Domain-theoretic models of parametric polymorphism

L. Birkedal* R.E. Mggelberg!
IT University of Copenhagen DISI, Universita di Genova

R.L. Petersen
IT University of Copenhagen

May 2007

Abstract

We present a domain-theoretic model of parametric polymorphism based on admissible per’s
over a domain-theoretic model of the untyped lambda calculus. The model is shown to be a model
of Abadi & Plotkin’s logic for parametricity, by the construction of an LAPL-structure as defined by
the authors in [7, 5]]. This construction gives formal proof of solutions to a large class of recursive
domain equations, which we explicate. As an example of a computation in the model, we explicitly
describe the natural numbers object obtained using parametricity.

The theory of admissible per’s can be considered a domain theory for (impredicative) polymor-
phism. By studying various categories of admissible and chain complete per’s and their relations,
we discover a picture very similar to that of domain theory.

1 Introduction

In this paper we show how to define parametric domain-theoretic models of polymorphic intuitionistic
/ linear lambda calculus. The work is motivated by two different observations, due to Reynolds and
Plotkin.

In 1983 Reynolds argued that parametric models of the second-order lambda calculus are very useful
for modeling data abstraction in programming [23]] (see also [[17] for a recent textbook description). For
real programming, one is of course not just interested in a strongly terminating calculus such as the
second-order lambda calculus, but also in a language with full recursion. Thus in loc. cit. Reynolds also
asked for a parametric domain-theoretic model of polymorphism. Informally, what is meant [24] by this
is a model of an extension of the polymorphic lambda calculus [22, 9]], with a polymorphic fixed-point
operator Y : Vo (¢ —) — « such that

1. types are modeled as domains, the sublanguage without polymorphism is modeled in the standard
way and Y o is the least fixed-point operator for the domain o;

2. the logical relations theorem (also known as the abstraction theorem) is satisfied when the logical
relations are admissible, i.e., strict and closed under limits of chains;

*Corresponding author. Address: L. Birkedal, IT University of Copenhagen, Rued Langgaardsvej 7, DK-2300 Copenhagen
S, DENMARK, birkedal@itu.dk
TThis work is sponsored by Danish Research Agency stipend no. 272-05-0031

3. every value in the domain representing some polymorphic type is parametric in the sense that it
satisfies the logical relations theorem (even if it is not the interpretation of any expression of that

type).

Of course, this informal description leaves room for different formalizations of the problem. Even so,
it has proved to be a non-trivial problem. Unpublished work of Plotkin [20] indicates one way to solve
the problem model-theoretically by using strict, admissible partial equivalence relations over a domain
model of the untyped lambda calculus but the details of this relationally parametric model have not been
worked out before. We do that here.

In loc. cit. Plotkin also suggested that one should consider parametric domain-theoretic models not
only of polymorphic lambda calculus but of polymorphic intuitionistic / linear lambda calculus. This is
necessary, since full parametricity for second order lambda calculus gives a type theory with coproducts,
and since we already have fixed points in the calculus, such an extension of simply typed lambda calculus
is inconsistent [[11]. The polymorphic intuitionistic / linear type theory gives a way to distinguish, in
the calculus, between strict and possibly non-strict continuous functions and a restricted parametricity
principle can then give type encodings in the linear part of the calculus. Indeed Plotkin argued that
such a calculus could serve as a very powerful metalanguage for domain theory in which one could also
encode recursive types, using parametricity.

Thus parametric domain-theoretic models of polymorphic intuitionistic / linear lambda calculus are of
import both from a programming language perspective (for modeling data abstraction) and from a purely
domain-theoretic perspective.

This paper describes such a model, classifies the class of recursive domain equations that can be solved
in the model and provides the first rigorous proof that the solutions can obtained through the use of
parametricity.

The proof builds on earlier work by the authors. In a recent paper [6] (see also the brief conference
version [7]) we have presented an adaptation of Abadi & Plotkin’s logic for parametricity for the second
order lambda calculus [21] to the dual calculus suggested by Plotkin. We call this logic Linear Abadi
& Plotkin Logic (LAPL), and the term language, called PILLy for polymorphic intuitionistic / linear
lambda calculus, is a simple extension of Barber and Plotkin’s calculus for dual intuitionistic / linear
lambda calculus (DILL) with polymorphism and fixed points. In the logic we have given detailed proofs
of correctness of Plotkin’s encodings of types in PILLy, including general recursive types, and also
validated reasoning principles for these types.

In another recent paper [3]] we have defined the category-theoretic notion of parametric LAPL-structure,
which are parametric models of LAPL. The notion of a parametric LAPL-structure is a useful notion of
parametric model since one can reason about a parametric LAPL-structure using the logic. In particular,
we have shown how to solve general recursive type equations in these structures.

This paper presents a parametric PILLy--model based on admissible per’s (partial equivalence relations)
over a reflexive domain (a domain-theoretic model of the untyped lambda calculus) thus confirming the
folklore idea that such a model exists. The model is constructed using Robinson and Rosolini’s para-
metric completion process [25], and shown to be parametric by the construction of an LAPL-structure
around it. The LAPL structure gives formal proofs of the expected consequences of parametricity. Thus
by the general results for parametric LAPL-structures, we get solutions to recursive type equations;
here we explicitly describe the class of recursive type equations on the model that can be solved using
parametricity.

The theory of admissible per’s mixes the idea of modeling impredicative polymorphism using per’s
with domain theory and can be seen as a domain theory for polymorphism. It is our hope that this
theory will provide the same intuition about polymorphism in combination with recursion as domain

theory does for the theory of recursive functions. From the view point of axiomatic domain theory,
PILLy axiomatizes the adjunction between the categories of pointed cpo’s with strict continuous maps
and all continuous maps respectively, whereas axiomatic domain theory traditionally has axiomatized
the adjunction between the category of cpo’s and the category of cpo’s with partial maps (as in Fiore’s
thesis [8]). We see a tight correspondence to traditional domain theory and can, as usual, construct
categories corresponding to pointed cpo’s with strict maps and cpo’s with partial maps, but unlike in
traditional domain theory, the two categories are not equivalent in the setup with admissible per’s.

The idea of PILLy as a meta language for domain theory is further investigated in recent work by
Mggelberg [15]], in which it is shown that a large class of parametric LAPL-structures model Plotkin’s
FPC [19] (see also [8]) - a calculus with general recursive types and a call-by-value operational se-
mantics. A classical result states that FPC can be interpreted in domain theory and that this model is
adequate. The concrete case of the LAPL-structure investigated in this paper also models an extension
of FPC with call-by-value polymorphism and this interpretation is computationally adequate.

Recently, Pitts and coworkers [18} 4] have presented a syntactic approach to Reynolds’ challenge, where
the notion of domain is essentially taken to be equivalence classes of terms modulo a particular notion
of contextual equivalence derived from an operational semantics for a language called Lily, which is
essentially polymorphic intuitionistic / linear lambda calculus endowed with an operational semantics.

In parallel with the work presented here, Rosolini and Simpson [26] have shown how to construct para-
metric domain-theoretic models using synthetic domain-theory in intuitionistic set-theory. Moreover,
they have shown how to give a computationally adequate denotational semantics of Lily.

In subsequent papers we show how these models give rise to parametric LAPL-structures, and so the
results about LAPL-structures (such as solutions to recursive domain equations) transfer to these models.

We have strived to make this paper reasonably self-contained and thus include definitions and proofs of
the relevant properties for admissible per’s. Moreover, we have included an overview of the concrete
interpretation in Section [3.2] However, to fully appreciate the larger scope of the paper, the reader
is expected to be familiar with the brief description of LAPL in the conference paper [7], but readers
interested only in the description of the domain theoretic model of parametric polymorphism may skip
Section] and consider that section a formal verification of the parametricity results for the model.

1.1 Outline

Section [2| considers two categories of admissible per’s over a reflexive cpo, one with continuous maps
and one with strict continuous maps. The first is shown to be cartesian closed and the second to be
symmetric monoidal closed, and the two are related by an adjunction in which one map is forgetful and
the other is a lifting functor. Section contains the discussion of axiomatic domain theory advertised
above.

In Section 3| a model of PILLy in which types are indexed families of admissible per’s is constructed.
In Section [3.1] the parametric completion process is applied to this model giving a parametric PILLy
model. The model is parametric in the sense that it can be extended to a parametric LAPL-structure,
i.e., a model for the logic LAPL for parametricity. This is shown in Section 4] Section [3] introduces
the family of recursive domain equations that may be solved in the parametric model using the general
results about parametric LAPL-structures, and in Section [6] as an example of a computation in the
model, we compute explicitly the natural numbers object in the category of admissible per’s and strict
continuous maps, as encoded using parametricity. Section [/ relates our results to previous work on
recursive types in per-models.

2 Admissible per’s

Recall that a reflexive cpo is a pointed w-chain-complete partial order equipped with maps
¢: D — [D— D] and U: [D— D] — D,
both Scott-continuous and satisfying
@(DQJ::idU}ﬁD]

where [D — D] denotes the cpo of continuous functions from D to D. We assume, without loss of
generality, that both ® and ¥ are strict. The maps ®, ¥ induce a combinatory algebra structure on D
with application d - d' = ®(d)(d’), and using this it is quite standard to construct strict continuous
functions

(,y: Dx D — D, D — D and 7' D — D,

such that for all d,d’ € D:
d,dy=d and w{(d,d)=d.

We use i to denote W(id|p_.pj). Notice that ®(i) = id|p_. p).

Recall that a partial equivalence relation (a per) is a symmetric and transitive relation. For a per R, the
set | R| of elements d such that d R d is called the domain of the per R, and R induces an equivalence
relation on its domain.

Definition 2.1. An admissible partial equivalence relation on D is a partial equivalence relation R on
D satistying

strict Lp R Lp,

w-chain complete For (d,,),ec. and (d},)nec., w-chains in D:

(Vne€wd, Rdy)= | |dn R | |,

new new

Definition 2.2. For R and S per’s on D, define the set of equivariant functions from R to S as
F(R,S)={a€[D— D]l[dRd = a(d) S a(d)}
and the set of strict equivariant functions from R to S as

}XI%NS)L ::{Gf€.¢(R,S)MXLLD)::_LD}.

Note F(R,S), C F(R,S).

Definition 2.3. For R and S per’s on D, define on F (R, S) or F(R, S) the equivalence relation ~p g
by
a~pgfeVde D.dRd= ald) S 3(d)

We write PER(D) for the category of partial equivalence relations over D. Recall that it has partial
equivalence relations over D as objects and that a morphism [«]: R — S is an equivalence class in
F(R,S)/ ~p,s. Elements of [a] are called realizers for [«].

Definition 2.4. We define the category AP (D) of admissible partial equivalence relations over D as
the full subcategory of PER(D) on the admissible per’s.

4

The following theorem is well known [2]] but we recall the proof for the readers benefit.

Theorem 2.5. The category AP (D) is a sub-cartesian closed category of PER/(D).

Proof. We recall the constructions. It is straightforward to verify that the resulting per’s are admissible.
The terminal object 1 is the admissible per defined by

dld &d=1p=4d.
The binary product of R and S is

dRxSd

T
ddy, da, ﬁ,déED.dZ(dl,dﬁ A d/:< /1,d12> A ledll A ngdIQ

The exponential of R and S, S¥, is given by
dStd & ®(d) ~ps d(d).
O

Lemma 2.6. There is a faithful functor Classes: AP(D) — Set mapping an admissible per to the
set of equivalence classes and an equivalence class of realizers to the map of equivalence classes they
induce. This functor preserves products, i.e., for any pair of admissible per’s R, S, Classes(R x S) =
Classes(R) x Classes(S).

Proof. Classes is the global sections functor, hom(1, —), which preserves products. That it is faithful
follows from the fact that all constant functions D — D are continuous. O

Definition 2.7. The category AP (D) of admissible per’s and strict continuous functions is the full-on-
objects subcategory of AP (D) with morphisms [o]: R — S equivalence classes in F(R,S) |/ ~p g.

Remark 2.8. Note that in AP(D) |, morphisms are required to have a strict continuous realizer. On
the other hand, if there is a realizer « € F(R, S) with a(Lp) S L p then the function that maps L p to
1 p and all other d € D to a(d) will still be continuous and equivalent to o in F (R, S). This function
will thus be a realizer in F(R, S) | .

Theorem 2.9. AP (D), is a cartesian sub-category of AP (D).

Proof. Obvious since 7, 7, and (-, -) are strict. O

Theorem 2.10. The category AP (D) | is symmetric monoidal closed.
Proof. The tensor of R and S is

dR®Sd
)
dRxSd
V
Idi,d, € |R|. 3do, dy € |S]. d = (di,do) A d ={d),d) A
((leJ_D V dQSJ_D) AN (dllRJ_D V dIQSJ_D))

This complicated looking definition is most easily understood through the functor Classes: The equiv-
alence classes of the tensor product are those of the product with the modification that all pairs where
one of the coordinates are related to | p have been gathered into one big equivalence class.

The unit of the tensor [is defined by
dld & d=d=1pvd=d =i.
The exponential of R and S, R — S, is given by
dR—-Sd & dStd A (d"RLp=®d)(d")SLpSdd)(d))
The proof consist of a series of straightforward verifications. O

For later use we shall mention how regular subobjects look in this category. We use A — R to express
that A is a regular subobject of R, if R is an admissible per.

Lemma 2.11. There is a bijective correspondence between regular subobjects of R and per’s A such
that
Classes(A) C Classes(R) N A € Obj(AP(D),)

Proof. Assume R and A with the mentioned properties. Define R 4 by

dRad
)

d= <db,J_D> VAN d= <d1,i> VAN
d=(d,Lp) A \Y d={d},i) A v

dy R d; dy R dj
d=(dp, Lp) A d=(d,i) A

d = (d,i) A v d ={d,Lp) A
dy A dy di Ad,

i.e pairs from R x {{_Lp}, {i}} with the added relations of pairs with their first components related in A.
R4 € Obj(AP(D)) and there are two morphisms R — R 4 realized by d — (d, L p) and d — (d, i)
respectively. In view of remark [2.8] and since Lp A L p, the latter does in fact realize a morphism of
AP(D), and A is the equalizer of these two morphisms.

Conversely, the image of an equalizer is easily seen to be admissible. Thus all regular subobjects have a
representative, which is a subset of the equivalence classes as desired. O

We also need the following fact about admissible per’s

Lemma 2.12. If I is an arbitrary set, and for all © € I, R; is an admissible per over D then the relation
Nicr Ri defined as
d(\Rid < Viel.dR;d
el

is an admissible per over D.

2.1 Lifting

We now define a lifting functor, to establish a left adjoint to the inclusion U: AP(D) — AP(D),.
Define the map Lo: Obj(AP(D)) — Obj(AP(D)) by

d Lo(R) d
)
d=1lp=d Vv 3Je,deD.(d={ie) Nd={(ie) NeR¥)
This is well-defined as Ly(R) easily is admissible if R is.

Notice the “if” construct available on a lifted per: For R an admissible per if d is in the domain of
Lo(R) then d is either L p or a pair (i, e). Hence ®(7(d)) is either the totally undefined function or the
identity on D. Thus ®((d))(d’) can be read “if d ¢ [L] (r) then d’ else L p”, where [L] is the class
represented by L p in the admissible per .S.

We also have a “lift” map n: R — Ly(R) realized by Ad € D.(i,d) and an “unlift’ map e: Ly(R) — R
realized by 7. Notice that € is strict, but 7 is not.

To handle morphisms we work at the level of realizers. Define, for admissible per’s R and S, the map

Li(a) = Ad € D.®(n(d))({i, a(n'(d))))

which reads “if d ¢ [L] (g) then lift(c(unlift d)) else Lp”. As L7 (a)((i,e)) = (i, a(e)), this is easily
seen to be well-defined. As it also takes equivalent realizers to equivalent realizers, we can lift the map

to the level of morphisms and a straightforward verification shows that this together with Ly defines a
functor L: AP(D) — AP(D),.

Theorem 2.13. There is a monoidal adjunction L 4 U.

Proof. One first shows that L is left adjoint to U in the ordinary sense. The unit of the adjunction is given
by (nr: R — UL(R))reAPD,» and fort: R — U(S) in AP(D) |, the required unique u: L(R) — S
in AP(D), such that U(u) o ng = t, is given by the realizer

ay = Ad € D.if d ¢ [1]1(g) then oy (unlift d) else [L]
where o is a realizer for t.

To show that the adjunction is monoidal it suffices by [10] to show that the left adjoint L is a strong
symmetric monoidal functor (see [[L6] for an explanation). To this end, we must exhibit an isomor-
phism m;: I — L(1) and a natural isomorphism mp s: L(R) ® L(S) — L(R x S). This is mostly
straightforward; we just include the definition of mpg g: it is the morphism realized by

A € D.
if 7(d) # L then
if 7'(d) # L then
lift of (unlift(w(d)), unlift(7’(d)))
else 1Lp
else L p.

The inverse is realized by

Ad € D.
if d # L then
(lift of 7 (unlift(d)), lift of 7’ (unlift(d)))
else 1L p.

2.2 Relation to axiomatic domain theory

We have advertised the slogan, that the theory of admissible per’s is “a domain theory for polymor-
phism”. In this section we explore different categories of admissible and chain complete per’s and their
relations, and relate the results to classical domain theory. The reader should keep the following picture
in mind from classical domain theory.

L L
P =~ -
Cpo T pCpo —— Cppo 1 Cppo (1
U U

Here Cpo is the category of complete partial orders (cpo’s), pCpo of cpo’s and continuous partial
functions, Cppo ; of pointed cpo’s and strict continuous functions and Cppo of pointed cpo’s and all
continuous functions. In the diagram U always denotes inclusion and L lifting.

In axiomatic domain theory much focus has been on the leftmost adjunction, as in Fiore’s thesis in which
categories of partial maps are studied. The category of partial maps pCpo is isomorphic to the Kleisli
category for the lifting monad on Cpo induced by the adjunction U - L, and this is also isomorphic to
the Eilenberg-Moore category for the monad and to Cppo | .

In PILLy-, the adjunction on the right is axiomatized, and in general PILLy -models there is a priori no
category corresponding to Cpo. In the theory of admissible per’s, however, there is one such, namely
the category CCP (D) of chain complete per’s over D with maps defined as in AP (D). One may easily
show that the lifting functor of Section [2.1]extends to a functor L: CCP (D) — AP(D) |, and in fact
this is left adjoint to the inclusion U: AP(D); — CCP(D), thus UL induces a monad on CCP (D).
The picture corresponding to (1)) for admissible per’s is

CCP(D) T AP(D), n AP(D).
.
CCP(D)yy

Here CCP(D)y, is the Kleisli category for the monad. We will show that AP (D) is the Eilenberg-
Moore category of the monad on CCP(D), but that this is not the same as CCP (D), in the sense
that the comparison map, which is the inclusion in the diagram, is not an isomorphism, as is the situation
in domain theory.

Proposition 2.14. The category AP (D), is equivalent to the Eilenberg-Moore category for UL on
CCP(D).

Proof. A standard theorem of adjunctions tells us that AP (D), is included in the Eilenberg Moore
category. In fact, the inclusion maps an object R of AP(D), to the counit of the adjunction at R. We
must show that any monad algebra for U L is of this form (up to isomorphism). Suppose f: LS — S
is an algebra realized by «. Construct the admissible per S’ by adding L to the equivalence class of
a(L)in S. It is now an easy check to show that f: LS — S is isomorphic as an algebra to the counit
e: LS — 5. O

We remark that in fact, CCP (D) is a cartesian closed category, U L a strong commutative monad, and
the symmetric monoidal structure on AP (D) is induced by UL as in [12].

Proposition 2.15. The Kleisli category for the monad U L on CCP (D) is equivalent to the full subcat-
egory of AP(D) | onper’s R such that [L]p = {L}.

Proof. The Kleisli category is isomorphic to the category of free algebras, which is equivalent to the
mentioned category. 0

As mentioned, this is different from the situation in classical domain theory, where the Kleisli category
for the lifting monad on Cpo coincide with the Eilenberg-Moore category for the same monad, and both
are isomorphic to Cppo | . For a simple example of an algebra for U L that is not isomorphic to a free
one, suppose L # d < e are elements of D, and consider the admissible per given by the collection of
equivalence classes {{L, e}, {d}}.

The last proposition of this section shows how to recover CCP (D) from AP (D), . This is interesting,
as PILLy is meant to axiomatize the adjunction to the right of (I), and in a general PILLy -model there
is a priori no category corresponding to Cpo.

Proposition 2.16. The co-Eilenberg-Moore category for the comonad LU on AP (D), is equivalent to
CCP(D).

Proof. We show that the co-Eilenberg-Moore category is isomorphic to the category of admissible per’s
R for which the equivalence class [Lp] is a downward closed subset of the domain of R — i.e., if
dRd,d <d andd R 1p,thend R | p— and maps that preserve and reflect [L p|. This category
is equivalent to CCP (D), with one map of the equivalence lifting a chain complete per, and the other
discarding the equivalence class [L p] from an admissible per.

Suppose « is a realizer for a coalgebra £ on an admissible per R, and d Rd, d < d'and d’ R L. Since «
is strict, a(L) = L, and so o(d’) LUR L implying a(d’) = L. Thus, by monotonicity ad = L. Since
€ o ¢ is the identity, where € is the counit, d R L. On the other hand, if [L] is a downward closed subset
of the domain of R then one may easily check that

1 ifdd >d.d R L
¢d) _{ (i,d) else

defines a unique coalgebra structure on . Continuity of £ follows from admissibility of R.

Suppose t: R — S is a map between such per’s, preserving coalgebra structure. Since ¢ has a strict
realizer it must preserve the equivalence class of L. To see that it also reflects it, suppose ¢([d]r) = [L]s.
Then also LU (t)(r([d])) = [L]Lvs implying that £g([d]) = [L]Lr. Clearly, thend R L.

Suppose on the other hand that ¢t: R —o S reflects the equivalence class of L. In order to show LU (t) o
¢r = &g ot we write them out, assuming ¢ is realized by ay:

[LU®)([L]) if3d >d.d R1L [[L] if3d >d.d R L
LU(t)(&r([d])) —{ LU ([, d)]) else _{ (i, cud)] else
and

Using that ford R d, 3d' > oud.d’ S 1. < d R 1, we can rewrite them to

which are equal since ¢ reflects [L]. -

3 A domain-theoretic PILL; model

The calculus PILLy is a Polymorphic Intuitionistic / Linear Lambda calculus with a fixed point com-
binator Y. It is basically DILL of [3] extended with polymorphism and fixed points. Types are formed
using the grammar

cu=all|lo®T|oc—o7]|lo]|]]a.o.

Terms are written in context as
EIT;ARt: 0

where = is the context of free type variables, I is a context of inituitionistic variables and A is a context
of linear variables. All the free type variables occurring in I'; A and o must be in =. The typing rules
for terms are presented in Figure|[T]

The type constructor —o denotes a linear function space, and its constructor is a lambda abstraction for
linear variables. Intuitionistic function space can be encoded using the Girard encoding o — 7 =lo —o
7. Using this encoding, the polymorphic fixed point combinator Y has the type [[. (¢ —) — av.

Terms of PILLy are considered up to an equality theory including standard 3, n) rules and stating that Y’
is a fixed point operator. For further details on PILLy see [6].

This section presents a PILLy model in which the ® and —o are interpreted using the symmetric
monoidal closed structure on AP (D), and ! is interpreted using lifting. But because PILLy- contains
polymorphism the categorical formulation of the model structure is based on fibred category theory. A
model of PILLy is essentially a fibred model of DILL [3]] with extra structure to model polymorphism.

The model to be constructed here will be denoted

L
UFam(AP(D),) 1 UFam(AP(D)) 2)
U
q p
Set.

The fibred adjunction of (2)) is a fibred version of the adjunction between AP (D) and AP(D) . The
calculus PILLy will be modeled in the fibration ¢ using the symmetric monoidal closed structure to
model the type constructions I, ®, —o. The lifting functor L will be used to model ! and polymorphism
will be modeled via simple products with respect to a generic object. A term Z: &;4: ¢ + t: 7 in which
the x; are the intuitionistic variables and the y; are the linear variables is modeled as a vertical morphism
&, LU[oi] ® @;[o;] — [7] in the fibration g. The fibration p still plays a role as it can be used to
model the terms with only intuitionistic variables.

We shall only show that the categorical structure needed for modeling PILLy is present, and not spell
out the interpretation of PILLy in the model. For further details on PILLy models see [16].

Define the contravariant functor P : Set®® — Cat by mapping a set [to the category P(I) with

Objects: (R;);c; where for all i € I, R; is an object of AP(D).

Morphisms: (ti)ie]: (Ri)ie[— (Sz')iela where, forall 7 € I, t; € AP(D)(Ri, SZ) and the t; have
a uniform realizer in the sense that there exists an « in [D — D] such that for all i € I, t; =

[O‘]ﬁRi 5"

10

T EIN-FY: [Ja.!(la - a) -«

1
e
|
-
*

|Dz:0;—Fa:o ElTz:obax:o

EIT;AFt:0—o7 ZIA Futo
A, A’ disjoint
EIT;A A Ftu:T

EIAz:obFu:T

EIT;ARNz:0ui0—oT

EIT;ARt:0 Z|0;A FsiT
EIAAN Ft®s: o T

A, A’ disjoint

20— Fto
EIT;—Flt:o

E,a: Type [T ARt o
= | T'; A is well-formed
E|T;AF Aa: Type.t: [Ja: Type.o

[1]

|T; ARt [Ja: Type.o ZEF7: Type
EIT;ARLr): o[r/a]

EIT;AFs:o®0 E|N;A xioy:0' FtT
A, A’ disjoint
;A A Fletx: o®y: o' besint: 7

E|T;AERs: o E|T,x:0;A Ft: 7
A, A disjoint
E| ;A A Flet!r: lobesint: T

[1

E|T;ARt: T Z|T;A Fs:o
E|T;A, A Flet x betins: o

Figure 1: Typing rules for PILLy terms

11

For a function f: I — J, the reindexing functor P(f) is simply given by composition with f.

Define the contravariant functor) : Set®® — Cat given by mapping set [to the category Q(I) with
Objects: (R;);c; where for all i € I, R; is an object of AP(D), .

Morphisms: (¢;);cr: (R;)icr — (S;)icr where foralli € I, t; € AP(D), (R;,S;) and 3 € [D —
DL.Vie I t; = |a]

~R;.S;"
For a function f: I — J, the reindexing functor Q(f) is again simply given by composition with f.

That we have two contravariant functors is obvious. The Grothendieck construction (see for exam-
ple [13]) then gives us two split fibrations, p: UFam(AP (D)) — Set and ¢: UFam(AP(D),) —
Set. The functors L and U both operate one the level of realizers and so lift to fibred functors between
these two fibrations (we abuse notation and also denote the fibred functors by L and U). Explicitly,
on objects L(I, (R;)ier) = (I, (L(R;))iecr) and on vertical morphisms L(Z, (t;)ier) = (I, (L(ti))icr)-
Likewise for U. These are not recursive definitions, they simply look so because of the reuse of letters.

Proposition 3.1. L and U are split fibred functors and L 1 U is a split fibred strong monoidal adjunction

Proof. 1t is obvious that L and U are split fibred functors; the second part follows immediately from
Theorem 2.13] O

To show that is a model of PILL it remains to be shown that ¢ has a generic object and simple
products, in other words models polymorphism.

Lemma 3.2. The set Q@ = Obj(AP (D)) = Obj(AP(D)) is a split generic object of the fibration q.
The fibration q has simple split Q)-products satisfying the Beck-Chevalley condition.

Proof. The first part is obvious. For the second part, one uses the usual definition for uniform families
of ordinary per’s and verifies that it restricts to admissible per’s: We recall from [[13]] that given any
projection 7yy: M x £2 — M in Set, the right adjoint Vj to 7}, is given on objects by intersection:

vZ\/l((}%(a,w))(a,w)EMXQ) = (m R(a,g;))aEM-
we

By lemma [2.12]the resulting per is admissible. O

Theorem 3.3. The diagram () constitutes a model of PILLy .

Proof. Given the preceding results it only remains to verify that (1) the structure in the diagram models
the polymorphic fixed point combinator and that (2) UFam(AP(D)) is equivalent to the category of
products of free coalgebras of UFam(AP (D)), .

For (1), the required follows, as expected, because the per’s are strict and complete. In more detail, what
is needed is an element of the PILLy type [a. (&« — a) — « as interpreted in the model, giving fixed
points to maps. An inspection of the model shows that this means a continuous function Fix: [D —
D] — D such that for any admissible per R, if « is a realizer for a map L(R) — R, then Fix(«) is a
fixed point for «v o [, where [is a realizer for the “lifting map” n: R — L(R) described in Section
Moreover, if @ ~pp r o are related in L(R) — R then we must have (Fix(«), Fix(c')) € R. Taking
Fix to be the function @ — | |, (o 0 1)™(_L) gives an element clearly satisfying the first condition. The
second condition is satisfied because R is strict and chain complete.

For (2), observe that by [[16] Proposition 1.21] applied to Theorem[2.9it suffices to show that UFam(AP(D))
is equivalent to the co-Kleisli category of the adjunction L 4 U, but this follows from the fact that U is
an inclusion surjective on objects. O

12

3.1 A parametric domain-theoretic model of PILL,

In this section, we introduce a parametric version of the thus far constructed model. It is essentially ob-
tained through a parametric completion process [25]]. In [14]] it is shown how the parametric completion
process can be used to construct parametric LAPL-structures in general.

One of the reasons why having a parametric model is interesting, is that it will be a model of recursive
types, containing solutions to recursive domain equations. Section [5 details the family of recursive
domain equations, that can be solved in the obtained model.

We will arrive at the diagram

L

PFam(AP(D),)=~ 1 — ~PFam(AP(D)) 3)
\ U /

PAP(D).

l_

As is usual in the parametric completion process, types will be pairs (P, f”) where f? is a type in the
sense of the model (2), and f7 is a relational interpretation of the type, i.e., a map taking a vector of
relations and producing a new relation. In this setup, by relation on a pair of admissible per’s R, .S
we shall mean a regular subobject of the product per R x S in AP(D),. Since Classes(R x S) =
Classes(R) x Classes(S), Lemma2.11]gives the following characterization of the relations in question:
these are subsets M C Classes(R) x Classes(S) such that ([L]g,[L]s) € M, and if (d,), (d],) are
increasing chains of elements of D in the domain of R and S respectively, such that ([d,] g, [d},]s) € M
for all n, then also ([| |,,c,, dnlR, [l l,co, dnls) € M. (Itis crucial that subobject is in the category with
strict maps — this is what gives ([L] g, [L]s) € M). As always we write A — R x S for such relations.
We adopt the notation RegSub(R x S) for the set of objects A in AP (D), suchthat A — R x S.

We now return to the definition of the fibrations of . The base category PAP (D) is defined as

Objects: n € N — objects are natural numbers.
Morphisms: f: n — m is an m-tuple, (f1,..., f), where each f; is a pair (f7, f7) satisfying

e f”is a map of objects (Obj(AP(D),))™ — Obj(AP(D),)
e fI is a map, that to two n-tuples of objects of AP(D), associates a set-theoretic map of
subobjects

I € 1 seonjiar(oy e (e, RegSub(R; x ;) — RegSub(f7(R) x f7(5)))

satisfying
VR € (Obj<AP<D)J_))n-ff(Ra R)(eq_j%j) = quff(ﬁ)a
We now describe PFam(AP(D),) — PAP(D) and PFam(AP (D)) — PAP(D).
We plan to use the Grothendieck construction, and so define indexed categories: (PFam(AP(D))),
is defined with

Objects: morphisms in PAP(D) from n to 1.

Morphisms: t: f — g is a family of morphisms (% ;: FP(R) — gP(_’))ﬁe(Obj(AP(D)L))” of AP(D)
with a uniform realizer (as in the definition of UFam(AP(D))) which respects relations in the
sense that

-, =

VA — B x S.f"(R, S, A)((d], [d]) = ¢" (R, S, A)(t ([d]): t5([d])-

13

If we write LR(AP(D)) for the collection of all admissible relations on admissible per’s, and
(AP(D))o for the collection of all admissible per’s, then there is a reflexive graph

(AP(D)1)o =—=LR(AP(D))0

where the two maps going left map a relation to its domain and codomain respectively and the map
going right maps an admissible per to the equality relation. By this being a reflexive graph, we mean
that going right and then back using either of the two maps is the identity. Another way to think of an
object of (PFam(AP(D)|)), is as a pair (f", fP) in a diagram

LR(AP(D),)j —~LR(AP(D).)o

il il

(AP(D).)i —— (AP(D))0

In the diagram the three obvious squares are required to commute. For example, the two ways of starting
in the lower left corner and ending in the upper right are equal, which is exactly the requirement that f”
preserves equality.

Quite similarly (PFam(AP(D))),, is defined as the category with

Objects: morphisms in PAP(D) from n to 1.

Morphisms: t: f — g is a uniformly realized family of morphisms (# ;) Re(Obj(AP(D),)" of AP(D)
such that
tg: U(fP(R)) = Ug"(R))
where U: AP(D); — AP(D) is the forgetful functor. That we now ask for morphisms of
AP(D) removes the demand, that the uniform realizer be strict. Again this ¢ should respect
relations:

-, =

VA — B x S.f"(R, S, A)((d], [d]) = ¢" (R, S, A)(t ([d]), t5([d])-

Note that the only difference between the two definitions is the choice of category in which the ¢ 5 are
required to be morphisms.

We will very often write simply f7(A) for f7(R, S, A).
Definition 3.4. Define the functor L: PFam(AP(D)) — PFam(AP(D),) on

objects by
L((f", /")) = (F¥, F")
where
FP(R) = L(f"(R))
and

morphisms by
L(t: (f7, ") = (9", 9"))(R) = L({(R))

In the definition, we have lifted a relation. By this we mean to apply the lifting functor to the span
(mo f", 7' o f7) corresponding to the relation. The resulting relation relates lifted elements to each other
iff the unlifted versions are related, and relates the equivalence classes of L to each other. We define
U: PFam(AP(D),) — PFam(AP(D)) in a similar way using U instead of L.

14

Lemma 3.5. L: PFam(AP(D)) — PFam(AP(D),)andU: PFam(AP(D),) — PFam(AP(D))
are both fibred functors, and constitute a fibred adjunction I 4 U.

By an easy extension of Theorem[2.5] we have:

Proposition 3.6. PFam (AP (D)) is fibred cartesian closed.

Proof. The product of (fP, f") and (g?, g") is (fP x gP, f" x g") where fP x gP is the point-wise product,
and f" x g" takes the point-wise product of subobjects, which of course is a subobject of the products. In
the exponent (f? — ¢P, f" — ¢") the first component is defined point wise, and the second component
f" — g" relates the equivalence classes [d], [d'] if they map related elements to related elements in the
sense that if ([e], [¢']) € f7(A) then ([®(d)e], [®(d')e']) € g"(A). (Recall that the latter is well defined,
i.e., independent of the choice of representatives). O

Proposition 3.7. PFam (AP (D)) is fibred cartesian and fibred symmetric monoidal closed.

Proof. We just present the SMCC structure: In the fibre (PFam(AP(D),))n, the tensor product of
(f7, f7) and (g7, g") is (P @ g7, [" @ g") where (f? @ g*)(R) = fP(R) @ g(R) and f"(A) ® g"(A)
is the image of f"(A) x ¢g"(A) under the quotient map from the product to the tensor. In other words
I (A)®@g"(A) relates the equivalence classes of L and relates [(d, d’)] o (Ryogr () © [{e, €] 12(3)050(5)
(assuming these are not representatives of the [L] equivalence classes) if (]

elAl], [e]) € f7(A) and ([d], [¢']) € g"(A).

The unit of the tensor is given by the object (E — 1, A eqr).

The exponential of (P, f") and (¢?, ¢") in (PFam(AP (D))
fP —o gP is defined pointwise using the closed structure of AP (D)
g?(R). The relational interpretation of the exponential (f™ —o g")
represent maps that preserve relations, i.e., (f" —o ¢")(A4)([d], [d']

) iff
V(lel, [€']) € f7(A). ([@(d)(e)], [2(d)(¢)]) € g" (A).

To verify the adjunction (—) ® (f?, f") 4 (f?, f") — (—), we use that we know it holds in the first
component and then check that the bijection can be restricted to realizers that define morphisms in the
second component; the latter is a direct consequence of the way the relational interpretations of ® and
—o are defined. O

ns 18 (fP —o gP, 7 —o g ") where agam
(L,ie (fP — gP)(R) = fP(R) —

A) relates equivalence classes that

A\/

Lemma 3.8. L - U is a fibred symmetric monoidal adjunction.

Proof. This proceeds much as in the unfibred case. We show that L is a fibred strong symmetric
monoidal functor. We must provide a morphism m; and a natural transformation m, but we can simply
use the same realizers as before, since everything has been defined coordinatewise and these realizers
are independent of the specific per’s, and hence are uniform realizers. O

The next lemma shows that (3) models polymorphism.
Lemma 3.9. The fibration PFam(AP (D)) — PAP(D) has a split generic object Q) and simple
Q-products.

Proof. Clearly 2 = 1is a split generic object. For the simple products, given a projection 7: n+1 — n,
we must define a right adjoint to 7*. The construction is exactly as in [[13} Section 8.4]: the adjoint maps
an object (fP, f") of PFam(AP(D))41 to ([] fP,] f") in PFam(AP(D),),, where

(IT/P)(Ra,- .., Rn)(d €)

15

iff
VR. fP(Ri, ..., Rn, R)(d,)A
VRv Sv Ar— R xS. ([d]fp(Rh.u,Rn,R)’ [6]fp(R1,...,Rn,S)) € fr(equu o 7ean7 A)

and [[f7(A1,..., An)([d], [e]) iff
VR,S, A R x S. fT(A1,...,An, A)([d], [e])-

For this to be an object of PFam(AP (D)), one needs to check that in fact [] f"(eqg,, - .., eqg,) is
equality on [] fP(R), but this can easily be verified. O

Proposition 3.10. The diagram (3)) constitutes a PILLy model.

Proof. It only remains to verify that the structure models the fixed point combinator. Here we simply
use the Y from Theorem (3.3} which works since relations are strict and chain complete.]

Remark 3.11. Notice that in the model (3),, the fibre of closed types, i.e., the category (PFam(AP (D),))o
is isomorphic to AP(D) .

3.2 Overview of Interpretation

We can summarize the interpretation of types.

Recall, that the interpretation of a type a1, . . ., ay, = o is a pair (fP, f7), where f? is a function that takes
n admissible per’s (detailing the types for the free type variables) and produces an admissible per, and f”
is the relational interpretation. Thus f” takes n regular subobjects A1 — Ry X S1,..., Ap — Ry, X Sy,
and gives a regular subobject of fP(Ry, ..., R,) X fP(S1,...,5).

Assume a4, ...,a, - o, and that Ry,..., R, and Sy, ..., S, are admissible per’s and A; — R X
Si,..., Ay — Ry, x Sy, are regular subobjects in AP (D) ;. Then the interpretation of ¢ is given by the
following two tables:

o fP(Ry,...,Ry)
(671 Ri
I {(Lp, Lp),(i,i)}
TRT {({d1,da), (d},d3)) | [T]P(d1,dy) A [7']P(d2,d5)} U

{(<d17d2>7 <d,17d/2>) ‘ dlvdll S H[T]]p’ Ad?vdé S |[[7-/]]p’ N
(I7]#(d1, Lp) v [7']P(d2, Lp)) A
(I71#(dy, Lp) v [7'1P(d5, L))}

T —o 1! {(d,d") | ®(d)(Lp) = ®(d')(Lp) = Lp A
V(e ¢) € [r]P.[IP(@(d)(e), D(d) () }
7 {(Lp, Lp)} U{((i,d), (,d)) | [7]"(d, &)}

[Ta.r {(d,d)|VR € AP(D),.[7]P(R1,...,Rn, R)(d,d") A
VR,S € AP(D), VA — R x S.[r]"(eqr,,- - -,eqr,, A)([d],[d])}

16

o fT(A1, ..., Ay)

(674 Az
1 {(Lol, [LoD), ([, [iD}
ToT {([{d1, d2)), [y, d)]) [[717 (], [dn]) A T7']7([da], [da]) }
T {([d), [d]) | v([e], [€']) € [7]"-[7T"([2(d) (e)], [2(d') (e)]) }
)

([®
7 {([Lpls [LoD} UG &), [G,d)]) [[717([d); [@'])}
[Ter {([d],[d]) | YR,S € AP(D) YA~ R x S.[7]" (A1, ..., An, A)((d], [d])}

4 A parametric LAPL-structure

Intuitively the PILLy model constructed in Section is parametric, because every type has a rela-
tional interpretation (f") satisfying identity extension (this is the requirement that " (eqp, ,...,eqr) =
€q g é)), and moreover, the relational interpretations of —o and [[are given by the usual interpretations
as can be seen from the proofs above. In this section we make this statement precise by showing that
the PILLy model can be extended to a parametric LAPL-structure [3], i.e., a model of the logic for
parametricity on PILLy presented in [[6]. This will give us proofs of encodings of recursive types in the
model as we shall explain in Section [5]below.

The LAPL-structure will be given by the diagram

Fam(Sub(Set)) 4)

PFam(AP(D@am(AP(D))% Faml(TSet)
\PAQ(D)/

The left hand side of the diagram is simply the model (3), which we want to reason about using the logic
for parametricity. We use the logic of sets to reason about types in the model. We have already used
the term admissible relation to refer to certain subsets of the product of sets of equivalence classes, and
general propositions on admissible per’s will be simply subsets of the set of equivalence classes for the
per. Thus we include the category of admissible per’s into the category of sets using the Classes functor,
and reason using subsets. The inclusion of per’s into the larger category of sets is needed because when
reasoning about parametricity one needs to quantify over all relations between a pair of types, and the
collection of relations between per’s is a set, not a per. Of course general types are not per’s, but indexed
families of per’s (plus a relational interpretation of course) so the inclusion of per’s into sets must be
indexed, and that is the right hand side of the diagram.

The formal definition of the categories of (4)) is as follows. The fibre of Fam(Set) over n has as

Objects maps f : Obj(AP(D))" — Set.

Morphisms ¢ : f — g is a family of set theoretic maps
(g f(R) = 9(R)) geonjap(p))r

and reindexing is given by composition. The fibre of Fam(Sub(Set)) over an object f : Obj(AP(D))" —
Set is a preorder with

17

Objects maps s : Obj(AP(D))™ — Set, such that
VR € Obj(AP(D))". s(R) C f(R).

Morphisms There is a morphism s — s’ if
VR € Obj(AP(D))". s(R) C ¢'(R).

Here reindexing with respect to morphisms in PAP(D) is given by composition, whereas reindexing
with respect to morphisms in Fam(Set) is given by inverse image.

Lemma 4.1. The fibration s has fibred products, and (r, s) is an indexed first-order logic fibration with
simple Q-products and -coproducts.

Proof. Clearly s has fibred product inherited from Set. The rest of the lemma states that the fibration r
has left and right adjoints to sufficiently many reindexing functors to interpret all the needed quantifica-
tions in the logic LAPL. But r is simply an indexed version of the subobject fibration on Set, and since
this fibration has left and right adjoints to all reindexing functors, the lemma follows. O

The inclusion functor /: PFam(AP(D)) — Fam(Set) of (4) maps a type (f?, f") to Classes o fP,
and likewise maps a morphism (t) 5 to (Classes(t3)) 5. This corresponds to the intuition described
earlier: a type is a pair (f?, "), but when reasoning about a type, we forget the relational interpretation

f7 of the type, and reason set theoretically about the equivalence classes of the per.

Lemma 4.2. [is a faithful and product-preserving map of fibrations.

As mentioned, I includes the category of per’s into a larger category in which the collection of rela-
tions between a pair of per’s is an object. In the setting of LAPL-structures, this is formulated as a
contravariant map of fibrations U:

PFam(AP (D))? Fam(Set)

T~

PAP(D)

By contravariant map of fibrations, we mean a map commuting with the reindexing structure, but con-
travariant in each fibre. The functor U is defined as

(f,g) — 21)x19)

Lemma 4.3. U is a contravariant map of fibrations.

The precise formulation of U mapping a pair of types to the collection of all relations on those types is
the existence of a family of bijections

X’ﬂ: Fam(set)(M, Un(f, g))n — ObJ (Fam(sub(Set))MXIn(Un(f)XU”(g)))
indexed over f,g € (PFam(AP(D),)), and M € (Fam(Set)),,. This family is defined by
Xn(h) = {(m, (a,b))[(a,b) € h(m)}

in other words this is just the usual bijection between set theoretic maps M; — P(Ma x Ms) and subsets
of M1 X MQ X Mg.

In terms of LAPL-structures we have proved:

18

Proposition 4.4. The diagram () constitutes a pre-LAPL structure.

Any type (fP, f7) in our model has a relational interpretation given by the map f”, which we would like
to show can be used for reasoning about parametricity. However, f” is only defined on admissible rela-
tions on per’s, i.e., not on any subset of Classes(R) x Classes(S). This is no coincidence, as explained
in the introduction, and in the logic LAPL [6], axioms are formulated for such a collection of admissible
relations to be useful for reasoning about parametricity. We show that the admissible relations used in
this paper satisfy these axioms in Lemmal4.5]

First we formulate the collection of admissible relations as a subfunctor V of U by V(f,g) = R —
{ Classes(A) | A—ap(p), (fP(R)x g"(R))}.

Lemma 4.5. The structure in diagram (4)) and V' model admissible relations.

Proof. We must show that the collection of admissible relations used here satisfy the axioms formulated
in [6]. Recall that an admissible relation on a pair (R, S) of admissible per’s is a regular subobject of
the product R x S in AP(D), . Since equality is given by the diagonal map, this is admissible, and
since regular subobjects are closed under reindexing along maps in AP (D), the reindexing axiom is
satisfied. By Lemma [2.12] regular subobjects are closed under intersection, which proves that admis-
sible relations are closed under conjunction and universal quantification. Finally, we must show that
(z,y).¢ D p(x,y) is admissible if p is admissible and ¢ is a proposition, i.e., x,y are not free in ¢.
Since the logic of the pre-LAPL structure () is classical set theoretic logic, the proof boils down to the
two cases of ¢ being true or false. In the first case we simply get the admissible relation p, and in the
second we get the total relation (z,y). T which clearly is admissible. O

The final step towards showing that (4) is an LAPL-structure and thus models LAPL, is to show that all
types have a relational interpretation. In categorical terms, this is formulated as the existence of a map
of fibrations J:

PFam(AP(D),) LinAdmRelations
PAP(D) AdmRelCtx

where LinAdmRelations — AdmRelCtx is a fibration constructed from the pre-LAPL structure
@). Intuitively it is a fibration of relations, and the idea is that .J should simply be the map (f?, f") — f7.
We first write out the abstract definition of the fibration of relations in the case of the pre-LAPL structure
considered here.

The category AdmRelCtx has as

Objects triples (n,m,©) where ©: Obj(AP(D))"t™ — Set, assigns a set to a vector of admissible
per’s.

Morphisms triples (f,g,p): (n,m,0) — (n',;m’,©") where f: n — n’ and g: m — m' are mor-
phisms in PAP(D) and p is an indexed family of set theoretic maps

—

p=(prg: O, S) = O (fP(R), 9(5)) ficobj(ap (). Seoni(AP (D)™

In this concrete case LinAdmRelations can be described as follows: Given an object (n, m, ©) over
(n,m), the fibre of LinAdmRelations over (n, m, ©) has as

19

Objects triples (¢, f, g) such that f and g are objects of PFam(AP (D)) over n and m respectively
and ¢ is an indexed family of maps

—,

¢ = (¢é,§: @(é’ 5) —{A|A— fp(ﬁ) x g¥()})ﬁeObj(AP(D))",§€Obj(AP(D))m
Morphisms A morphism (¢, f, g) — (¥, f’,¢') is a pair of morphisms
(t: f— flurg—4d)
in (PFam(AP(D))), and (PFam(AP(D)))nm, respectively, such that

VR € Obj(AP(D))", S € Obj(AP(D))™.VM € (R, S).
V(ld], [d']) € Classes(f?(RR)) x Classes(g*(5)). (d], [d']) € ¢(M) = (t([d]), u([d])) € »(M)

Notice the two maps of fibrations

PFam(AP(D),) LinAdmRelations
o
i 01 i
PAP(D) AdmRelCtx

which on objects of AdmRelCtx are defined by 9y(n, m,©) = n and 9;(n, m,0) = m and on ob-
jects of LinAdmRelations map (¢, f, g) to f and g respectively. Thinking of LinAdmRelations —
AdmRelCtx as a fibration of relations, these are the maps that map a relation to its domain and
codomain respectively.

Finally we can define the required functor J. For the base categories, .J is defined on
Objects by n +— (n,n, ([[,[{A] A — R; xS; })

Morphisms by f — (f, f,T[; fT)

Fz,§eAP(D)n)

and for the total categories, J is defined on

Objects by (f7, f") — (", f, f)
Morphisms by ¢ — (¢,).
Lemma 4.6. J is a map of fibrations and Oy o J and 01 o J are both equal to the identity.

Lemma 4.7. J is a map of linear \a-fibrations.

Proof. We must show that J preserves —o, ®, [][, I and !. In the fibration LinAdmRelations —
AdmRelCtx this structure is defined using syntactic construction on relations. Recall from [6, Re-
mark 2.35] that for p: AdmRel(o, 7), the relation !p is the smallest admissible relation containing (!x, ly)
whenever p(z,y). If A — R x S then LA is the smallest regular subobject of R x S relating the lifts
of d and e if d, e are related in A. Since the fibred functor | on PFam(AP(D)) is defined pointwise
by lifting relations, J thus commutes with !. Likewise we can show that J commutes with ® using
the characterization of ® on relations in [6, Remark 2.35] as the smallest admissible relation relating
d® e to d ® e whenever d and d’ are related and e and €’ are related. The rest of the cases are simple
inspections. O

Theorem 4.8. The diagram in {@) constitutes a parametric LAPL-structure.

20

Proof. The preceding results show that it is an LAPL-structure; it only remains to show that it is a
parametric such. Identity extension holds in the internal language of the LAPL-structure because the
relational interpretation of a type is f”, and this is required to satisfy identity extension. Finally the
technical requirements of very strong equality and extensionality hold because the subobject fibration
on Set satisfies very strong equality and extensionality. O

S Solving recursive type equations

Having shown that (3) extends to a parametric LAPL-structure, the results from [5] apply to our model.
In particular, we can solve a large class of recursive domain equations given by a class of fibred functors
called strong fibred functors in [5]. The following lemma characterizes strong fibred functors in this
concrete model.

Proposition 5.1. There is a bijective correspondence between strong fibred functors (as defined in [5l])
F:

(PFam(AP(D),)®)" x PFam(AP(D))™ r PFam(AP (D))

\/

PAP(D)

and triples (FP,F" | Fy), where (FP,F") is an object of (PFam(AP (D))m+n) and (FP,F}) is a
functor (AP(D) | P)" x AP(D)""* — AP(D),, and moreover

e [\ has a realizer, i.e., there exists a continuous map d: [D — D|"*™ — [D — D] such
that, if the AP (D) morphismsty,... ty,ui,...uny,arerealizedby oy, . ..,0n, 51, ..., Bm then
d(ay...an, 01 ... 0m) is arealizer for Fy(t1, ... ty, U1, ..., Uny).

o [respects relations, i.e., if A; — R; x S; and A — R. x S!and (t;: R, — R;,u;: S} — S;)
preserve relations in the sense that for all i

V([d], [e]) € Aj. (ti([d]), wi[e])) € As

and likewise B; — T; x U;, Bl ~— T/ x U} and for all i the pair (v;: T; — T},6;: U; — UJ)
preserves relations, then also

(Fl(tlv"wtnv’yla"'7’ym)7F1(ula”'uun7617"‘75m))

preserve relations, i.e., ¥([d], [e]) € F"(A1,...,Ap, B1,...,Bn)
(Fl(tl, S 0 s P ,’}/m)([d]), Fl(ul, B 7} DI 5m)([6])) S FT(/1, ce ,A{m i, RN B;n)
The main example of a strong fibred functor is the interpretation of a type

ala"')anaﬁla"'aﬁml_g

of pure PILLy in which the type variables «; occur only negatively and the type variables 3; only
positively.

21

Proof. Notice first that n + m is a generic object for the fibration
(PFam(AP(D),)°®)" x PFam(AP(D),)™ — PAP(D),
and so the object part of a fibred functor F' as in the theorem is completely determined by the image on

the identity on n + m.

If F is a strong fibred functor, then (FP, F") is the image of F" applied to the identity on n + m, and the
existence of the realizer for F7 follows from the strength of the functor.

For the other direction, suppose we are given (FP, F", F) as above. Then the functor F is defined on
objects by composition with (FP, F'"). O

As mentioned, in [S]] we prove that all recursive type equations corresponding to strong fibred functors
can be solved. For a detailed description of what this means, we refer to loc. cit.. Here we mention
just the simple case of n = 0,m = 1. In this case F' is a fibred endofunctor, and since the fibre
PFam(AP(D) |) is isomorphic to AP (D), we get the following theorem.

Theorem 5.2. Suppose (FP,F" F}) is a strong fibred functor in the case of n = 1 and m = 0 of
Proposition Then there exists an admissible per R and an isomorphism FP(R) = R in AP (D),

which is at the same time an initial algebra and a final coalgebra for the functor (FP, Fy): AP(D); —
AP(D),.

6 Example: Natural numbers

As an example of a computation in the model, we compute explicitly the interpretation of the type
[[Ja.(ad o) 5 a—«

which we know from LAPL is a natural numbers object in AP (D) (since this is the fibre of closed
types).

Due to shortage of letters in the english alphabet, we will use z, y, f and g in addition to d for elements
of D.

To ease notation, given a regular subobject A — R x S, we shall write (z,y) € A for R(x,x), S(y,y)
and ([z], [y]) € A. We will also leave ¥, ® implicit, and simply write f x for ®(f)(z).

We consider the type Nat = [[][a.. (&« — @) — o —o «]. By definition
d(NatP)d'
iff for all R, S per’s and all regular subobjects A — R x S, (f,g) € (A — A) and (z,y) € A
(dfz,dgy) €A

The domain of Nat contains the elements | = AfAz. L and n = Af. Ax. f(x), in particular 0 =
AfAx.z. We also have a map succ: Nat — Nat realized by An. A\f. Az. f(n(f)(z)), and succ(n) =
n+1.

Lemma 6.1. Suppose n < m. Then n = m.
Proof. Consider the two functions f,g: D — D given by f(d) = (d, i), where i is the code of the

identity function, and g being the first projection. Both are continuous and since g o f = id f is
injective. Define the sequence of elements x,, = f™(_L). This sequence is strictly increasing.

22

Now, if n < m then
Tpo=nfl<mfl=ux,

so n < m. Further,
Tm—n =N GTm <MGTy =L

som = n. 0
Lemma 6.2. The per N given by
INL AN VneNnNn

is admissible.

Proof. N has the equivalence classes
{Lu{{n}[neN}

thus, by the lemma above, there are no interesting chains in V. O
Proposition 6.3. Suppose d(Nat?)d. Then

i) d =dsucc0 and

ii) eitherd =1 ord =n.
Proof. Consider the discrete admissible per D:

{{d} | d € D}
Then given f, z consider the regular subobject A — Nat x D given by
(L, L)e A, Vn. (n, f*(x)) € A.

A is admissible, simply because it contains no interesting increasing chains. Clearly (succ, f) € A —o
A, so
(dsucc0,d f x) € A,

ie.,ifdsucc0= 1,thend f x = 1 forall f,z and so d = L, and if d succ 0 = n for some n, then
d fxz= f"(x),forall f,z,sod = n. As we have seen, there are no other possibilities for d succ 0. [

Proposition 6.4. Suppose d(NatP)d', then d = d'.
Proof. By considering the regular subobject A — Nat x Nat given by
(L,1)e A, Vn.(n,n) € A

we conclude
d succ 0 = d succ 0.

By Proposition6.3| part i) we then get d = . O

In conclusion, by direct calculation we have shown
Nat? = {{L}} U{{n} | n € N},

where the elements n are distinct incomparable elements of D.

23

7 Related PER Models of Recursive Types

As mentioned earlier, the fiber category PFam(AP (D),)g is equivalent to AP(D) . Hence the
results on solutions to recursive domain equations of Section [5|imply that we can solve a wide class of
recursive domain equations on AP (D) . In other words, our abstract results show that admissible per’s
provide a model of recursive types. Previous per models of recursive types, however, have involved extra
conditions on the per’s beyond admissibility.

In [[1] a per model of polymorphism and recursive types is constructed. It employs per’s, which are ad-
missible, meet closed, uniform and convex. An O-category of these so-called good per’s is constructed
and type expressions can now be modeled as effective symmetric functors on this category. In [2] it is
shown how complete uniform per’s (cuper’s) over a universal domain allows one to solve domain equa-
tions on the per level. In both cases the chosen notion of per’s facilitate an ordering of the equivalence
classes and thus allows one to solve recursive domain equations as in classical domain theory.

In [[1] the collection of domain equations that can be solved are given by the notion of effective symmetric
functors. Comparing these with the strong fibred functors of our setting we see that both notions require
a realizer, but our functors are also required to have a relational interpretation given by the component
F" as in Lemma It appears that our notion of recursive type equations are more restrictive, but
on the other hand our notion of admissible per’s is simpler. We find this trade-off acceptable, as all
type expressions formed using the type constructors of Polymorphic FPC give rise to a strong fibred
functor [15]. The real difference, however, is that our model is parametric.

Acknowledgments

We gratefully acknowledge discussions with Milly Maietti, Gordon Plotkin, John Reynolds, Pino Rosolini
and Alex Simpson.

References

[1] M. Abadi and G.D. Plotkin. A per model of polymorphism and recursive types. In 5th Annual
IEEE Symposium on Logic in Computer Science, pages 355-365. IEEE Computer Society Press,
1990.

[2] Roberto M. Amadio and Pierre-Louis Curien. Domains and Lambda-Calculi, volume 46 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge, 1998.

v

[3] A.Barber. Linear Type Theories, Semantics and Action Calculi. PhD thesis, Edinburgh University,
1997. BL 3]

[4] G. M. Bierman, A. M. Pitts, and C. V. Russo. Operational properties of Lily, a polymorphic linear
lambda calculus with recursion. In Fourth International Workshop on Higher Order Operational
Techniques in Semantics, Montréal, volume 41 of Electronic Notes in Theoretical Computer Sci-
ence. Elsevier, September 2000.

[5] L. Birkedal, R. E. Mggelberg, and R. L. Petersen. Category theoretic models of linear Abadi &
Plotkin logic. 2006. Submitted. 2NN

[6] L. Birkedal, R. E. Mggelberg, and R. L. Petersen. Linear Abadi & Plotkin logic. 2006. Submitted.
(1} B3 3[4 L A

24

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

L. Birkedal, R.E. Mggelberg, and R.L. Petersen. Parametric domain-theoretic models of poly-
morphic intuitionistic / linear lambda calculus. In M. Escardd, A. Jung, and M. Mislove, editors,
Proceedings of Mathematical Foundations of Programming Semantics 2005, volume 155, pages

191-217, 2005. [[document),

M. Fiore. Axiomatic Domain Theory in Categories of Partial Maps. Distinguished Dissertations
in Computer Science. Cambridge University Press, 1996. [1]

J.-Y. Girard. Interprétation fonctionelle et élimination des coupures de I’arithmétique d’ordre
supérieur. These d’Etat, Université Paris VII, 1972. E]

M. Hasegawa. Logical predicates for intuitionistic linear type theories. In Proc. 4th International
Conference on Typed Lambda Calculi and Applications (TLCA’99), volume 1581 of Lecture Notes
in Computer Science, pages 198-213. Springer, 1999. 2.1]

H. Huwig and A. Poigné. A note on inconsistencies caused by fixpoints in a cartesian closed
category. Theoretical Computer Science, 73:101-112, 1990. [1]

B. Jacobs. Semantics of weakening and contraction. Annals of Pure and Applied Logic, 69:73-106,
1994.

B. Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in Logic and the Foundations
of Mathematics. Elsevier Science Publishers B.V., 1999.

R. E. Mggelberg. Category theoretic and domain theoretic models of parametric polymorphism.
PhD thesis, IT University of Copenhagen, 2005. [3.1]

R. E. Mggelberg. Interpreting polymorphic FPC into domain theoretic models of parametric poly-
morphism. In ICALP: Annual International Colloquium on Automata, Languages and Program-
ming, 2006. To appear. [} [7]

R. E. Mggelberg, L. Birkedal, and R. L. Petersen. Categorical models of PILL. Technical Report
TR-2005-58, IT University of Copenhagen, February 2005. [2.1] [3] [3]

B.C. Pierce. Types and Programming Languages. MIT Press, 2002. 1]

A. M. Pitts. Parametric polymorphism and operational equivalence. Mathematical Structures in
computer Science, 10:321-359, 2000. m

G.D. Plotkin. Lectures on predomains and partial functions. Notes for a course given at the Center
for the Study of Language and Information, Stanford, 1985.

G.D. Plotkin. Second order type theory and recursion. Notes for a talk at the Scott Fest, February
1993.

Gordon Plotkin and Martin Abadi. A logic for parametric polymorphism. In Typed lambda calculi
and applications (Utrecht, 1993), volume 664 of Lecture Notes in Comput. Sci., pages 361-375.
Springer, Berlin, 1993.

J.C. Reynolds. Towards a theory of type structure. In Colloquium sur La Programmation, vol-
ume 19 of Lecture Notes in Computer Science, pages 408—423. Springer-Verlag, 1974.

J.C. Reynolds. Types, abstraction, and parametric polymorphism. Information Processing, 83:513—
523, 1983. 1]

25

[24] J.C. Reynolds. Private communication, June 2000.

[25] E.P. Robinson and G. Rosolini. Reflexive graphs and parametric polymorphism. In S. Abramsky,
editor, Proc. 9th Symposium in Logic in Computer Science, pages 364-371, Paris, 1994. LE.E.E.
Computer Society. [T} B.1]

[26] G. Rosolini and A. Simpson. Using synthetic domain theory to prove operational properties of a
polymorphic programming language based on strictness. Manuscript, 2004.

26

	Introduction
	Outline

	Admissible per's
	Lifting
	Relation to axiomatic domain theory

	A domain-theoretic PILLY model
	A parametric domain-theoretic model of PILLY
	Overview of Interpretation

	A parametric LAPL-structure
	Solving recursive type equations
	Example: Natural numbers
	Related PER Models of Recursive Types

