBV judge-
ments Γ ◦ |s : S ` M◦ : !(σ◦)⊗S, as follows.

x◦ = x ?◦ = ? 〈V, W 〉◦ = 〈V ◦, W ◦〉
(πi(V))◦ = πi(V

◦) (image(V))◦ = image(V ◦) (ini(V))◦ = ini(V
◦)

(λx : σ. N)◦ = λz : !σ◦⊗ S. let !x⊗ s be z in N◦ (V W)◦ = V ◦[!(W ◦)⊗ s]

(M tox. N)◦ = let !x⊗ s be M◦ in N◦ (returnV)◦ = !(V ◦)⊗ s

(case V of (in1(x1).W1; in2(x2).W2))
◦ = case V ◦ of (in1(x1).W

◦
1 ; in2(x2).W

◦
2)

We translate generic effects to state operations: (e(V̄))◦ = e(!〈V ◦
1 , . . . , V ◦

m〉 ⊗ s).
We are now in a position to add the equations of an effect theory to ECBV.
For each equation Γ `p M = N : ᾱ1 + . . . + ᾱn in the effect theory, we add the
equation Γ ◦ |s : S ` M◦ = N◦ : !(ᾱ◦

1 + . . . + ᾱ◦
n)⊗S to ECBVS

E .

Theorem 2 (Soundness). If V = W then V ◦ = W ◦; if M = N then M◦ = N◦.

Theorem 3 (Fullness on types). Let A be a value type of ECBV formed using
no other computation type constants than S. Then there exists a FGCBV type σ
such that σ◦ ∼= A.

Proof. By induction on the structure of types. The interesting case A (B uses
the fact that any computation type not using any α other than S is isomorphic
to one of the form !C⊗S, which follows from the isomorphisms (8) – (9). ut

We now state our main syntactic result.

Theorem 4 (Full completeness). Suppose Γ `v V,W :σ and Γ `p M,N :σ.

1. If V ◦ = W ◦ then V = W . If M◦ = N◦ then M = N .
2. For any Γ ◦ |− ` t : σ◦ there exists a term Γ `v V :σ such that t = V ◦.
3. For any Γ ◦ |s : S ` t : !(σ◦)⊗S there exists Γ `p M :σ such that t = M◦.

Linearly-used state in models of call-by-value 9

Theorem 4 can be proved syntactically as follows. Consider first the frag-
ment of ECBV with no other computation type constants than S, and only the
value type constants of FGCBVE . This fragment is equivalent to a variant of
ECBV where the only computation types are the ones of the form !A⊗S with
corresponding variants of the typing rules for !A⊗B. The translation (−)◦ gives
a bijection from FGCBVE types to value types of ECBVS

E , and one can define
an inverse to this translation. Further type constants can be added to ECBVS

E

without changing the result; this can be proved via a normalization theorem for
ECBVS

E which follows the one for EEC (to appear in [4]).
In Section 7.1 we sketch a semantic proof of Theorems 3 and 4.

5 Categorical models

By studying categorical models, we are able to give a canonical, universal status
to the two calculi that we have considered so far, and also to the state-passing
translation. In Section 7, the full completeness of the state-passing translation
will be explained as an equivalence of free categories.

5.1 Monad models of the fine-grained call-by-value calculus

Terminology. Recall that a distributive category is a category with finite prod-
ucts and coproducts, such that the canonical morphisms ((A×B)+ (A×C)) →
(A× (B + C)) and 0 → A× 0 are isomorphisms.

Definition 5. A monad model of FGCBV (or simply a monad model) is a
distributive category V with a strong monad T and Kleisli-exponentials (that is,
exponentials of the form (A → T (B))).

A semantics for FGCBV is given in a monad-model in a standard way. For
instance, [[σ ⇀ τ]] = ([[σ]] → T ([[τ]])). A value type judgement Γ `v V :σ is
taken to a morphism [[Γ]] → [[σ]], and a producer type judgement Γ `p M : σ is
taken to a morphism [[Γ]] → T ([[σ]]). This defines a sound and complete notion
of model for FGCBV (e.g. [11]). In particular, the types and terms of FGCBV
form a syntactic model, which is initial (with respect to an appropriate notion
of morphism).

5.2 Enriched call-by-value models

The categorical notion of model for ECBV involves basic concepts from en-
riched category theory [9]. Let us recall some rudiments. Following [7, 6], we
begin with actions of categories. Let V be a category with finite products.
Recall that an action of V on a category C is a functor · : V ×C → C to-
gether with coherent natural unit and associativity isomorphisms, (1 ·A) ∼= A
and ((A×B) · C) ∼= (A · (B · C)). (We underline objects of C to distinguish
them from objects of V.) An enrichment of a category C in V with copowers is

10 Rasmus Ejlers Møgelberg and Sam Staton

determined by an action of V on C such that each functor (− ·A) : V → C has
a right adjoint, C(A,−) : C → V. Then A ·B is called a copower, and C(A,B) is
called enrichment. Recall also that a power is a right adjoint to (A · −) : C → C
(we will need this in Section 6).

If C is enriched in V with copowers, and C has finite coproducts, then the
coproducts in C are enriched if each functor (A · −) : C → C preserves them.

Definition 6. An enriched call-by-value model (or simply enriched model) is
given by a distributive category V and a category C enriched in V with copowers
and enriched finite coproducts. A model of ECBVS is given by an enriched call-
by-value model together with a chosen object S of C.

A semantics for ECBV in an enriched model is given similarly to the seman-
tics of EEC [2]. For each value type A, an object [[A]] of V is given, and for each
computation type A, an object [[A]] of C is given. The product and sum types are
interpreted as products and coproducts in V and C. We let [[!A⊗B]] = ([[A]]·[[B]]),
and [[A (B]] = C([[A]], [[B]]). The specified object S in an ECBVS model inter-
prets S. A judgement Γ |− ` t : A is interpreted as a morphism [[Γ]] → [[A]] in
V, and a judgement Γ |∆ ` t : A is interpreted as a morphism [[Γ]] · [[∆]] → [[A]]
in C. The types and terms of ECBV form a syntactic model which is initial with
respect to an appropriate notion of morphism.

5.3 From enriched models to monad models and back

Given a monad model (V, T) there is a monoidal action V × Kl(T) → Kl(T)
on the Kleisli category defined on objects as the product functor and defined on
morphisms using the strength of T . The Kleisli category Kl(T) is V-enriched
because V has Kleisli exponentials.

Proposition 7. If (V, T) is a monad model (in the sense of Definition 5) then
(V,Kl(T), 1) is an ECBVS model (in the sense of Definition 6).

On the other hand, if (V,C) is an enriched model, we will say that an
adjunction F a U : C → V is enriched if there is a natural coherent isomorphism
F (A×B) ∼= A ·F (B). When V is cartesian closed, this is equivalent to the usual
definition, i.e. a natural isomorphism C(F (−),=) ∼= V(−, U(=)) (see e.g. [8]).

The choice of S in ECBVS models gives an enriched adjunction, since (− · S)
is left adjoint to C(S,−) : C → V. The following proposition (first noted noted
for EEC [3], though it does not appear explicitly there) shows that every enriched
adjunction arises in this way:

Proposition 8 ([3]). Let (V,C) be an enriched model. If F a U : C → V is an
enriched adjunction then it is naturally isomorphic to the enriched adjunction
induced by F (1).

So we can equivalently consider ECBVS models as enriched adjunctions.
Given an enriched adjunction, the corresponding monad gives a monad model.

In particular:

Linearly-used state in models of call-by-value 11

Proposition 9. If (V,C, S) is an ECBVS model then (V,C(S,− · S)) is a
monad model.

If we start with a monad model, take the corresponding ECBVS model (via
Prop. 7) and then go back (via Prop. 9), we get a monad model that is equivalent
to the one that we started with. This is simply because Kl(T)(1, A×1) ∼= T (A).
We have the slogan: Every monad is a linear state monad.

We shall prove later that this connection between monad models and enriched
models can be understood as a coreflection.

5.4 Remark: Closed Freyd categories

Closed Freyd categories [20] are an alternative way of presenting monad models.
Freyd categories are usually defined using premonoidal categories [23], but we
will use the following equivalent definition using actions (following [10, App. B]).
A distributive closed Freyd category [22] can be described as an enriched model
(V,C) together with an identity on objects functor J : V → C that preserves
the action (i.e. J(A× B) = A · J(B)).

If (V, T) is a monad model the inclusion V → Kl(T) is a distributive closed
Freyd category, and every distributive closed Freyd category arises in this way.
By removing the requirement that V and C have the same objects, we discover
the more general class of enriched models.

6 Models and comodels of effect theories

We define what it means for monad models and enriched models to model an
effect theory (in the sense of Sec. 2.1).

Models of value theories. Let V be a distributive category. An interpretation
of a value signature in V is given by interpretations of the type constants α as
objects [[α]] of V, and interpretations of term constants f : ᾱ → β as morphisms
[[f]] : [[ᾱ]] → [[β]]. This is extended to interpret a term in context Γ `v V :β as a
morphism [[V]] : [[Γ]] → [[β]]. An interpretation of a value theory is an interpreta-
tion of the signature such that [[V]] = [[W]] for each equation Γ `v V = W :β.

Interpreting effect theories in monad models. An interpretation of an effect the-
ory E in a monad model (V, T) is an interpretation of the value theory in V
and an interpretation of each effect constant e : β̄; ᾱ1 + · · ·+ ᾱn in E as a Kleisli
map [[e]] : [[β̄]] → T ([[ᾱ1]] + · · ·+ [[ᾱn]]), satisfying the equations of the theory.

Effects and enriched models. In enriched models, according to (10), every effect
constant should be interpreted as a morphism [[e]] : [[β̄]]·S → ([[ᾱ1]]+· · ·+[[ᾱn]])·S
in C. We can relate these to the Kleisli maps of the monad model, extending the
bijective correspondence between algebraic operations and generic effects [19]:

Proposition 10. Let (V,C) be an enriched model and consider S in C. The
following sets are in natural bijection:

12 Rasmus Ejlers Møgelberg and Sam Staton

1. State access operations: morphisms A · S → B · S in C.
2. Generic effects for the induced monad: morphisms A → C(S,B · S) in V.
3. Algebraic operations in C: families of morphisms C(S,X)B → C(S,X)A

natural in X in C.

(Although we do not assume that V is cartesian closed, the exponentials men-
tioned in Item 3 always exist.)

To explain the status of the special object S we provide a general notion of
model for effect theories.

Interpretations of effect theories in general. For a moment, let V be a distribu-
tive category, and let A be a category enriched in V with powers. Consider
an effect signature E and an interpretation of the value theory in V. A model
of E in A consists of an object A of A together with, for each effect constant
e : β̄; ᾱ1 + · · ·+ ᾱn in E, a morphism [[e]] : AJᾱ1K+···+[[ᾱn]] → AJβ̄K in A.

To describe when a model satisfies equations in an effect theory, we need to
give a semantics to effect terms. (Recall that an effect term is a first order term
of FGCBV.) In any model A of an effect signature, we interpret an effect term
typing judgement Γ `p M : τ as a morphism [[M]] : AJτK → AJΓ K in A, by induc-
tion on the structure of typing derivations. For instance, consider the casep rule
in (2). Given interpretations JMK : AJσ1+σ2K → AJΓ K and JNiK : AJτK → AJΓ,σiK

(i = 1, 2), we define Jcasep M of (in1(x1).N1; in2(x2).N2)K to be the composite

AJτK (JN1K,JN2K)−−−−−−−→ AJΓ,σ1K×AJΓ,σ2K ∼= A(Jσ1+σ2K)×JΓ K JMKJΓ K

−−−−−→ AJΓ K×JΓ K A∆

−−→ AJΓ K.

As another example, JreturnV K = AJV K. A model of an effect theory in A is a
model of the effect signature such that every effect equation Γ ` M = N : τ in
the theory is satisfied, i.e. [[M]] = [[N]].

In an enriched model (V,C), we have a category C enriched in V with
copowers. This means that Cop is enriched in V with powers. A comodel in C
is a model in Cop.

Definition 11. An ECBVS
E model is an ECBVS model with a given E-comodel

structure on S.

Proposition 12. Let (V,C) be an enriched model and consider S in C. The
following data are equivalent.

1. An E-comodel structure for the object S.
2. An E-model structure for the induced monad model.
3. For each effect constant e : β̄; ᾱ1 + · · ·+ ᾱn a family of morphisms∏

i C(S,X)JᾱiK → C(S,X)Jβ̄K natural in X

equipping each C(S,X) with the structure of a model of E.

Example 13. Let Val,Loc be sets of values and locations respectively, and let S
be the set of functions (Loc → Val). The category Set is enriched in itself with
copowers given by products, and indeed S is a comodel for the theory for global
store in the enriched model (Set,Set). The induced monad on Set is ((−)×S)S .
Power and Shkaravska [21] showed that S is the final comodel of global store.

Linearly-used state in models of call-by-value 13

7 Categories of models and full completeness

We sketch how the constructions of Propositions 7 and 9 extend to define adjoint
2-functors between a 2-category of monad models and a 2-category of enriched
models. We sketch how to use these results to prove full completeness of the
linear state monad translation.

Let ENR be the 2-category whose objects are ECBVS models (V,C, S). A
1-cell (V,C, S) → (V′,C′, S′) is a pair of functors F : V → V′, G : C → C′

together with an isomorphism GS ∼= S′ and a natural isomorphism G(A · B) ∼=
(F (A)) · (G(B)) whose mate is an isomorphism F (C(B,C)) ∼= C′(GB,GC), and
such that F preserves products and coproducts and G preserves coproducts (up
to isomorphism). The 2-cells are natural coherent isomorphisms.

Let MND be the 2-category whose objects are monad models (V, T). A 1-cell
(V, T) → (V′, T ′) is a functor F : V → V′ together with a natural isomorphism
φ : T ′F ∼= FT making (F, φ) a monad morphism [26], and such that F preserves
products and coproducts, strengths and Kleisli exponentials. The 2-cells are
natural coherent isomorphisms.

These definitions can be extended to 2-categories ENRE , MNDE whose
objects are models of effect theories in the sense of Section 6 and whose 1-cells
are required to preserve the interpretations of the theories.

Theorem 14. The constructions of Propositions 7 and 9 extend to a 2-adjunction
whose unit is an isomorphism: Kleisli a StateMnd : ENRE → MNDE.

The 2-adjunction is a restriction of a well known 2-adjunction between the cat-
egory of monads and the category of adjunctions.

7.1 Full completeness

We now provide a semantic argument to explain Theorems 3 and 4. Since the
2-functor Kleisli : MNDE → ENRE is a left adjoint, it preserves free con-
structions up to equivalence. In particular it takes the syntactic monad model
(Vfgcbv, 1 ⇀ (−)), built from the syntax of FGCBV, to the syntactic enriched
model (Vecbv, Cecbv), built from the syntax of ECBVS with exactly one compu-
tation type constant, S. In consequence, the morphism of monad models that
describes the state-passing translation of Section 4,

(Vfgcbv, 1 ⇀ (−)) −→ (Vecbv,S ((!(−)⊗S))

is equivalent to the unit of the 2-adjunction Kleisli a StateMnd, and thus it
is an equivalence of categories. In other words, it is essentially surjective and
full and faithful, providing a categorical proof of Theorems 3 and 4 respectively
(under the assumption that ECBV has exactly one computation type constant).

14 Rasmus Ejlers Møgelberg and Sam Staton

8 The Enriched Effect Calculus

The enriched effect calculus (EEC) of Egger et al. [2] extends the enriched call-
by-value calculus that we introduced in Section 3 with some type constructions:

A ::= . . . | A → B | α | 0 | A⊕ B | !A⊗B | !A
A ::= · · · | 1 | A× B | A → B | !A .

The additional types have been used to describe other aspects of effectful com-
putation, such as the traditional monadic call-by-name and call-by-value inter-
pretations, and continuation-passing. The additional types of EEC do not affect
the full completeness of the linear state-passing translation (Thm. 4), for the fol-
lowing reason. In Proposition 16 we show that every model of ECBV embeds in
a model of EEC; conservativity of EEC over ECBV then follows from a strong
normalisation result for EEC [4]. Thus the linear state-passing translation of
Section 4 can be understood as a fully complete translation into EEC.

Definition 15 ([2]). A model of EEC (V,C, F, U) is given by a cartesian closed
category V with coproducts, a V-enriched category C with products and coprod-
ucts and powers and copowers, and an enriched adjunction F a U : C → V.

We refer to [2] for the term calculus and interpretation of EEC into EEC models.
Here, for brevity, we work directly with models.

Clearly every EEC model is an enriched model of ECBV in the sense of
Definition 6. Conversely:

Proposition 16. Every enriched model of ECBV embeds in an EEC model.

Proof (sketch). Consider an enriched model (V,C) (in the sense of Def. 6).
For any category A with finite coproducts, let FP(Aop,Set) be the category

of finite product preserving functors Aop → Set and natural transformations
between them. This category is the cocompletion of A as a category with finite
coproducts (e.g. [5], [23], [9, Thms 5.86, 6.11]).

We will show that (FP(Vop,Set),FP(Cop,Set)) is an EEC model, and that
(V,C) embeds in it as an enriched model. For general reasons, FP(Vop,Set)
and FP(Cop,Set) have products and coproducts, and the Yoneda embeddings
(V ↪→ FP(Vop,Set), C ↪→ FP(Cop,Set)) preserve them. Since V is distributive,
FP(Vop,Set) is cartesian closed (see [5]).

We now show that FP(Cop,Set) is enriched in FP(Vop,Set) with powers
and copowers. Recall the construction of Day [1], which induces a monoidal
biclosed structure on Â (= [Aop,Set]) for every monoidal structure on any cat-
egory A. We develop this in two ways. First, the monoidal action of V on C
induces a monoidal action V̂ × Ĉ → Ĉ which has right adjoints in both argu-
ments. Secondly, the monoidal action of V̂ on Ĉ restricts to a monoidal action
FP(Vop,Set) × FP(Cop,Set) → FP(Cop,Set) and the right adjoints restrict
too. (This second observation relies on the fact that V is considered with the
cartesian monoidal structure.) Thus FP(Cop,Set) is enriched in FP(Vop,Set)
with copowers and powers.

Linearly-used state in models of call-by-value 15

Finally, the enriched adjunction F a U : FP(Cop,Set) → FP(Vop,Set) can
be induced by any choice of object of FP(Cop,Set), by Proposition 8. ut

The construction described in this proof is inspired by the following situation.
Let Setf be the category of finite sets, and let T be a Lawvere theory. Then
(Setf , Top) is almost an enriched model, except that the category Top is not
Setf -enriched in general. Our construction, applied to (Setf , Top), yields the
basic motivating example of an EEC model: FP(Setop

f ,Set) is the category of
sets (since Setf is the free category with finite coproducts on one generator) and
FP(T,Set) is the category of algebras of the theory.

References

1. Day, B.: On closed categories of functors. In: LNM 137. Springer (1970)

2. Egger, J., Møgelberg, R., Simpson, A.: Enriching an effect calculus with linear types. In: CSL’09.
Springer (2009)

3. Egger, J., Møgelberg, R., Simpson, A.: Linearly-used continuations in the enriched effect calcu-
lus. In: FOSSACS’10. Springer (2010)

4. Egger, J., Møgelberg, R., Simpson, A.: The enriched effect calculus (2011), in preparation

5. Fiore, M.P.: Enrichment and representation theorems for categories of domains and continuous
functions (March 1996), unpublished manuscript

6. Gordon, R., Power, A.: Enrichment through variation. J. Pure Appl. Algebra 120, 167–185
(1997)

7. Janelidze, G., Kelly, G.: A note on actions of a monoidal category. Theory Appl. of Categ. 9(4),
61–91 (2001)

8. Kelly, G.M.: Adjunction for enriched categories. In: LNM 106. Springer (1969)

9. Kelly, G.M.: Basic Concepts of Enriched Category Theory. CUP (1982)

10. Levy, P.B.: Call By Push Value. Kluwer (Dec 2003)

11. Levy, P., Power, J., Thielecke, H.: Modelling environments in call-by-value programming lan-
guages. Inform. and Comput. 185 (2003)

12. Moggi, E.: Notions of computation and monads. Inform. and Comput. 93 (1991)

13. O’Hearn, P.W., Reynolds, J.C.: From Algol to polymorphic linear lambda-calculus. J. ACM 47
(2000)

14. Plotkin, G.: Call-by-name, call-by-value, and the λ-calculus. Theoret. Comp. Sci. 1, 125–159
(1975)

15. Plotkin, G., Power, J.: Tensors of comodels and models for operational semantics. Electr. Notes
Theor. Comput. Sci 218, 295–311 (2008)

16. Plotkin, G., Pretnar, M.: A logic for algebraic effects. In: LICS’08. IEEE Press (2008)

17. Plotkin, G., Pretnar, M.: Handlers of algebraic effects. In: ESOP’09. Springer (2009)

18. Plotkin, G.D., Power, J.: Notions of computation determine monads. In: FOSSACS’02 (2002)

19. Plotkin, G.D., Power, J.: Algebraic operations and generic effects. Appl. Categ. Structures 11(1)
(2003)

20. Power, Thielecke: Closed Freyd- and κ-categories. In: ICALP’99. Springer (1999)

21. Power, A.J., Shkaravska, O.: From comodels to coalgebras: State and arrays. Electr. Notes
Theor. Comput. Sci 106, 297–314 (2004)

22. Power, J.: Generic models for computational effects. Theoret. Comput. Sci. 364(2), 254–269
(2006)

23. Power, J., Robinson, E.: Premonoidal categories and notions of computation. Math. Structures
Comput. Sci. 7(5), 453–468 (1997)

24. Scott, D.: Mathematical concepts in programming language semantics. In: Proceedings of the
Spring Joint Computer Conference (1972)

25. Strachey, C.: The varieties of programming language. In: Proc. International Computing Sym-
posium (1972)

26. Street, R.: The formal theory of monads. J. Pure Appl. Algebra 2(2), 149–168 (1972)

