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Parametric Domain-theoretic models of Linear Abadi & Plotkin
Logic

Lars Birkedal
Rasmus Ejlers Møgelberg

Rasmus Lerchedahl Petersen

Abstract

We present a formalization of a linear version of Abadi and Plotkin’s logic for parametricity for
a polymorphic dual intuitionistic / linear type theory with fixed points, and show, following Plotkin’s
suggestions, that it can be used to define a wide collection of types, including solutions to recursive
domain equations. We further define a notion of parametric LAPL-structure and prove that it provides a
sound and complete class of models for the logic. Finally, we present a concrete parametric parametric
LAPL-structure based on suitable categories of partial equivalence relations over a universal model of
the untyped lambda calculus.
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1 Introduction

In this paper we show how to define parametric domain-theoretic models of polymorphic intuitionistic /
linear lambda calculus. The work is motivated by two different observations, due to Reynolds and Plotkin.

In 1983 Reynolds argued that parametric models of the second-order lambda calculus are very useful
for modeling data abstraction in programming [23] (see also [18] for a recent textbook description). For
real programming, one is of course not just interested in a strongly terminating calculus such as the second-
order lambda calculus, but also in a language with full recursion. Thus in loc. cit. Reynolds also asked
for a parametric domain-theoretic model of polymorphism. Informally, what is meant [24] by this is a
model of an extension of the polymorphic lambda calculus [22, 7], with a polymorphic fixed-point operator���������
	��
���������

such that

1. types are modeled as domains, the sublanguage without polymorphism is modeled in the standard
way and

���
is the least fixed-point operator for the domain

�
;

2. the logical relations theorem (also known as the abstraction theorem) is satisfied when the logical
relations are admissible, i.e., strict and closed under limits of chains;

3. every value in the domain representing some polymorphic type is parametric in the sense that it satis-
fies the logical relations theorem (even if it is not the interpretation of any expression of that type).

Of course, this informal description leaves room for different formalizations of the problem. Even so,
it has proved to be a non-trivial problem. Unpublished work of Plotkin [20] indicates one way to solve the
problem model-theoretically by using strict, admissible partial equivalence relations over a domain model
of the untyped lambda calculus but, as far as we know, the details of this relationally parametric model have
not been worked out in detail before. (We do that here.) In loc. cit. Plotkin also suggested that one should
consider parametric domain-theoretic models not only of polymorphic lambda calculus but of polymorphic
intuitionistic / linear lambda calculus, since this would give a way to distinguish, in the calculus, between
strict and possibly non-strict continuous functions, and since some type constructions, e.g., coproducts,
should not be modeled in a cartesian closed category with fixed points [8]. Indeed Plotkin argued that such
a calculus could serve as a very powerful metalanguage for domain theory in which one could also encode
recursive types, using parametricity. To prove such consequences of parametricity, Plotkin suggested to use
a linear version of Abadi and Plotkin’s logic for parametricity [21] with fixed points.

Thus parametric domain-theoretic models of polymorphic intuitionistic / linear lambda calculus are of
import both from a programming language perspective (for modeling data abstraction) and from a purely
domain-theoretic perspective.

Recently, Pitts and coworkers [19, 4] have presented a syntactic approach to Reynolds’ challenge, where
the notion of domain is essentially taken to be equivalence classes of terms modulo a particular notion of
contextual equivalence derived from an operational semantics for a language called Lily, which is essentially
polymorphic intuitionistic / linear lambda calculus endowed with an operational semantics.

In parallel with the work presented here, Rosolini and Simpson [25] have shown how to construct para-
metric domain-theoretic models using synthetic domain-theory in intuitionistic set-theory. Moreover, they
have shown how to give a computationally adequate denotational semantics of Lily.

In the present paper we make the following contributions to the study of parametric domain-theoretic
models of intuitionistic / linear lambda calculus:

� We present a formalization of Linear Abadi-Plotkin Logic with fixed points (LAPL). The term lan-
guage, called PILL � for polymorphic intuitionistic / linear logic, is a simple extension of Barber and
Plotkin’s calculus for dual intuitionistic / linear lambda calculus (DILL) with polymorphism and fixed
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points and the logic is an extension of Abadi-Plotkin’s logic for parametricity with rules for forming
admissible relations. The logic allows for intuitionistic reasoning over PILL � terms; i.e., the terms
can be linear but the reasoning about terms is always done intuitionistically.

� We give detailed proofs in LAPL of consequences of parametricity, including the solution of recursive
domain equations; these results and proofs have not been presented formally in the literature before.

� We give a definition of a parametric LAPL-structure, which is a categorical notion of a parametric
model of LAPL, with associated soundness and completeness theorems.

� We show how to solve recursive domain equations in parametric LAPL-structures by a simple use of
the internal language and the earlier proofs in LAPL.

� We present a detailed definition of a concrete parametric LAPL-structure based on suitable categories
of partial equivalence relations over a universal model of the untyped lambda calculus, thus confirming
the folklore idea that one should be able to get a parametric domain-theoretic model using partial
equivalence relations over a universal model of the untyped lambda calculus.

We remark that one can see our notion of parametric LAPL-structure as a suitable categorical axiomatization
of a good category of domains. In Axiomatic Domain Theory much of the earlier work has focused on
axiomatizing the adjunction between the category of predomains and continuous functions and the category
of predomains and partial continuous functions [6, Page 7] – here we axiomatize the adjunction between
the category of domains and strict functions and the category of domains and all continuous functions and
extend it with parametric polymorphism, which then suffices to also model recursive types.

In the technical development, we make use of a notion of admissible relations, which we axiomatize,
since admissible may mean different things in different models. We believe our axiomatization is reasonable
in that it accommodates several different kinds of models, such as the classical one described here and
models based on synthetic domain theory [16].

The work presented here builds upon our previous work on categorical models of Abadi-Plotkin’s logic
for parametricity [5], which includes detailed proofs of consequences of parametricity for polymorphic
lamdba calculus and also includes a description of a parametric completion process that given an internal
model of polymorphic lambda calculus produces a parametric model. It is not necessary to be familiar with
the details of [5] to read the present paper (except for Appendix A of [5], which contains some definitions
and theory concerning composable fibrations), but, for readers unfamiliar with parametricity, it may be
helpful to start with [5], since the proofs of consequences of parametricity given here are slightly more
sophisticated than the ones in [5] because of the use of linearity.

In subsequent papers we intend to show how one can define a computationally adequate model of Lily
and how to produce parametric LAPL-structures from Rosolini and Simpson’s models based on intuitionistic
set theory [25] (this has been worked out at the time of writing [16]) and from Pitts and coworkers operational
models [4] (we conjecture that this is possible, but have not checked all the details at the time of writing).
As a corollary one then has that the encodings of recursive types mentioned in [25] and [4] really do work
out (these properties were not formally proved in loc. cit.). We will also extend the parametric completion
process of [5] to produce a parametric LAPL-structure given a model of polymorphic intuitionistic / linear
lambda calculus, see [14].

1.1 Outline

The remainder of this paper is organized as follows. In Section 2 we present LAPL, the logic for reasoning
about parametricity over polymorphic intuitionistic / linear lambda calculus (PILL � ). In Section 3 we give
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detailed proofs of many consequences of parametricity, including initial algebras and final coalgebras for
definable functors and recursive types of mixed variance. In Section 4 we present our definition of an
LAPL-structure, and we prove soundness and completeness with respect to LAPL in Sections 4.1 and 4.2,
respectively. The definition of LAPL-structure builds upon fibred versions of models of intuitionistic / linear
logic [3, 11]. In our presentation we assume that the reader is familiar with models of intuitionistic / linear
logic.1 In Section 5 we present our definition of a parametric LAPL-structure and prove that one may solve
recursive domains equations in such. In Section 6 we present a concrete parametric LAPL-structure based
on partial equivalence relations over a universal domain model. To make it easier to understand the model,
we first present a model of PILL � (without parametricity) and then show how to make it into a parametric
LAPL-structure. We also include an example of calculations in the concrete model.

2 Linear Abadi-Plotkin Logic

In this section we define a logic for reasoning about parametricity for Polymorphic Intuitionistic Linear
Lambda calculus with fixed points (PILL � ). The logic is based on Abadi and Plotkin’s logic for parametric-
ity [21] for the second-order lambda calculus and thus we refer to the logic as Linear Abadi-Plotkin Logic
(LAPL).

The logic for parametricity is basically a higher-order logic over PILL � . Expressions of the logic are
formulas in contexts of variables of PILL � and relations among types of PILL � . Thus we start by defining
PILL � .

2.1 PILL �

PILL � is essentially Barber and Plotkin’s DILL [2] extended with polymorphism and a fixed point combi-
nator.

Well-formed type expressions in PILL � are expressions of the form:

��� �������	��
 � � ��
 ��
 �������	��� � �������	�

where
�

is built using the syntax

�
� ��� ������� ������� ����� �"! �#�	$ ��� ���

and all the free variables of sigma appear on the left hand side of the turnstile. The last construction binds�
, so if we have a type � � �������	��
 � � �%
 � 
 �������	��� � �������	��


then we may form the type

�&� �'�����	��
 � � �%
 �)(+*,�-�����	��
 ��(/.0�-�����	� � � � ��
��������	��� $ �)( � � �������	� �

We use
�

,
�

, 1 ,
�,2

,
�32

. . . to range over types. The list of
�

’s is called the kind context, and is often denoted
simply by 4 or 5� . Since there is only one kind this annotation is often omitted.

The terms of PILL � are of the form:

4 �%6 � � � � 
 � � ��
76 
 � � 
�8 6 2 � � � 2 � 
 � � �9
76 2: � � 2: �<; �'�
1To aid readers unfamiliar with these matters, we have written a short technical note containing detailed definitions and propo-

sitions needed here [15].
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where the
� (

,
� 2( , and

�
are well-formed types in the kind context 4 . The list of

6
’s is called the intuitionistic

type context and is often denoted
�

, and the list of
6 2

’s is called the linear type context, often denoted � . No
repetition of variable names is allowed in any of the contexts, but permutation akin to having an exchange
rule is. Note, that due to the nature of the axioms of the to-be-introduced formation rules, weakening and
contraction can be derived for all but the linear context.

The grammar for terms is:

; � ��� 6 ��� � � �����"6 � ��� ; ��; ; �%;)� ; ��! ; �
	 � �������	� �7; ��; 	 � � �
let
6 � �<��� �'�

be
;

in
;��

let
! 6 � �

be
;

in
; �

let
�

be
;

in
;

We use
� �

, which bear some graphical resemblance to
�

, to denote linear function abstraction. And we use
 , ; , � . . . to range over terms.
The formation rules are given in Figure 1. 4 ��� 8 � is considered well-formed if for all types

�
appearing

in
�

and � , 4 � � � �����	� is a well-formed type construction. � and � 2 are considered disjoint if the set
of variables appearing in � is disjoint from the set of variables appearing in � 2 . We use � to denote an
empty context. As the types of variables in the let-constructions and function abstractions are often apparent
from the context, these will just as often be omitted. What we have described above is called pure PILL � .
In general we will consider PILL � over polymorphic signatures [9, 8.1.1]. Informally, one may think of
such a calculus as pure PILL � with added type-constants and term-constants. For instance, one may have a
constant type for integers or a constant type for lists

���
lists

	�� � �������	�
. We will be particularly interested

in the internal language of a PILL � model (see Section 4), which in general will be a non-pure calculus.
We will also sometimes speak of the calculus PILL. This is PILL � without the fixed point combinator�

.

2.1.1 Equality

The external equality relation on PILL � terms is the least equivalence relation given by the rules in Figure 2.
The definition makes use of the notion of a context, which, loosely speaking, is a term with exactly one hole
in it. Formally contexts are defined using the grammar:

��� ��� � ��� � � let
�

be
��� ��� in ; � let

�
be
;

in
��� ��� ��;,� ��� ��� � ��� ��� � ; �

let
6 ���

be
��� ��� in ;�� let

6 ���
be
;

in
��� ��� �
� � 6 � ��� ��� ��� ���� ��� ; �%; ��� ��� ��! ��� ��� � let

! 6
be
��� ��� in ; � let

! 6
be
;

in
��� ��� �	 � �������	� � ��� ��� � ��� ��� �

A 4 ��� 8 � � � — 4 ��� 2 8 � 2 � � context is a context
��� ��� such that for any well-formed term 4 ��� 8 � �; � �

, the term 4 ��� 2 8 � 2 � ��� ; � �'� is well-formed. A context is linear, if it does not contain a subcontext of
the form

! ��� ��� .
We prove a couple of practical lemmas about external equality.

Lemma 2.1. Suppose 4 ��� 8 � ��� 
�����! � ���
are terms such that

4 ���&
76 � � 8 � ��� 	 ! 6���� � 	 ! 6 � �

Then
���!�

.

Proof. Using the rules for external equality, we conclude from the assumption that

4 ��� 8 � 
"� ��! ��� let
! 6

be
�

in
� 	 ! 6 ���

let
! 6

be
�

in
��	 ! 6��
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4 ��� 8 � � � ���

4 ��� 8 � � ��� $ ��� ! 	 ! � � ���&� �

4 ���&
76 � � 8 � � 6 � �

4 ��� 8 6 � � �<6 � �
4 ��� 8 � �<; � ��� � 4 ��� 8 � 2 � � � � � 
 � 2 disjoint4 ��� 8 � 
 � 2 ��; � ���

4 ��� 8 � 
76 � ��� � ���
4 ��� 8 � ��� � 6 � ��� � � ��� �

4 ��� 8 � ��; � � 4 ��� 8 � 2 � 
 �'� � 
 � 2 disjoint4 ��� 8 � 
 � 2 �<;,� 
 � � ���
4 ��� 8 � � ; � �
4 ��� 8 � � ! ; � �

4 
 � �������	� ��� 8 � �<; � � 4 ��� 8 � is well-formed4 ��� 8 � � 	 � �������	� �7; � $ � �������	� � �
4 �
� 8 � �<; � $ � �������	� � � 4 ��� �'�����	�

4 ��� 8 � ��; 	 � � � � � � � � �

4 �
� 8 � � 
 � � � � 2 4 ��� 8 � 2 
76 � � 
"� � � 2 �<; �'� � 
 � 2 disjoint4 ��� 8 � 
 � 2 � let
6 � ����� � � 2

be 
 in
; �'�

4 ��� 8 � � 
 �,! � 4 ��� 
76 � � 8 � 2 �<; ��� � 
 � 2 disjoint4 ��� 8 � 
 � 2 � let
! 6 �)! �

be 
 in
; �'�

4 ��� 8 � � ; ��� 4 ��� 8 � 2 � 
 � �
4 ��� 8 � 
 � 2 � let

�
be
;

in 
 � �

Figure 1: Formation rules for terms
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�
-term4 ��� 8 � �
	 � � 6 � ���7; � � � ; � � � 6 �

�
-type4 ��� 8 � �
	 	 � �������	� �7; � ��� ; � � � � �

� -term4 ��� 8 � ����� 6 � ���
	+; 6�� � ;
� -type4 ��� 8 � � 	 � �������	� �
	+; ��� � ;

� � �4 ��� 8 � � let
�

be
�

in
;&� ;

� � �4 �
� 8 � � let
�

be
;

in
� � ;

� � �4 ��� 8 � � let
6 ���

be 
 � � in
;&� ; � 
 
 � � 6�
"� �

� � �4 ��� 8 � � let
6 ���

be
;

in
6 � � � ;

� � !4 ��� 8 � � let
! 6 � �

be
! � in

;�� ; � � � 6 �
� � !4 ��� 8 � � let

! 6 � �
be
;

in
! 6 � ;

4 ��� 8 � �<;&� 
 � � ��� ��� is a 4 ��� 8 � � � � 4 �
� 2 8 � 2 ��� context

4 ��� 2 8 � 2 � ��� ; � � ��� 
 � �'���� ��� is a linear context

4 ��� 8 � � let
�

be
;

in
��� � � � ��� let

�
be
;

in � ���� ��� is a linear context and does not bind
6�
"�

or contain them free

4 ��� 8 � � let
6 � �

be
;

in
��� � � � ��� let

6 ���
be
;

in � ���� ��� is linear and does not bind
6

or contain it free

4 �
� 8 � � let
! 6

be
;

in
��� � � � ��� let

! 6
be
;

in � �
4 �
� 8 � ��� �)! � � �

4 ��� 8 � � �<! 	 � � 	 ! � � �&� � � 	 ! � �

Figure 2: Rules for external equality
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4 ������� 4 � � �������	� 4 ��� 8 � �������

4 ��� ��� ������� 4 ��� 8 � �<; � � 4 ��� 8 � �<;&� �
4 ��� ��� �
	���� ��
 	 � 
 � � 4 ������� ��	 ��������� ��
 	 � 
 � �

4 ������� ��� �������3� 4 ������� ��� � 
 � � �9
�� 
 �
�

Figure 3: Types of judgements

and further that
4 ��� 8 � 
"� �)! � ��� 	 let

! 6
be
�

in
! 6��&�!� 	

let
! 6

be
�

in
! 6 � �

Thus
4 ��� 8 � 
"� �)! ����� 	 � ��� ��	 � �"


and hence
� � � � � �,! ��� � 	 � �&� � � � �,! ����� 	 � � �!�

.

2.1.2 Ordinary lambda abstraction

We encode ordinary lambda abstraction in the usual way by defining

� � � � ! � � �

and �'6 � ���7;�� � � � �,! ���
let
! 6

be
�

in
;

where
�

is a fresh variable. This gives us the rule

4 �
�&
76 � � 8 � �<; ���
4 ��� 8 � ���'6 � ���7; � � � �

For evaluation we have the rule

4 �
� 8 � �<; � � 4 �
� 8 � ��� � � � �
4 ��� 8 � ��� ! ; ���

and the equality rules give 	 � 6 � ���7; � ! 
 � ; � 
 � 6 � �
Note that using this notation the constant

�
can obtain the more familiar looking type

� �� ���
	�� ������� �

2.2 The logic

As mentioned, expressions of LAPL live in contexts of variables of PILL � and relations among types of
PILL � . The contexts look like this:

4 ��� �"! � �#� ��
 	 ����
 � 2� �"
 � � �9
$! 
 �#� ��
 	 � 
�
 � 2
 �"
�%0� �&���&�'� ��
 	 1 � 
 1 2 � �"
 � � �9
�% : �&���&�'� ��
 	 1 : 
 1 2: �

where 4 ��� 8 � is a context of PILL � and the
� ( 
 � 2( 
 1 ( 
 1 2( are well-formed types in context 4 , for all ( . The

list of
!

’s and
%

’s is called the relational context and is often denoted
�

. As for the other contexts we do
not allow repetition, but permutation of variables. The

!
’s and the

%
’s are interchangeable.

9



The concept of admissible relations is taken from domain theory. Intuitively admissible relations relate�
to
�

as expressed by axiom 2.18 described later.
It is important to note that there is no linear component � in the contexts — the point is that the logic

only allows for intuitionistic (no linearity) reasoning about terms of PILL � , whereas PILL � terms can
behave linearly.

Propositions in the logic are given by the syntax:

� � ��� 	+;&��� � � � 	 	+; 
 � ��� ��� � � � ��� ����� � ���
	�� �
��� �������	� ��� �
��6 � ����� � ��!
�#� ��
 	 � 
 � � ��� � � % �&���&�'� ��
 	 � 
 � � ��� �
� � �'�����	� ��� � � 6 � ����� � � !
�#� ��
 	 � 
 � � ��� � � % �&���&�'� ��
 	 � 
 � � ���

where
	

is a definable relation (to be defined below). The judgements of the logic are presented in figure 3.
In the following we give formation rules for the above.

Remark 2.2. Our Linear Abadi & Plotkin logic is designed for reasoning about binary relational para-
metricity. For reasoning about other arities of parametricity, one can easily replace binary relations in the
logic by relations of other arities. In the case of unary parametricity, for example, one would then have an
interpretation of types as predicates. See also [26, 27]

We first have the formation rule for internal equality:

4 ��� 8 � �<; � � 4 �
� 8 � � � � �
4 ��� ��� ��;���� � �#�����3�

Notice here the notational difference between
;�� � and

;���� � . The former denotes external equality
and the latter is a proposition in the logic. The rules for

�
,
	

and
�

are the usual ones, where
�

denotes
implication.

�
,
�

are propositions in any context. We use
�
�

for biimplication.
We have the following formation rules for universal quantification:

4 ��� 
76 � � ��� ��� ����� �3�
4 ������� � ��6 � ����� �������3�

4 ��� ��� 
$!
��� ��
 	 � 
 � �&��� �������3�
4 ��� ��� � ��!
�#� ��
 	 � 
 � � ��� �������3�
4 ��� ��� 
�% �&������� ��
 	 � 
 � � ��� �#�����3�
4 ��� ��� � �#%��&���&�'� ��
 	 � 
 � � ��� � �����3�

4 
 ��������� � � �������3� 4 ������� is well-formed4 ������� � ��� �������	� ��� �������3�
The side condition 4 ��� � � is well-formed means that all the types of variables in

�
and of relation

variables in
�

are well-formed in 4 (i.e., all the free type variables of the types occur in 4 ).
There are similar formation rules for the existential quantifier.
Before we give the formation rule for

	�	+;"
 � � , we discuss definable relations.
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2.2.1 Definable relations

Definable relations are given by the grammar:

	 � ��� ! ��	+6 � � 
"� ��� � � �

Definable relations always have a domain and a codomain, just as terms always have types. The basic
formation rules for definable relations are:

4 ������� 
$!
��� ��
 	 � 
 � �&� !
�#� ��
 	 � 
 � �

4 ��� 
76 � � 
"� ��� ��� � � �������3�
4 ������� �
	+6 � � 
"� ��� � ��� � � ��
 	 � 
 � �
4 ������� ��	 ��������� ��
 	 � 
 � �
4 ������� �
	���� ��
 	 � 
 � �

Notice that in the second rule we can only abstract intuitionistic variables to obtain definable relations. In the
last rule,

	 �&������� ��
 	 � 
 � �
is an admissible relation, to be discussed below. The rule says that the admissible

relations constitute a subset of the definable relations.
An example of a definable relation is the graph relation of a function:

� ����� 	+6 � � 
"� ��� � � � 6 ��� ��


for
� � � ���

. The equality relation eq
�

is defined as the graph of the identity map.
If
	 ��� ��
 	 � 
 � �

is a definable relation, and we are given terms of the right types, then we may form the
proposition stating that the two terms are related by the definable relation:

4 ������� ��	 ��� ��
 	 � 
 � � 4 ��� 8 � �<; � � 
 
 ���
4 ������� ��	�	+;"
 
 � (1)

We shall also write
; 	 
 for

	 	+; 
 
 � .
We introduce some shorthand notation for reindexing of relations. For

� � � 2 � � 
������ 2 � �
and	���� ��
 	 � 
 � �

, we write
	 � 
������ 	

for the definable relation

	+6 � � 2 
"� ��� 2 � � 	 	 � 60
�� � � �

2.2.2 Constructions on definable relations

In this subsection we present some constructions on definable relations, which will be used to give a rela-
tional interpretation of the types of PILL � .

If
	���� ��
 	 � 
 � �

and
	�2 ��� ��
 	 � 2+
 �32 �

, then we may construct a definable relation

	 	 � 	 2 � ��� ��
 	 	 ��� � 2 �"

	 � � � 2 � �"


defined by 	 � 	 2 � 	 � � ��� � 2 
���� ����� 2 � � ��6 � ��� ��� �'��� 	�	+6�
"� � � 	 2 	 � 60
���� � �

If
4 
 � 
 � ����� � 
$!
��������� ��
 	��&
 � � ��	 �#� ��
 	 � 
 � �
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is well-formed and 4 ������� is well-formed, 4 
 � � � �'�����	� , and 4 
 � ��� �������	�
we may define

� 	�� 
 � 
$!
� ���&�'� ��
 	�� 
 � � � � 	 � � ��
 	 	 $ � �������	� � � �"

	 $ � �'�����	� � � � �
as � 	�� 
 � 
$!
� ���&�'� ��
 	�� 
 � � � � 	 �

	+; � $ � �������	� � � 
 � � $ � �������	� � � � � � �&
 � � �����	� � ��!
�&� ���'� ��
 	�� 
 � � � 	�	+; � 
 � � � �

For
	 ��� ��
 	 � 
 � �

, we seek to define a relation
! 	���� ��
 	 ! � 
 ! � �

. First we define for any type
�

the proposition	 � ��� on
�

as 6���� � � � � ��� � � 	+6 ����� � �
The intuition here is that types are pointed, and

6��
is thought of as

6	�� �
. Since we have also fixed points,

we may think of types as domains.
We further define the map 
 �,! � � �

as
� � 6 �)! ���

let
! �

be
6

in
� � � 6 � ���76

. We can now define
! 	 � 	+6 ��! � 
"� �)! � � �76�� � � ���
� 	+6�� � 	�	 
 60
 
 � � � �

Following the intuition of domains,
!

is to be thought of as lifting, and 
 the unit providing the unlifted
version of an element. The intuitive reading of

! 	
is, that

�
is related to

�
(represented by the fact, that

6
is

related to
�

if neither
6��

nor
���

) and that two
!
’ed elements are related if their un-

!
-ed versions are.

Next we define the tensor product of
	

and
	 2

	 � 	 2 �#� ��
 	 	 � � � 2 �"

	 � ��� 2 � �"

for

	 �#� ��
 	 � 
 � �
and

	 2 ��� ��
 	 � 2 
 � 2 �
. The basic requirement for this definition is that

�
should become a left

adjoint to
�

in the category of relations 
����������������������! "�$# to be defined in Section 4. To give a concrete
definition satisfying this requirement, we take a slightly long route. We first introduce the map

� � �<����� $ ���
	 � � �<� ��� � �

defined as � 6��
let
6 2 � 6 2 2 � �<���

be
6

in
	 ��� � �&% � � � �<� ��� % 6 2 6 2 2 �

Then we define
	 � 	 2 � 	 � 
 � � � 	 � 	��&
 � 
$!
� ���&�'� ��
 	�� 
 � � � �
	 	 � 	 2 � ! �&� ! �"


or, if we write it out,
	 � 	 2 � 	+6 � �<� � 2 
"� ��� ��� 2 � � ��� 
 � 
$!
��������� ��
 	��&
 � � �

��; � ��� ��� � 
7; 2 � � 2�� �32�� � �
	 	 � 	 2'� ! � 	+; 
7; 2 � �
! 	

let
6 2 � 6 2 2

be
6

in
; 6 2 6 2 2 


let
� 2 � � 2 2

be
�

in
; 2 � 2 � 2 2 � �

The reason for this at first sight fairly convoluted definition, is that we will later prove, using parametricity,
that

� � �
is isomorphic to

$ ���
	 � � � � ��� � �
, and we already have a relational interpretation of

the latter. The idea of using this definition of
�

is due to Alex Simpson. We use the same trick to define a
relation on

�
:

Following the same strategy as before, we define a relation
�('*),+ � ������� ��
 	 �'
 � �

using the map
� �'� � $ ��� � � �

defined as
� � 6 ��� �

let
�

be
6

in -/. , where -/. � 	 ��� � � 6 � ���76 and define
�0'1)2+ � 	 � 
 � � � 	 � 	�� 
 � 
$!
��������� ��
 	��&
 � � � �$! � ! �"


which, if we write it out, is
	+6 ���'
"� ����� � � 	��&
 � 
$!
�����&�'� ��
 	�� 
 � � � � �"3 � � 
54 � � �63�!�4 � 	

let
�

be
6

in
3 � ! 	

let
�

be
�

in
4 � �
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2.2.3 Admissible relations

The relational interpretation of a type with � free variables is a function taking � relations and returning a
new relation. However, we will not require that this function is defined on all vectors of relations, but only
that it is defined on vectors of “admissible relations”. On the other hand this function should also return
admissible relations. Since “admissible” might mean different things in different settings, we axiomatize
the concept of admissible relations.

The axioms for admissible relations are formulated in Figure 4. In the last of these rules
	�� 	 2

is a
shorthand for

��6�
"� � 	 	+60
"� � � � 	 2 	+60
"� �
.

Proposition 2.3. The class of admissible relations contains all graphs and is closed under the constructions
of Section 2.2.2.

Proof. Graph relations are admissible since equality relations are and admissible relations are closed under
reindexing. For the constructions of Section 2.2.2, we just give the proof of

�
.

We must prove that for
	�
 	�2

admissible relations
	 � 	�2

is admissible

4 ������� ��	 2 �&���&�'� ��
 	 � 2 
 � 2 �
4 ��� 
76�
"� ��� � 	 � 
���� � 	 2 	 � 6�
�� � � �&� ���'� ��
 	 � � � 2 
 � � � 2 �

4 ��� ��� �
	��&���&�'� ��
 	 � 
 � �
4 �
�&
76 � � 
"� ��� ��� ��	 	+60
"� � � �����3�

4 ���&
76 � � 
"� ��� ��� �
	 � � � � � 2 
�� ����� � 2 � � 	 	+60
"� � � 	 2 	 � 6�
�� � � � ������� ��
 	 	 ��� � 2 �"

	 � ��� 2 � �
4 ������� � 	 � � � � � 2 
�� ����� � 2 � � ��6 � � 
"� ����� 	 	+6�
"� � � 	 2 	 � 60
�� � � �&���&�'� ��
 	 	 ��� � 2 �"

	 �<� � 2 � �

where in the top deduction on the left, we have reindexed
	 2

along the evaluation maps

��� � � ��� � 2 � � 6 � � ������� � 2 ��� � �

Now, finally, we may give the last formation rule for definable relations:

� � 
 � � ��
 � 
 � ��	 5� � �������	� 4 ��� ��� � 	 � �&���&�'� ��
 	 � � 
 �32� �"
 � � �9
 	 
 �&� ���'� ��
 	 � 
 
 �32
 �
4 ������� � � � 5	 � �&������� ��
 	 ��	 5� �"
 ��	 5� 2 � �

Observe that
� � 5	 � is a syntactic construction and is not obtained by substitution as in [21]. Still the notation� � 	 � � � � 
 � � �9
 	 
 � � 
 � might be more complete, but this quickly becomes overly verbose. In [21]

� � 5	 � is to
some extent defined inductively on the structure of

�
, but in our case that is not enough, since we will need

to form
� � 5	 � for type constants (when using the internal language of a model of LAPL). We call

� � 5	 � the
relational interpretation of the type

�
.

2.2.4 Axioms and Rules

The last judgement in figure 3 has not yet been mentioned. It says that in the given context, the formulas� � 
 � � ��
�� 

collectively imply

�
. We will often write

�
for

� � 
 � � �9
�� 

.

Having specified the language of LAPL, it is time to specify the axioms and inference rules. We have
all the usual axioms and rules of predicate logic plus the axioms and rules specified below.

Rules for substitution:

Rule 2.4.
4 ��� 
76 � � ��� � � ��� 4 ��� �<; � �

4 ��� ��� � � ��� � ; � 6 �
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4 ������� 
$!
�����&�'� ��
 	 � 
 � �&� !
��������� ��
 	 � 
 � �

4 ������� � eq
� ��������� ��
 	 � 
 � �

4 ��� ��� ��	��&� ���'� ��
 	 � 
 � � 4 ��� 8 � �<; � � 2 � � 
 � � � 2 � � 6�
"� �� �
4 ��� ��� �
	+6 � � 2 
"� ��� 2 � � 	 	+; 6�
 � � � � ������� ��
 	 � 2 
 � 2 �

4 ������� ��	�
 	 2 �&������� ��
 	 � 
 � � 60
"� �� �
4 ��� ��� � 	+6 � � 
"� ��� � � 	 	+60
"� � �
	 2 	+6�
"� � �&���&�'� ��
 	 � 
 � �

4 ������� ��	 �&������� ��
 	 � 
 � ��60
"� �� �
4 ��� ��� �
	+6 � � 
"� ��� � �76 � � 	�	+6�
"� � �&������� ��
 	 � 
 � �

60
"� �� �
4 ��� ��� � 	+6 �)! � 
"� ��! � � �
	+6 � �
� ��� � � ���&�'� ��
 	 � 
 � �

4 ������� ��	 �&������� ��
 	 � 
 � ��60
"� �� �
4 ��� ��� � 	+6 ���3
"� � � � � 	�	 ��
76 � � ���&�'� ��
 	 �3
 � �

4 ��� ��� � � �#�����3� 6�
"� �� �
4 ��� ��� � 	+6 � � 
"� ��� � �
	+6 � � ��� � ��� �&���&�'� ��
 	 � 
 � �

60
"� �� �
4 �
� ��� � 	+6 � � 
"� ��� � � � �&���&�'� ��
 	 � 
 � �

4 ������� ��	 ��������� ��
 	 � 
 � � 4 ��� ��� ��� ����� �3� 60
"� �� �
4 ������� � 	+6 � � 
"� ��� � ��� � 	 	+60
"� � ��������� ��
 	 � 
 � �

4 
 ���
� ��� ��	 �&���&�'� ��
 	 � 
 � � 4 ��� ��� 4 � � �������	� 4 ��� �������	� 6�
"� �� �
4 ��� ��� � 	+6 � � 
"� ��� � � ��� �������	� � 	�	+6�
"� � � ���&�'� ��
 	 � 
 � �

4 ��� 
63 � 1 ��� ��	 �&���&�'� ��
 	 � 
 � � 6�
"� �� �
4 ��� ��� �
	+6 � � 
"� ��� � � �"3 � 1 � 	 	+6�
"� � �&���&�'� ��
 	 � 
 � �

4 ������� 
$!
�&���&�'� ��
 	 1 
 1 2 ����	 �&������� ��
 	 � 
 � � 60
"� �� �
4 ��� ��� � 	+6 � � 
"� ��� � � ��!
�&� ���'� ��
 	 1 
 1 2 � � 	�	+6�
"� � �����&�'� ��
 	 � 
 � �

4 ������� 
$!
�#� ��
 	 1 
 1 2 �&�
	 �&������� ��
 	 � 
 � � 60
"� �� �
4 ��� ��� � 	+6 � � 
"� ��� � � ��!
��� ��
 	 1 
 1 2 � � 	�	+6�
"� � �����&�'� ��
 	 � 
 � �

4 ������� ��	�� ������� ��
 	 � 
 � �"
 	 2 ��� ��
 	 � 
 � � 4 ������� � � ��	 � 	 2
4 ��� ��� ��	 2 �&���&�'� ��
 	 � 
 � �

Figure 4: Rules for admissible relations
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Rule 2.5.
4 ��� ��� 
$!
��� ��
 	 � 
 � � ��� � � 4 ��� ��� ��	���� ��
 	 � 
 � �

4 ��� ��� � � ��� � 	 � ! �

Rule 2.6.
4 ��� ��� 
�%��&���&�'� ��
 	 � 
 � ��� � ��� 4 ������� ��	�� ������� ��
 	 � 
 � �

4 ������� � � � � � 	 � % �

Rule 2.7.
4 
 ��������� ��� � � 4 � � �������	�
4 ��� � � � � � ��� � � � � � � � ��� � � � � �

The substitution axiom:

Axiom 2.8.
��� 
 � �������	� � ��6�
76 2 � ��� ��� 
"��2 � � � ��!
�#� ��
 	�� 
 � � � ! 	+6�
"� � �

6���� 6 2 � � ��� � 2 � ! 	+6 2 
"� 2 �

Rules for
�

-quantification:

Rule 2.9.
4 
 � �
� ��� � � ���� � � �'� �'� �'� �'� ��� �'� �'� �'� � 4 ��� ��� � �

4 ������� � � � ��� �������	� � �

Rule 2.10.
4 ���&
76 � �#��� � � ���� � �'� ��� �'� �'� �'� �'� ��� � � 4 ��� ��� � �

4 ��� ��� � � � ��6 � ��� �

Rule 2.11.
4 ��� ��� 
$!
�#� ��
 	 �3
 � 2 ��� � ���� �'� �'� �'� ��� �'� �'� �'� �'� ��� �'� �'� � 4 ��� ��� � �

4 ������� � ��� ��!
�#� ��
 	 �3
 � 2 � � �

Rule 2.12.
4 �
� ��� 
�%�� ������� ��
 	 �3
 � 2 � � � �
�� � � �'� �'� �'� ��� �'� �'� �'� �'� ��� �'� �'� � � 4 ��� ��� � �

4 ��� ��� � � � � % � ������� ��
 	 �3
 � 2 � � �

Rules for
�

-quantification:

Rule 2.13.
4 
 � �
� ��� ���������� ��� �'� �'� �'� �'� ��� �'� �'� ��� 4 ������� ���4 ������� � � � �'�����	� � � ���

Rule 2.14.
4 ��� 
76 � � ��� ��� �
������ �'� �'� �'� �'� ��� �'� ��� 4 ������� ���4 ������� � � 6 � ��� � ���

Rule 2.15.
4 ������� 
$!
��� ��
 	 �3
 � 2 � �������� �'�'� ��� �'� �'� �'� �'� ��� �'� �'� �'� � � 4 ��� ��� ���4 �
� ��� � � !
�#� ��
 	 �3
 � 2 � � � �
�

Rule 2.16.
4 ��� ��� 
�%������&�'� ��
 	 �3
 � 2 � ��� �
���� �'� �'� ��� �'� �'� �'� �'� ��� �'� �'�'� �'� ��� 4 ��� ��� �
�4 ������� � � % ��������� ��
 	 �3
 � 2 � � � ���

External equality implies internal equality:

Rule 2.17.
4 ��� 8 � �<;&� � � �
4 �
� ��� ��� �<;�� � �

There are also obvious rules expressing that internal equality is an equivalence relation.
Intuitively admissible relations should relate

�
to
�

and we need an axiom stating this. In general, we
will use

	 � ��� as the test for
6	�� �

.
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Rule 2.18.

4 ������� ��	���� ��
 	 ! � 
 ! � �"
 	 2 �&� ���'� ��
 	 ! � 
 ! � � 6�
"� �� �

4 ������� � ��6 � � 
"� ����� 	�	 ! 6�
 ! � � � 	 2 	 ! 60
 ! � � �
��6 �,! � 
"� ��! ���76�� �
� ��� � 	 	�	+6�
"� � � 	 2 	+60
"� � �

We have rules concerning the interpretation of types as relations:

Rule 2.19.
5� � � ( �������	� 4 ������� � 5	�� ������� ��
 	 5�,
 5� 2 �

4 ��� ��� � � � � ( � 5	 � � 	 (

Rule 2.20.
5� � ��� � 2 �������	� 4 ��� ��� � 5	���� ���'� ��
 	 5� 
 5� 2 �
4 ������� � � � 	 � � � 2 � � 5	 � � 	 � � 5	 � � � 2 � 5	 � �

Rule 2.21.
5� � � � � 2 �������	� 4 ��� ��� � 5	��&� ���'� ��
 	 5� 
 5� 2 �
4 ������� ��� � 	 ��� � 2 � � 5	 � � 	 � � 5	 � � � 2 � 5	 � �

Rule 2.22.
4 ��� ��� � 5	��&���&�'� ��
 	 5�,
 5� 2 �
4 ��� ��� � � ��� � 5	 � � �0'*)2+

Rule 2.23.
5� � $ � � ��	 5� 
 � � � �����	� 4 ������� � 5	 �&������� ��
 	 5� 
 5� 2 �

4 ��� � � � 	 $ � � ��	 5� 
 � � � � 5	 � � � 	 � 
 � 2 
$!
�&������� ��
 	 � 
 � 2 � � � � � 5	 
$! � �

Rule 2.24.
5� � ! � �������	� 4 ��� ��� � 5	���� ���'� ��
 	 5� 
 5� 2 �

4 �
� ��� ��� �
	 ! � � � 5	 � � ! 	 � � 	 � �

Here
	 � 	�2

is shorthand for
� 6�
"� �76&	�� �
��6 	�2 �

.
If the definable relation

	
is of the form

	+6 � � 
"� ��� � ��� 	+60
"� �
, then

	�	+;"
 � � should be equivalent to
�

with6�
"�
substituted by

; 
 � :

Rule 2.25.
4 ��� 
76 � � 
"� ��� ��� � � �������3� 4 ��� 8 � �<; � � 
 � � �
4 ��� ��� � � � 	 	+6 � � 
"� ��� � ����� 	+; 
 � � �
� � � ;"
 � � 6�
"� �

Axiom 2.26. 4 ��� 8 � ��� � � 	 $ ���
	�� � � ��� � � �

Given a definable relation
	

we may construct a proposition
	 	+60
"� �

. On the other hand, if
�

is a propo-
sition containing two free variables

6
and
�

, then we may construct the definable relation
	+60
"� � ���

. The next
lemma tells us that these constructions give a correspondence between definable relations and propositions,
which is bijective up to provable equivalence in the logic.

Lemma 2.27. Suppose
�

is a proposition with at least two free variables
6 � � 
"� ���

. Then

	 	+6 � � 
"� ��� � ����� 	+6�
"� � � � �

Suppose
	 �#� ��
 	 � 
 � �

is a definable relation, then

	 � 	+6 � � 
"� ��� � � 	 	+6�
"� � �

Proof. The first biimplication follows trivially from Rule 2.25. For the second, we need to prove

� 3 � � 
54 ����� 	 	�3 
54 � �
� 	 	+6 � � 
"� ��� � � 	 	+60
"� � � 	�3 
54 �"


which is trivial by the same rule.

16



The substitution axiom above implies the replacement rule:

Lemma 2.28. 4 ����� � ��;�� � ; 2 4 �
�&
76 � � 8 � � � ���
4 ����� � � � � ; � 6 � ��� � � ; 2 � 6 �

Proof. Consider the definable relation
	 � 	 � � � 
63 � � � � � � � � 6 � � � � � 3 � 6 � �

Clearly
	�	+;"
7; �

holds, so by substitution
	 	+; 
7; 2 �

holds.

Lemma 2.29. 	�	+6�
"� � ��	 2 	+6 2 
"� 2 � � 	 � 	 2 	+6 � 6 2 
"� ��� 2 �

Proof. Suppose
	 	+60
"� � � 	 2 	+6 2 
"� 2 �

and that
	 	<� 	 2 � ! � 	+; 
7; 2 �

. Then clearly
! 	+; 6 6 2 
7; 2 � � 2 �

and thus,
since

let
6 � 6 2

be
6 ��6 2

in
;�6 6 2 � ; 6 6 2 


we conclude
	 � 	�2�	+6 �#6�2+
"� ����2 �

.

Lemma 2.30. For
6 � �

,
	 ! 6����

always holds in the logic.

Proof. Define
� �<! � � �

as
� � 6 ��! � �

let
! �

be
6

in
�

. Then clearly
� 	 ! 6���� �

.

Lemma 2.31. For any
	��#� ��
 	 � 
 � �

,
6 � � 
"� ���

6 	�� �
� ! 6 	 ! 	��"! �

Proof. Since 
 	 ! 6 �&� let
! �

be
! 6

in
� � 6

this follows from Lemma 2.30.

2.2.5 Admissible relations preserved by structure maps

We now proceed to show a couple of practical lemmas expressing that various structure maps preserve
admissible relations. The maps that we are interested in are


 ���,! ��� �
� ���<! � � ! ! � 


which, categorically in the models of PILL � , are the structure maps of a comonad, and
� ���,! ��� ! ��� ! �

� � �,! ��� ��


which are the maps that make the comonad into a linear category. The maps are syntactically given as


 � � � � 6 �)! ���
let
! �

be
6

in
�

� � � � � 6 �)! ���
let
! �

be
6

in
! ! �

� � � � � 6 �)! ���
let
! �

be
6

in
! � � ! �

� � � � � 6 �)! ���
let
! �

be
6

in
� �

Lemma 2.32. For all admissible relations
	 �&���&�'� ��
 	 � 
 � �

,
	 
 �'
 
 � � �)! 	 � 	�
 	 � �'
 � � � �)! 	 � ! ! 	

are maps of relations, i.e.,
! 	�	+6�
"� �

implies
	 	 
 � 60
 
 ��� � and

! ! 	�	 � ��6�
 � ��� �
.
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Proof. The lemma clearly holds in the case of
60
"�

of the form
! 6)2 
 ! ��2

. Since
	 	 
 �	60
 
 ��� � and

! ! 	 	 � � 60
 � ��� �
both define admissible relations from

! �
to
! �

, by Rule 2.18 we conclude that
! 	 	+60
"� �

implies

	+6�� � � ��� � � 	 	 
 � 6�
 
 � � �

and
	+6 � �
� ��� � � ! ! 	�	 � � 6�
 � � � �

. Since
! 	 	+60
"� � � 	+6�� � � ��� �

we are done.

Lemma 2.33. For all admissible relations
	 �&���&�'� ��
 	 � 
 � �

,

	 � ��
 � � � �)! 	 � ! 	3� ! 	�
 	 � ��
 � � � �)! 	 ���0'*),+

are maps of relations, i.e.,
! 	�	+6�
"� �

implies
! 	3� ! 	�	 � ��6�
 � ��� �

and
�&'1)2+ 	 � ��6�
 � ��� � .

Proof. To prove that
	 � 
 � �

is a map of relations, since

let
6 2 �#6 2 2

be
	
let
! �

be
6

in
! �'� ! � �

in
; 6 2 6 2 2 �

let
! �

be
6

in
;0! � ! �

we need to prove that

! 	 	+60
"� � � 	 ��� 
 � 
$!
�&���&�'� ��
 	�� 
 � � � � ��; �0! � � ! ��� � 
7; 2 �)! ��� ! �<� � �
; 	 ! 	 � ! 	 � ! � ; � ! 	

let
! 3

be
6

in
; ! 3 ! 3 


let
! 3

be
�

in
; 2�! 3 ! 3 �

Since the expression on the right hand side of the first
�

is admissible in
6�
"�

and
! 	 	+60
"� � ��6 � �
� � �

, by
Rule 2.18 it suffices to prove the implication in the case

6 � ! 6�2 
"� � ! ��2
. In this case, let

! 3
be
6

in
; ! 3 ! 3 �

; ! 6 2 ! 6 2
, so the implication is trivial.

To prove that
	 � 
 � � is a map of relations, we need to prove that

! 	 	+60
"� � � 	 ��� 
 � 
$!
�&���&�'� ��
 	�� 
 � � � � �"3���� 
54 � � �
3�!�4 � 	

let
�

be
	
let
!��

be
6

in
� �

in
3 � ! 	

let
�

be
	
let
!��

be
�

in
� �

in
4 � �

The implication clearly holds in the case of
60
"�

of the form
! 6 2 
 ! � 2

, and so, since
! 	 	+6�
"� � � 6 � � ���

, as
before we conclude from Rule 2.18 that the implication holds in general.

2.2.6 Extensionality and Identity Extension Schemes

Consider the two extensionality schemes:

	 ��6 � ���7; 6�� � � 6�� ��;&����� � �	 ��� �������	� �7; � � � � ��� � ;���� ���	��

�
��� � � �

These are taken as axioms in [21], but we shall not take these as axioms as we would like to be able to talk
about models that are not necessarily extensional.

Lemma 2.34. It is provable in the logic that

� � 
���� � � ���
	 ��6 � ��� � 	 ! 6�� ��� ��	 ! 6�� � � ��6 �,! ��� � 	+6 �&��� � 	+6�� �

In particular, extensionality implies

� � 
���� � � ���
	 � 6 � ��� � 	 ! 6 �&��� � 	 ! 6�� � � � ����� � �

Proof. This is just a special case of Rule 2.18.
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The schema
� � � � � � � 5� �'�����	� � � � eq �� � � eq

� � ����

is called the identity extension schema. Here
�

ranges over all types, and eq �� is short notation for
eq
��� 
 � � �9


eq
���

.
For any type

� 
 � � 
 � � �9
 � 
 � ��	 � 
 5��� we can form the parametricity schema:

� � � � � � � 5� � � � 	 $ � � � � � � � 
 � 2 � ��!
��������� ��
 	 � 
 � 2 � �
	 � � � � � ! 

eq �� � 	 � � 2 �"


where, for readability, we have omitted
�������	�

after
� 
 � 2

.

Proposition 2.35. The identity extension schema implies the parametricity schema.

Proof. The identity extension schema tells us that

� 5� � � � 	 $ � � � � � � 	 $ � � � � �
eq �� � � �

Writing out this expression using Rule 2.23 for the relational interpretation of polymorphic types, one ob-
tains the parametricity schema.

In the case of second-order lambda-calculus, the parametricity schema implied identity extension for
the pure calculus, since it provided the case of polymorphic types in a proof by induction. It is interesting
to notice that this does not seem to be the case for PILL � , since it seems that we need identity extension to
prove for example eq

� �
eq
� �

eq
�	� �

.

Lemma 2.36. Given linear contexts
�

and
� 2

, suppose

��6 � ��� ��� ����� ��� 6 ��� � ��
 � 2 � 6 ��� � �

then �"3 � �������
let
6 � �

be
3

in
��� 6 � � � ��
 let

6 ���
be

3
in
� 2 � 6 � � �

Proof. Consider

� � ���"6 � ��� ��� � ����� ��� 6 � � � � 2 � ��� 6 � ��� ��� � �'��� � 2 � 6 ��� �
then � 	 ��
 � � ��
 � � ��
 
�� � 2 �

If
3 � � ���

then by identity extension eq
� �

eq
� 	�3 
63 �

. By definition of eq
� �

eq
�

we have

let
6 � 6 2

be
3

in
� 6�6 2 � 


let
6 � 6 2

be
3

in
� 2 6�6 2

which proves the lemma.

This completes our presentation of LAPL. In the following section we show how to use the logic to prove
various consequences of parametricity. We shall write “using extensionality” and “using identity extension”
to mean that we assume the extensionality schemes and the identity extension schema, respectively.
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3 Proofs in LAPL

3.1 Logical Relations Lemma

Lemma 3.1. In pure LAPL, for 5� 
 � � �
, 5� � 1 and 5	 ��� ��
 	 5� 
 5� � ,
� � 1 � � � � 5	 � � � � 5	�
 1 � 5	 � �

Proof. Simple induction on the structure of
�

. The cases
� � �&(

and
� � �

are trivial. For the case��� �32 ���32 2
, 	 �32	���32 2 � � 1 � � � � 5	 � � �32 � 1 � � � � 5	 � ���32 2 � 1 � � � � 5	 � �� 2 � 	�
 1 � 5	 � � ��� 2 2 � 	�
 1 � 5	 � � � 	 � 2 ��� 2 2 � � 	�
 1 � 5	 � �

Likewise for the cases of
� � � 2 � � 2 2

and
� � ! � 2

. The last case is
��� $ � 2 � � 2

and in this case
� 2

is not
free in 1 , so 	 $ �)2 � �32 � � 1 � � � � 5	 � � ����2 ��
 �)2� 
$!
�&� ���'� ��
 	���2 ��
 ��2� � � �32 � 1 � � � � 5	 
$! � ���� 2 �%
 � 2 � 
$!
�&���&�'� ��
 	�� 2 ��
 � 2 � � � � 2 � 5	�
$! 
 1 � 5	 � � � 	 $ � 2 � � 2 � � 5	 
 1 � 5	 � �

Lemma 3.2. Suppose 4 ��� 
63 � � 8 � ��; 	�3 � � � and 4 ��� 
63 2 � � 2 8 � �<; 2 	�3 2 � ��� 2 and

4 ������� �
	���� ��
 	 � 
 � 2 �"
 	 2 �&���&�'� ��
 	 �3
 � 2 � �

Then 4 ��� ��� � ��6 � � 
"� � � 2 � 	�	+6�
"� � � 	 2 	+; 	+6��"
7; 2 	 � � � �
��6 �,! � 
"� ��! � 2 � ! 	�	+6�
"� � � 	�2 	

let
! 3

be
6

in
; 	�3 �"


let
! 3	2

be
�

in
; 2 	�3	2 � �

Proof. Consider the special case of Rule 2.18 used on the relations
	+6 ��! � 
"� �0! � 2 � � ! 	�	+6�
"� �

and

	+6 �,! � 
"� ��! � 2 � � 	 2 	
let
! 3

be
6

in
; 	�3 �"


let
! 3 2

be
�

in
; 2 	�3 2 � � �

This gives us

4 ��� ��� � ��6 � � 
"� � � 2 � ! 	�	 ! 6�
 ! � � � 	 2 	
let
! 3

be
! 6

in
; 	�3 �"


let
! 3 2

be
! �

in
; 2 	�3 2 � �&�

��6 �,! � 
"� ��! � 2 � ! 	�	+6�
"� � � 	+6�� �
� ��� � � 	�2�	
let
! 3

be
6

in
; 	�3 �"


let
! 3	2

be
�

in
; 2�	�3	2 � �

From this we conclude the desired implication using the fact that
! 	 	 ! 6�
 ! � � �
� 	�	+6�
"� �

(Lemma 2.31),
let
! 3

be
! 6

in
; 	�3 �&� ; 	+6��

and
! 	 	+6�
"� � ��6 � �
� � �

.

Lemma 3.3 (Logical Relations Lemma). In pure LAPL, for any closed term � � � 8 � ��; ��� ,
; �3; �

In words, any closed term of closed type, is related to itself in the relational interpretation of the type.

Proof. We will prove that for any term

5��� 56 2 � 5� 2 	�� � 8 56 � 5� 	����&��; 	 5� 
 56 2 
 56�� � �

in the pure calculus; the proposition

� � � 8 � � � 5� 
 5� � � 5!
�&� ���'� ��
 	 5� 
 5� � � � 56 � 5��	 5� �"
 5� � 5��	 5� � � � 56 2 � 5� 2 	 5� �"
 5� 2 � 5� 2 	 5� � �
56 5� � 5! � 5� � 56�2 5� 2 � 5! � 5��2 ��; 	 5� 
 56�2 
 56�� � � 5! � ; 	 5� 
 5��2 
 5� �
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holds in the logic. Here 56 5� � 5! � 5� is short for
6 � � � � 5! � � � � � � � ��6 
 � 
 � 5! � � 


The special case of the vectors 5� 
 5��
 5� 2 of length zero is the statement of the lemma. The proof proceeds
by structural induction on

;
, and it is for the induction we need the seemingly stronger induction hypothesis

described above.

Case
;�� 6 (

: In this case 56 is of length one, and the proposition is trivial.

Case
;�� 6 2( : In this case 56 is empty, and this case is also trivial.

Case
;�� �

: We always have
�3� � 5! � � .

Case
;�� �

: This is Axiom 2.26

Case
;�� � � 6 
�.0� � � 
�.0� �7; 2

: By induction, the proposition holds for
; 2

. We must show that if 56 5� � 5! � 5� �
56 2 5� 2 � 5! � 5� 2 , then ; 	 5� 
 56 2 
 56 � 	 ��
�.0� � � � � 5! � ; 	 5� 5� 2 5� � �
The induction hypothesis tells us that if further

6 
 .0� � 
 .0� � 5! � � 
 .0� , then
; 2 	 5� 
 56 2 
 56�
76 
 .0� � � � 5! � ; 2 	 5� 
 5� 2 
 5� 
"� 
�.0� �"


and since
; 	 5� 
 56 2 
 56 � 6�
�.0� � ; 2 	 5� 
 56 2 
 560
76�
 .0� � we have the desired result.

Case
;�� ; 2 ; 2 2

: By induction the proposition holds for the terms
; 2 
7; 2 2

, and so since
; 	 5� 
 56 2 
 56 ��� ; 2 	 5� 
 56 2 
 5� � ; 2 2 	 5� 
 56 2 
 53 �

the proposition holds by definition of
	 � � ��2 � � 5! � .

Case
;�� ; 2 � ; 2 2

: By induction, the proposition holds for
; 2 
7; 2 2

. Clearly
; 	 5� 
 56 2 
 56 �&� ; 2 	 5� 
 56 2 
 5� �,� ; 2 2 	 5� 
 56 2 
 53 �

and so the proposition holds by Lemma 2.29.

Case
;�� 	 � : .0� �7; 2

: We must show that if 56 5� � 5! � 5� � 56�2 5� 2 � 5! � 5��2 , then
; 	 5� 
 56 2 
 56�� 	 $ � : .0� � � � � 5! � ; 	 5� 
 5� 2 
 5� �"


i.e., for all
� : .0� 
 � 2: .0� 
$! : .0� ��������� ��
 	�� : .0� 
 � 2: .0� �

,

; 	 5� 
 56 2 
 56 ��� : .0� � � 5! 
$! : .0� � ; 	 5� 
 5� 2 
 5� ��� 2: .0� 


By induction, the proposition holds for
; 2

. But up to the position of the quantifiers
��� : .0� 
 � 2: .0� 
$! : .0� �&� ���'� ��
 	�� : .0� 
 � 2: .0� �"


this is exactly the proposition we need, and the rest of the proof is just simple logic.

Case
;�� ; 2�	 1 � : By induction, the proposition holds for

;-2
. So since

; 	 5� 
 56�2 
 56�� � ; 2 	 5� 
 56�2+
 56 � 	 1 	 5� � � , if
56 5� � 5! � 5� � 56 2 5� 2 � 5! � 5� 2 , then ; 	 5� 
 56 2 
 56 � � � 5! 
 1 � 5! � � ; 	 5� 
 5� 2 
 5� � �
By Lemma 3.1, we get the desired result.
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Case
;�� ! ; 2

: In this case 56 is of length zero. By induction, under the usual assumptions,
; 2 	 5� 
 56 2 � � � 5! � ; 2 	 5� 
 5� 2 � �

Since
; 	 5� 
 56�2 �&� ! ; 2 	 5� 
 56�2 � , we need to show

! ; 2 	 5� 
 56 2 �"! � � 5! � ! ; 2 	 5� 
 5� 2 � �

which follows from Lemma 2.31.

Case
;��

let
3 � 1 � 3	2 � 1 2 be

; 2
in
; 2 2

: We know by induction that
; 2 	 5� 
 56 2 
 56 � 	 1 � 1 2 � � 5! � ; 2 	 5� 
 5� 2 
 5� �"


and if further
3 1 � ! � � and

3 2 1 2 � ! � � 2 then
; 2 2 	 5� 
 56 2 
 560
63 
63 2 � � � 5! � ; 2 2 	 5� 
 5� 2 
 5��
���
�� 2 � �

The latter tells us that
��� 3 
63 2 �7; 2 2 	 5� 
 56 2 
 560
63 
63 2 � 	 1 � ! � � 1 2 � ! � � � � ! � �"��� ��
�� 2 �7; 2 2 	 5� 
 5� 2 
 5� 
���
�� 2 �"


so by definition of 1 � ! � � 1 2 � ! � , we get

let
3 � 1 � 3 2 � 1 2 be

; 2 	 5� 
 56 2 
 56�� in
; 2 2 	 5� 
 56 2 
 560
63 
63 2 � � � ! �

let
� � 1 � ��2 � 1 2 be

; 2�	 5� 
 5��2 
 5� � in
; 2 2 	 5� 
 5��2+
 5� 
���
���2 �

as desired.

Case
;��

let
! 3 � 1 be

; 2
in
; 2 2

: By definition
; 	 5� 
 56 2 
 56 ��� let

! 3
be
; 2 	 5� 
 56 2 
 56 � in

; 2 2 	 5� 
 56 2 
 56�
63 � �

Suppose we are given 5� 
 5� 
 5! ��������� ��
 	 5� 
 5� � , and suppose 56 5� � 5! � 5� and 56 2 5� 2 � 5! � 5� 2 . If we further know3 1 � ! � 3 2 , then by induction ; 2 2 	�� 
 56 2 
 56�
63 � � � ! � ; 2 2 	 � 
 5� 2 
 5��
63 2 � �
By Lemma 3.2 we conclude that if

��	 ! 1 � ! � � � 2 then
	
let
! 3

be
�

in
; 2 2 	�� 
 56 2 
 56�
63 � � � � ! � 	 let

! 3
be

� 2
in
; 2 2 	 � 
 5� 2 
 5� 
63 � � �

Since by induction
; 2 	 5� 
 56 2 
 56 �"! 1 � 5! � ; 2 	 5� 
 5� 2 
 5� � , we are done.

Case 
 � let
�

be 
 2 in 
 2 2 : By induction, if 56 5� � 5! � 5� and 56�2 5� 2 � 5! � 5��2 then


 2 2 	 5� 
 56 2 
 56 � � � 5! � 
 2 2 	 5� 
 5� 2 
 5� �

and 
 2 	 5� 
 56 2 
 56 � �0'*),+ 
 2 	 5� 
 5� 2 
 5� � �
The definition of the latter tells us exactly that

	
let
�

be 
 2 	 5� 
 56 2 
 56�� in 
 2 2 	 5� 
 56 2 
 56 � � � � 5! � 	 let
�

be 
 2 	 5� 
 5� 2 
 5� � in 
 2 2 	 5� 
 5� 2 
 5� � �

as desired.
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3.2 A category of linear functions

At this point we wish to show certain types definable via polymorphism. To state this precisely, we introduce
for each kind context 4 the category 
���� ����� ��� as follows:

Objects are closed types 4 � � 8 � � � �'�����	� .
Morphisms

� 4 � � 8 � � � ��� � � � are equivalence classes of terms of type
� � �

; the equivalence
relation on these terms being internal equality.

Composition in this category is given by lambda abstraction, i.e.
� � � � �

composed with
��� 1 � �

yields
� � 6 � 1 � � 	 � 6 � .

We now aim to prove that under the assumption of identity extension and extensionality, for all types
4 � � �������	� we have an isomorphism of objects of 
 ��� ����� � � :

���� $ ���
	 � � � �&� �

for
�

not free in
�

. We can define terms
� � ��� $ ���
	 	 � � � �&� ���

and ��� $ ���
	 	 � � ��� � � �&� �

by � � � � 6 � ��� 	 ��� � � % � ��� ��� % 6
and � � � � 6 � $ ���
	 	 � � � �&� � � �76 � -�. �

Clearly � 	 � 6 ��� 	 � 6���� -/. � � 6
so
� � � -/. � . Notice that this only involve external equality and thus we did not need extensionality here.

Proposition 3.4. Using identity extension and extensionality, one may prove that
���

is internally equal to
the identity.

Proof. For a term 	
� $ ���
	 ��� � �&� �

we have
��
 �

	
� 	 ��� � � % � ��� ��� % 	

	
� -/. � � �

Using extensionality, it suffices to prove that

4 
 ��� % � ��� ��� � � % 	 	 � -�. � ��� � 	 � %

holds in the internal logic.
By the parametricity schema we know that for any admissible relation

	��&���&�'� ��
 	 �3
 � 2 �
	
	
� � 	 	

eq
� � 	���� 	 � 	

	
� 2 �

If we instantiate this with the admissible relation
� % �

, we get
	
	
� � 	 	

eq
� � � % � �&� � % � � 	

	
���

Since -/. � 	 eq
� � � % � � %

we know that
	
	
� -�. ��� � % � 	 	 � % � , i.e.,
% 	
	
� -/. � ��� � 	 � % 


as desired.
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This proof may essentially be found in [5].
Intuitively, what happens here is that

�
is a subtype of

$ ���
	 ��� ��� � �
, where the inclusion

�
maps6

to application at
6

. We use parametricity to show that
$ ���
	 � � � �&� �

does not contain anything that
is not in

�
.

3.3 Tensor types

The goal of this section is to prove

����� �� $ ���
	 � � ��� ��� � �

for 4 � � � �����	�
and 4 � � � �����	� types in the same context. The isomorphism is in the category


���� ����� � � .
This isomorphism leads to the question of weather tensor types are actually superfluous in the language.

The answer is yes in the following sense: Call the language without tensor types (and
�
)
;

and the language
as is

�
. Then there are transformations � � � � ; and ( � ;�� �

, ( being the inclusion, such that � 
 ( � ( ���

and ( 
 � �� ( ���
. This is all being stated more precisely, not to mention proved, in [14, 13]. In this paper we

settle for the isomorphism above.
We can construct terms � � �<����� $ ���
	 � � �<� ��� � �

and � � 	 $ ���
	 ������� � �&� � � � �����

by � � �
let
6 � 6 2 � �����

be
�

in
	 ��� � � % � ��� ��� ��� % 6 6 2

and � � �!� �<���
pairing




where the map pairing
� ������� �����

is

pairing
� ���"6 � ��� � � 6 2 �����76 �#6 2 �

Let us show that the composition
� 
��

is the identity.

� 
�� � � ��	
let
6 � 6 2 � � ���

be
�

in
	 ��� � � % � � � �<� ��� % 6 6 2 ���

	
let
6 � 6�2 � �����

be
�

in
	 ��� � � % � � � ��� ��� % 6 6�2 �������

pairing
�

	 	 ��� � � % � � ����� ���
let
6 � 6 2 � �����

be
�

in
% 6 6 2 �������

pairing
�

let
6 � 6�2 � �����

be
�

in
6 � 6�2'� � �

Proposition 3.5. Using extensionality and identity extension one may prove that the composition

����� 	 $ ���
	 � � ��� ���&� ��� � 	 $ ���
	 � � � � ���&� ���

is internally equal to the identity.

Proof. We compute

� 
 � � � � 	 � �����
pairing

�&�
let
6 ��6�2 � �����

be
	 � �����

pairing
�

in
	 ��� � � % � � ����� ��� % 6 6�2
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Suppose we are given a type
�

and a map
% � ������� �

. We can define
��� � ����� � �

as

��� � � � � � �������
let
6 � 6 2 � � ���

be
�

in
% 6 6 2 �

Then
��� 	

pairing
6 6 2 � � % 6 6 2

, which means that pairing
	
eq
� �

eq
� � � ��� � � %

. By the parametricity
schema 4 
 ��� % � ��� ��� � 
"� � $ ���
	 � � ��� ���&� ��� � ��� �	 � ����� � 	 	

eq
� �

eq
� � � ��� � �&� � ��� � � 	 � � �

so 	 � �����
pairing

� � ��� � 	 � � % �"


i.e, ��� 	 � �����
pairing

�&� � � � % �

Writing this out we get

4 
 ��� % � ��� ��� � 
"� � $ ���
	 � � ��� ���&� ��� � ��� �
let
6 � 6�2 � �����

be
	 � �����

pairing
�

in
% 6 6�2���� � � % �

Using extensionality we get

	 ��� � � % � ��� ��� ���
let
6 � 6 2 � �����

be
	 � �����

pairing
�

in
	 % 6 6 2 �&��� � �

This is enough, since by the rules for external equality the left hand side is

let
6 � 6 2 � �����

be
	 � �����

pairing
�

in
	 	 ��� � � % � � � ��� ��� % 6 6 2 � �

3.4 Unit object

The goal of this section is to prove that identity extension together with extensionality implies

� �� $ ��� � � ���

The isomorphism holds in 
 ��� ����� � � for all 4 .
We first define maps

� �'� � $ ��� � � �
and
��� 	 $ ��� � � ���&���

as

� � � � 6 ��� �
let
�

be
6

in -/. 
� � � � ; � $ ��� � � ���7;,� � 


where
-�. �!	 ��� � � � � ���"� �

We first notice that � 	 � 	+6 � � � 	
let
�

be
6

in -/. � � ���
let
�

be
6

in
	 -/. � � �&� let

�
be
6

in
��� 6 �

Proposition 3.6. Using identity extension and extensionality, we have that
���

is internally equal to the
identity on

$ ��� � � �
.
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Proof. First we write out the definition

��� � ���-; � 	 $ ��� � � � � �
let
�

be
	+; ��� �

in -/. �

We show that for any
; � $ ��� � � �

, for any type
�

, and any
6 � �

we have
����	+; ��� 6 � � ;�� 6

.
Given

� 
76
as above, we can define

% � �<� �
as
% � � � 3 ��� �

let
�

be
3

in
6

. Then
� % �

is admissible,
so by identity extension 	+; ��� 	 � % � � � % � � 	+; � � �
Since

% 	 � � � 6
we have

% 	+;,� � �&� � ;�� 6
, and by definition

% 	+; � � �&�
let
�

be
	+; � � �

in
6 �

let
�

be
	+;,� � �

in
	 -�. � 6����	

let
�

be
	+; � � �

in -/. � � 6�� � 
 � 	+; � � 6 �

3.5 Natural Numbers

We define the type of natural numbers as

� � $ ���
	�� � � ��� � � ���

We further define terms � ��� , 
 ��� ���
as

� � 	 ��� ��� � � � ��� ��� 6 � ���760
 
 � � � � ��� � 	 ��� ��� � � � ��� � � 6 � ��� � 	 � � ! � 6��

and prove that
	�� 
 � 
 
 � is a weak natural numbers object in each 
���� ����� � � , and, using parametricity and

extensionality, an honest natural numbers object.
Suppose we are given a type

�
, a term 	

� �
and a morphism � � ��� �

. We can then define
% ��� � �

as
% 	 � �&�!��� ! ��	 . Then clearly

% 	 � � � 	 , and
% 	 
 6 �&� � 	+6 � ! ��	 �&� � 	 % 	+6�� � , so

	�� 
 � 
 
 � is a weak natural
numbers object.

We can express the weak natural numbers object property as: for all 	

 � , there exists an

%
such that

� �

�
� �@@@

@@
@@

@

�
�

�

	 � �
�

�� 
 � �
commutes.

Lemma 3.7. Identity Extension and extensionality implies

��6 ��� �-6�� ! 
 � �
�<6

Proof. Suppose we are given
� 

	

 � and define

%
as above. Since � 
 % � % 
 
 and

% � � 	 , we have
 	 � % �&� � % � � � and � � % � 	 , by parametricity of
6

,
	+6�� ! 
 � � � % � 	+6 ��! � 	 � , i.e.,

	+6���! 
 � ����! � 	 ��� 6���! � 	 �

Letting
�

range over all types and 	

 � over all terms, using extensionality and Lemma 2.34, we have

6�� ! 
 � � � 6�


as desired.
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We can now prove that
�

is a natural numbers object in each 
 ��� ����� � � .

Lemma 3.8. Assuming identity extension and extensionality, given
� 

	

 � , the map

%
defined as above is

up to internal equality the unique
% 2

such that
% 2 	 � �&� 	 ,

% 2 	 
 6��&� � 	 % 2�6 � .
Proof. Suppose

% 2
satisfies the requirements of the lemma. Then 
 	 � % 2 � � � % 2 � � � and � � % 2 � 	 (this is just a

reformulation of the requirements), so for arbitrary
6 ���

, by parametricity of
6

,

6�� ! � 	 ��� % 2 	+6�� ! 
 � �&� � % 2 	+6 � �

Thus, by extensionality,
% 2��
� � � %

.

3.5.1 Induction principle

The parametricity principle for the natural numbers implies, that if
!
�����&�'� ��
 	�� 
 � �

, and
6 ���

, then

	+6 � � 	 	 ! � ! � � ! � ! � 	+6�� � �

So if 
 	 ! � ! � 
 and
! 	 � 
 � � , then 	+6 � ! 
 � � ! 	+6 � ! 
 � � �

By Lemma 3.7,
6 � ! 
 � � � 6 , so we can conclude that

! 	+60
76��
. If

�
is a proposition on

�
such that	+6 ��� 
"� � ��� ��� 	+6 �

is admissible, then from parametricity we obtain the usual induction principle

	 ��	 � � � ��6 ��� ����	+6�� � � 	 
 	+6�� � � � ��6 ��� � � 	+6 � �

3.6 Types as functors

Definition 3.9. We say that 5� � � � �����	� is an inductively constructed type, if it can be constructed from
free variables 5� and closed types using the type constructors of PILL � , i.e.,

� 
"� 
 �'
 !
and
$ ���

.

For example, all types of pure PILL � are inductively defined, and if
�

is a closed type then
$ ��� � �

�
is an inductively constructed type. However, some models may contain types that are not inductively

constructed! For example, in syntactical models, any basic open type, such as the type
� �

lists
	����

is not
inductively constructed.

We define positive and negative occurences of free type variables in inductively defined types as usual.
The type variable

�
occurs positive in the type

�
and the positive occurences of a type variable

�
in
��� �

are the positive occurences of
�

in
�

and the negative in
�

. The negative occurences of
�

in
� � �

are
the positive in

�
and the negative in

�
. The positive and negative occurences of

�
in
$ � � �

are the positive
and negative occurences in

�
for
� �� �

. The rest of the type constructors preserve positive and negative
occurences of type variables.

If
��	��&
 � �

is an inductively defined type in which the free type variable
�

appears only negatively and the
free type variable

�
appears only positively, then we can consider

�
as a functor 
 ��� ����� � ��� � 
���� ����� � �


���� ����� � by defining the term

� � � ��� � � � $ � 
 � 
 � 2 
 � 2 �
	�� 2 � ����� 	 � � � 2 � ����	��&
 � � � ��	�� 2 
 � 2 �"


which behaves as the morphism part of a functor, i.e., it respects composition and preserves identities. We
define

� � � ��� � � by structural induction on
�

. This construction immediately generalizes to types with less or
more than two free type variables, all of which appear only positively or negatively.
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For the (nontrivial) base case of the induction, if
��	�� 
 � � � �

, define
� � � 	 � 
 � 
 � 2 
 � 2 � ��� 
�� ��� �

In the case
��	 � 
 � � � � 	��&
 � �

we define the term
� � � � � � � � � � ��� � � �$ �&
 � 
 � 2 
 � 2 �
	�� 2 � � ��� 	 � � � 2 ��� 	 ��	 � 
 � � � � 	��&
 � � � � ��	 � 2 
 � 2 ����� 	�� 2 
 � 2 �

by � � � � � � � � � � ��� � � � 	 � 
 � 
 � 2 
 � 2 � ��� 
�� �
� � % � ��	 � 
 � � � � 	�� 
 � � �
	 � � � � ��2 � 2
� � ��
 % 
 	 � � � 2 �)2 � ��� � � �

For bang types, we define:
�

�
� � ��� � � � 	 � 
 � 
 � 2 
 � 2 � � � � � 2 � ��� � � � � � � 2 � � � 6 ��! ��	��&
 � � �

let
! �

be
6

in
! 	 � � � ��� � � � � � 2 � 2 � � � � �

For tensor types, we define:
� � � ��� � � � � � ��� � � � 	 � 
 � 
 � 2 
 � 2 � � � 
�� � � � 3�� ��	��&
 � ����� 	�� 
 � � �

let
6 ��� � ��	�� 
 � �0��� 	��&
 � �

be
3

in
	 � � � � � 2 � 2 � ��6��)� 	 � � � � � 2 � 2 � � � � �

The last case is the case of polymorphic types:
� $ 
 � � � ��� � � � 	 � 
 � 
 ��2 
 � 2 � � � 
�� � � � 3 � $ 1 � ��	��&
 � � �

	 1 �������	� � � � � ��� � � � � ��2 � 2
� � 	�3 1 � �

Lemma 3.10. The term
� �

respects composition and preserves identities, i.e., for
� 2 � � 2 2 � � 2

,
� � � 2 �

�
,
��� � � � 2

, and
��2 � � 2'� � 2 2

,
� � � � ��� � � � � ��2 2 � 2 2+! 	 � 
�� 2 �0! 	 � 2 
 ��� � 	 � � � ��� � � ��2 � 2 ��2 2 � 2 23! � 2�! � 2 � 
 	 � � � ��� � � � � �)2 � 23! �<! ���"

� � � � ��� � � � � � � ! -/. � ! -�. � � -/. � � ��� � � �

Proof. The proof proceeds by induction over the structure of
�

, and most of it is the same as in [21], except
the case of tensor-types and

!
. These cases are essentially proved in [2].

Notice that in the proof of Lemma 3.10 we do not need parametricity. Suppose

4 � � 8 � ��� � � 2 � � 
���� � � � 2 �

We shall write
��	 � 
����

for � � � ��� � � � � � 2 � 2 ! �<! � �
The type of

��	 � 
����
is
��	�� 
 � � � ��	���2 
 � 2 �

. Notice that we apply
�

to
! � 
 ! �

, since
�

is of intuitionistic
function type (

�
instead of

�
). By the previous lemma,

�
defines a bifunctor 
���� ����� � � � � 
���� ����� � �


���� ����� � .
First we consider this in the case of only one argument:

Lemma 3.11 (Graph lemma). Assuming identity extension, for any type
� � �

with
�

occuring only
positively and any map

� �'� � � 2
� � � ��� � � � ��	 � ��� �

Likewise, suppose
� � �)2

is a type with
�

only occuring negatively. Then identity extension implies
� � � ��� � � � ��	 � �������3


where
��	 � ��� ���

is
	+6 � ��	 � �"
"� � ��	 � 2 � � � � ��	 � ��� 	 ��
76 �

.
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Proof. We will only prove the first half of the lemma; the other half is proved the same way. Since
�

occurs
only positively in

�
, we will assume for readability that

� �
has type

$ � 
 � �
	�� � � � � ��	�� �&� ��	 � �
.

By parametricity of
� �

, for any pair of admissible relations
	 ��������� ��
 	��&
 � 2 �

and
	�2 �����&�'� ��
 	 � 
 � 2 �

	 � � � � � 	 	 	�� 	 2 ��� 	 � � 	 � � � � 	 2 � � � 	 � � � 2 � 2 � �
(2)

Let
� � ��� �32

be arbitrary. If we instantiate (2) with
	 � ��
 � and

	�2 � � ���
, we get

	 � � � � � 	 	 ��
 � � � ��� ��� 	 ��
 � � ��� � � � � ��� � � � 	 � � � � 2 �"


using the identity extension schema. Since -/. � 	 ��
 � � � ��� ���
,

! -/. � ! 	 ��
 � � � ��� �"! � 


and using
� � � � 2 ! � � ��	 � �

we get

-/. � � ��� 	 ��
 � � � � � � � � ��� � � ��	 � �"


i.e., � 6 � ��	 � � �76�	 � � � ��� � � 	 ��	 � � 6 � �

We have thus proved
� ��	 � ���

implies
� � � ��� � .

To prove the other direction, instantiate (2) with the admissible relations
	 � � ���

,
	 2 � ��
 ��� for

� �����
�32

. Since
� 	 � ����� ��
 � � � -�. � � , ��	 � � 	 � � � ��� � � ��
 � � ��� � � -�. � � ��� � �

So for any
6 � ��	 � �

and
� � ��	 � 2 �

we have
6�	 � � � ��� � � � implies

��	 � � 6 � � � ��� � � . This just means that
� � � ��� �

implies
� ��	 � ���

.

3.7 Initial algebras

Suppose
� � � �������	�

is an inductively constructed type in which
�

occurs only positively. As we have just
seen, such a type induces a functor


 ��� ����� � � � 
���� ����� � �
for each 4 . We aim to define an initial algebra for this type.

Define the closed type
� ��� ��	���� � $ ���
	 ��	���� � � ��� � 


and define
fold

� $ ���
	 ��	���� � � ��� 	 � ��� ��	���� � � �

as
fold

� 	 ��� ��� � ��	�� �&� ��� � � � � � ��� ��	�� � � � ��! � 


and
in
� ��	 � ��� ��	���� � � � ��� ��	����

as
in
3 � 	 ��� � � � ��	�� � � ��� � 	 ��	

fold
� ! � � 3 � �
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Lemma 3.12. For any algebra
� � ��	 � � � �

, fold
��! �

is a map of algebras from
	 � ��� ��	����"
 in � to

	 �3
 � �
,

i.e., the diagram
��	 � ��� ��	�� � � in �

� �
fold

�
� � �
�

� ��� ��	����

fold
�
� �

���	 � � � � �
commutes.

Proof. For
6 � ��	 � ��� ��	���� �

	
fold

� ! � � 

in
6��

in
6 � ! � � � 	 ��	

fold
� ! � ��6��"


as desired.

In words we have shown that in defines a weakly initial algebra for the functor defined by
�

in 
���� ����� � �
for each 4 . Notice that parametricity was not needed in this proof.

Lemma 3.13. Suppose 4 � � 8 � � � � ��	 � � � �
and 4 � � 8 � � ��� ��	 1 � � 1 are algebras for

�
, and

4 � � 8 � � % � ��� 1 is a map of algebras, i.e.,
% � � ����	 % �

. Then, assuming identity extension and
extensionality, % 
 	

fold
� ! � ����� � � � � � � � 


fold 1 ! � �
Proof. Since

%
is a map of algebras � 	 � ��	 % ��� � � % � � ��


so by the Graph Lemma (3.11) � 	 � � � % � � � � % � � �
and by Lemma 2.31 ! � 	 ! 	 � � � % � � � � % � � �"! � �
Clearly

	
fold


fold

� � eq $ � � � � � � � � � � � � � � � � � � � � � � , and thus, by identity extension,
	
fold


fold

� � $ ���
	 ��	�� � � � ��� 	 � � ��� � ��
 � � � � � � � � � � 

so for any

6 � � ��� ��	�� � , 	
fold

� ! � 6�� � % � 	
fold 1 ! � 6��"


i.e., % 
 	
fold

� ! � ����� � � � � � � � 

fold 1 ! ��


as desired.

Lemma 3.14. Using identity extension and extensionality,

fold � ��� ��	�� � ! in ��� � � � � � � � � � � � � � � -�. � � � � � � � �
Proof. By Lemma 3.13 we know that for any type

�
,
� � ��	 � �&� �

and � � � ��� ��	�� �
	
fold

� ! � � 
 	
fold � ��� ��	�����! in � � � � fold

� ! � � �
The left hand side of this equation becomes

fold
� ! � 	 � � ��� ��	�� � ! in � � 	 � � ��� ��	�����! in � � ! �

and, since the right hand side is simply
� � ! � 


the lemma follows from Lemma 2.34.
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Theorem 3.15. Suppose 4 � � 8 � ��� � ��	 � �&���
is an algebra and 4 � � 8 � � % � � ��� ��	�� � ���

is a map
of algebras from in to

�
. Then if we assume identity extension and extensionality,

% � � � � � � � � � � fold
� ! � �

Proof. By Lemma 3.13 we have
% 
 	

fold � ��� ��	�� ��! in ��� � � � � � � � � � fold
� ! � �

Lemma 3.14 finishes the job.

We have shown that in defines an initial algebra.

3.8 Final Coalgebras

As in section 3.7 we will assume that
� � ��	�� � � �����	�

is a type in which
�

occurs only positively, and this
time we construct final coalgebras for the induced functor.

Given any
� ��� 	�� � �������	�

we can define the closed type
� ��� � 	�� � � $ � �
	 $ ���
	 � 	�� � � � � � � �

with combinator
pack

� $ ���
	 � 	�� � � � � � � 	 � � �

defined as
pack

� 	 ��� ��� 6 ��� 	���� � 	 � � ��� � � $ ���
	 � 	�� � � � � � � ��6 �
Define � ��� ��	���� � � ��� ! 	�� � ��	�� � ��� � � $ � �
	 $ ���
	 ! 	�� � ��	�� � ��� � � � � � � �

with combinators
unfold

� $ ���
	�� � ��	���� � � � � � ��� ��	����"

out
� � ��� ��	�� � � ��	 � ��� ��	�� � �

defined by
unfold

� 	 ��� � � � �)! 	�� � ��	���� � � � � 6 � ���
pack

�
	 � � 6 �
out

� � � 6 � � ��� ��	���� �76 ��	 � ��� ��	�� � ����

where

����$ ��� ! 	�� � ��	�� � �)� � � ��	 � ��� ��	���� �
� �!	 ��� � � � �,! 	�� � ��	�� � ��� ���

let
4 � 3

be
�

in
��	

unfold
��4 � 	

let
! �

be
4

in
� 3 � �

Lemma 3.16. For any coalgebra
� ����� ��	 � �

, the map unfold
� ! �

is a map of coalgebras from
�

to out.

Proof. We need to prove that the following diagram commutes

� � �
unfold

�
� �
�

��	 � �
� �

unfold
�
� � �

�� ��� ��	���� out � ��	 � ��� ��	�� � � �

But this is done by a simple computation

out
	
unfold

� ! � 6��&�
out
	
pack

� 	 ! � ��� 6����
pack

� 	 ! � �,��6 ��	 � ��� ��	���� ��� ��� � 	 	 ! � �)� 6 ���
��	

unfold
� 	 ! � � � 	 � 6�� �
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Lemma 3.16 shows that out is a weakly final coalgebra for the functor induced by
�

on 
 ��� ����� � � for
each 4 . Notice that parametricity was not needed here.

Lemma 3.17. Suppose
% ��	 � �,� � ��	 � � ��� 	 �,2 �,� � ��	 � � �

is a map of coalgebras. If we assume
identity extension, then the diagram

�
�

�

unfold
�
� � � � ��� ��	�� �

� 2 unfold
� �

� � �
�nnnnnnnnnnnnnn

commutes internally.

Proof. Using the Graph Lemma, the notion of
%

being a map of coalgebras can be expressed as

� 	 � % �&� � � � % � � ��� 2 �

Now, by parametricity of unfold,

unfold
� ! � 	 � % � �

eq �
� � � � � � � unfold

� 2 ! � 2 


which is exactly what we wanted to prove.

Lemma 3.18. Using extensionality and identity extension,

unfold
� ��� ��	����&!

out

is internally equal to the identity on
� ��� ��	����

.

Proof. Set
% �

unfold
� ��� ��	�� � !

out in the following.
By Lemma 3.16

%
is a map of coalgebras from out to out, so by Lemma 3.17,

% � %��
. Intuitively, all we

need to prove now is that
%

is “surjective”.
Consider any

� ��$ ���
	 ! 	�� � ��	�� � �0� � � � �
. For any coalgebra map

� ��	 � � � � ��	���� � � 	 � 2 �
��2'� ��	��)2 � �

, we must have, by Lemmas 3.11, 2.31, and 2.29,

	 ! ���#6�� 	 ! 	 � � � � � � � � � � ��� � � � � 	 ! � 2 � � 6��"


so by identity extension and parametricity of
�
,

� 6 � ����� �
	 ! � �,� 6 ��� � � 2 	 ! � 2 �)� � 	+6�� �

Using this on the coalgebra map unfold
��! �

from
�

to out we obtain

� 6 � ����� �
	 ! � �)� 6 ��� � � ��� ��	�� ��	 !
out
�,�

unfold
� ! � 6 �

By Lemma 2.34 this implies that

� � �,! 	�� � ��	���� �"
76 ������� � � � 6 ��� � � ��� ��	�� ��	 !
out
�,�

unfold
� � 60


which implies

�"3 �,! 	�� � ��	���� �0� ����� ��3 ��� � � ��� ��	�����	
let
� � 6

be
3

in
	 !

out
�,�

unfold
� � 6��
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using Lemma 2.36.
In other words, if we define

� � $ ���
	 ! 	�� � ��	���� �0� � � � �"


where
��� ! 	 � ��� ��	�� � � ��	 � ��� ��	���� � � � � ��� ��	����

, to be

� � 	 ��� � � � � ! 	�� � ��	�� � ��� ���
let
� ��6

be
�

in
	 !

out
�)�

unfold
� � 60


then � ����� � �
� � � � � � � � � � � � � 	 � � ��� ��	�� � � 
 	 � ��� � (3)

Now, suppose we are given
� 
 � 2 
$!
��� ��
 	�� 
 � 2 �

and terms
� 
 � 2

such that

� 	 ! 	 ! � � � ! � �)� ! ��� 2 �

Then, by (3) and parametricity of
�
� � � ��� � � 2 � 2 ��� 	 � � ��� ��	���� � 	 � � 2 � 2 �"


from which we conclude

� 	 � 	�� 
 � 
$!
��� ��
 	��&
 � � � �
	 ! 	 ! � � � ! � ��� ! � � � � ��� ��	�� ��� ��� � � � �

(Here we use
% ���

for the inverse relation of
%

.) Using parametricity, this implies that, for any
6 � � ��� ��	�� �

,
we have 6 � � ��� � � ��� ��	�����	+6 � � � �

Thus, since
�

was arbitrary, we may apply the above to
� � �

and get

6 � � � � � � ��� ��	�� ��	+6 � � �&�
let
� � 3

be
	+6 � � �

in
	 !

out
�,�

unfold
� � 3 �

If we write � � �'6 � � ��� ��	�� � �
let
� � 3

be
	+6 � � �

in unfold
� � 3 


then, since
�

is a closed term, so is
�

, and from the above calculations we conclude that we have

� � � � � ��$ ��� ! 	�� � ��	���� �0� � � � �76 � � ��� � � ��� ��	�� ��	 !
out
�)� 	 � 6 � �

Now, finally,
% 	 � 6 �&�

unfold
� ��� ��	�����!

out
	 � 6 �&�

pack
� ��� ��	�� � !

out
� 	 � 6�� �

	 � � � � ��$ ���
	 ! 	�� � ��	���� �0� � � � � ��� � ��� ��	�� � !
out
� 	 � 6 ���

�
� � � � � �	 � � � � ��$ ���
	 ! 	�� � ��	�� � ��� � � � � �76 � � � 60


where we have used extensionality. Thus
�

is a right inverse to
%

, and we conclude

% 6 �
�
� � � � � � % � 	 � 6�� �

�
� � � � � � % 	 � 6 �&�

�
� � � � � � 6 �

Theorem 3.19. Suppose 4 � � 8 � � � � � � ��	 � �
is a coalgebra and 4 � � 8 � � % � � � � ��� ��	�� � is

a map of algebras from
�

to out. Then if we assume identity extension and extensionality
% � � � � � � � � � �

unfold
� ! �

.
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Proof. Consider a map of coalgebras into out:

� � �
�

�

��	 � �
� � � �
�� ��� ��	�� � out � ��	 � ��� ��	���� � �

By Lemmas 3.17 and 3.18,

unfold
� ! � � � �

�
� � � � � � 	 unfold

� ��� ��	����&!
out
��
 � � � �

�
� � � � � � � �

Theorem 3.19 shows that out is a final coalgebra for the endofunctor on 
���� ����� � � induced by
�

for
each 4 .

3.9 Recursive type equations

In this section we consider inductively constructed types
� � ��	�� �

and construct closed types
�

such that��	 � � �� �
. In Sections 3.7 and 3.8 we solved the problem in the special case of

�
occuring only positively

in
�

, by finding initial algebras and final coalgebras for the functor induced by
�

.
The first observation we use is that we may split the occurences of

�
in
�

in positive and negative
occurences. So our standard assumption in this section is that we are given a type

� 
 � � ��	��&
 � �
, in which�

occurs only negatively and
�

only positively, and we look for a type
�

, such that
��	 �3
 � � �� �

. This section
details the sketch of [20].

3.9.1 Parametrized initial algebras

Set 1 	���� � � � � ��	�� 
 � � � $ � �
	 ��	�� 
 � � � � � � �
. Now, 1 induces a contravariant functor from types

to types.

Lemma 3.20. Assuming identity extension and extensionality, for
� � � 2 � �

, 1 	 � � � 1 	���� � 1 	�� 2 � is (up
to internal equality) the unique

%
such that

��	�� 
 1 	���� �
� ����� � � �

�

in � 1 	����

�

�

��	��&
 1 	���2 � �
� � � � ��� �

���	�� 2 
 1 	�� 2 � � in � 1 	�� 2 �

commutes internally.

Proof. One may define in as a polymorphic term

in
� $ ��� ��	�� 
 1 	���� � � 1 	�� �

by
in
� 	 ��� � � 3 � ��	�� 
 1 	���� � � 	 � � ��� � ��	�� 
 � � � � � � 	 ��	 �'6 � ���76�


fold
� ! � �"3 � �
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By parametricity we have
in
� 2 	 ��	 � ���"
 1 	 � ��� � � � 1 	 � ��� � � in � 


which, by the Graph Lemma (Lemma 3.11), means that

in
� 2 	 � ��	 � 
 1 	 � � ��� ��� � � 1 	 � ��� ��� � in � 


which in turn amounts to internal commutativity of the diagram of the lemma.
Uniqueness is by initiality of in (in 
���� ����� � � , proved as before) used on the diagram

��	�� 
 1 	���� �
� ����� � � �

�

in � 1 	����
�

���	��&
 1 	�� 2 � �
� � � � � � � � ��	�� 2 
 1 	�� 2 � � in � 1 	�� 2 � �

3.9.2 Dialgebras

Definition 3.21. A dialgebra for
�

is a quadruple
	 �3
 ��2 
 � 
 � 2 �

such that
�

and
� 2

are types, and
� � ��	 � 2 
 � �&�

�
and
� 2 ��� 2 � ��	 �3
 � 2 �

are morphisms. A morphism of dialgebras from
	 � � 
 � 2��
 � � 
 � 2� �

to
	 � � 
 � 2� 
 � � 
 � 2� �

is
a pair of morphisms

% ��� � � ���
,
% 2 �'� 2� ��� 2�

, such that

��	 � 2��
 � � � � � �
� � � � � � �

�

� �

�

���	 � 2� 
 ��� � � � � ���

� 2� � �� �
� �

�

��	 � � 
 � 2� �
� � � � � � �
�� 2�

� �
�

� ��	 � � 
 � 2� � �

Lemma 3.22. If
	 % 
 % 2 �

is a map of dialgebras and
% 
 % 2

are isomorphisms, then
	 % 
 % 2 �

is an isomorphism
of dialgebras.

Proof. The only thing to prove here is that
	 % *,� 

	 % 2 � *,� �

is in fact a map of dialgebras, which is trivial.

Remark 3.23. If we for the type
�&
 � � � �������	�

consider the endofunctor

� � ��� 
 � � � 
���� ����� � ��� � � 
���� ����� � � � 
 ��� ����� � ��� � � 
 ��� ����� � �
defined by

	��&
 � ���� 	 ��	 � 
 � �"
 ��	��&
 � � �
, then dialgebras for

�
are exactly the algebras for

� � ��� 
 � �
, maps of

dialgebras are maps of algebras for
� � ��� 
 � �

and initial dialgebras correspond to initial algebras.

Theorem 3.24. Assuming identity extension and extensionality, initial dialgebras exist for all functors in-
duced by types

��	�� 
 � �
, up to internal equality.

Proof. In this proof, commutativity of diagrams will mean commutativity up to internal equality.
Set 1 	����&� � � � ��	��&
 � �

. Then, 1 defines a contravariant functor. Define

� 2 � � ��� ��	 1 	����"
 � �"
 ��� 1 	 � 2 �&� � � � ��	 � 2 
 � � �

Since
� 2

is defined as the final coalgebra for a functor, we have a morphism

out
�'� 2 � ��	 1 	 � 2 �"
 � 2 �&� ��	 �3
 � 2 �"
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and since
�

is defined to be an initial algebra, we get a morphism

in
� ��	 � 2 
 � �&� ���

We will show that
	 �3
 � 2 


in


out
�

is an initial dialgebra.
Suppose we are given a dialgebra

	 � � 
 �32��
���
���2 �
. Since in is an initial algebra, there exists a unique map

	 , such that
��	 �32� 
 1 	 �32� � � in �
� ����� � � �

�

1 	 �32� �
�
���	 �32��
 � � � � � � � 


and thus, since out is a final coalgebra, we find a map
% 2

making the diagram

� 2� �
�
�

� �

�

��	 � � 
 � 2� � � � � � ��� � � ��	 1 	 � 2� �"
 � 2� �
� � 
 � � � � � � � �
�� 2 out � ��	 1 	 � 2 �"
 � 2 �

(4)

commute. Set
% �

	

 1 	 % 2 � . We claim that

	 % 
 % 2 �
defines a map of dialgebras. The second diagram of

Definition 3.21 is simply (4). The first diagram of 3.21 follows from the commutativity of the composite
diagram

��	 �32 
 1 	 �32 � � in �
� � � � � 
 � � � � �

�

1 	 �32 �

 � � � �
���	 �32� 
 1 	 �32� � � in �

� ����� � � �
�

1 	 �32� �
�
���	 �32��
 � � � � � � � 


(5)

where the top diagram commutes by Lemma 3.20.
Finally, we will prove that

	 % 
 % 2 �
is the unique dialgebra morphism. Suppose we are given a map of

dialgebras
	 � 
 �32 �

from
	 �3
 � 2 
 ( �


�� � ; � to
	 � � 
 � 2��
���
�� 2 �

. By the first diagram of Definition 3.21, we have a
commutative diagram

��	 � 2 
 � � in �
� � � � � � �

�

�
�

���	 �32 
 � � �
� � � � � � � �� ��	 � 2��
 � � � � � � � �

Since clearly (5) also commutes when
� 2

is substituted for
% 2

, by (strong) initiality of in, we conclude that
� � � � � �

	

 1 	 ��2 � . Finally, by the second diagram of Definition 3.21 we have commutativity of

� 2�
� �

�

�
�
� ��	 � � 
 � 2�
� � � � � � � �� ��	 1 	 � 2�
�"
 � 2�
�

� � 
 � � � ��� � � �
�� 2 out � ��	 1 	 � 2 �"
 � 2 � �

So since out is a final coalgebra we conclude
��2 � � �

�
� ��� % 2

.
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3.9.3 Compactness

Theorem 3.25 (Compactness). Assuming identity extension and extensionality, for all types
� ����	�� �

in
which

�
occurs only positively, in

*,�
is internally a final coalgebra and out

*,�
is internally an initial algebra.

Furthermore in
*,�

and out
*,�

can be written as terms of PILL � .

Proof. By Theorems 3.15 and 3.19 in is an initial algebra, and out is a final coalgebra for
�

. Consider
% � � 	 � ��� ��	�� � � � � ��� ��	�� ��	 � % � � ��� ��	�� � � � ��� ��	�� � � in 
 ��	 % ��
 out

� �

Since
�

is a fixed-point operator, we know that
��	 � ��� ��	�� � �
� � � �
�

� ��� ��	����out�
�

���	 � ��� ��	�� � � in � � ��� ��	�� �

commutes. Since in
*,�

is a coalgebra, we also have a map
�

going the other way, and since out is a final
coalgebra,

� % �
�
� � � � � � � � � � � � � � -/. � � � � � � � . Since in is an initial algebra, we know that

% � � � � � � � � � � � � � � � � �
-/. � � � � � � � . So in

*,� ��
out as coalgebras and out

*,� ��
in as algebras, internally.

Lemma 3.26. Assume identity extension and extensionality. Let
	 �3
 � 2 


in


out
�

be the initial dialgebra from
the proof of Theorem 3.24. Then

	 � 2 
 �3

out
*,� 


in
*,� �

is also an initial dialgebra internally.

Proof. In this proof, commutativity of diagrams is up to internal equality.
Suppose we are given a dialgebra

	 � � 
 � 2� 
���
�� 2 �
. We will show that there exists a unique morphism of

dialgebras from
	 � 2+
 �3


out
*,� 


in
*,� �

to
	 � � 
 �32��
���
�� 2 �

.
By Theorem 3.25, for all types

�
, in
*,� � 1 	�� � � ��	�� 
 1 	���� � is a final coalgebra for the functor

� ��
��	�� 
 � �

, and out
*,� � ��	 �3
 �32 �&���32

is an initial algebra for the functor
� �� ��	 1 	�� �"
 � � .

Let 	 be the unique map making the diagram

� 2� �
�
�

�
�

��	 � � 
 � 2� �
� � ��� � � �
�

1 	 � � � in �

�
� ��	 � � 
 1 	 � � � �

commute. Define
%

to be the unique map making

��	 �3
 �32 � out �

�
�

� � 
 � � ��� � �
�

�32
�

���	 1 	 � � �"
 � � �
� � � � ��� � � ��	 � 2� 
 � � � � � � �

(6)

commute. We define
% 2

to be 1 	 % � 
 	 and prove that
	 % 
 % 2 �

is a map of dialgebras. The first diagram of
Definition 3.21 is simply (6). Commutativity of the second diagram follows from commutativity of

� 2� �
�
�

�
�

��	 � � 
 � 2� �
� ����� � � �
�

1 	 � � �

 � � �
�

in �

�
� ��	 � � 
 1 	 � � � �

� � � � 
 � � � �
�

1 	 � 2 � in �

�
� ��	 � 2 
 1 	 � 2 � �"


(7)
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where commutativity of the last diagram follows from Lemma 3.20.
Finally, we will show that if

	 � 
 �'2 �
is another map of dialgebras from

	 � 2 
 �3

out
*,� 


in
*,� �

to
	 � � 
 � 2� 
���
�� 2 �

then
% � � � � �

�
�

and
% 2�� � �

�
� � � 2

. By the second diagram of Definition 3.21 we know that

�32� �
�
�

� �

�

��	 � � 
 �32� � � � � � � � � � ��	 �32 
 �32� �
� ����� � � � �
�� in �

�
� ��	 �32 
 � �

(8)

commutes. Clearly, if we substitute
�

for
%

in (7), we obtain a diagram that commutes by Lemma 3.20. So,
using the fact that in

*,�
is a final coalgebra on (8), we get

�'2 � � �
�
� � 1 	 � ��
 	 .

The first diagram of Definition 3.21 implies that

��	 �3
 � 2 � out �

�
�

� � 
 � � ��� � �
�

�32
�

���	 1 	 � � �"
 � � �
� � � � � � � � ��	 �32� 
 � � � � � � �

commutes. Comparing this to (6) we obtain
% � ��� � �

�
�

, by initiality of out
*,�

.

Theorem 3.27. Assuming identity extension and extensionality, for all types
��	�� 
 � �

where
�

occurs only
negatively and

�
only positively, there exists a type

�
and a map

� � ��	 �3
 � � ���
, such that

	 �3
 �3
 � 
 � *,� �
is

an initial dialgebra up to internal equality.

Proof. As usual commutativity of diagrams will be up to internal equality.
We have a unique map of dialgebras

	 % 
 % 2 � � 	 �3
 � 2 

in


out
��� 	 � 2 
 �3


out
*,� 


in
*,� �

We claim that
	 % 2 
 % �

is also a map of dialgebras from
	 �3
 � 2 


in


out
�

to
	 � 2 
 �3


out
*,� 


in
*,� �

. To prove this we
need to prove commutativity of the diagrams

��	 � 2 
 � � in �
� � � � � � �

�

�
� �

���	 �3
 �32 � out �

�
� � 2

� in �

�
�

�

�

��	 � 2 
 � �
� � � � � � �
�� 2 out � ��	 �3
 �32 �




but the fact that
	 % 
 % 2 �

is a map of dialgebras tells us exactly that

��	 �32 
 � � in �
� � � � � � �

�

�
�

���	 �3
 �32 � out �

�
� � 2

� in �

�
�

� �

�

��	 �32+
 � �
� � � � � � �
�� 2 out � ��	 �3
 �32 �"


and these two diagram are the same as the above but in opposite order. Thus, by uniqueness of maps of
dialgebras out of

	 �3
 � 2 

in


out
�
, we get

% � � � ��� % 2
. Since

	 % 
 % �
is a map between initial dialgebras,

%
is

an isomorphism.
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Now define
� � ��	 �3
 � �&���

to be in

 ��	 % *,� 
 -�. � � . Then clearly

	 -/. ��
 %
*,� �

is a morphism of dialgebras
from

	 �3
 �3
 � 
 � *,� �
to
	 �3
 � 2 


in


out
�
, since the diagrams proving

	 -/. ��
 %
*,� �

to be a map of dialgebras are

��	 �3
 � �
� � �

�

� �
� �
�
�

� � �
�

� �
���
�
�
�

���	 � 2 
 � � in � �
� �

���	 �32+
 � � in � �

�32 out �
�

�

�

�

��	 �3
 � 2 �
� � � � � �

�

� �
�� in �

�
�

�
�

� ���	 �32 
 � � � � � � � � � � ��	 �3
 � � �

Clearly the first diagram commutes, and the second diagram is just part of the definition of
	 % 
 % �

being a map
of dialgebras. Thus

	 -�. ��
 %
*,� �

defines an isomorphism of dialgebras from
	 �3
 �3
 � 
 � *,� �

to
	 �3
 � 2 


in


out
�
,

as desired.

Corollary 3.28. Assuming identity extension and extensionality, for all types
� 
 � � ��	�� 
 � �

, where
�

occurs
only negatively and

�
only positively, there exists a type

�
such that

��	 �3
 � � �� �
in each 
���� ����� � � .

Proof. The isomorphism is in

 ��	 % *,� 
 -�. � .

Notice that the closed terms
��� ��	 �3
 � �

and
��	 �3
 � �&� �

always exist, independent of the assumption
of parametricity. We use parametricity to prove that they are each others inverses.

4 LAPL-structures

In this section we introduce the notion of LAPL-structure. An LAPL-structure is a model of LAPL.
First, however, we call to mind what a model of PILL is and how PILL is interpreted in such a model

(for a full description of models for PILL and interpretations in these, see e.g. [17, 15, 2, 12, 5]).
A model of PILL is a fibred symmetric monoidal adjunction


���� ����� �
�

&&LLLLLLLLLL � 11
� ����� �
�

qq

zzttttttttt

� ����� 


such that 
���� ����� � is fibred symmetric monoidal closed; the tensor in
����� � is a fibred cartesian product;

����� � is equivalent to the category of finite products of free coalgebras for the comonad ��� on 
���� ����� � ;� ����� is cartesian; � has a generic object and simple products with respect to projections forgetting � , where
� is � of the generic object. See [15] for detailed explanation of this definition.

PILL is interpreted in such models as follows. A type
�

is interpreted as an object
� � � � � � 
 ��� ����� �

using the SMCC structure to interpret
� 
"� 
 �

and the comonad ��� to interpret
!
, and we interpret a term

5��� 56 � 5� 8 56 2 � 5� 2 �<; ���

as a morphism ! � � �,� � � � � � � � ! � � �'
 � � � � � � 2 � � � � � � ��� � � � 2: � � � � � � � �
in 
���� ����� � , where

!�� ��� . Notice that we denote the morphisms in 
���� ����� � by
�

.
The comonad structure on 
 ��� ����� � induced by the adjunction gives us two natural transformations

� �)!�� ! !
and 
 �)!�� -/. . These are defined in the internal language as

� � � � � 6 �)! ���
let
! �

be
6

in
! ! ��



 � � � � 6 �)! ��� let
! 3

be
6

in
3 �
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It turns out that we may interpret the intuitionistic part of the calculus, that is, the terms in the calculus with
no free linear variables, in

����� � . For suppose we are given such a term

4 � 56 � 5� 8 � �<; �'���

Then the interpretation of this term in 
 ��� ����� � is

� � 4 � 56 � 5� 8 � � ; ��� � � � � ( ! � � 4 � � ( � � � � � 4 � � � � �

Since
� ( ! � � 4 � � ( � � �� � 	 $ ( � 	 � � 4 � � ( � � � � ( � is strong) and

! � ��� , we have, using the adjunction ��� � ,
that such a term corresponds to

� � 4 � 56 � 5� 8 � �<; � �������	� � $ ( � 	 � � �'( � � ��� � 	 � � � � � �

in
����� � . It is easy to prove that

� � 4 ��� 8 � � 
 � ; � 6 � � � ���
��� �� � 4 ��� 
76 � � 8 � � 
 ��� � � �����	� 
 � -/.�� � ��
 ��� *�� � 
 � � 4 ��� 8 � �<; � � ���
��� �"


using Lemma 3.2.2 of [2].

Definition 4.1. A model of PILL � is a model of PILL, which models a fixed point operator

� �� ���
	�� ������� �

Definition 4.2. A pre-LAPL-structure is

1. a schema of categories and functors

���  �
�

��
 ��� ����� �
�

**UUUUUUUUUUUUUUUUUU
66

����� �
vv

$$JJJJJJJJJ

�

�

�
// � ���

�
��� ���$�

such that

� the diagram


���� ����� �
�

&&LLLLLLLLLL � 11
� ����� �
�

qq

zzttttttttt

� �����
is a model of PILL � .

� 
 is a fibration with fibred finite products
� 	 ��
 
 � is an indexed first-order logic fibration [5] which has products and coproducts with respect

to projections 4 � � � 4 in
� ����� [5], where � is � applied to the generic object of � .

� � is a faithful product-preserving map of fibrations.
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2. a contravariant morphism of fibrations:


���� ����� � ��������� 
���� ����� �
�

//

))TTTTTTTTTTTTTTT
� � �

zzvvvvvvvvv

� �����

3. a family of bijections

	 ��

������������	��3
�� 	 � 
 � � ������� � 	 ���  �"!$# � � � � �	� # � � ��� � �

for
�

and
�

in 
���� ����� � � and
�

in � � � � , which

� is natural in the domain variable
�

� is natural in
� 
 �

� commutes with reindexing functors; that is, if
	 � 4 2 � 4 is a morphism in

� ����� and � �%� �� 	 � 
 � �
is a morphism in � � � � , then

	 	 	 � 	 � � � � 	'&	�� � 	(	 	 � � �

where
&	

is the cartesian lift of
	
.

Notice that
	

is only defined on vertical morphisms.

By contravariance of the fibred functor
�

we mean that
�

is contravariant in each fibre. Since
�

is
uniquely defined by the requirements on the rest of the structure so we will often refer to a pre-LAPL
structure simply as the diagram in item 1. Strictly speaking, we should denote the bijection

	
by

	
�
� ! � � � �

since it depends on all these, but for ease of notation we simply write
	

.
We now explain how to interpret a subset of LAPL in a pre-LAPL structure. The subset of LAPL we

consider at this stage is LAPL without admissible relations and without the relational interpretation of types.
We interpret the full contexts of the considered subset of LAPL in the category � � � as follows. A

context
4 �%6 � � � � 
 � � � 6 
 � � 
 ��! � ��� ��
 	 � � 
 � 2� �"
 � � �%
$! : �#� ��
 	 � : 
 � 2: �

is interpreted as $ ( � � 	 � � � ( � � � � $*)+� 	 � � � ) � � 
 � � � 2) � � �"


where the interpretations of the types is the usual interpretation of types in 
 ��� ����� � � � ����� .
For notational convenience we shall write

� � 4 ������� �<; �'� � � for the interpretation of
;

in � � � , that is
for � 	 � � 4 ��� 8 � �<; �'� � � �����	� � 
-,

(note the subscript
����� � ), where

,
is the projection

, � � � 4 ������� � � � � � 4 �
� � ��� �
in � � � � � � � � .

The propositions in the logic are interpreted in
���  � as follows.

Let � ���'� � � � � denote the diagonal map, then

� � 4 ��6 �'�3
"� �����<6�� � � � � � �/.10 0 243 3 	 � �"
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where
�/. 0 0 243 3

denotes the left adjoint to reindexing along � . Now we can define

� � 4 �
� ��� �<;&� � � � � � � � � 4 ��� ��� ��; � � 
 � � 4 ��� ��� � � � � � � � � 4 ��6 �'�3
"� �����<6�� � � � � �

To interpret
� 6 � � (

�
� �

, recall that a context 4 �%6 � � � � 
 � � �9
76 
 � � 
 ��� is interpreted as

$ ( � � � � � ( � � � � � � � � 


where
� � � ( � � is the usual interpretation of types in 
���� ����� � and the product refers to the fibrewise product

in � � � . We may therefore interpret
��6 � � (

�
� �

using the right adjoint to reindexing along the projection

, � $ ( � � � � �'( � � � � � � � � � $ (��� ( � � � � � �'( � � � � � � � � �

Likewise,
��!
�#� ��
 	 � 
 ��� � �

is interpreted using right adjoints to reindexing functors related to the appropriate
projection in � � � . The existential quantifiers

� 6 � � (
�
� �

and
� !
� � ��
 	 � 
 ��� � �

are interpreted using left
adjoints to the same reindexing functors.

Quantification over types
����� �

and
� ��� �

is interpreted using respectively right and left adjoints to
&, �

where
&,

is the lift of the projection
,
� � � 4 
 � �������	� � � � � � 4 � � in � ���$� to � � � . To be more precise, one may

easily show that for 4 ��� ��� wellformed
� � 4 
 � ������� � � � , � � � 4 ������� � � using the corresponding result

for the interpretation of PILL � , and so the cartesian lift of
,

is a map:

&, � � � 4 
 � ��� ��� � � � � � 4 ��� ��� � �
and we define � � 4 ������� � ������� � � � $��� � � 4 
 ��������� ��� � � 


where
$��
� is the right adjoint to

&, �
.

Definable relations with domain
�

and codomain
�

in contexts 4 � � ��� are interpreted as maps from� � 4 ������� � � into
� 	 � � � � � 
 � � � � � � . The definable relation

4 ������� 
$!
��� ��
 	 � 
 � �&� !
�#� ��
 	 � 
 � �

is interpreted as the projection, and

� � 4 ��� ��� � 	+6 � � 
"� ��� � ��� ��� ��
 	 � 
 � � � � � 	 *,� 	 � � 4 ��� 
76 � � 
"� ������� � � � � � �

We now define the interpretation of
	 	+; 
 
 � , for a definable relation

	
and terms

;"
 
 of the right types. First,
for 4 ��� ��� �
	 ��� ��
 	 � 
 � � , we define

� � 4 ���&
76 � � 
"� ��� ��� �
	 	+60
"� � � � � 	 	 � � 4 �
� ��� ��	 ��� ��
 	 � 
 � � � � � �

Next, if 4 ��� � ; � � 
 
 ��� , then

� � 4 ��� ��� � 	 	+; 
 
 � � � ���� , 
 � � � 4 ��� ��� �<; � � 
 � � 4 ��� ��� � 
 � � ��� 
 , 2 � � � � 4 ���&
76 � � 
"� ��� ��� ��	 	+60
"� � � � 


where
,

,
, 2

are the projections

, � � � 4 ������� � � � � � 4 ��� � � , 2 � � � 4 ������� � � � � � 4 � � ��� � � �

One may think of the isomorphism
	

as a model-theoretic version of Lemma 2.27.
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To interpret admissible relations, we will assume that we are given a subfunctor � of
�

, i.e., a contravari-
ant functor � with domain and codomain as

�
and a natural transformation ��� �

whose components are
all monomorphic. Thus, for all

� 
 �
, we can consider � 	 � 
 � � as a subobject of

� 	 � 
 � �
. We think of � 	 � 
 � �

as the subset of all admissible relations (since the isomorphism
	

allows us to think of
� 	 � 
 � �

as the set of
all definable relations).

We may interpret the logic containing admissible relations by interpreting
%�� ������� ��
 	 � 
 � �

as � 	 � � � � � 
 � � � � � � .
Admissible relations are interpreted as maps into � 	 � 
 � � . For this to make sense we need, of course, to
make sure that the admissible relations in the model (namely the relations that factor through the object of
admissible relations) in fact contain the relations that are admissible in the logic. We need to assume that of
the functor � .

Definition 4.3. A pre-LAPL structure together with a subfunctor � of
�

is said to model admissible
relations, if � is closed under the rules of Figure 4 and Rule 2.18 holds.

Lemma 4.4. In the interpretation given above of the subset of LAPL excluding the relational interpretation
of types in a pre-LAPL structure modeling admissible relations, if

4 ��� 
76 � � ��� ��� ����� �3�

is a proposition in the logic, and
4 ��� ��; � �

is a term, then
� � 4 ������� � � � ; � 6 � �������3� � � � ��� , 
 � � 4 ������� � ; � � � � � 
 , 2 � � � � 4 ��� 
76 � � ��� ��� �#�����3� � � 


where
,

,
, 2

are the projections
, � � � 4 ������� � � � � � 4 ��� � � , 2 � � � 4 ������� � � � � � 4 � � ��� � � �

Proof. By induction on the structure of
�

. Cases
! 	 
 
 
 2 � and 
 � � 
 2 are easy from definitions, simply

using the fact that � � 4 ��� 
76 � � � 
 � ; � 6 � � �����
��� �� � 4 ��� 
76 � � � 
 �'� � � ���
��� 
 � , � � � 
 ��� * � � 
 � � 4 ��� �<; � � �����	� �
in the PILL model. The cases

� � � 2 
�� � � 2
, etc., are just the fact that the fibrewise structure of

���  � is
preserved by reindexing, and the cases of the quantifiers is by the Beck-Chevalley condition.

Lemma 4.5. For
� � 4 �
� ��� ��	 ��� ��
 	 � 
 � � � � � � � 4 ��� ��� � � � � 	 � 
 � �

and
; � �)2�� �

and 
 ���32'� �
,

� � 4 ������� � 	+6 � � 2 
"� ��� 2 � � 	 	+; 60
 
 � � � � � � � 4 ������� � � � � 	 � 2 
 � 2 � � � 	+; 
 
 � 
 � � 4 ��� ��� ��	���� ��
 	 � 
 � � � � �

Proof. This follows from Lemma 4.4 and naturality of
	

in
� 
 �

: Assume for simplicity that
�

and
�

are
empty.

Observe
� � 4 �%6 � � 2 �<; 6 � � � � ���
��� � � � 2������

�
// � ��� � 2

�
	 � � � � � 2
� �

// � � � � 	+; � , where � is the
unit of the adjunction � � � . Now

� � 4 � � � � � 	+6 � � 
"� �	� � � 	 	+; 60
 
 � � � � � 	 *,�
�
	 � � 4 �%6 � � 
"� �	� � � � 	 	+; 6�
 
 � � � � �

which using Lemma 4.4 and the calculation above gives
	 *,�
�
	 	+; � 
 � � 	 � � 4 ��6 � � 
"� � � � � �
	 	+60
"� � � � � � �� 	+;"
 
 ��
 	 *,�� 	 � � 4 ��6 � � 
"� � � � � � 	 	+6�
"� � � � �&� � 	+; 
 
 ��
 � � 4 � � � � �
	 ��� ��
 	 � 
 � � � � �
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Given a pre-LAPL structure modeling admissible relations, we may define a fibration


�������������� �!� � �� *��#

����������� � � � �



which we think of as a model consisting of admissible relations. We first define the category � ���	� � � � � �
by the pullback

��� �	� � � � � �
��� �

� � ���
��

// � � �

��� ���$� � � �����
#

// � ����� �

We write an object
�

in ��� �	����� � � � over
	 4 
 4 2 � as 4 
 4 2��&� . The fibre of 
 ��� ��� �	� � ����� �� *��# over

an object 4 
 4 2 ��� is

objects triples
	 ��
 � 
 � �

where
�

and
�

are objects in 
���� ����� � over 4 and 4 2 respectively and
�

is an admissible relation, i.e. a vertical map

� ��� � � 	 , � � 
 , 2 � � �

in � � � . Here
, 
 , 2

are first and second projection respectively out of 4 � 4 2 .
morphisms A morphism

	 ��
 � 
 � ��� 	 ��
 � 2 
 � 2 �
is a pair of morphism

	+; � ��� � 2 
 � ������� 2 �

in 
 ��� ����� � � and 
 ��� ����� � � � respectively, such that

	 	 ����� 	 	 � 	+; 
 � ��
 � � �"


where we have left the inclusion of � into
�

implicit.

Reindexing with respect to vertical maps
	 � � � � 2

in � � � is done by composition. Reindexing objects of

���� ��� �	��������� �� "�$# with respect to lifts of maps in

� ���$� � � ���$� is done by reindexing in the fibration
� � � � � ���$� . Reindexing of morphisms in 
����������������������! "�$# with respect to maps in

� ����� � � �����
is done by reindexing each map in 
���� ����� � � � ���$� . This defines all reindexing since all maps in
��� �	����� � � � can be written as a vertical map followed by a cartesian map.

Remark 4.6. In the internal language, objects of 
�������������� �!� � �� *��# are admissible relations

4 8 4 2 ��� ��	�� ������� ��
 	 � 
 � � �

A vertical morphisms in 
����������������������! "�$# from
	 � ������� ��
 	 � 
 � �

to
	 2 � ������� ��
 	 � 2 
 � 2 �

is a pair of
morphisms

� � � � �,2
,
��� ��� �32

in 
���� ����� � such that in the internal language the formula

� 6 � � 
"� ��� � 	�	+6�
"� � � 	 2 	 � 60
�� � �

holds (this follows directly from Lemma 4.4).
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There exist two canonical maps of fibrations:���
�

 ��� � ���	� � ����� �� *��#

��

� ���	� � � � � �

����
�

� �
//

� � //

���
�

 ��� ����� �

��� �����

����
� �

On the base category � � 
 � � map an object 4 
 4 2 �#� to 4 and 4 2 respectively. On the total category they
map

	 �)
 � 
 � �
to
�

and
�

respectively. In words, � �

and � � map a relation to its domain and codomain
respectively.

Lemma 4.7. The fibration 
 ��� � ���	� � ����� �� *��# � � ���	� � � � � � has products in the base, a generic
object and simple products with respect to projections in ��� �	� � � � � � forgetting the generic object. The
maps � � 
 � � preserve this structure.

Proof. The category ��� �	� � � � � � has products:

	 4 � 
 4 2 � ��� � � � 	 4 � 
 4 2 � ��� � � � 4 � � 4 � 
 4 2 � � 4 2 � � , � 	 � � � � , 2 � 	 �
�
�

(see [9, Proposition 9.2.1]).
The fibration has a generic object � 
 � � � 		� -/.�
 
�� -/.�
 � , since a morphism into this from 4 
 4 2 � � in

��� �	����� � � � consists of pairs of types
	 � � 4 � � 
�� � 4 2 � � � and a morphism from

�
to � 	�
� 
 
� � .

We now show that we have products with respect to projections forgetting the generic object. Given a
relation

4 
 � 8 4 2 
 � ��� 
$!
�&������� ��
 	��&
 � � ��	 �&������� ��
 	 �3
 � 2 �
we can define

4 
 4 2 ��� � � 	�� 
 � 
$!
� ���&�'� ��
 	�� 
 � � � � 	 �����&�'� ��
 	 	 $ � �������	� � � �"

	 $ � �������	� � � 2 � �

as � 	�� 
 � 
$!
��������� ��
 	��&
 � � � � 	 � 	+;"
 � � � ��� 
 � �������	� � ��!
�&������� ��
 	��&
 � � �
	+; � � 	 	 � � � �

We will to show that this defines a right adjoint to weakening. Suppose we have another relation

4 
 4 2 ��� � 1 �&������� ��
 	 � 
 � 2 � �

We will use the usual adjunction in 
 ��� ����� � , where a map 4 
 � � � � ; ��� � �
, with 4 � � �,�����	�

corresponds to
4 � � � 
;�� � � 6 � ��� 	 ���
	+;,6�� � � � $ ��� ���

We need to prove that
	+; 
 � � preserves relations iff

	 
; 
 
� � does, but it is clear that

4 
 � 8 4 2 
 � �%6 � � 
"� � � 2 ��� 
$!
�&������� ��
 	��&
 � ����6 1 � � 	+; 6�� 	�	 � � �

iff
4 
 4 2 ��6 � � 
"� � � 2 ��� ��6 1 � � � �&
 � � �����	� � ��!
�����&�'� ��
 	�� 
 � � �
	 
;,6 ��� 	�	 
� � � �"


which establishes the bijective correspondence between maps
, � 1 � 	� � �'� �'� ��� �'� �'�'� �'� ��� �'� �'� �

1 � � 	��&
 � 
$!
��� ��
 	�� 
 � � � � 	

proving that we have in fact defined a product.
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Lemma 4.8. The fibration 
�������������� �!� � �� *��# � ����������� � ��� has a fibrewise SMCC-structure and
the two maps � � 
 � � are fibred strict symmetric monoidal functors.

Proof. We prove that the constructions
�

,
�

on definable relations given in Section 2.2.2 define a fibre-
wise symmetric monoidal structure on 
�������������� �!� � �� *��# � ��� �	����� � � � . Notice that since � is
closed under the rules of Figure 4, Proposition 2.3 tells us that the constructions on definable relations of
Section 2.2.2 indeed do define operations on 
 ��� ��� �	� � ����� �� *��# � ��������� � � � � .

First we will prove that the two operators � � � 
 	 � � do in fact define functors on 
 ��� � ���	� � ����� �� *��# .
That is, we need to check that if

	+; � 
 
 � � �&	 � � 	 2 � 	+; � 
 
 � � ��	 � � 	 2 � 


then 	+; � ��;-� 
 
 � � 
 � � ��	 � � 	'� � 	 2 � � 	 2 � 


and, if
	+; 
 
 � ��	 2 � 	 2 2

, then 	+;�
 � 
 
 
 � � � 	 	 � 	 2 �&� 	 	 � 	 2 2 � �

To see that
�

defines a functor, suppose
6�	 	 � � 	 � � �

and
� 	 	 2 � � 	 2 � � ! � �

. We need to show that

! 	
let

3 � 3 2
be
	+; � � ; � � 	+6��

in
� 3 3 2 


let
3 � 3 2

be
	 
 � � 
 � � 	 � � in

� 3 3 2 � �

Recall that
	+; � ��;-� � 6 �

let 1 � 1 2 be
6

in
; � 1 � ;-� 1 2 in PILL. Notice then that

let
3 � 3 2

be
	+; � � ; � � 	 � �

in
� 3 3 2 �

let
3 � 3 2

be
�

in
� 	+; � 	�3 � ��	+; � 	�3 2 � �"


and 	 ��� 3 
63 2 � � 	+; � 	�3 � ��	+; � 	�3 2 � � � 	 	 � � 	 � � ! � 	 ��� 3'
63 2 ��� 	 
 � 	�3 � ��	 
 � 	�3 2 � � � �

The result now follows from the assumption that
6 	 	 � � 	 � � �

.
To prove that

	 � � is a functor, suppose
	 � 
���� � 	 � 	 2

and
	 	+60
"� �

. Then clearly
	 2 2 	+; 
 � 	+6��"
 
 
�� 	 � � � ,

as required.
We need to show that

	 � � is right adjoint to � � 	 , and that the adjoint components are natural in
	
.

Since we are given a similar adjunction in 
 ��� ����� � , all we need to show is that

	+;"
 
 � ��	 � 	 	 2 � 	 2 2 �

iff 	 
; 
 

 � ��	 � 	 2 � 	 2 2 


where

; 
 

 are the maps corresponding to

;"
 
 in the adjunction on 
���� ����� � . Suppose first that

	+;"
 
 � ��	 � 	 	 2 � 	 2 2 �
and
6 	 	 � 	 2 � � �

The definition of the latter says exactly that, for all
	+; 
 
 � ��	 � 	 	 2 � 	 2 2 �

, we must have
	 2 2 	 
; 6�
 

 � � .

Now, suppose
	 
;"
 

 � ��	 � 	 2 � 	 2 2

and
6&	 � ��6�2 	 2 ��2

. By Lemma 2.29
	 � 	�2�	+6�� 6�2 
"� � ��2 �

and so	 2 2 	 
; 	+6 � 6 2 �"
 

 	 � ��� 2 � � . Hence, since

; 	+6 � 6 2 �&� ; 6 6 2

(likewise for 
 ), we are done.
We now proceed to prove that the functors � � � 
 	 � � define a fibred SMCC structure on


���� ��� �	��������� �� "�$# � � ���	� � � � � � �

46



The unit in a fibre is
� '1)2+ ��������� ��
 	 �'
 ���

where
�

is the unit in the appropriate fibres of 
 ��� ����� � . The
maps giving the isomorphisms

	 � �,� 	 	 � �)� 	 � � � �� 	 	 � �)� 	 � � ��� 	 � �"
	 � �,������ 	 � �"
 	 � �)� 	 � � �� 	 � �)� 	 � �

are simply pairs of the corresponding maps in the fibrewise SMC-structure of 
 ��� ����� � . These maps satisfy
the coherence properties simply because the maps in 
 ��� ����� � do the same. One has to check that the maps
defined by pairing maps in fact define maps in 
 ��� � ���	� � ����� �� *��# , i.e., that they preserve relations.

One direction of the isomorphism
� ������ �

is given by the map
� � 6 � ���76 � �

. To see that this preserves
relations, suppose

6&	 �
. Since

�3��'*),+ �
,
	+6<� � � 	 	 � �0'*),+ � 	 � ��� �

by Lemma 2.29. For the other direction,
consider

� ��� � � � � �
given as

� � � � 6 ��� � � 6�2 � � �
let
�

be
6�2

in
6

. Then the map
� � � � �

is
simply


� �
, and we have proved earlier that it now suffices to prove that

� �
preserves relations. So suppose6&	 � ��6�2 �0'1)2+ ��2

. By definition of
6 2 �0'*),+ ��2

we can conclude that
	�	 � ��6 6�2 
 � � � ��2 �

.
The isomorphism

	 	 � 	 2 �,� 	 2 2 �� 	 � 	 	 2 � 	 2 2 �
is obtained using the adjunction as follows

	 	 � 	 2 �,� 	 2 2 � 	 2 2 2� � ��� �'� �'� �'� �'� ���	�
	 � 	 2 � 	 2 2 � 	 2 2 2�-� � ��� �'� �'�'� �'� ��� � �
	 � 	 	 2 � 	 2 2 ��� 	 2 2 2�-� � ��� �'� �'�'� �'� ��� � �
	 � 	 	 2 � 	 2 2 �&� 	 2 2 2

and it is easily seen that this isomorphism is given by pairs of the usual maps in 
 ��� ����� � . Likewise the
isomorphism

	 � 	 2 �� 	 2 � 	
comes from

	 � 	 2 � 	 2 2��� �'� �'�'� �'�%�
	 � 	 2 � 	 2 2��� �'� �'�'� �'�%�
	 2 � 	 � 	 2 2��� �'� �'�'� �'�%�
	 2 � 	 � 	 2 2 �

By construction, the functors � � 
 � � are fibred strict symmetric monoidal functors.

Lemma 4.9. The fibration 
���� ��� �	��������� �� "�$# � � ���	� � � � � � has a fibred comonad structure induced
by the functor

	 �� ! 	
. The maps � � 
 � � map this comonad to the fibred comonad

!
on the nose.

Proof. We need to check that
!

defines a functor, i.e., that if
	 � 
���� � 	 � 	�2

, then
	 ! � 
 ! ��� � ! 	 � ! 	�2

. It is
easy to see that ��6�
"� � ! 	 	 ! 60
 ! � � � ! 	 2 	 	 ! � � 	 ! 6��"

	 ! � � 	 ! � � �

since
	 ! � � 	 ! 6 �&� ! 	 � 	+6 � �

. Now the result follows from Rule 2.18.
The comonad maps are given by

	 
 
 
 � �&! 	 � 	
and

	 � 
 � � � ! 	 � ! ! 	
. These preserve relations by

Lemma 2.32, and the commutative diagrams of a fibred comonad are preserved since they hold for the
fibred comonad on 
���� ����� � � � ���$� .

Lemma 4.10. The fibration 
�������������� �!� � �� *��# � ��� �	����� � � � has natural transformations

� �)! 	 � � � ! 	 � �7� ! 	 � �"
 � �0! 	 � � � �0'*)2+

making it a fibred linear fibration. The maps � � 
 � � preserve this structure on the nose.
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Proof. The maps
� 
 � are given by

	 � 
 � �
and

	 � 
 � � , which preserve relations by Lemma 2.33. The necessary
diagrams commute by the same diagrams for the fibred comonad on 
���� ����� � � � ����� , and the functors� � 
 � � preserve the structure on the nose by construction.

If we define � ���	� � ����� �� *��# to be the category of finite products of coalgebras [15], we obtain a
PILL-model


 ��� ��� �	� � ����� �� *��#

**TTTTTTTTTTTTTTTT 00
� ��� �	��������� �� "�$#pp

uukkkkkkkkkkkkkk

��� �	����� � � �
and two maps of PILL-models � � 
 � � . This model need not be a PILL � -model, since for pre-LAPL-
structures

�
does not necessarily preserve relations.

Definition 4.11. An LAPL-structure is a pre-LAPL-structure modeling admissible relations, together with
a map of PILL-models � from


 ��� ����� �

&&LLLLLLLLLL
11

� ����� �qq

zzttttttttt

� �����
to


 ��� ��� �	� � ����� �� *��#

**TTTTTTTTTTTTTTTT 00
� ��� �	��������� �� "�$#pp

uukkkkkkkkkkkkkk

��� �	����� � � �
such that when restricting to the fibred linear categories, � together with � � 
 � � is a reflexive graph, i.e.,� � 
 � � � � 
 � � -�. .

In the following, we will often confuse � with the map of fibred linear categories from 
 ��� ����� � �� ����� to 
�������������� �!� � �� *��# � ��� �	����� � � � .
We need to show how to interpret the rule

� � 
 � � ��
 � 
 � ��	 5� � �������	� 4 ��� ��� � 	 � �&���&�'� ��
 	 � � 
 � 2� �"
 � � �9
 	 
 �&� ���'� ��
 	 � 
 
 � 2
 �
4 ������� � � � 5	 � �&������� ��
 	 ��	 5� �"
 ��	 5� 2 � �

in LAPL-structures.
Since � preserves products in the base and generic objects, � 	 � � 5� � ��	 5� � � � � is a relation from

��	 5� � to��	 5� � in context
� � 5� 8 5� � 5!
�&� ���'� ��
 	 5� 
 5� � � � . It thus makes sense to define

� � 5� 
 5� � � � 5!
��� ���'� ��
 	 5� 
 5� �&� � � 5! � � �
to be � 	 � � 5� ����	 5� � � � � , so all we need to do now is to reindex this object. We reindex it to the right ����� �
context using � 5� 
 5� 2 � � � � 4 � � � �

�

 


thus obtaining � � 4 � � � 5!
�&� ���'� ��
 	 5�)
 5� 2 ��� � � 5! � ��� ��
 	 ��	 5� �"
 ��	 5� 2 � � � � �
For 4 ��� ��� � 5	 �����&�'� ��
 	 5� 
 5� 2 � , we define

� � 4 �
� ��� � � � 5	 � �&���&�'� ��
 	 ��	 5� �"
 ��	 5� 2 � � � � �� � 4 � � � 5!
��������� ��
 	 5� 
 5�32 �&� � � 5! � � � 
 � � 4 �
� ��� � 5	 �&���&�'� ��
 	 5�,
 5�32 � � � �
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where by
� � 4 ������� � 5	 ��������� ��
 	 5� 
 5� 2 � � � we mean the pairing

� � � 4 ������� ��	 � � � 
 � � �%
 � � 4 ������� ��	 
 � � � �

Remark 4.12. To model a version of Linear Abadi & Plotkin Logic for unary or other arities of parametric-
ity as in Remark 2.2, the functor

�
should, have corresponding arity and the domain and codomain of the

bijection
	

should be changed accordingly. Furthermore instead of considering the fibration of binary rela-
tions 
���� ��� �	��������� �� "�$# � � ���	� � � � � � we should consider a fibration of relations of the appropriate
arity.

4.1 Soundness

In this section we prove that the interpretation of LAPL in LAPL-structures is sound. First, we present a
series of reindexing lemmas.

Lemma 4.13. If 4 ��� 
76 � �#��� ��� ����� �3�
is a proposition in the logic, and

4 ��� ��; � �

is a term, then

� � 4 ��� ��� � � � ; � 6 � � ��� �3� � � � ��� , 
 � � 4 ��� ��� �<; � � � � �"
 , 2 � � � � 4 ���&
76 � � ��� ��� �������3� � �
where

,
,
, 2

are the projections

, � � � 4 ������� � � � � � 4 ��� � � , 2 � � � 4 ������� � � � � � 4 � � ��� � � �

Lemma 4.14. If 4 ��� 
76 ��� � 	���� ��
 	 �3
 � 2 � is a definable relation in the logic, and

4 ��� ��; � �

is a term, then

� � 4 �
�&
76 ��� �
	 � � 
 ��� , 
 � � 4 ������� �<; � � � � �"
 , 2 �&� � � 4 ������� ��	 � ; � 6 � � � �

Notice that Lemma 4.13 differs from Lemma 4.4 since the latter only concerns the interpretation of the
part of the logic not including the relational interpretation of types.

Proof. The two lemmas above are proved simultaneously. We only include the proof of the former, for
which we only need to extend the proof of Lemma 4.4 to the case of

	 	 
 
 � � . But this follows easily by
induction using the latter lemma.

Lemma 4.15. If 4 ������� ��� �������3�
then

� � 4 ��� 
76 � � ��� � � ����� �3� � � � , � � � 4 ��� ��� � � �������3� � � 


where
,

is the obvious projection. Likewise, if 4 ������� ��	 ��� ��
 	 � 
 � � then

� � 4 ���&
76 � � ��� � 	��#� ��
 	 � 
 � � � � � � � 4 ������� ��	���� ��
 	 � 
 � � � � 
 , 


where
,

is the obvious projection.

Proof. The lemma can be proved in a way similar to Lemmas 4.13 and 4.15.

49



Lemma 4.16. If 4 � � �������	� then

� � 4 ��� � � � � � ��� � � � � � ��� � � � � � � � � � -�. � � � � � 
 � � � � � �
� � � 4 
 � �������	� �
� ��� ��� � � 


and � � 4 ��� � � � � � ��� � � � � � ��	 � � � � � � � � � -�. � � � � � 
 � � � � � � � � � 4 
 � �������	� �
� ��� ��	 � � 


where the vertical line in
� -/. � � � � � 
 � � � � � � denotes the cartesian lift.

Proof. We know that

� � 4 �
� � � � � � ��� � � � � � � � � � -/. � � � � � 
 � � � � � � � � � 4 
 � � �����	� ������� � �
since the corresponding statement holds in the PILL-model and the functors � 
 � 
 � commute with reindex-
ing.

Now one proceeds by simultaneous induction on
�

and
	

. For
	 � !

and for
	 � � � 5	 � one uses that

	
commutes with reindexing. For

��� � � � � 2 one uses the Beck-Chevalley condition, as is also done for the
cases of

�
and

�
. The remaining cases either follow by induction or from the fact that the fibrewise structure

in
� �  � (

� 
 �
, etc.) is preserved by reindexing.

Lemma 4.17. If 4 ������� ���
then

� � 4 ��� ��� � � � � � , �
�
� � �

�
� � 4 
 ����� ��� � � � � �

Likewise, if If 4 ������� ��	 then

� � 4 ������� ��	 � � � , �
�
� � �

�
� � 4 
 ����� ��� � 	 � � �

Proof. By simultaneous induction.

Lemma 4.18. If 4 ������� ��	 ��� ��
 	 �3
 � 2 � is a definable relation and

4 ������� 
$!
��� ��
 	 �3
 � 2 ������


then � � 4 ��� ��� � � � 	 � ! � � � � 	 � -�.�� � � 
 � 
 �
� � 
 � � 	 � � � � � � � 4 ������� 
$!
��� ��
 	 �3
 � 2 �&��� � � �

Likewise, If 4 ��� ��� �
	���� ��
 	 �3
 � 2 � is a definable relation and

4 ��� ��� 
$!
��� ��
 	 �3
 � 2 ����	 2 ��� ��
 	 � 
 � 2 �"


then � � 4 �
� ��� 
$!
��� ��
 	 �3
 � 2 ��� 	 2 � � 
 	 � -/. � � ��
 � 
 �
� � 
 � � 4 ������� ��	 � � � � � � � 4 ������� ��	 2 � 	 � ! � � � �

The same holds for substitution of admissible relations.

Proof. By simultaneous induction on
�

and
	 2

, using naturality of
	

, Beck-Chevalley and the fact that the
fibrewise structure in

�����3�
is preserved by reindexing.

50



Lemma 4.19. If 4 ������� ���
is a proposition then

� � 4 ������� 
$!
��� ��
 	 � 
 � � ��� � � � , � � � 4 ������� ��� � � 


where
,

is the obvious projection. Likewise, if 4 ������� ��	 ��� ��
 	 �02+
 �32 � is a definable relation then

� � 4 ������� 
$!
��� ��
 	 � 
 � �&� 	 � � � � � 4 ��� ��� � 	 � � 
-, 


where
,

is the obvious projection. The same holds for substitution of admissible relations.

Proof. Again by simultaneous induction.

Theorem 4.20 (Soundness). The interpretation given above of LAPL in LAPL-structures is sound with
respect to the Rules and Axioms 2.9-2.26.

Proof. Rules 2.9-2.16 hold since the interpretation of quantification is given by adjoints to weakening,
considering Lemmas 4.15, 4.17, 4.19 above.

Rules 2.4-2.7 hold since substitution corresponds to reindexing as in the lemmas above.
Rule 2.8 is proved exactly as in [5].
Rule 2.17 holds since externally equal maps are interpreted equally in the model, by soundness of the

interpretation of PILL � . Clearly internal equality is an equivalence relation.
Rule 2.18 is required to hold in Definition 4.3.
Rules 2.19-2.24 all hold since � preserves SMCC-structure, generic objects, simple products and

!
.

To prove soundness of Rule 2.25, it suffices to prove soundness of

4 ���&
76 � � 
"� ������� ��� �
	 	+6 � � 
"� ��� � ����� 	+6�
"� � �
� �)


but � � 4 ��� 
76 � � 
"� ��� ��� � 	 	+6 � � 
"� ��� � ����� 	+6�
"� � � � � 	 	 � � 4 ������� � 	+6 � � 
"� ��� � ��� � � �&�	 
 	 *,� 	 � � 4 ��� 
76 � � 
"� ������� � � � � � � � � 4 ��� 
76 � � 
"� ��� ��� ��� � � �
To prove Axiom 2.26, notice that � is required to be a functor. This means that it maps

� � � � � � � �� � $ ���
	�� ��� ��� � � � to a morphism from
� '1)2+

to the relational interpretation of
$ ���
	�� � ��� � �

.
By the requirement, that

	 � 
 � � 
 � � � is a reflexive graph, this map must be
	 � � � � � 
 � � � � � � . Since

�3� '*),+ �
and� � � � � 	 � � � � we get

� 	 $ ���
	�� ����������� �
.

4.2 Completeness

Theorem 4.21 (Completeness). There exists an LAPL-structure with the property that any formula of LAPL
over pure PILL � holds in this model iff it is provable in LAPL.

Proof. We construct the LAPL-structure syntactically, giving the categories in question the same names as
in the diagrams of the definitions of pre-LAPL- and LAPL-structures.

� The category
� ����� has as objects sequences of the form

� � �'�����	��
 � � �%
 � 
 �������	��


where we identify these contexts up to renaming (in other words, we may think of objects as natural
numbers). A morphism from 4 into

� � �������	��
 � � ��
 � 
 �������	�

is a sequence of types
	 � � 
 � � �9
 � 
 �

such that all
� (

are well-formed in context 4 .
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� Objects in the fibre of 
���� ����� � over 4 are well-formed types in this context. Morphisms in this fibre
from

�
to
�

are equivalence classes of terms
;

such that 4 � � 8 6 � � � ; ��� , where we identify terms
up to external equality. Equivalently, we may think of morphisms as terms 4 � � 8 � � ; � � � �

.
Composition is by substitution, and reindexing with respect to morphisms in

� ����� is by substitution.

� Objects in the fibre of
����� � over 4 are well-formed sequences of types in this context. Morphism in

this fibre from
� � 
 � � �9
 � 


to
� � 
 � � ��
 � :

are equivalence classes of sequences of terms
	+; ( � (�� :

, such
that for each ( the term

4 � 56 � 5� 8 � �<; ( �'� (

is well-formed, where the sequences
	+; ( �

and
	+; 2( � are identified if, for each ( , ;7( is externally equal to; 2( . Reindexing with respect to morphisms in
� ����� is by substitution.

� The functor 
���� ����� � � ����� � maps a morphism � 8 6 � ��� ; ��� to
6 � � 8 � � ; ��� . The functor

going the other way maps a sequence of objects
	 � ( �

to
� ( ! � (

. It maps a morphism
	+; ( �

from
	 � ( �

to	 � ( �
to

4 � � 8 � � � ( ! ��(,� let
� (�6 2( � � ( ! ��(

be
�

in let
! 56 be 56 2 in � ( ! ; ( �

For further details of the term model for PILL see [2].

� The category � � � has as objects in the fibre over 4 well-formed contexts of LAPL: 4 � � �#� . A
vertical morphism from 4 �
� ��� to

4 ��� 2 ��! � ��� ��
 	 � � 
 � � �"
 � � �%
$! 
 �#� ��
 	 � 
 
 � 
 �"
�% � �&���&�'� ��
 	 � 2 � 
 � 2� �"
 � � �%
�% : ��� ���'� ��
 	 � 2: 
 � 2: �

is a triple, consisting of a morphism 4 ��� � 4 ��� 2 in the sense of morphisms in
����� � , a sequence

of definable relations
	 	 � 
 � � ��
 	 
 �

, and a sequence of admissible relations
	 1 � 
 � � �9
 1 : � , such that

4 � � ��� � 	 ( ��� ��
 	 � ( 
 � ( � and 4 � � �&� � 1 ( ��������� ��
 	 � 2( 
 � 2( � . We identify two such morphisms
represented by the same type morphism and the definable relations

	 	 � 
 � � �9
 	 
 �
and

	 	�2 � 
 � � ��
 	 2
 �
and admissible relations

	 1 � 
 � � ��
 1 : � and
	 1 2 � 
 � � ��
 1 2: � , respectively, if, for each ( 
�� , the formulas	�($� 	 2( and 1 ) � 1 2) are provable in the logic, where, as usual,

	 ( � 	 2( is short for

��6 � � ( 
"� ��� ( � 	 ( 	+6 ( 
"� ( � �
� 	 2( 	+6 ( 
"� ( �"


and likewise for 1 ) � 1 2) . The inclusion functor
�

is the obvious one. Reindexing is by substitution.

� The fibre of the category
� �  � over a context 4 � � � � has as objects formulas in that context,

where we identify two formulas if they are provably equivalent. These are ordered by the implication
in the logic. Reindexing is done by substitution, that is, reindexing with respect to lifts of morphisms
from

� ����� is done by substitution in type-variables, whereas reindexing with respect to vertical maps
in � � � is by substitution in term variables and relation variables.

An easy fibred version of the completeness proof in [2] shows that
� ����� 
 ����� � 
 
���� ����� � together with

the functors described above form a PILL � model. The fibration � ��� � � ����� clearly has fibred products
formed by appending contexts, and the inclusion functor

�
is clearly faithful and product-preserving.

We need to prove that
���  � � � � � � � ����� is an indexed first-order logic fibration with products

and coproducts with respect to simple projections in
� ����� . The fibrewise bicartesian structure is given by	 
 � 

� 
 � 
 �

. Fibred simple products and coproducts are given by quantifying over relations and variables,
simple products in the composite fibration is given by quantifying over types. We can in fact prove that the
composite fibration has all indexed products and coproducts (in particular, that it has equality).
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Suppose
	 5; 
 5	 � represents a morphism from 4 � 56 � 5� � 5! to 4 � 5� � 5� � 5% (the vectors 5! 
 5% consist of

both definable and admissible relations, and the vector 5	 is a concatenation of the corresponding vectors
of admissible and definable relations from the definition above). We can then define the product functor in���  � as: $ � �� � �� �

	 4 � 56 � 5! ����	 560
 5! � �&�
4 � 5� � 5% � � 56 � � 5! 	 5; 56 � 5� �
	 5	�	 560
 5! � � 5%�� � � 	 56 
 5! � � �

We define coproduct as:
� � �� � �� �

	 4 � 56 � 5! ����	 560
 5! � �&�
4 � 5� � 5% � � 56 � � 5! � 5; 56 � 5� � 5	�	 560
 5! � � 5% � ��	 560
 5! � � �

We remark that the equality we will actually be using in the model is the obvious
	 4 ��� 
76 � � ��� � � � �� 	 4 ��� 
76 � � 
"� � � ��� � ����6���� � �

The functor
�

of item 2 is defined as
� 	 � 
 � � � !
��� ��
 	 � 
 � �

and � 	+; � � � � 2 
 � ��� ��� 2 �&� 4 �"!
�#� ��
 	 � 2 
 � 2 ��� 	+6 � � 
"� ��� � �$! 	+; 6�
 � � � �
The required isomorphism

	
is just the isomorphism given by Lemma 2.27. The functor � is defined as

� 	 � 
 � � � !
�&���&�'� ��
 	 � 
 � �

and
� 	+; � � � � 2 
 � ����� � 2 ��� 4 ��!
�����&�'� ��
 	 � 2 
 � 2 �&� 	+6 � � 
"� ��� � �$! 	+; 6�
 � � � �

We have defined a pre-LAPL-structure modeling admissible relations. If we construct ����������� � ��� as in
the definition of LAPL-structure, we obtain:

Objects 5� 
 5� ����� 5! �&���&�'� ��
 	 5��	 5� �"
 5� 	 5� � �"
 5! 2 �#� ��
 	 5� 2 	 5� �"
 5� 2 	 5� � � .
Morphisms A morphism from

5� 
 5� ��� � 5!
� ������� ��
 	 5��	 5� �"
 5� 	 5� � �"
 5! 2 ��� ��
 	 5� 2 	 5� �"
 5� 2 	 5� � �

to
5� 2 
 5� 2 ��� 2 � 5%���������� ��
 	 51 	 5� 2 �"
 5� 	 5� 2 � �"
 5% 2 �#� ��
 	 51 2 	 5� 2 �"
 5� 2 	 5� 2 � �

consists of two morphism in
� ����� :

5� � 5� � 5� 2

and
5
� � 5� � 5� 2 


a morphism from 5� 
 5� � �
to 5� 
 5� � ��2 � 5� 
 5

� � 5�)2 
 5� 2 � in 
 ��� ����� � ���� �� , and a sequence of
admissible relations 5	 and a sequence of definable relations 5	�2 such that, for all i,j,

5� 
 5� ��� � 5! �&���&�'� ��
 	 5��	 5� �"
 5� 	 5� � �"
 5! 2 �#� ��
 	 5� 2 	 5� �"
 5� 2 	 5� � � ��	 ( �&���&�'� ��
 	 1 ( 	 5� �"
 � ( 	 5
� � �

5� 
 5� ����2)� 5!
��� ���'� ��
 	 5��	 5���"
 5� 	 5� � �"
 5! 2 ��� ��
 	 5� 2 	 5� �"
 5�32�	 5� � �&��	�2)���� ��
 	 1 2) 	 5� �"
 �
2) 	 5
� � � �

As in � ��� these morphisms are identified up to provable equivalence of the definable rela-
tions.
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The fibre of 
�������������� �!� � �� *��# over an object 5� 
 5� ��� ��!
��������� ��
 	 5��	 5� �"
 5� 	 5� � �"
 5! 2 �#� ��
 	 5� 2 	 5� �"
 5�32 	 5� � �
in ��������� � � � � becomes:

Objects Equivalence classes of definable relations

5� 
 5� � 5� �"!
� ������� ��
 	 5��	 5� �"
 5� 	 5� � �"
 5! 2 �#� ��
 	 5� 2 	 5� �"
 5� 2 	 5� � �&��	 �&������� ��
 	 ��	 5���"
 � 	 5� � � �

Morphisms A morphism from
	 ��� ���'� ��
 	 ��	 5���"
 � 	 5� � � to

	 2 � ���&�'� ��
 	 � 2 	 5� �"
 � 2 	 5� � � is a pair of mor-
phisms

; � � � � 2
, � ����� �32

such that it is provable in the logic that:

��6 � ��� ��� �'��� 	 	+60
"� � � 	 2 	+; 60
 � � �

We will construct the map � as a map of fibred linear categories from 
���� ����� � � � ���$� to


 ��� � ���	� � ����� �� *��# � ����������� � ���
as follows. On the base categories � is defined on objects as

� 	�� � 
 � � ��
 � 
 �&� � � 
 � � �9
 � 
�8 � � 
 � � ��
 � 
 ��! � �&������� ��
 	�� � 
 � � �"
 � � �9
$! 
 � ������� ��
 	�� 
 
 � 
 � �

We define � on the objects of the total categories (and on the morphisms of the base category) as

� 	 5� � � �������	�
�&� 5� 
 5� � 5!
�&���&�'� ��
 	 5� 
 5� � � � � ! � �&������� ��
 	 ��	 5���"
 ��	 5� � � �

To define � on morphisms of the fibre categories, suppose 5� � � 8 � ��; � � � �
. We define � 	+; � � 	+; 
7; � .

To see that
	+; 
7; �

in fact is a map from
� � 5! � to � � 5! � , notice that the Logical Relations Lemma (3.3) tells us

that 	 5���7; 	 $ 5� � � ��� � 	 5� �7;"


which means exactly that
	+; 
7; � � � � 5! � � � � 5! � .

Rules 2.19-2.24 tell us that � is a strict fibred symmetric monoidal closed functor preserving products
and
!
on the nose. Since the 
 and

�
of the fibred comonad on 
 ��� � ���	� � ����� �� *��# � ����������� � ��� are

simply
	 
 
 
 � and

	 � 
 � �
it is clear that � preserve these as well.

Now, by definition, a formula holds in this LAPL-structure iff it is provable LAPL.

5 Parametric LAPL-structures

Definition 5.1. A parametric LAPL-structure is an LAPL-structure with very strong equality in which
identity extension hold in the internal logic.

Recall that very strong equality implies extensionality. We ask that identity extension and extensionality
hold because this means that all the results from Section 3 apply to the internal logic of the LAPL-structure.
Strong equality will be used to conclude that properties proved in the internal logic also hold externally,
as exemplified in the following subsection, where we show how to solve recursive domain equations in
parametric LAPL-structures.
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5.1 Solving recursive domain equations in parametric LAPL-structures

Suppose we are given a fibred functor


 ��� ����� � ��� � 
 ��� ����� �
�

//

))SSSSSSSSSSSSSS

���� ����� �

xxrrrrrrrrrr

� ����� 


where by
	 � � ��� we mean taking the opposite category in each fibre. As in [5] we can easily prove that �

is isomorphic to a functor whose object part is given by some type
� � 
���� ����� � 
�� , since 
 ��� ����� � ��� �


���� ����� � � � ����� has as generic object � � � in
� ���$� . So in the following we shall assume that � is

on that form.

Definition 5.2. An endofunctor
� ��� ��� � � ���

, for
�

an SMCC, is called strong if there exists a natural
transformation

; � � � � � � � ��� � � � � � 	 �32 � � � � 	 � 2 
 �32 � � � � � � �
preserving identity and composition:

��� � � � � � ���
2
�

�� ��� � �JJJ
JJJ

JJ
JJ

J
� � ��� �

� �
	 2 	 �
	 2�� 	 � 
 � � � � � � ���

	 � � � � 	 � 2 � � �)� 	 	 � 2 � � � � � 	 � 2 2 � � � ��� � : � �
� � �
�

� � � � � 	 � 2 2 � �
�
�� 	 � 2+
 �32 � � � � � � � � � 	 � 2 2 
 �32 2 � � � � � � � � � � �

: � � � 	 � 2 2 
 � 2 2 � � � � � ��� �

The natural transformation
;

is called the strength of the functor
�

. (Note that we here used exponential
notation 
 � for the closed structure in

�
.)

One should note that
;

in the definition above represents the morphism part of the functor
�

in the sense
that it makes the diagram

� �� � � � �
�� � � � � � �JJJJJJJJJJJ

� � � � 	 � 2 � �
�
�
	 2 	 � � 	 2 ��� 	 � 2 
 � 2 � � � � � ���

commute, for any pair of morphisms
� � � 2 � � 
������<� � 2

. This follows from the commutative diagram

�
�� �

����� � ����FF
FF

�FFFF

�� � � �
�

� � ��� � �
�

�����
�

2
�

� 	 � 
 � � � � � � � �
� � � � �

� ��� �
	 2��
�� � � 	 � 2 � � �

� � 	 � 2 
 � 2 � � � � � � � �

Definition 5.3. A strong fibred functor is a fibred functor

� ��� � �

##HHHHHHHHH

�
// �

��~~
~~

~~
~

�
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on a fibred SMCC, for which there exists a fibred natural transformation
;

from the fibred functor
	 � � � * � �

	 � 2 � � * � �
to

� 	 � 
"� 2 �
� � � � * � �

satisfying commutativity of the two diagrams of Definition 5.2 in each fibre.
The natural transformation

;
is called the strength of the functor

�
.

Definition 5.4. We will say that the fibred functor


���� ����� � ��� � 
���� ����� �
�

//

))SSSSSSSSSSSSSS

 ��� ����� �

xxrrrrrrrrrr

� ���$�
assumed to be defined on objects as

� 
 � �� �
for some

� � 
 ��� ����� � 
 � as above, is polymorphically
strong if there exists a closed term

; � $ � 
 � 
 � 2 
 � 2 �
	�� 2 � ����� 	 � � � 2 ��� ��	��&
 � � � ��	�� 2 
 � 2 �

such that the family
	+; � � � 2 � 2 � � ��� � � � � � � ����� ��� �����	��� (each fibre to the

�
’th power) is a strength of the functor�

in the sense of Definition 5.3. The term
;

is called the polymorphic strength of � .

For example, the interpretation of any inductively constructed type induces a polymorphically strong
fibred functor as described in Section 3.6.

Theorem 5.5. In a parametric LAPL-structure, for any polymorphically strong fibred functor � there exists
a closed type

�
such that � 	 �3
 � � �� � in 
���� ����� � � for � the terminal object of

� ����� .

Proof. The proof of the earlier sections give us this result in the internal language, since we may use identity
extension and extensionality in the internal language. The functorial interpretation of types of Section 3.6
should be substituted by the polymorphic strength of the functor � . Since internal equality implies external
equality, we get the result in the “real world”.

Remark 5.6. Since the functor � is fibred, we may reindex
�

to get a family of objects
	 ! �
�
� �
�
� ������� such

that for each 4 ,
! �
�
�

satisfies � 	 ! �� �3
 ! �� � � �� ! �� � in the fibre, where
!
� is the unique map 4 � � in

� ���$� .

Remark 5.7. Parametric LAPL-structures do not in general model recursive types, that is, we do not have
for all types

� � 
���� ����� � 
 a type
�

such that
��	 � � �� �

.

6 Concrete Models

In this section we describe a parametric LAPL structure based on admissible pers over a universal domain
as advocated by Plotkin [20]. Pers are known to model the typed

�
-calculus, and admissible pers further

facilitates a fixed point operator.
As noted in Section 4, to model PILL one has to provide a fibred symmetric monoidal adjunction. We

do this by constructing a regular symmetric monoidal adjunction and then define the fibration pointwise.
The standard example is a lifting functor and a forgetful functor. This is also the case here albeit slightly

obfuscated, as lifting is coded in the language of the universal domain. This is an adaptation of [10].
Finally, to be able to model polymorphism, the entire construction is done fibred. Parametricity is then

ensured by a yet-to-be-described completion process, but first we present the “clean” version:
Let � be a reflexive cpo, i.e. a pointed 1 -chain-complete partial order such that we have

� � � � � � � ��� 	�

� 	 � � � � ��� � � 
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both Scott-continuous and satisfying
� 
 	 � ( � � � � � �

where
� � � ��� denotes the cpo of continuous functions from � to � . We assume, without loss of

generality, that both
�

and
	

are strict. It is standard that there exists strict continuous functions

��� 
 � � � � � � � � 
 , � � � � and
, 2 � � � � 


such that for all
� 
 � 2 � � : , � � 
 � 2 ��� �

and
, 2 � � 
 � 2 ��� � 2 �

We use � to denote
	 	 ( � � � � � � � . Notice that

� 	 � ��� ( � � � � � � .
Definition 6.1. An admissible partial equivalence relation on � is a partial equivalence relation

!
on �

satisfying

strict
� � ! � � ,

1 -chain complete For
	+6 
 � 
 ��


and
	 �	
�� 
 ��
 1 -chains in � :

	 �
�

� 1 � 6 
 ! � 
 � � �

 �	
 6 
 !

�

 �	
 � 
 


Definition 6.2. For
!

and
%

pers on � , define the set of equivariant functions from
!

to
%

as

� 	 ! 
�%�� ��� � � � � � ��� � 6 ! � � � 	+6�� % � 	 � �	�

and the set of strict equivariant functions from
!

to
%

as

� 	 ! 
�%���
#��� � � � 	 ! 
�%�� � � 	 � � ��� � � � �

Note
� 	 ! 
�%���
�
�� 	 ! 
�%��

.

Definition 6.3. For
!

and
%

pers on � , define on
� 	 ! 
�%��

or
� 	 ! 
�%���


the equivalence relation � ' � � by

� � ' � � ��� � � � � � � ! � � � 	 � � %�� 	 � �

We write
��� � 	 � � for the category of partial equivalence relations over � . Recall that it has par-

tial equivalence relations over � as objects and that a morphism
� � � ��! � %

is an equivalence class in� 	 ! 
�%�� � � ' � � . Elements of
� � � are called realizers for

� � � .
Definition 6.4. We define the category � � 	 � � of admissible partial equivalence relations over � as the
full subcategory of

��� � 	 � � on the admissible pers.

Lemma 6.5. There is a faithful functor
� �

	 
�
 � 
 � � � 	 � � ��� � � mapping an admissible per to the set of
equivalence classes and an equivalence class of realizers to the map of equivalence classes they induce.

Proof. This is well-defined since to realizers are equivalent precisely when they define the same map of
equivalence classes.

Theorem 6.6. The category � � 	 � � is a sub-cartesian closed category of
��� � 	 � � .
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Proof. We recall the constructions. It is straightforward to verify that the resulting pers are admissible. The
terminal object � is the admissible per defined by

� � � 2 � � � � � � � 2 �

The binary product of
!

and
%

is � � � 
 �
�
��! � % � �	2 � 
 � 2

�
��

� � ! � 2 � � �
�
% � 2

�

This is an exhaustive description, understood that only pairs are related in the product. The exponential of!
and

%
,
% '

, is given by
� % ' � 2 � � 	 � � � ' � � � 	 � 2 � �

Definition 6.7. The category � � 	 � � 
 of admissible pers and strict continuous functions is the full-on-
objects subcategory of � � 	 � � with morphisms

� � � �&! � %
equivalence classes in

� 	 ! 
�%�� 
 � � ' � � .

Note that in � � 	 � � 
 , morphisms are required to have a strict continuous realizer.

Theorem 6.8. � � 	 � � 
 is a cartesian sub-category of � � 	 � � .
Proof. Obvious using that

,
,
, 2

, and
��� 
 � �

are strict.

Theorem 6.9. The category � � 	 � � 
 is symmetric monoidal closed.

Proof. The tensor of
!

and
%

is

� � ��
 �
�
��! � % � �	2 � 
 � 2

�
��

� � � 
 �
�
��! � % � �	2 � 
 � 2

�
�

	� � � ! � � � �
�
% �

�
� � 2 � ! � 2 � � � 2

�
% � 2

�
�

	 � � ! � � 	 �
�
% � � � � 	 � 2 � ! � � 	 � 2

�
% � � ���

This complicated looking definition is most easily understood through the functor
� �

	 
�
 � 
 : The equivalence
classes of the tensor product are those of the product with the modification that all pairs where one of the
coordinates are related to

� � has been gathered in one big equivalence class. It can thus be seen as a
quotient of the product.

The unit of the tensor
�

is defined by

� � � 2 � � � � 2 � � � 	 � � � 2 � � � 
 � � � �

This definition is not taken out of the blue.
�

is actually in the image of a lifting functor to be defined later.
Notice the “if construct” on

�
, which will be available on all lifted relations:

� � � � � � � � 	 � � � � 
 � � �
� ,�	 � �&� � � 	 ,�	 � �&� �
� � 	 ,�	 � � �&� � � � � � � 	 � 	 ,�	 � � �&� ( � � � � � �
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Thus for
� � �

,
� 	 ,�	 � � � 	 � 2 �

can be read as “if
� �� � � then

� 2
else

� � ”. We will use this to construct
realizers.

The exponential of
!

and
%

,
! � %

, is given by
� ! � % � 2 � � % ' � 2 � 	 � 2 2 ! � � � � 	 � � 	 � 2 2 � % � � % � 	 � 2 � 	 � 2 2 � �

The proof consist of a series of straightforward verifications.

For later use we shall mention how regular subobjects look in this category. We use ��� !
to express

that � is a regular subobject of
!

, if
!

is an admissible per.

Lemma 6.10.
��� ! � � �

	 
 
 � 
 	 � � 
 �
�

	 
�
 � 
 	 ! � � � � � � � 	 � � 	 � ��
 �

Proof. In
� � � 	 � � there is a standard way of constructing an equalizer out of a subset of the equivalence

classes. This also works here, and the image of an equalizer is easily seen to be admissible. Thus all regular
subobjects have a representative, which is tracked by the identity on � .

We also need to know the following fact about admissible pers

Lemma 6.11. If
�

is an arbitrary set, and for all ( � � , ! ( is an admissible per over � then
�
( ���

! (

is an admissible per over � .

Proof. We intersect relations, which may be seen as sets of pairs. Thus we have the following equation

� �
( ���

! ( � 2 � � ( � � � � ! ( � 2

which makes the statement obvious, as all
! (

are admissible.

6.1 The connection to CUPERs

In [1] Amadio and Curien show how complete uniform pers over a universal domain allows on to solve
domain equations on the per level. As we claim, the same is true for admissible pers, a comparison is
natural.

There are, however, some technical issues which makes this a little difficult.
Cupers are defined over a universal solution to the domain equation

� � � 	 � ��� 	 ��� � ��� 	 � � � �

In the category
�
	�� ( �

of pointed directed complete partial orders and injection-projection pairs. It is known
that � is then the colimit of the 1 ��� -chain

� � �
�

// � �
�
�

// � � �
� � �

//
� � �

Denoting
� 
 � by � 
 we have by the cocone property fo each � the diagram:

� 
 ( � 55

 �
) �

tt

Defining � 
 � ( 
 
 � 
 � � � � we can define a cuper on � as a relation
! 
 � � � such that
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� If � 
 !
and � 
�� ( � � � � then

� � � !
.

� If
� ! � then for all � , � 
 	 � ��! � 
 	 � � .

So apart from using directed-complete rather than chain-complete cpos and living on a universal domain
solving a slightly different domain equation, cupers live on a domain with a known structure, and this
structure appears in their definition.

Thus the only reasonable way to compare the two notions is to consider a suitably adapted notion of
admissible pers over the above described � . We then find, that the cupers form a proper subset of the
admissible pers.

It is noticeable, that cupers facilitate an ordering of the equivalence classes and thus allows one to solve
recursive domain equations, while admissible pers achieve this by modeling polymorphic

�
-calculus and

calling upon parametricity2 . Hence the two approaches are somewhat different.

6.2 Lifting

We now define a notion of lifting, to establish an adjunction between � � 	 � � and � � 	 � � 
 . Our notion of
lifting is essentially the one in [10], specialized to the partial combinatory algebra defined by � ,

�
and

	
.

Let
	 � denote the power set of � . Define the map � 2 � � 	 � � 	 � by

� 2 � 	 � �&��� � � � � ,�	 � 	 � � 	 � � � � � � , 2 	 � 	 � � 	 � � � � � �	


for � 
 � . And then the map � � � � � 	 � � � � 	 � � 	 � ��
�� �

by

� �

	 
�
 � 
 	 � � 	 ! � �&��� � 2 � 	�� � � � � � � ! ��� � � � � � � �

Notice the “if construct” available on a liftet relation: If
!

is an admissible per then

� � � 	 ! � � � � � � � 	 ,�	 � 	 � � 	 � � � � �
� ,�	 � 	 � � 	 � � �&� � � 	 ,�	 � 	 � � 	 � � � � �
� � 	 ,�	 � 	 � � 	 � � � � � � � � � � � 	 � 	 ,�	 � 	 � � 	 � � � � � ( � � � � � �

Thus
� 	 ,�	 � 	 � � 	 � � � � 	 � 2 �

can be read “if
� �� �	�

� � ' � then
�	2

else
� � ”, where

� � of course represents
� �

for any admissible per
%

.
We also have a “lift” and an “unlift”: If

� � � then
	 	 � � 2 � � � � � 
 � � � � � � 	 � � and if

� � � � 	 � � then, 2�	 � 	 � � 	 � � � � � . This is convenient for constructing realizers.
Similarly define, for admissible pers

!
and

%
, the map � 2 � � � 	 ! 
�%�� � � 	 � � 	 ! �"
 � � 	 %�� ��


by

� 2 � 	 � �&� � � � � � � 	 ,�	 � 	 � � 	 � � � � 	(	 	 � � 2 � � � � � 
 � 	 , 2 	 � 	 � � 	 � � � ��� � �

which reads “if
� �� �	�

� � ' � then lift(
�

(unlift
�
)) else

� � ”.
And then the map � � � 	 � � 	 � � � � � 	 � � 	 � ��
�� � by

� �
	 � ��� � � 2 � 	+; � � ��

� � ��� � 	 � � ��� �

for
� ��! � %

. A tedious, but straightforward, verification shows that the definitions of � 2 � , � �

, � 2 � and
� � all make sense, and that � � 	 � � 
 � � � � � � 	 � � � � � 	 � ��
 defines a functor. There is an obvious
forgetful functor

�
� � � 	 � � 
 � � � 	 � � .
Theorem 6.12. There is a monoidal adjunction � � �

.

2And calling upon parametricity is, as far as we know, only possible after the deployment of a parametric completion process.
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Proof. One first shows that � is left adjoint to
�

in the ordinary sense. The unit of the adjunction is given
by
	 � ' ��! � � � 	 ! � � ' ����� � � , all tracked by

;
�
� � � � � � 	 	 � � 2 � � � � � 
 � � � �

For
� ��! � � 	 %��

in � � 	 � ��
 , the required unique
% � � 	 ! ��� %

in � � 	 � � 
 , such that
� 	 % � 
 � ' � � ,

is given by the realizer ; � � � � � � � � 	 ,�	 � 	 � � 	 � � � � 	+; � 	 , 2 	 � 	 � � 	 � � � � �"


where
; � is a realizer for

�
.

To show that the adjunction is monoidal it suffices by to show that the left adjoint � is a strong symmetric
monoidal functor (see [15] for an explanation). To this end, we must exhibit an isomorphism �

���'� � � 	 � �
and a natural isomorphism �

' � � � � 	 ! � � � 	 %���� � 	 ! � %�� . This is mostly straightforward; we just include
the definition of �

' � � � � 	 ! �,� � 	 %���� � 	 ! � %��
: it is the morphism tracked by the realizer

� � � � �
� 	 ,�	 � 	 ,�	 � � � 	 � � � � 	

� 	 ,�	 � 	 , 2 	 � � � 	 � � � � 		 	 � � 2 � � � � � 
 � , 2�	 � 	 ,�	 � � � 	 � � �"
 , 2 	 � 	 , 2 	 � � � 	 � � ����� ��
�

which reads

“if
,�	 � ���� �

then
if
, 2 	 � ���� �

then
lift of

�
unlift

	 ,�	 � � �
, unlift

	 ,)2 	 � � ���
else

� �
else

� � ”.

Following a similar chain of thought, the inverse is tracked by

� � � � �
� 	 ,�	 � 	 � � 	 � � � � 	� 	 	 � � 2 � � � � � 
 ,�	 , 2 	 � 	 � � 	 � � � ��� �"
 	 	 � � 2 � � � � � 
 , 2 	 , 2 	 � 	 � � 	 � � � ��� ����

which reads

“if
� �� �

then�
lift of

,�	
unlift

	 � � �
, lift of

,)2�	
unlift

	 � � ���
else

� � ”.
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6.3 Going fibred

In order to model polymorphism, we do a fibred version of the adjunction presented in the last subsection,
thus arriving at the PILL-model

��� �*� 	 � � 	 � ��
 � � 00

�

""DDD
DD

DD
DD

DD
DD

DDD
D

� ��� �*� 	 � � 	 � � �
�

pp

�

}}{{
{{

{{
{{

{{
{{

{{
{{

{

� � � �

(9)

Define the contravariant functor
	 � � � � ��� � � ��� by mapping set

�
to the category

	 	 � �
with

objects:
	 ! ( � ( ���

where for all ( � � , ! ( is an object of � � 	 � � .
morphisms:

	�� ( � ( � � � 	 ! ( � ( ��� � 	 % ( � ( � �
, where, for all ( � � , � ( � � � 	 � � 	 ! ( 
�% ( � and

� � � � � �
��� �
� ( � � � � ( � � � � 
 ��� 	 ��� .

For a function
� �'� � � , the reindexing functor

	 	 � �
is simply given by composition with

�
.

Define the contravariant functor � � � � � ��� � � ��� given by mapping set
�

to the category � 	 � � with

objects:
	 ! ( � ( ���

where for all ( � � , ! ( is an object of � � 	 � � 
 .

morphisms:
	�� ( � ( � ��� 	 ! ( � ( ��� � 	 % ( � ( ���

where for all ( � � , � ( � � � 	 � ��
 	 ! ( 
�% ( � and
� � � � � �

��� �
� ( � � � � ( � � � � 
 � � 	 � � .
For a function

� �'� � � , the reindexing functor � 	 � � is again simply given by composition with
�

.
That we have two contravariant functors is obvious. The Grothendieck construction then gives us two

split fibrations, � ����� �1� 	 � � 	 � � � � � � � and 
 ����� �1� 	 � � 	 � � 
�� � � � � . The functors � and
�

easily lift to fibred functors between these two fibrations (we abuse notation and also denote the fibred
functors by � and

�
). Explicitly, on objects � 	 �'

	 ! ( � ( ���
� � 	 �'

	 � 	 ! ( � � ( ��� � and on vertical morphisms

� 	 ��

	 ��( � ( � � � � 	 �'

	 � 	 ��( � � ( � � � . Likewise for
�

. These are not recursive definitions, they simply look so
because of the reuse of letters.

Theorem 6.13. � and
�

are split fibred functors and � � �
is a split fibred strong monoidal adjunction

Proof. It is obvious that � and
�

are split fibred functors; the second part follows immediately from Theo-
rem 6.12.

6.4 A domain-theoretic model of PILL

To show that (9) is a model of PILL it remains to be shown that 
 has a generic object and simple products.

Lemma 6.14. The set � � ��� � 	 � � 	 � � 
 � � ��� � 	 � � 	 � � � is a split generic object of the fibration 
 . The
fibration 
 has simple split � -products satisfying the Beck-Chevalley condition.

Proof. The first part is obvious. For the second part, one uses the usual definition for uniform families of
ordinary pers and verifies that it restricts to admissible pers: We recall from [9] that given any projection, � � � � � � � in

� � � , the right adjoint
� �

to
, �� is given on objects by intersection:

� � 	 	 ! � � � 
�� � � � � 
�� � � # 
 �&� 	 �
 � 
 ! � � � 
�� � � � � �
By lemma 6.11 the resulting per is admissible.
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Theorem 6.15. The diagram (9) constitutes a model of PILL � .

Proof. Given the preceding results it only remains to verify that (1) the structure in the diagram models the
polymorphic fixed point combinator and that (2)

��� �1� 	 � � 	 � � � is equivalent to the category of products
of free coalgebras of

��� �1� 	 � � 	 � � � 
 .
For (1), the required follows, as expected, because the pers are strict and complete. In more detail, the

reasoning is as follows: It is well-known that there is a Scott-continuous function
� � � � � � ��� � ���

giving fixed-points through iterated application at
� � . Since realizers are Scott-continuous functions in� � � ��� , every realizer

�
has a fixed-point

��	�� �
in � given by

� 
 	�� 
 � 	 � � � . If for some admissible per!
,
� � � 	 ! 
$! �

, then, since
!

is strict,
�

respects
!

, and
!

is chain-complete,
� 	�� � ! � 	����

. Thus the
equivalence class of

� 	����
exists and is a fixed-point of the morphism represented by

�
. This is applicable

both in � � 	 � � and � � 	 � � 
 , but is not so interesting on strict morphisms. It is, however, in � � 	 � � 
 that
we model the calculus, and thus here we want a fixed-point combinator — albeit only for some morphisms,
namely those of type

! ! � ! � ! � !
, corresponding to morphisms of � � 	 � � . Intuitively, we wish to

take such a morphism, transpose it, grab the fixed-point in � � 	 � � and call the whole process a morphism
in � � 	 � ��
 . This is possible, since transposition cascades to the level of realizers. The function that
transposes a morphism and returns the fixed-point of the result is continuous. The fixed-point function is in� 	 ! � ! 
$! �

, for any
!

, and thus its code is a member of
� �������	� � 	�� � � � � �

. Precomposing with
a uniform realizer for 
 before taking the code, one easily obtains the polymorphic fixed-point combinator�������0�����	� � 	�� � �������

. Writing this out, one arrives at

	 	 � � � � � � 	 � � 2 � � � � 	 � 	 ,�	 � 	 � � 	 � � � � 	 , 2 	 � 	 � � 	 � � � � � 	 � � 
 � 2 � � � �

For (2), observe that by [15, Proposition 1.21] applied to Theorem 6.8 it suffices to show that
��� �1� 	 � � 	 � � �

is equivalent to the coKleisli category of the adjunction � � �
, but this follows from the fact that

�
is a

forgetful functor.

6.5 A parametric domain-theoretic model of PILL

In this section, we introduce a parametric version of the thus far constructed model. It is essentially ob-
tained through a parametric completion process such as the one described in [5] for internal

�
� models (as

mentioned in the Introduction, we will generalize that completion process to produce parametric LAPL-
structures in [14]).

We will arrive at the diagram

� � �*� 	 � � 	 � ��
 �

((QQQQQQQQQQQQ � 00
� � � �*� 	 � � 	 � � �

vvnnnnnnnnnnnn

�
pp

� � � 	 � �

(10)

Our construction is based on reflexive graphs and since our strategy is to obtain relational parametricity
for admissible relations (to also model the fixed point combinator in the parametric model), we consider the
set

�������	��

�
of diagrams

� � ! � % 


where � is a regular subobject of
! � %

in � � 	 � �	
 . (It is crucial that subobject is in the category with
strict maps — it means that � will relate the equivalence class of

�
in
!

to the equivalence class of
�

in
%

.
Identifying

�������	��

�



with � , we define the base category
� � � 	 � � by
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Objects: �
��� — objects are natural numbers.

Morphisms:
� �

�
�

� is an � -tuple,
	 � � 
 � � �%
 � : �

, where each
� (

is a pair
	 � �( 
 � �( � satisfying

� � �( is a map of objects
	(��� �
	 � � 	 � � 
 � �


 ����� � 	 � � 	 � ��
��
� � �( is a map, that to two vectors of objects of � � 	 � ��
 associates maps of subobjects

� �( �  �' � �� � ������� ���
	 � � ��� � � ��
  ) ��� � ������� � 
�� ��������� � 	 ! ) � % ) � � ��������� � 	 � �( 	 5! � � � �( 	 5%�� ���
satisfying � 5! � 	(��� � 	 � � 	 � ��
 � �


 � � �( 	 5! 
 5! � 	 5� 
 '�� �&��� 
 ���� � �' � 

where the regular subobjects are to be calculated in � � 	 � � 
 .

We now describe
� � �*� 	 � � 	 � � 
 ��� � � � 	 � � and

� � �1� 	 � � 	 � � ��� � � � 	 � � . As objects they
basically contain an (indexed) per and an (indexed) relational interpretation of this per. As morphisms they
have uniformly tracked morphisms that respect admissible relations. We wish to model admissible relations
as regular subobjects in � � 	 � � 
 , so we introduce the notation ��� !

for � � ��� � 	 � ������� � �
	 � � ��� 	 ! � � .
We plan to use the Grothendieck construction, and so define indexed categories:

	 � � �1� 	 � � 	 � � 
 � � 

is defined with

Objects:
� �

�
� � is a morphism in

� � � 	 � � from � to 1.

Morphisms:
� � ��� �

is a uniformly tracked family of morphisms
	�� �' � �' � ������� � �!	 � � � � � � � of � � 	 � ��


such that � �' � � � 	 5! � � � � 	 5! � �
That

�
is uniformly tracked means that there is a strict continuous function

; � � � � � ��� such that

� 5! � 	(��� �
	 � � 	 � ��
�� �

 � � �' � � � � �' � � ; � � � � � �' � �

Furthermore this
�

should respect relations:

� 5��� 5! � 5% � � 	 
 � � � � 	 5! 
 5% 
 5� � � 	 
 � � � � ; � 	
	
�"
7; � 	 � ��� � � 	 5! 
 5% 
 5� � � ; � 	 	 �"
7; � 	 � ��� �

Quite similarly
	 � � �1� 	 � � 	 � � � � 
 is defined as the category with

Objects:
� �

�
� � is a morphism in

� � � 	 � � from some � to 1.

Morphisms:
� � � � �

is a uniformly tracked family of morphisms
	�� �' � �' � ������� � �!	 � � ��� � � � of � � 	 � �

such that � �' � � 	 � � 	 5! � ��� � 	 � � 	 5! � �
where

� � � � 	 � � 
 � � � 	 � � is the forgetful functor. That we now ask for morphisms of � � 	 � �
removes the demand, that the uniform tracker be strict. Again this

�
should respect relations:

� 5��� 5! � 5% � � 	 
 � � � � 	 5! 
 5% 
 5� � � 	 
 � � � � ; � 	
	
�"
7; � 	 � ��� � � 	 5! 
 5% 
 5� � � ; � 	 	 �"
7; � 	 � ���

Here � is still a regular subobject in � � 	 � �	
 .

Note that the only difference between the two definitions is the choice of category in which the
� �' are

required to be morphisms.

Definition 6.16. Define " � � � �1� 	 � � 	 � � ��� � � �*� 	 � � 	 � � 
�� on
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objects by " 	 	 � � 
 � � � �&� 	 � � 
 � � �
where

�
� 	 5! ��� � 	 � � 	 5! � �

and
�
� 	 	 5! 
 5% 
 5� � �&� � 	 � � 	 5! 
 5% 
 5� � �

morphisms by " 	�� � 	 � � 
 � � ��� 	 � � 
�� � � � 	 ! � � � 	�� 	 ! � �

Define � � � � �1� 	 � � 	 � � 
 ��� � � �*� 	 � � 	 � � � in a similar way using
�

instead of � .

Lemma 6.17. If � � ! � %
, then � 	 � � � � 	 ! � � � 	 %�� .

Lemma 6.18. " � � � �1� 	 � � 	 � � ��� � � �*� 	 � � 	 � � 
�� and � � � � �1� 	 � � 	 � ��
 ��� � � �1� 	 � � 	 � � �
are both functors, and " ���
Proof. Easy given lemma 6.17 and the fact that for all admissible pers

!
, � 	 � 
 ' �&��� 
 � � ' � . Lemma 6.17

ensures that the realizer
;
� for the unit of � � �

also defines a natural transformation ( � ��� " with the
required universal property.

By an easy extension of Theorem 6.6, we have:

Theorem 6.19.
� � �1� 	 � � 	 � � � is fibred cartesian closed.

Proof. It turns out to be easy, since the product of two regular subobjects turns out to be a regular subobject
of the product, and the exponent of two regular subobjects turns out to be a regular subobject of the exponent.
Since the adjunction works on the level of realizers and realizers are uniform, the adjunction holds.

Theorem 6.20.
� � �1� 	 � � 	 � � 
�� is fibred cartesian and fibred symmetric monoidal closed.

Proof. We just present the SMCC structure: The tensor product of
	 � �3
 � � �

and
	 � � 
��	�
�

in the fibre

	 � � �1� 	 � � 	 � ��
 � � 
 


is denoted by
	 � � 
 � � �,� 	 � � 
�� � �

and defined by

	 � � 
 � � �)� 	 � � 
�� � �&� 	 � � � � � 
 � � � � � �"


where 	 � � � � � � 	 5! �&� � � 	 5! �,��� � 	 5! �

and
	 � � � � � � 	 5! 
 5%�� 	 5� � is defined as the image of the map

� � 	 5! 
 5%�� 	 5� �%� � � 	 5! 
 5%�� 	 5� ��� � ��	 5! �%� � ��	 5! � �� � 	 5%��)��� � 	 5%�� tracked by ; � � � � � � � ��� , , � 
 , , 2 � �"
 � , 2 , � 
 , 2 , 2 � ���

which on pairs of pairs have the following behavior:

��� � � 
 
 � �"
 � � � 
 
 � ��� �� ��� � � 
 � � �"
 � 
 � 
 
 � ��� �

The unit � � of the tensor is given by the object
	 5! �� �'

	 5! 
 5%�� �� � 
 �
� .
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The exponential of
	 � �3
 � � �

and
	 � � 
��	�
�

in
	 � � �1� 	 � � 	 � ��
�� � 
 , is

	 � ��
 � � �&� 	 � � 
��	�
�
defined by

	 � � 
 � � �&� 	 � � 
�� � ��� 	 � � � � � 
 � � � � � �

where 	 � � � � � � 	 5! �&� � � 	 5! ��� � � 	 5! �
and

	 � � � � � � 	 5! 
 5%�� 	 5� � is defined by

� � � 
 � 	 � 	 � � � � � � 	 5! 
 5%�� 	 5� � � � 2� 
 �	2 	 ��
� ��
 
 � � � 	 5! 
 5%�� 	 5� � � � 2 
 
 2 � � � � 	 � � � 	 � �"
 � 	 � 	 � 	 
 ��� � � 	 5! 
 5%�� 	 5� � � � 	 �	2� � 	 � 2 �"
 � 	 �	2 	 � 	 
 2 ���

�
� � � 
 � 	 � 	 � � � � � � 	 5!�� � 	 � � � � � � 	 5% � � � 2� 
 � 2 	 �

This is an exhaustive description, in the sense that only pairs are ever related.
To verify the adjunction

	 � ��� 	 � � 
 � � � � 	 � � 
 � � � � 	 � � , we use that we know that it holds in the
first component and then check that the bijection can be restricted to realizers that define morphisms in the
second component; the latter is a direct consequence of the way the relational interpretations of

�
and
�

are defined.

Lemma 6.21. " � � is a fibred symmetric monoidal adjunction.

Proof. This proceeds much as in the unfibred case. We show that " is a fibred strong symmetric monoidal
functor. We must provide a morphism �

�
and a natural transformation � , but we can simply use the same

realizers as before, since everything has been defined coordinatewise and these realizers are independent of
the specific pers, and hence are uniform realizers.

Lemma 6.22. � � � is a split generic object of
� � �1� 	 � � 	 � ��
�� � � � � 	 � � .

Proof. Obvious.

Lemma 6.23. If
	 � � 
 � � �

is an object of
� � �1� 	 � � 	 � � 
�� 
�.0� , then

	 � � � 
 � � � �
, where

	 � � � � 	 ! � 
 � � �%
$! 
 � 	+6�
"� ��� �� ' � ����� � �
	 � � � � � � � 	 ! ��
 � � ��
$! 
 
$! � 	+6�
"� � � ��! 
�% 
 ��� ! � %�� � 6�
"� ��� � 	 � 
 ' � 
 � � �%
 � 
 ' � 
 � � � 6�
"� �

and
� 60
"� � 	 � � � � 	 � � � ! � � % � 
 � � �9
 � 
 � ! 
 � % 
 � � 6 2 
"� 2 ��� ���! 
�% 
 ��� ! � %�� � 60
"� ��� � 	 � � 
 � � ��
 � 
 
 � � � 6�2 
"��2 � � 	 � � � � 	 5! � 	+6�
76�2 � � 	 � � � � 	 5%�� 	 � 
"��2 �

is an object of
� � �1� 	 � � 	 � � 
 � 
 .

Lemma 6.24.
� � �*� 	 � � 	 � � 
�� has simple � -products.

Proof. The construction is as in [9, Section 8.4]. Given a projection
, �

�
�
�
�

� , we must define a
right adjoint to

, �
. This is done by extending the construction of the previous lemma in an obvious way to

a functor.

Proposition 6.25. The diagram (10) constitutes a PILL � model.

Proof. It only remains to verify that the structure models the fixed point combinator. Here we simply use
the
�

from Theorem 6.15, which works since relations are strict and chain complete.
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We now proceed to show that this new PILL � model can be extended to an LAPL-structure. For this we
need just two more fibrations, 
 � � �1� 	 � � � � � � � � 	 � � and

��� � �1� 	 ��� ��	 � � � � � � � �1� 	 � � � � . The
fibre of

� �*� 	 � � � � over � has as

Objects maps
� � � � � 	 � � 	 � � �


 � � � � .
Morphisms

; � � � �
is a family

	+; �' ��� 	 5! ��� � 	 5!�� � �' � � 
 ) ���
	 � � � � �

and reindexing is given by composition. The fibre of
� �1� 	 ��� ��	 � � � � � over an object

� � � � � 	 � � 	 � � �

 �

� � � is a preorder with

Objects maps
� � � � � 	 � � 	 � � �


 � � � � , such that

� 5! � � � � 	 � � 	 � � �

 � � 	 5! � 
 � 	 5! � �

Morphisms There is a morphism
� � � 2

if

� 5! � � � � 	 � � 	 � � �

 � � 	 5! � 
 � 2 	 5! � �

Here reindexing is with respect to morphisms in
� � � 	 � � is given by composition, whereas reindexing

with respect to morphisms in
� �*� 	 � � � � is given by inverse image.

Lemma 6.26. 
 is a fibration with fibred products, and
	 �%
 
 � is an indexed first-order logic fibration with

simple � -products and -coproducts.

Proof. ��� ��	 � � � �
��� � �

is a first-order logic fibration with generic object and all simple products and coproducts. By Lemma A.8 in
[5] we can construct the pullback

� �*� 	 ��� ��	 � � � � � //

��

� � ��	 � � � �
��� � �

� �
���

// � � �

obtaining that
� �1� 	 ��� ��	 � � � � � � � � � �

� �
�
�

� � � � � is a composable fibration with the desired qualities.
Yet this is not quite the right fibration. Fortunately we have

� �1� 	 � � � � 

//

%%KKKKKKKKKK

� � �
�

� � �
{{ww

ww
www

ww

� � �
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by the isomorphism mapping
	���� ��� ���

to
��� ��� ��� � 
 . And now

� �1� 	 ��� � 	 � � � � � //

��

� �*� 	 ��� ��	 � � � � �
��� �1� 	 � � � � //

��

� �1� 	 � � � � 

//

((QQQQQQQQQQQQQQ

� � �
�

� � �
��� � � 	 � � // � � �

is a pullback. The bottom half is a pullback by definition, the map
� � � 	 � ��� � � � operates as follows

�
�� � � � 	 � � 	 � � �


 	 5� � 
 5� � � � �
�

�
�� 5� � � � � � 	 � � 	 � � �


 � � � � 	 � � 	 � � �
:

And the top one easily is a pullback as well. As
�

preserves products, the leftmost composable fibration
have the desired qualities.

We can then define the functor
��� � � �1� 	 � � 	 � � ��� � �1� 	 � � � � to be the fibred version of

� �

	 
�
 � 
 .
Lemma 6.27.

�
is a faithful and product-preserving map of fibrations.

It is now time to define the contravariant map of fibrations

� � �1� 	 � � 	 � ��
 � �
�

//

((QQQQQQQQQQQQQ

� �1� 	 � � � �

xxppppppppppp

� � � 	 � �

This is defined at index � on

Objects by
� 	 � 
����&� 5! �� 	 	 � 	 � � 	 5! � � � � 	 � � 	 5! � � � , where

	 	 � � denotes powerset,

Morphisms by
� 	������ � � 2+
 � �
� � � 2 ��� 5! ��

� 
 � 	 � 2 � 	 5! � � � � 	 � 2 � 	 5! � � �� � 	+6�
"� � � � 	 � � 	 5! � � � � 	 � � 	 5! � ��� 	 � 	�� � 	+6��"
 � 	 � � 	 � � � � � �

Lemma 6.28.
�

is a contravariant map of fibrations.

Proof.
�

can be equivalently defined as

	 � 
 � ����	� � � �	� # � � ��� 


which makes the statement clear.

We can then define a family of bijections
	�
 
 � 
 � ����� � 	��
	 � � � � such that for all

� 
�� � 	 � � �*� 	 � � 	 � � 
 � � 

and

� � 	 � �1� 	 � � � � � 


 
 � � �*� 	 � � � � 	 � 
�� 
 	 � 
���� � 
 ����� � 	 � �*� 	 ��� � 	 � � � � �
� # � � ��� � � � � # � � � � � � �

by 
 
 	 % �&��� 	
�


	
	

 � � � � 	 	 
 � � � % 	

�
�	�
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Lemma 6.29.



is a bijection, which is natural in the domain variable, is natural in
�

,
�
, and which com-

mutes with reindexing functors.

We have now proved:

Proposition 6.30. The diagram

� �*� 	 ��� ��	 � � � � �
��� � �1� 	 � � 	 � ��
��

))SSSSSSSSSSSSSS � 33


 � � �1� 	 � � 	 � � �

��

�
ss

�

�

//
� �1� 	 � � � �

uukkkkkkkkkkkkkk

� � � 	 � �

(11)

constitutes a pre-LAPL structure.

Now we define a subfunctor � of
�

on

Objects by � 	 � 
����&� 5! �� ��� 	 � � � ��� �
	 � � � � 	 � � 	 5! � � � � 	 5! � � � ,
One can now show that � is closed under all the constructions performable on admissible relations and

that it contains all graph relations.

Lemma 6.31. The structure in diagram (11) and � model admissible relations.

Proof. We refer to figure 4 and provide only a part of a formula to hint at which construction we are debating:

��
 � : Equality on a type
�

is modeled as the diagonal subobject of
� � � � � � � � � � � . This corresponds to an

admissible relation because it is isomorphic to
� � � � � by the continuous functions

� � � � � � � 
 � �
and

,
.

	 	+; 6�
 � � � : Reindexing an admissible relation by a strict continuous function (i.e.
	+; 
 � � ) is bound to

give an admissible relation. We consider chain-completeness: Given two index-wise related chains
in
	+;"
 � �

*,� 	 	��
,
	+; 
 � � taken on these gives us two index-wise related chains in

	
. Since

	
is chain-

complete their limits are related in
	
, and since

	+; 
 � � is continuous the limits of the original chains is
in the inverse image of the limit in

	
.

	 	+60
"� � � 	 2 	+6�
"� �
: Conjunction is modeled by intersection, under which admissible relations by lemma 6.11

are stable.
6 � � 	�	+6�
"� �

: In our model we are allowed to reason classically and thus rephrase the formula to
6 �

� 	�	 	+60
"� �
. We recognize this as

	
with the strip

	 � 
"� �
added. This is easily admissible.

	+6 � ! � 
"� �0! � � �76 � �
� � �
: This is all classes except those where exactly one component is

�
. Thus we

have all the lifted classes and then
	 � 
 � �

. We recognize this as the lift of truth.
	+6 ���3
"� � � � � 	�	 ��
76 �

: swapping the abscissa and ordinal axis does not break admissibility.
6 ��� � � � �

: Again we reason classically: Either
�

holds or it does not. If it holds the formula equals�
, if it does not we get all the classes where

6�� �
or
� � �

. This is admissible since no chain can
converge out of

�
.

�
: This is all classes. This is admissible.
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� � 	�	+6�
"� �
: If

�
does not hold we get all classes. If

�
does hold we get

	
which is admissible.

Quantifications: All quantifications are modeled through intersections and are thus taken care of by lemma 6.11.

Having come so far, we move on to describe 
 ��� � ���	� � ����� �� *��# and ��������� � � � � from Section 4.
Recall that ��� �	� � � � � � is defined as the pullback

��� �	� � � � � � //

��� �
� � ���

��

� �1� 	 � � � �

��� � � 	 � � � � � � 	 � �
#

//
� � � 	 � �

which means that ����������� � ��� has as

Objects triples
	

�


�

 � �

where
� � � � � 	 � � 	 � � �


�. : � � � � , assigns a set to a vector of admissible pers.

Morphisms triples
	 � 
���
 	�� � 	

�


�

 � � � 	

�
2 

�
2 
 � 2 �

where
� �

�
�

�
2

and
���

�
�

�
2

are morphisms
in
� � � 	 � � and

	
is an indexed family of maps

	 � 	 	 �' � �� � � 	 5! 
 5%�� � � 2 	 5� � 	 5! �"
 5� � 	 5%�� � � �' � � 
 ) ���
	 � � � � � � �� � � 
 ) ���
	 � � � ���
where

�
and

� 2
are evaluated on the combined lists of admissible pers.

In this concrete case 
�������������� �!� � �� *��# can be described as follows: Given an object
	

�


�

 � �

over	
�


�
�
, the fibre of 
 ��� � ���	� � ����� �� *��# over

	
�


�

 � �

has as

Objects triples
	 ��
 � 
����

such that
�

and
�

are objects of
� � �1� 	 � � 	 � ��
�� over � and � respectively and�

is an indexed family of maps

� � 	 � �' � �� � � 	 5! 
 5%���� � � � � � � � 	 5! � � � � 	 5%�� � � �' � � 
 ) ���
	 � � � � � � �� � � 
 ) ���
	 � � � ���
Morphisms A morphism

	 ��
 � 
������ 	 � 
 � 2 
�� 2 �
is a pair of morphisms

	+; � � � � 2 
 � � � � � 2 �

in
	 � � �1� 	 � � 	 � ��
�� � 
 and

	 � � �1� 	 � � 	 � ��
�� � : , respectively, such that

� 5! � � � � 	 � � 	 � � �

 
 5% � � � � 	 � � 	 � � �

: � � 3 � � 	 5! 
 5% � �� 6�
"� � � 	�3 � � 60
"� � � � ; 	+6 �"
 � 	 � ����� 	�3 � � ; 	+6��"
 � 	 � ���

Note that we now have two obvious projections � �

and � � .
Finally we can define the required functor � .���

�
� � �1� 	 � � 	 � ��
��

��� � � 	 � �

����
� //

���
�

 ��� ��� �	� � ����� �� *��#

��

��� �	� � � � � �

����
�

For the base categories, � is defined on
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Objects by �
�� 	

�



�


	 $ ( � � � � � ! ( � % ( � � �' � �� � �!	 � � � � �

Morphisms by
� �� 	 � 
 � 
 $ ( � �( �

and for the total categories, � is defined on

Objects by
	 � ��
 � � � �� 	 � �%
 � 
 � �

Morphisms by
� �� 	�� 
 � �

.

This definition on morphisms is legal because
�

preserves relations.
In order to show that � preserves tensor products, we need the following lemma

Lemma 6.32. The tensor product in 
 ��� � ���	� � ����� �� *��# � ����������� � ��� can be described as
	 	�
 � 
����)� 	 	 2 
 � 2 
�� 2 �&� 	 	 � 	 2 
 � � � 2 
�� ��� 2 �

where
	 � 	�2

is calculated pointwise, i.e for
3 � � 	 5! 
 5% �

	 	 � 	 2 � �' � �� 	�3 � � 	 	�3 �0� 	 2 	�3 �

Proof. We argue that this construction defines a left adjoint to
�

. The standard curry-uncurry-adjunction
holds, on the level of realizers even, which is not hard to show.

Lemma 6.33. � is a map of linear
�
� -fibrations.

Proof. We must show that � preserves
� 
�� 
 $�
 � 	�
 � ! .

The constructions in the two categories are virtually identical except for
�

until application of lemma 6.32.
To check the case of

!
we consider the logical expression for

! 	 �&���&�'� ��
 	 � 
 � �
:

	+6 � ! � 
"� � ! � � � 6 � � � ��� � 6�� � 	 	 
 60
 
 � �

The expression
6 �

equates
6 �� � � � . Hence

6 � � � ���
express the fact that no lifted class is related to� � � in ! 	 .

Further since 
 provides us with unlifted versions of its argument,
6�� � 	 	 
 60
 
 � � states that liftet classes

are related in
! 	

only if their unlifted versions are related in
	
.

This is an exact description of the lifting performed by the functor � .

It is easy to see that � �

� � -/. and � � � � -/. .

Theorem 6.34. The diagram in (11) constitutes a parametric LAPL-structure.

Proof. By the preceding results it is clear that it is an LAPL-structure; it only remains to show that it is
a parametric such. Extensionality holds since the logic is essentially given by regular subobjects, which
means that we have very strong equality [9], and thus also extensionality. The parametricity schema is
easily verified to hold.

Example 6.35. To ease notation in this example we shall write
	+60
"� � � � for

� 6�
"� � � � 60
"� � for regular
subobjects � � ! � %

, as we do in LAPL. We will also leave
	 
 �

implicit, and simply write
�<6

for
� 	 � � 	+6 �

.
We consider the type

� 	�� � � � $ ���
	�� � � ����� � � � � . By definition
� 	�� 	�� � � � 2

iff for all
! 
�%

pers and all regular subobjects ��� ! � %
,
	 � 
�� � � 	 � � � � and

	+6�
"� � � �
	 � � 6�
 � 2 � � � � � �

The domain of
� 	�� contains the elements

� � ��� � 6 � �
and �

� ��� � � 6 � � 
 	+6��
, in particular � � ��� � 6 �76 .
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Lemma 6.36. Suppose �
�
� . Then �

�
� .

Proof. Consider the two functions
� 
���� � � � given by

� 	 � � � � � 
�� �
, where

�

is the code of the identity
function, and

�
being the first projection. Both are continuous and since

� 
 � � -/. � is injective. Define
the sequence of elements

6 
 � � 
 	 � �
. This sequence is strictly increasing.

Now, if �
�
� then 6 
 �

�
� � �

�
� � � 6 :

so �
�
� . Further, 6 : *'
 �

�
� 6 : �

�
� 6 : � �

so �
�

� .

Lemma 6.37. The per � � � � � � � �
�
� �

�
�

is a admissible.

Proof. Direct consequence of the lemma above.

Proposition 6.38. Suppose
� 	�� 	�� � � �

. Then either
� � �

or
� �

� .

Proof. Consider the discrete admissible per � :
� � � � � � � � �

Then given
� 
76

consider the regular subobject � � � 	�� � � given by
	 � 
 � � � � 
 �

�
�
	

�

 � 
 	+6�� � � � �

� is admissible, simply because it contains no interesting increasing chains. Clearly
	
succ


 � � � � � � ,
so 	 �

succ � 
 � � 6�� � � 

i.e., if

�
succ � � �

, then
� �<6 � �

for all
� 
76

and so
� � �

, and if
�

succ � � � for some � , then
� � 6 � � 
 	+6 �

, for all
� 
76

, so
� �

� . As we have seen, there are no other possibilities for
�

succ � .
Proposition 6.39. Suppose

� 	�� 	�� � � � 2
, then

� � � 2
.

Proof. Analyzing the above proof we see that
� � �

succ �
By considering the regular subobject � � � 	�� � � 	�� given by

	 � 
 � � � � 
 �
�
�
	

�



�
� � �

we conclude
�

succ � � � 2
succ � �
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