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Parametric Completion for Models of Polymorphic Linear /
Intuitionistic Lambda Calculus

Rasmus Ejlers Møgelberg

Abstract

We show how the externalization of an internal PILL � -model in a quasi-topos gives rise to a canon-
ical pre-LAPL-structure in which the logic is the internal logic of the quasi-topos. This corresponds to
how one intuitively would think of parametricity for such internal models.

We describe a parametric completion process based on [10, 1] which takes an internal model of
PILL � in a quasi-topos and builds a new internal PILL � -model in a presheaf topos over the original
quasi-topos. The externalization of this PILL � -model extends to a full parametric LAPL-structure.
However, this LAPL-structure is different from the canonical one, since the logic comes from the original
quasi-topos.

The concrete LAPL-structure of [2] is basically an example of this parametric completion process,
although it is presented a bit different in loc. cit.. The PILL � -model constructed using synthetic domain
theory in [11, 8, 9] is an example of an application of the parametric completion process, but the LAPL-
structure provided for it in [8, 9] is different from the one presented here.
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1 Introduction

In this paper we study the parametric parametric completion process of [10, 1] in the setting of PILL � -
models. We assume that the reader is familiar with the concept of LAPL-structure [2, 3], and we show that
the parametric completion process produces parametric LAPL-structures, thus providing a rich family of
these. In earlier papers we have constructed a domain theoretic parametric LAPL-structure [2, 3] and shown
how to construct parametric LAPL-structures using synthetic domain theory [8]. These LAPL-structures
seem to be examples of a parametric completion process, and so the motivation for this work was to describe
this process in general.

An internal PILL � -model in a finitely complete category is an internal linear category with products which
is complete enough to model polymorphism, such that the co-Kleisli category is an internal sub-category of
the ambient category. Of course the externalization of the adjunction between an internal PILL � -model and
the co-Kleisli category is a PILL � -model in the sense of [7]. If the ambient category is a quasi-topos, the
internal logic is sufficiently rich for reasoning about parametricity, and thus we can construct a canonical
pre-LAPL-structure around the externalization of the internal PILL � -model.

A notion of admissible relations for an internal PILL � -model is an internal logic fibration giving a sublogic
of the regular subobject fibration, such that relations in the logic give a notion of admissible relations in the
sense of [2]. The parametric completion process takes an internal PILL � -model with a notion of admissible
relations in a quasi-topos and produces a PILL � -model in the category of reflexive graphs over the original
quasi-topos. Basically, the types in the externalization of this PILL � -model are types in the original PILL � -
model with a relational interpretation based on the given notion of admissible relations satisfying identity
extension, and so the externalization extends to a parametric LAPL-structure. The LAPL-structure, however,
is not the canonical LAPL-structure of the completed PILL � -model inside the quasitopos of reflexive graphs
as described above. Instead it is build from the logic of the original quasi-topos. This is due to the relational
interpretations of types being in terms of the logic of the original topos.

The concrete LAPL-structure considered in [2] is a result of the parametric completion process applied
to admissible pers over a reflexive domain seen as an internal subcategory of the category of assemblies,
although the presentation in [2] is slightly different. This example motivates the generalization to quasi-
toposes instead of toposes. We could have also considered admissible pers as an internal category in the
effective topos, but that would have given us a different logic. The PILL � -model constructed using synthetic
domain theory in [11, 8, 9] is an example of an application of the parametric completion process, but the
LAPL-structure provided for it in [8, 9] is different from the one presented here.

The paper is organized as follows: In Section 2 we review some internal category theory needed for the
rest of the paper. Section 3 defines internal PILL � -models in quasi-toposes and the canonical pre-LAPL-
structure associated to one such. We describe the parametric completion process in Section 4 and Section 5
discusses the LAPL-structures of [2, 8] as examples of the parametric completion process.

2 Internal structures in quasi-toposes

We start by recalling a bit of internal category theory. In particular we will discuss internal fibrations and
internal linear categories. For a general introduction to internal category theory (in particular the definition
of internal categories and externalization of internal categories), however, the reader is referred to text books
on the subject such as [4].
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2.1 Internal Fibrations

We define an internal fibration in a quasi-topos to be an internal functor
�����

satisfying the proposition
stating that all maps in

�
have cartesian liftings in the internal language of the quasi-topos. A cleavage for

an internal fibration ��� ���	�
is a map from the pullback

��
��������� //

��

���
dom
����
 � // ��


into
� �

such that any element ����������� � � �"!$# � 
 � �� � �
is mapped to a cartesian lift %� of � , i.e., the

proposition & �'� � 
)( & ��� � �*( codom �,+-� �/. &�0 � � �1( & 2 � � �*( �43 2 +-��� 0 !65
codom � 0 !7+8�9.;:=<?>7� � �@( �A��>B!�+ 2 5 %�C3D>C+ 0 (1)

holds in the internal logic. We will continue to write the cleavage function as �������E!DF� %� . We say that � is
cloven if there exists (externally) a cleavage.

Lemma 2.1. An internal functor ��� ���	�
is a cloven internal fibration in a quasi-topos iff

G�HJI �K�=!L� G�HJI � � ! � GMHJI � � !
is a fibration.

For the proof we need the following lemma

Lemma 2.2. Suppose N �	O
, P �	O

are fibrations, and

N
��?

??
??

??
� // P
����

��
��

�

O
is a fibred map. If each restriction to a fibre:

� QB�RN�Q � PSQ
for T�# O 


is a fibration and reindexing along maps in
O

preserve cartesian lifts, then � is a fibration.

Proof. This is an easy exercise.

Proof of Lemma 2.1. Suppose first ��� �U�V�
is an internal fibration with cleavage denoted ��F� %� . Using

Lemma 2.2 it suffices to show that each fibre of
GMHJI �K�=! is a cloven fibration with cleavage preserved under

reindexing.

Suppose �W��X �Y� 

is an object of

GMHJI � � ! and ����X �Z� �
is a vertical map in

G�HJI � � ! with codomain��3[� . By composing with the cleavage for � we get a lift of � :

%����X �	� �@(
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Suppose now that we are given
0 �=X �V� �

such that codom 3 0 +8� and
2 �=X �V� �

such that expressed
internally �C3 2 + ��� 0 ! (
By assumption the statement (1) holds in the internal logic of

�
. Thus by description in a quasi-topos there

exists a map from

� +��L��� ��� � 0 � 2 !�# � 
 � � � � � � �,� ���
codom �,+-��� 5 �C3 2 +-�A� 0 !E5 codom � 0 !D+ ���

to
� �

providing the unique > of (1). We may now compose the pairing of the given ��� ��� � 0 � 2 ! above with
this map, to obtain the unique > needed. This proves that each fibre of the externalization is a fibration,
and clearly the cleavage is preserved by reindexing because it is given by composing with the cleavage map
� F� %� .

For the other direction, consider the projections � � � 
 � �� � � �	� 

and

� � � 
 � �� � � �	� �*(
Since these present respectively an object of

G�HJI � � ! and a morphism of
GMHJI � � ! we can consider the

cartesian lift of �������E! , which is a morphism %� satisfying

� �

� 
 � �� � �
	 99ssssssssss 
	

//

�
%%KKKKKKKKKK

� �
�OO

codom
��� 


Consider now the map
0 � � � � �

given by the third projection considered as a map in
G�HJI � � ! from

dom 3 0 to � over the projection
� � � 
 �  �D� �

in
�

. Consider also the map
2 � � � � �

given by
the fourth projection considered as a map in

GMHJI � � ! with codomain dom 3 � over the projection
� �� 
 �  �E� �

in
�

. Now, � 3 2 + GMHJI �K�=!@� 0 ! in
GMHJI � � ! by definition of

�
and so there exists a unique map

in
GMHJI � � ! over the projection

� �Z� 
 � �� � �
in
�

given by >7� � �Y� �
such that

GMHJI �K�=!@��>R!D+ 2
and%�43[>C+ 0

. This map > proves the proposition& � � � 
)( & ��� � �*( codom �,+-���	. &�0 � � �*( & 2 � � �*( �C3 2 +-��� 0 !65
codom � 0 !7+;�	.;: >7� � �1( ����>B!7+ 2 5 %�C3D>C+ 0

in the internal logic of
�

.

Finally, for uniqueness of > , we set
0

to be the third projection from

�� + �L������� � 0 � 2 �6>��6> � !$# � 
 � � � � � � � � � ��� � � � ���
codom �,+-��� 5 �C3 2 +-�A� 0 !E5 ����>R!�+-����> � ! + 2 5 %�C3D>C+ %�43[>4+ 0

�
considered as a map in

GMHJI � � ! into � over the projection
��� � � 
 � �� � �

in
�

. We define
2

to be
the fourth projection out of

� �
considered as a map in

GMHJI � � ! into dom 3 � over the projection
� � �� 
 � �� � �

. Define > �6> � to be the obvious projections out of
���

considered as maps of
G�HJI � � ! into

dom 3 %� over
�� � � 
 �  �$� �

. Since we still have � 3 2 + GMHJI �K� !@� 0 ! and %� 3�>-+ 0 + %�,3�> � , byGMHJI � � ! � GMHJI � � ! being a fibration, we conclude that the projections onto the > and > � coordinates are
equal, which proves the uniqueness of > in (1) in the internal logic of

�
.
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Lemma 2.3. For � ��� � �
an internal cloven fibration and ����� ���

a functor in a quasi-topos
�

, the
pullback of � along � is a cloven internal fibration.

For the next two examples we assume that � is an internal sub-category of
�

, that is, there exists a faithful
fibred map GMHJI ���4! �

//

$$I
II

III
II

II

���
codom
���

with codom denoting the codomain fibration. We also assume that this map preserves monos.

Below, we will need to do a few calculations in the codomain fibration, and so we establish some notation
first. An object 	 � � of

� �
will be denoted 
��� � 	 � � � . Recall that a quasi-topos is locally

cartesian closed, and so the fibrewise products and exponents of 
 �� � 	 � � � and 
 �� � 	 �� � � are
denoted


��� � 	 �� � 	 � � � � 
��� � 	 ������ � �
respectively. If ���=� � � is a map in

�
we may reindex 
��� � 	 � � � along � , and we write the

resulting object as 
��� � 	 	�� ��� � � .

Since ����� � is an object in
GMHJI ����! over � 
 , ��������� � ! is a map in

�
with codomain � 
 . We will denote the

codomain of ������� � � ! by 
 Q  � � T . For any object � �M� � � 
 in
GMHJI ����! we must have

��� �E! +!��� ��" ������� � !6!�+8��"#��������� � !�+ 
��� � � �%$=! (
We can reindexing 
 Q  � � T along either of the two projections &A�'& � �(�*)
 � � 
 and take the fibrewise
exponent yielding


��� �,+� &��%$=!�-/. � �0� � � )

which we usually simply denote


 Q21 Q .  �
� T Q . � � )
 (

Now, for any object � # � , vertical maps in
GMHJI ����! from � �M� � � 
 to

0 � � � � 
 are maps 3 making
the diagram

� 4 //

5 	 1 687 ��@
@@

@@
@@

@ � �
5
dom 1 codom 7~~}}

}}
}}

}}

�*)

commute. The functor � takes these maps to vertical maps in

�9�
from ��� �E! to ��� 0 ! , which using that ��� �

is the terminal object of
� �� correspond to maps

� //

:<;>=
��>

>>
>>

>>
> 
��� �

0 �%$=! 	�� �0�

xxrrrrrrrrrrr

�
This correspondence is natural in � and therefore there must be a map

� � //

5
dom 1 codom 7 ��@

@@
@@

@@
@


 Q21 Q .  �
� T � Q

zztttttttttt

�*)


(2)
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inducing the functorial part of � . We will often denote the object � � � �*)
 by 
 Q . 1 Q  �
� � � T � � T*! .

Recall also that the pullback of the regular subobject fibration ���������
	�� � �
along dom � � � � �

gives
an indexed higher order logic fibration [1, Lemma A.8]

 // � � codom // � (
The indexed generic object for this indexed higher order logic fibration is the family of projections ��� � X �
X7!��  � , where � is the regular subobject classifier of

�
. Using the notation introduced above, we will denote

the subobject classifier

 �� � � � X (

Example 2.4. In this example we construct an internal fibration ����������� � � � such that we have a
pullback GMHJI ������������� � ����!6!

��

// 

��GMHJI ����! �
// � � (

(3)

Thus we can think of ����������� � ���4! � � as the internalization of the restriction of � �������!	 � � � to � .

We define the object of objects �����������"�S����! 
 to be 
 Q  � � � Q . Using the ordering on � and the inclusion
(2), we can form the fibred subobject


 Q21 Q .  �
� �L� � � 0 �>3 � $=!L��� Q � � Q . � � � T)� T � ! � T � � �%$=!$# 0 ��3S�%$ !6! �

of

 Q21 Q .  �

� � Q � � Q . � � � T � T � ! � T
in the fibre over � )
 . Using the fibred first-order logic on

� � � �
, we can form the subobject


 Q 1 Q .  �
� �L� � � 0 �>3 !L�%� Q � � Q . � � � T)� T � ! � & $ �MT ( � �%$ !&# 0 ��3��%$=!6! � (4)

of

 Q 1 Q .  �

� � Q � � Q . � � � T)� T � ! (
We define ����������� � ����! � to be (4) with domain and codomain projections mapping � � � 0 �>3 ! to � and

0
respectively. Composition is given by composing the 3 -component, and the map � ��� Q F� � � ��� �#��� Q ! maps
an object of ����������� � ����! 
 to the identity on � .

Finally, the internal fibration �����������"� ���4! � � maps � � � 0 �>3 ! to 3 . The cleavage maps � � �('R! in
����������� � ����! 
 � � � � � to � �C3)' �('����E! .
For the pullback diagram (3), notice that an object of

G�HJI ������������� � ����!6! over ����� � � 
 in
GMHJI ����!

is a map
0

making the diagram

 Q  � � � Q

���
	

//

6 ::vvvvvvvvvv � 

commute. Such maps correspond to diagrams

�
: ;

��>
>>

>>
>>

>
// 
��� � � 	�� �0�

yytttttttttt

�
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which correspond to diagrams


��� � � �%$=! //

%%J
JJJJJJJJJ


��� � �

{{ww
www

ww
ww

���
i.e., subobjects of 
��� � � �%$=! � � in

 � � �
.

Example 2.5. There are a few canonical subfibrations of ����������� � � � . For example, the subobjects in
����������� � are represented by regular monos in

�
, but one could also consider regular monos in � . In this

example, we consider the monos from � , that are regular in
�

, but may not be so inside � (the equalizer
diagram may live in

�
, but not in the subcategory � ). We call this fibration �����$����!�� ����������� � .

First define the object of monos in � 
 as

�������	� � +!
 Q21 Q .  �
� � ����� � T)� T � ! � & $S��
[�MT ( � �%$=!�+8� ��
M![. $,+
 �

We assume that � is closed under pullbacks of monos, i.e., for every mono
0

and map 3 both in � with the
same codomain there exists a mono

0 �
in � such that

0 �
is the pullback of

0
along 3 as seen from

�
. This

can be expressed in the internal logic of
�

, but notice that a diagram in � which is a pullback in
�

need not
necessarily be a pullback in � , since � is not required to be a full subcategory of

�
.

The object of objects � �����[���4!�� ����������� � ! 
 is


 Q  � � � ��� � Q � :BT � � � 
)( :
0 � �������	� ��� T � � T*! ( & $ ��T ( � �%$=!$.;:�
D�MT � ( 0 ��
M!7+ $ �

and we consider this as a full subcategory of ����������� � . The assumption of closure under pullbacks of
monos is what makes this a subfibration of ����������� � � � .

Remark 2.6. Example 2.5 would have been simpler, if the internal category � had been a full internal
subcategory. In the cases we consider, however, this will very often not be the case, since we will consider
internal categories with comonads, such that the co-Kleisli category is an internal subcategory of the ambi-
ent category. In these cases � being a subcategory of the co-Kleisli category is a subcategory of the ambient
category, but it is only full if the comonad is trivial.

2.2 Internal linear categories

An internal linear category is an internal category with internal functors � ��� �1< and the usual internal natural
transformations such that the usual equations hold in the internal language (see [7, Definition 1.10]). Since
the concept of internal categories and internal linear categories can be expressed in any finitely complete
category, the standard assumption of this section will be that the ambient category

�
is simply a finitely

complete category (and not necessarily a quasi-topos).

Lemma 2.7. Suppose � is an internal category in a finitely complete category
�

. There is a bijective
correspondence between internal linear category structures on � and fibred linear structures on

GMHJI ����! ��
.

Proof. This is a consequence of the externalization functor being a locally full and faithful 2-functor pre-
serving products [4, Proposition 7.3.8].
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For any finitely complete category
�

we define ��� � � � ! to be the category of internal categories and internal
functors in

�
. Likewise, we define ��� � ��� � � � ! to be the category of internal linear categories and internal

functors preserving the linear structure on the nose in
�

. We write internal categories as

� � //
// � 
oo

where � � is the object of morphisms and � 
 is the object of objects. Strictly speaking, the composition
map should be mentioned in the description of the internal category, but we will often leave it implicit or
denote it by comp.

For categories
� � O we denote by

� � the category of functors and natural transformations. The rest of this
section is devoted to proving the following (well-known) lemma:

Lemma 2.8. Suppose
�

is a finitely complete category and
O

is any category. Then

��� � � ��� !	�+ ��� � � � ! � (
In one direction, the isomorphism associates to an internal category 
 � //

// 


oo in

� �
the functor that to

each T # O 

associates the internal category 
 � � T*! //

// 


 � T*!oo in

�
. Likewise there is an isomorphism

��� � ��� � � � � !	�+ ��� � ��� � � � ! � (

For ��� � � � � ! to even make sense, we need the following lemma.

Lemma 2.9. If
�

is a finitely complete category and
O

is any category, the category
� � is finitely complete,

and limits are computed pointwise.

Proof. This is well-known, see for example [6, p. 22] or [5, p. 116].

Lemma 2.10. Suppose
� �� are finitely complete categories and 
 � � � � is a functor preserving finite

limits. Then 
 induces a functor ��� � � 
 !L� ��� � � � ! � ��� � ��� ! .
If � � � � � is another finite limit preserving functor then any natural transformation � � 
�� � induces
a natural transformation ��� � ����!L����� � � 
 ! � ��� � ��� ! .
Moreover, 
 induces a functor

��� � ��� � � 
 !L����� � ��� � � � ! � ��� � ��� � ��� !
and � induces a natural transformation.

��� � ��� � � 
 ! � ��� � ��� � ��� !
Proof. The functor ��� � � 
 ! maps an internal category

� � //
// � 
oo to 
 ��� � ! //

// 
 ��� 
 !oo (
For this to be an internal category in ��� � ��� ! we also need a composition map. Since 
 preserves finite
limits, we have a pullback


 ��� � � � � � � ! //

��


 ��� � !
� �

dom �
��


 ��� � ! � �
codom � // 
 ��� 
 ! (
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Thus we can define the composition map by applying 
 to the composition map of � � //
// � 
oo . Clearly

we can also apply 
 to internal functors of
�

(or internal natural transformations) and obtain internal functors
(or internal natural transformations) in � .

The natural transformation ��� � ����! has as component at � � //
// � 
oo the pair ����� � �� ��� ! , which defines

an internal functor by naturality of � . Naturality of � also implies naturality of ��� � ����! .
We define ��� � ��� � � 
 ! as ��� � � 
 ! by applying 
 to all structure of the internal linear category. Again,
it is crucial that 
 preserves finite limits, since for example 
 of the object part of the tensor functor is a
map 
 ��� 
�� � 
 ! � 
 ��� 
 ! in � , and we need a map with domain 
 ��� 
 ! � 
 ��� 
 ! . The definition of
an internal linear category requires a number of diagrams to commute (using [7, Lemma 1.11] to modify
the last condition of [7, Definition 1.10]). Applying 
 to all these commutative diagrams of course yield
commutative diagrams, and thus applying 
 to all the internal linear category structure does give an internal
linear category structure.

If
�

is an internal functor between internal linear categories commuting with the linear structure of these,
then 
 � � ! also commutes with the internal linear structure which proves that ��� � ��� � � 
 ! does in fact
define a functor.

For natural transformations � , the naturality of � implies that it commutes with all linear category structure,
which proves that ��� � ��� � ����! is a natural transformation.

Proof of Lemma 2.8. For each T # O
, the functor ev QB� � � � �

given by evaluation at T preserves limits.
By Lemma 2.10 we get an induced functor

��� � � ��� ! � ��� � � � ! (
For � ��T � T � in O , we have a natural transformation from ev Q to ev Q . . This induces a functor

��� � � � � ! �,O;� ��� � � � ! (
The functor � of the lemma is the adjoint of this map. This proves that � in fact is a well defined functor.

We call the inverse of � for � . To define it, notice that we have two functors

��� ! 
 � ����! � ����� � � � ! � �
mapping an internal category to its object of objects and morphisms respectively. We have natural transfor-
mations dom � codom � id between these corresponding to domain and codomain maps and identity, and we
have a natural transformation

comp ����� ! ��� ��� � � ��� ! � � ��� ! �
given by the composition map in internal categories. These induce functors

��� ! � 
 � ��� ! � � � ��� � � � ! � � � �
and natural transformations dom

� � codom
� � id � . Since

��� ! � � � ��� �	� � ����! � � �+ �6����! � � ��� � � ��� ! � ! � (
we also have a natural transformation comp

� �S��� ! � � � ��� � � � ��� ! � � � ��� ! � � .

The map � maps 
 ����� � � � ! � to the diagram

��� ! � � � 
 ! //
// ��� ! � 
 � 
 !oo

9



which is clearly an internal category. For
� � 
 � � a morphism in ��� � � � ! � the natural transformations

��� ! � 
 � � !L����� ! � 
 � 
 ! � ��� ! � 
 ��� ! � ��� ! � � � � !L����� ! � � � 
 ! � ��� ! � � ��� !
are morphisms in

� �
. To check that this defines an internal functor in

� �
we must check that it commutes

with dom � codom � id � comp, which it does, since these are natural transformations.

It is easy to see that �E� � are each others inverses.

By Lemma 2.10 we can define the map

��� � ��� � � � � ! � ��� � ��� � � � ! � (
as we defined � .

Finally, to define the map � � ��� � ��� � � � ! � � ��� � ��� � � � � ! , notice that as above, we can define functors

��� ! 
 � ����! � � ��� � ��� � � � ! � �
and proceed as before. But this time we have many other natural transformations:

< 
 ����� ! 
 � ��� ! 

< � ����� ! � � ��� ! �

� 
 �S��� ! 
 � ����! 
 � ��� ! 
(1(1(
� ����� ! 
 � ����! �(1(1(

satisfying the usual equations. If we proceed as above we can thus define the functor

� ����� � ��� � � � ! � � ��� � ��� � � ��� !
as desired. As before, clearly �S� � are each others inverses.

3 Internal PILL � -models

Definition 3.1. Suppose we are given a quasi-topos
�

. An internal PILL � -model in
�

is an internal linear
category � with products such that

1. � is complete enough to model polymorphism, i.e., for all objects X in
�

there exists right Kan
extensions of all functors X � � 
 � � along the projection X � � 
 � X . Here X and � 
 are
considered as discrete categories.

2. The co-Kleisli category for <6��� � � denoted ��� is an internal subcategory of
�

3. The products of ��� coincide with the products of
�

.

4. � 44 ���uu
models the fixed point combinator � , i.e., there exists a term �-��� � � �

such that

� 


�

	 >>~~~~~~~~


 
 ���� � � � � � � ��� �   @
@@

@@
@@

@ � // � �
dom

OO

codom
��� 
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commutes, where � � ��� ( � � � � ! � ��� � is interpreted using Item 1, and such that it holds in the
internal logic of

�
that & T � � 
 ( & ���S< T � T ( � � < � � T$< �E!6! +8�;T$< � (

Remark 3.2. One can always construct ��� as an internal category in
�

, but in Definition 3.1 we ask for it
to be an internal subcategory of

�
as defined in Section 2.1. Using the embedding of � into � � we see that

� is also an internal subcategory of
�

by the composite map

G�HJI ����! //

&&MMMMMMMMMMMM

GMHJI ��� �K! //

��

���

zzttt
ttt

tt
ttt

�

which also preserves fibred products.

We now describe how an internal PILL � -model gives rise to a pre-LAPL-structure in a canonical way in
which the internal logic of

�
gives the logic of the pre-LAPL-structure.

The regular subobject fibration �������!�!	S� � ! � � induces a fibration
 � � �

given as



��

// ���������
	�� � !
��� � dom // �

Proposition 3.3. Given an internal model of PILL � , the schema



��G�HJI ����! 11

##H
HHHHHHHH �

GMHJI ��� �K!qq //

zzvvvvvvvvv

���

uujjjjjjjjjjjjjjjjjjjjj

�

is a pre-LAPL-structure.

Proof. By [1, Lemma A.4] we have a fibred first order logic fibration.

The only non-trivial part of the proof is the construction of the map

GMHJI ����! � � GMHJI ����! � //

''PPPPPPPPPPPPP

���

~~||
||

||
||

� (
We define � to be

� ��� X � � 
 � 0 � X � � 
 !�F� 
��� � ������������� � ! 	�� �0�	� 6 � �0� �
i.e., the pullback of ������������� � ! 
�� � 
 along the composite

X
5 	 1 6�7

// �*)
 �
// � 
 (
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Maps in the fibre from any object � � X to ��� � � 0 ! correspond to maps from the fibrewise product of
� � X and ��� � � 0 �=X � � 
 ! to the subobject classifier 
��� � � of

 � � �
. Clearly the functor �

satisfies the requirements for LAPL-structures [2, Definition 3.1].

Definition 3.4. A subfibration
�

�
&&LLLLLLLLLLLL

�

� // ����������� � ����!
��� (

gives an internal notion of admissible relations if � is closed under the rules for admissible relations as
expressed in LAPL (Figure 3 and Axiom 2.18 of [7]).

An internal notion of admissible relations gives rise to a subfunctor of � by:

� � ����X � � 
 � 0 � X � � 
 ! +!
��� � � 	�� �0�	� 6 � �0�
which gives a notion of admissible relation for the LAPL-structure given by Proposition 3.3.

Remark 3.5. In many situations the fibration ���(� � � will be the fibration of regular subobjects on
objects of � represented by monos in � as in Example 2.5. In such cases the fibration will be closed under
some constructions such as equality and reindexing along maps from � , but one will need to check some of
the other conditions in the concrete case.

4 Parametric completion

In this section we assume

� � is a quasi-topos

� � is an internal PILL � -model in
�

which has pullbacks of monos and these are preserved by the
inclusion into

�
.

� � � � is a cloven internal subfibration of �����[���4! � ����������� � � � giving a notion of admissible
relations

� the proposition � �6� & � ���7���"���	��
 ���� � � ����!6! ( ��� � � ! � � ! �
holds in the pre-LAPL-structure associated to the internal PILL � -model � as in Proposition 3.3 with
admissible relations given by � � � .

We show how to construct a parametric internal PILL � -model from this. However, we stress that the inter-
nal PILL � -model is not exactly parametric with respect to the LAPL-structure constructed in the previous
section, but with respect to an LAPL-structure with a different logic. Since the PILL � -model is just the
externalization of the internal PILL � -model, we still get proofs of the consequences of parametricity for
this.

12



Consider the internal category � ��� ����! whose objects are pairs of objects of � plus a relation on their
product (relations in sense of the logic from � � � and morphisms are pairs of morphisms preserving
relations, i.e., �)��� ���4! is given by the pull-back

� ��� ����! //

��

�
�
��� � � �

// �
of internal categories in

�
.

Notice that we clearly have a reflexive graph of functors

�)��� ����! //
// �oo (5)

where the two maps from � ��� ����! to � are the domain and codomain map respectively, and the map going
the other way is the map that maps ��#�� to the equality relation on � .
Let � denote the small category � //

//
�oo (

Lemma 2.8 states that internal categories in
���

are reflexive graphs of internal categories in
�

, and so
the reflexive graph (5) is an internal category in

� �
. We aim to show that this internal category has the

Kan-extensions needed to model polymorphism. We proceed exactly as in [1] but include the proofs for
completeness. Consider first the internal category �
	�� � � �

??
?
����

��� ��
in the quasi-topos

��
, where � is the obvious diagram. Consider further the fibration

��� � �	��
 ������ � � ����� � � �	� 
 ���� � ��� �
constructed as usual from the pre-LAPL-structure associated to � with admissible relations from � .

Lemma 4.1. The fibrations

��� � �	��
 ������ � � ����� � � �	� 
 ���� � ��� �
and GMHJI�� �
	�� � � �

??
?
����

��� �� � � � 
are isomorphic.

Proof. Unwinding the definition of �	��
 ��� � � ��� � , we find that the objects are triples � X 
 ��X � ��XD! together
with maps X � X 
 � X � in

�
. A map from X � X 
 � X � to X � � X � 
 � X � � is a triple� � X � X � ����� X 
 � X � 
 � 0 � X � � X � �

making the obvious diagram commute. Thus �	��
 ��� � � ��� � �+ �  .

Objects in ��� � �	��
 ������ � � ����� � are given as morphism in �	��
 ��� � � ��� � into the interpretation of� ��� � ��� � � � which is 
 � 1 �  � � ��� �������!	 � ����!6! � � � � � 
�� � 
 , and since

� ��� ����! 
 +!
 � 1 �  � � ���������!�!	 � ����!6! � � �
13



we get a bijective correspondence between the objects of
GMHJI � �
	�� � � �

??
?
����

��� �� � and ��� � �	� 
 ��� ��� � � �	� � � .

For morphisms, a vertical morphism in
GMHJI � �
	 � � � �

??
?
����

��� �� � from � � � 0 � � ! to � � � � 0 � � � � ! is by the above dis-

cussion a pair of morphisms
� ��� � � � ���S� 0 � 0 �

satisfying � .U� � � �)! " � � , which is exactly the same as a
vertical morphism in ��� � �	��
 ��� ��� � � �	� � � .

Lemma 4.2. The fibration GMHJI � �
	 � � � �
??

?
����

��� �� � � � 
has simple products, i.e., models polymorphism.

Proof. This is a consequence of Lemma 4.1.

Let us now consider the case that we are really interested in. We shall assume that we are given a functor� � 
 ��� � ! in
� �

:

X � � �)� � ����! 
 - //

� �
��

� �
��

	 �
$$I

IIIIIIIIIIIIIIIIIIIIII X �
� �
��

� �
��X � � 


	 �

$$I
IIIIIIIIIIIIIIIIIIIIIII

	 OO

- // X
	
OO

�)��� ����!
� �
��

� �
�����
	 OO

(6)

(considering the sets mentioned above as discrete categories) and we would like to find a right Kan extension
of � � 
 ��� � ! along ��&A�'&S! (notice that we have used the notation � 
 ��� � ��� for the structure maps of all objects of���

- this should not cause any confusion, since it will be clear from the context which map is referred to). Let
us call this extension �6� � �
	�� �E! 
 � � � ��	�� �E! � ! . An obvious idea is to try the pair �6� � �E! 
 � � � �E! � ! provided
by Lemma 4.2. However, � � ��	�� �E! � should commute with � , and we cannot know that � � �E! � will do that.
Consider � � �E! � �� ���!6! for some � #�X :

� � �E! � �� �� !6!
��

��� � �E! 
 ���! � � � �E! 
 ���! (
If we pull this relation back along the diagonal on � � �E! 
 ���! we get a subobject

� � � �E! � �� �� !6! � // // � � �E! 
 ���!
(called the field of � � �E! � �� �� !6! ). Logically,

� � � �E! � �� ���!6! � is the set ��$ # � � �E! 
 �� ! � �%$S� $=! #� � � �� �� !6! � , so if we restrict � � �E! � �� �� !6! to this subobject, we get a relation relation containing the
identity relation. The other inclusion will be easy to prove. Thus the idea is to let � � ��	�� �E! 
 be the map
that maps � to

� � � � �� �� !6! � , and let � �
	�� � � ��� ! be the relation obtained by restricting � � �E! � ��� ! to� ��	�� � 
 ��� 
 ��� !6! � � �
	�� � 
 ��� � ��� !6! .

14



Notice that in the above sketch and the proof below, since � consist of subobjects in � , all objects and
morphisms are in the category � . However, by pullbacks we mean pullbacks in the greater category

�
,

since these give the reindexing in � � � . A pullback in
�

need not be a pullback in � even if all maps in
the diagram are in � , since � is not required to be a full subcategory of

�
.

Lemma 4.3. The fibration G�HJI � �
	�� � � �OO
���� � � � � �

models polymorphism.

Proof. We define � � ��	�� �E! 
 ���! as the pullback

� � ��	�� �E! 
 ���!
��

��

// � � �E! � �� ���!6!
��

��� � �E! 
 ���! �
// � � �E! 
 ���! � � � �E! 
 ���!

where
�

is the diagonal map. We define � � �
	�� �E! � ��� ! for � # X � , to be the pullback

� � ��	�� �E! � ��� !
��

��

// � � �E! � ��� !
��

��� � ��	�� �E! 
 ��� 
 � ! � � � ��	�� �E! 
 ��� � � ! // // � � �E! 
 ��� 
 � ! � � � �E! 
 ��� � � ! (

We first show that � � ��	�� �E! � �� �� !6!7+ � �6� � ��	�� �E! 
 �� !6! for all � . Logically

� � ��	�� �E! � �� �� !6!7+��L�%$���
R! #'� � �E! � �� �� !6! � ��
 ��
R! � �%$�� $=!�#'� � �E! � �� �� !6! ���
�L�%$S� $=! � $ #'� � ��	�� �E! 
 ���! � + � �6� � ��	�� �E! 
 ���!6!

To prove the other inclusion suppose �%$S��
M!$#'� � ��	�� �E! � �� �� !6!�� � � �E! � �� ���!6! . Then for any ���
	 � #�� 
 ,
�%$���
R! # & " �6� � �E! � !@�� �� ! ��� �����
	 � !6!�+ � � �E! � �� ���!6! (

Let �� 1 ����� � denote the appropriate component of the counit for & "�� � . Then

� �  1 � ��� � $�� �  1 � ��� � 
R![#�� � �� ���! ��� ��� ��	 � !6!�+ � � � 
 �� ��� �
	 � !6! �
so �� 1 � ��� �2$"+ �� 1 � ��� � 
 . Since � � �E! 
 ���! is the product of � 
 �� �����
	 � ! over ����	 � in � 
 , and �� 1 � ��� � is
simply the projection onto the ���
	 � -component, �� 1 ����� � $ + �� 1 ����� � 
 for all ����	 � implies $,+
 as desired.

Finally we will show that � �
	�� provides the desired right adjoint. A morphism from � 0 
 � 0 � ! to ��3 
 �>3 � ! ,
where

X � 6 �
//

� �
��

� �
��

� � � ����! 

� �
��

� �
��X

	
OO

6 �
// � 

	 OO

and likewise ��3 
 �>3 � ! is a morphism �S� 0 
 � 3 
 preserving relations (see Remark 4.4 below). In the
internal language this means that for each ��# X we have a map �  � 0 
 �� ! � 3 
 �� ! such that for � with
� 
 ��� ! + � ��� � ��� ! +�� , �%$S��
M!$# 0 � ��� ! implies ���  �%$=! ����� ��
M!6!$# 3 � ��� ! .
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Now, from Lemma 4.2 we easily derive a bijection between maps � 0 
 � 0 � ! � �6� � �E! 
 � � � �E! � ! and maps
� 0 
 3 &A� 0 � 3 &S! � � � 
 ��� � ! . Since � ��	�� � 
 ���! � � � �E! 
 ���! , if �E�A� 0 
 � 0 � ! � �6� � ��	�� �E! 
 � � � �
	�� �E! � ! is
a map then clearly the correspondence gives a map

��S� � 0 
 3 &A� 0 � 3 &S! � � � 
 ��� � ! . On the other hand, if
we have a map �E�A� 0 
 3 &A� 0 � 3 &S! � � � 
 ��� � ! then a priori

��E�A� 0 
 � 0 � ! � �6� � �E! 
 � � � �E! � ! and we need
to show that for each � , the image of

��  is contained in � � ��	�� �E! 
 ���! . So suppose $ # 0 
 ���! . Since�%$S� $ ! # 0 � �� �� !6!C+ � � 0 
 �� !6! , we must have � �� �%$=! � �� �%$=!6!,# � � �E! � �� �� !6! , so
�� �%$=! # � ��	�� � 
 �� ! as

desired.

Remark 4.4. Consider a morphism
�

between types � + � � 
 ��� � ! and
0 +�� 0 
 � 0 � ! in the model

GMHJI�� �
	�� � � �OO
���� � � � � � (

At first sight, such a morphism is a pair of morphism � � 
 � � � ! with
��� � � � � 0 �

. But morphisms in � � � ����!
are given by pairs of maps in � , and commutativity of

�)� � ����! � 
 � � //

���
��

� ��� ����! �
���
��� � 
 � � // � �

tells us that
� �

must be given by � � 
 � � 
 ! . Thus morphisms between types are morphisms between the usual
interpretations of types preserving the relational interpretations.

Lemma 4.5. The category �)��� ����! is an internal linear category with products and this structure com-
mutes with the maps of (5).

Proof. The fibred linear structure on

��� � �	��
 ������ � � ����� � � �	� 
 ���� � ��� �
gives a fibred linear structure on GMHJI � �
	 � � � �

??
?
����

��� �� � � � 
using Lemma 4.1. By Lemma 2.7 and Lemma 2.8 we get linear structures on �)� � ����! and � commuting
with the domain and codomain functors.

To see that � ���/�1< all preserve identities we first notice that these constructions can be written out in the
internal logic of

�
. Suppose � � �	��
 ���� ���=�
	�! , � � � �	� 
 ���� ��� � �
	 � ! then

< � + �%$�� < �=��
D��<�	�! ( $��.�� 
��45($���. � � � $�� � 
M!� � � � + � ����� � � � � 0 ��	 � 	 � ! ( & $���� ( & 
[��	 ( � �%$���
R! . � � � � �%$=! � 0 ��
R!6!� � � � + � � ��1 � . ����� 1 � . ! " �
& � � �������"� � � 
 ��� � � � ����!6! ( � � � � � � � ! � � !

for the natural transformation

�
�01 � � � ��	 � � � ( ��� ��	 � � ! � �

defined as �
��1 � $ + let $ � � $ � � ��� ��	 be $ in � � (���� 3 ��� ��	 � � ( 3 $ � $ � � (
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Now, one can easily prove that < and � preserve equalities, using Axiom 2.18 of [2] for the case of < .
We proceed to show that eq � � eq � is the equality on � � 	 using the Yoneda lemma. Suppose we are given
an admissible relation �"� �	��
 ���� � � � � � ! . Maps

� � � 0 !L� eq � � eq � � �

in �)� � ����! correspond to maps
� ���� �0 !L� eq � � eq � � � (

Since � is simply a subobject of � � � � in the category � , such maps correspond to� ���� �0�� ��� ��	 � �

in � . Such maps correspond to maps �� ���� �0�� ��� ��	 � �
still in � , which correspond to maps � � � 0 !L� eq ��� � � �
in � ��� ���4! . By the Yoneda Lemma, eq � � eq � is isomorphic to eq ��� � in � � � ����! , and by inspection of
the correspondence provided above, this isomorphism is given by ����� ��� � �#��� �	� � ! , which means that the two
relations are equivalent.

The products are defined as� � � � + �%$ ��� � � � ��
D��	 � 	 � ! ( � ��&��%$=! �'&���
M!6!A5 � � ��& � �%$=! �'& � ��
R!6! �
where &A�'& � denote first and second projection respectively. This product clearly also commutes with domain
and codomain maps and preserves equalities.

It is interesting to notice that in the above proof, the argument for � preserving identities was not purely
logical, but used the fact that admissible relations corresponded to subobjects in � .

Combining Lemmas 2.8,4.5 we get the following lemma.

Lemma 4.6. The reflexive graph of internal categories in
�

�)��� ����! //
// �oo

constitutes an internal linear category in
���

.

Remark 4.7. Lemmas 4.3,4.6 together prove that the fibration

G�HJI�
 �)� � ����! //
// �oo � � � �

models all of PILL � except � (we show that � is modeled in Lemma 4.9 below). Types with  free variables
are modeled as pairs of maps � � ������ � � � � � � ������ � � � 
 ! :

�)� � ���4! � 

�� ��


 
����� � � � �
// � � � ����! 


�� ��� 


 
����� � � � �

//

OO

� 

OO
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making the obvious 3 squares commute. Let us denote by � ������ � � � the interpretation of ���� � in the fibrationGMHJI ����! � �
and compare this to � � � � � 
 . From the definitions above, it is clear that the constructions

�/�1< ��� are modeled the same way in � � � � � 
 and � � � � � , but the interpretation of � � ( ��� ! is different in the
two. For example

� � � � � � � � ! � � � � 
 + � � ��� � � � � ! � � � �

but

� � � � ( � � � � ! � � � � 
 +���$ � � � � � ( � � � � ! � � � � � $�� & � �������"� � � 
 ��� � � � ����! ( ��� � � ! � � !�$ �
corresponding to our intuition that the parametric completion process should restrict polymorphic types to
parametric elements. From the proof of Lemma 4.3 we see that type application is modeled the same way in
� � � � � and � � � � � 
 .
Notice also that closed types in the model

G�HJI 
 �)� � ����! //
// �oo � � � �

are given by their � 
 component, since we have required � � + � ��� 
 ! .
Lemma 4.6 shows in particular that we have a comonad < on �)� � ����! , and so we can form the co-Kleisli cat-
egory �)��� ����! � as the internal category with � ��� ����! 
 as object of objects and with object of morphisms
defined by the pull-back:

� � ��� ����! �K! �
��

// �)� � ����! �
��

�)� � ���4! 
 � � ��� ����! 
 � � : ; // �)� � ����! 
 � � � � ����! 

Lemma 4.8. The co-Kleisli category for the comonad < on �)� � ����! //

// �oo inside
���

is isomorphic to

� � � ����! � //
// � �oo

Proof. The co-Kleisli category is constructed pointwise.

Lemma 4.9. The schema

GMHJI � �
	�� � � �OO
���� � � 00

%%JJJJ
JJ

JJ
JJ

�
GMHJI � � 	 � � � � �

OO
���� � � �pp

yytttttttttt

���
is a PILL � -model.

Proof. The only thing still to prove is that it models � . Recall the computation of the interpretation of� � ( � � � � ! � � from Remark 4.7. Since � � � � ( � � � � ! � � � � 
 is a subtype of � � � � ( � � � � ! � � � �
we may ask if �/# � � � � ( � � � � ! � � � � 
 . This is true, since we have required that

� � & � �������"� �	� 
 ���� � � ����! ( ��� � � ! � � ! � (
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From the proof of Lemma 4.3 we see that type instantiation is interpreted the same way in � � � � � and � � � � � 
 ,
and so the term � � ��� � � ��� � � < �
is interpreted equally in the two interpretations. Validity of

� � ��� � � ��� ��< � � � < �E! + � � � < �E!
in the model GMHJI � �)��� ����! //

// �oo ! � � �
thus follows from validity of the same in G�HJI ����! � � (

Consider the functor ��� ! 
 � � � � �
defined by mapping

X � //
// X 
oo

to X 
 . We define the categories
O

and
�

by the pullbacks
� //

��



��O

��

// � �

����� ��� � �
// �

Lemma 4.10. The composable fibration
� � O8� ���

is an indexed first-order logic fibration with an in-
dexed family of generic objects. Moreover, the composable fibration has simple products, simple coproducts
and very strong equality.

Proof. The composable fibration
� � O � � �

is a pullback of
 � �,� � �

which has the desired
properties. All of this structure is always preserved under pullback, except simple products and coproducts.
These are preserved since the map ��� ! 
 preserves products.

Consider the map into the pullback

GMHJI � �
	�� � � � �

OO
���� � � �

((PPPPPPPPPPPPPP

// ��� ! "
 � GMHJI ��� �K!6! //

��

G�HJI ��� �K!

��� � ��� � �
// �

given by the map, that maps
� � �OO

���� � � � � � �
	 � � � � �

OO
���� � � � in

G�HJI � � 	 � � � � �

OO
���� � � � to X 
 � � � in GMHJI �����K! . We define

the map � :
G�HJI � �
	 � � � � �

OO
���� � � �

%%JJJJJJJJJJ

	
// O

��� �
19



to be the composition of this map with the pullback of the inclusion of
G�HJI ��� � ! into

� �
. One could also

express this definition as the map that maps

X � 	 �
//

����

� � � ����! �
����� 


OO

	 �
// ���

OO

to ��� � 
 ! , where � is the inclusion of
G�HJI ��� � ! into

���
.

Lemma 4.11. The diagram

�

��GMHJI � �
	�� � � �OO
���� � �

++VVVVVVVVVVVVVVVVVVVVVVVVVVV
00
GMHJI�� �
	�� � � � �

OO
���� � � �

%%JJJJJJJJJJ

	
//

pp O

��� �
is a pre-LAPL-structure.

Proof. Using Lemma 4.10 we see that all we need to prove is that
O�� � �

has fibred products, that � is
faithful and product preserving and that the functor � exists. The first follows from

� � � �
having fibred

products.

Recall from Remark 4.4 that a map in
GMHJI � �
	�� � � � �

OO
���� � � � is a natural transformation preserving relations

and the functor from
GMHJI � �
	 � � � � �

OO
���� � � � into ��� ! "
 � GMHJI ����� ! ! is simply the identity on maps. Since also the

inclusion of
GMHJI ����� ! into

�(�
is assumed faithful, � is faithful. Since the inclusion of � � into

�
is required

to preserve products for all internal PILL � -models, � preserves products.

The functor � is defined using the functor � of Proposition 3.3 as the composition

GMHJI � �
	�� � � �OO
���� � � )

((PPPPPPPPPPPPP

// ��� ! "
 � GMHJI ����!6!�)

��

��� ���� � // O

zzuuuuuuuuuuuuu

� � (

In words, � maps an object of
GMHJI � �
	 � � � �OO

���� � � ) (square taken fibrewise) given by the maps

X �

�� ��

	 �
// �)� � ����!

�� ��X 

OO

	 �
// �

OO
� X �

�� ��

6 �
// � � � ����!

�� ��X 

OO

6 �
// �

OO

to 
��� � � ������������� � ! 	 � � �0�	� 6 � � �0� � X 
 .
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Consider the subfunctor
�

of � defined by mapping an object �6� � 
 ��� � ! � � 0 
 � 0 � !6! in
GMHJI � �
	 � � � �OO

���� � � ) to


��� � � � � 	 � � �0�	� 6 � � �0� � X 
 .
Lemma 4.12. The functor

�
defines a notion of admissible relations for the pre-LAPL-structure of Lemma 4.11.

Proof. All terms occurring in the rules for admissible relations and in Axiom 2.18 are constructed without
use of type abstraction. Thus the terms are interpreted exactly as in the pre-LAPL-structure of Proposi-
tion 3.3. Since the logic in the models of Proposition 3.3 and Lemma 4.11 are the same, all relations
occurring in the rules and Axiom 2.18 are interpreted equally. Since also the notion of admissible relations
is the same in the two models, the Lemma follows since we have assumed that the model of Proposition 3.3
models admissible relations.

Consider the graph
�

: �
OO

���� �
�
OO

���� ��
mmmmm
vv QQQQQ

((

where we assume that the two graphs included are reflexive graphs. The graph � :

�)� � ���4!
OO

����
�

�)� � ����!
OO

����
�

� � � ����!
mmmmm
vv QQQQQ

((

defines an internal category in
���

. By Lemma 2.8 � is an internal linear category with structure computed
pointwise.

We denote by
��� � � � 
 ��� ��� � � �	� � � �	� 
 ���� � ���

the fibration of admissible relations based on the pre-LAPL-structure constructed in Lemma 4.11.

Proposition 4.13. There is an isomorphism of fibrations:���
�
GMHJI ��� !

�����
	�


� � //

���
�
��� � � � 
 ��� ��� � � �	� �

��
� � 
 ��� � � ���

	�


�

preserving the fibred linear category structure.

Proof. An object of � � 
 ��� � � ��� is a pair of objects of
� �

:

X � //
// X 
oo � X � � //

// X � 
oo

plus an object of
�(�

with domain X 
 � X � 
 , i.e. a map X ) � X 
 � X � 
 in
�

. A map in �	��
 ��� � � ��� from

� X � //
// X 
oo �DX � � //

// X � 
oo �('D� X ) � X 
 � X � 
 !
to � X�� //

// X��oo �7X �� //
// X � �oo ��� � X�� � X � � X � � !
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is a pair of maps in
� �

, i.e., a quadruple of maps � � 
 ��� � ��� �
 ��� �� ! such that

X �

����

	 �
// X �

����X 

OO

	 �
// X �
OO � X � �

����

	 .� // X ��
����X � 


OO

	 .
�

// X � �
OO

both commute, plus a vertical map in
� � � �

over X 
�� X � :
X ) 4 //

	
##H

HHHHHHHH � � 
 � � �
 ! " X �
� 	 � � 	 .� � � �

wwppppppppppp

X 
 � X � 
 (
Since the map 3 corresponds to a map 3 � making

X �
����
��
��
�

��.
..

..
.X )

��.
..

..
..

����
��
��
�

4 . 22eeeeeeeeeeeeeeee

X � X � �
X 


	 � 22ffffffffffffffff X � 
 	 .
� 22ffffffffffffffff

commute, we get the isomorphism � � 
 ��� � � ��� �+ ��� .

An object of ��� � �	� 
 ��� ��� � � �	� � over

� X � //
// X 
oo �DX � � //

// X � 
oo �('D� X ) � X 
 � X � 
 !
is a pair of types, i.e., maps � � 
 ��� � ��� �
 ��� �� ! such that

X �

����

	 �
// �)� � ����! 


����X 

OO

	 �
// � 

OO

X � �

����

	 .� // � � � ����! 

����X � 


OO

	 .
�

// �

OO

commute, plus a map � :
X )

�

//

	
##F

FFFFFFF
F


��� � � 1 �� � . � ������������� � ! 	
� � �0� � 	 .� � �0�

ttjjjjjjjjjjjjjjjj

X 
 � X � 

Since � corresponds to a map � � :

� � � ����! 

����

��
��

��

��;
;;

;;
;;

;X )
��/

//
//

//

����
��
��
�

� . 22dddddddddddddddd

� 
 � 

X 


	 � 22eeeeeeeeeeeeeeee X � 
 	 .
� 11ddddddddddddddddddddddd
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we get the bijective correspondence between objects of ��� � �	��
 ��� ��� � � �	� � and objects of
G�HJI ��� ! .

This correspondence extends to morphisms, since vertical morphism in both fibrations correspond to pairs
of morphisms preserving relations.

The isomorphism preserves the fibred linear structure on the nose, since in both fibrations, the fibred linear
structure is defined using the internal linear structure on � and �)� � ����! respectively.

Lemma 4.14. The graph � models polymorphism.

Proof. This is a consequence of Proposition 4.13.

Proposition 4.15. There is a reflexive graph of fibred linear categories������
�
GMHJI � �
	�� � � �OO

���� � �
��� �

	�





� //

���
�
GMHJI ��� !

��� �
	�


�oo

oo (

The
�

maps preserve products in the base, generic object and simple products.

Comparing with Proposition 2.9 of [7] the maps of Proposition 4.15 give rise to a reflexive graph of maps
between the corresponding PILL � -models.

Remark 4.16. The reflexive graph in [10] arises this way, although the setup of [10] is slightly different.

Proof. An object of
GMHJI ��� ! is a map in

� �
��
�
X �
OO

���� X )

X �OO
���� X��

X �
mmmmm
vv QQQQQ

((

	�

� �

��
�
� � � ����! 


OO

����
� 


�)� � ����! 

OO

����
� 


�)� � ����! 

mmmmm
vv QQQQQ

((

	�

� (

Let us denote such objects as triples � � � 0 � � ! where

� +�� � 
 ��� � !L� � � �OO ���� � + � � � �
	 � � � � �OO
���� � � � � 0 + � 0 
 � 0 � ![� � ���OO ���� ��� � � � � 	 � � � � �OO

���� � � �
and � � X � � �)��� ����! 
 . The domain and codomain maps of the postulated reflexive graph map � � � 0 � � !
to � and

0
respectively, and the last map maps � to � � ��� ��� � ! . Clearly generic objects and products in the

basecategories are preserved, and since the linear category structure is computed pointwise in both fibrations,
it is clearly preserved by all maps.

We now show that all maps preserve simple products. The domain and codomain maps preserve simple
products since from the viewpoint of Proposition 4.13 these are just the domain and codomain maps out of

��� � �	��
 ������ � � ����� � � � 
 ��� � � ��� (
Consider the map going the other way. Mapping � along this map and then taking products gives us the map
that — described in the internal language of the topos

�
— maps ��"� AdmRel � �� � ��4! to

�L�%$S��
M!$#'� � �E! 
 � �� ! � � � �E! 
 � ��C! � & � ��� � � 
)( & �"� AdmRel �� ���C! ( � � � ������ !@�%$  ��
 ��! �
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where � � �E! 
 denotes the type-component of the simple product � � (called � ��	�� � in the proof of Lemma 4.3)

taken in
GMHJI � � � � ����! //

// �)� � ���4!oo ! � ��� . This map coincides with � � �E! � , the relational interpre-
tation of � � as desired.

Proposition 4.17. The pre-LAPL-structure of Lemma 4.11 has relational interpretation of all types.

Proof. This follows from Proposition 4.15 and Proposition 4.13.

Lemma 4.18. The LAPL-structure of Lemma 4.11 satisfies extensionality.

Proof. The model has very strong equality, which implies extensionality.

Lemma 4.19. The LAPL-structure of Lemma 4.11 satisfies the identity extension axiom.

Proof. Consider a type � + � � � ��� 
 ! :
�)� � ����! � 


����

	 �
// � ��� ����! 


����� � 

OO

	 �
// � 

OO

(7)

with  free variables. We need to show that� ����� � �#����� � � " � � �E! 3 � ���� � � � � ����� �� � � + � ������ eq 	�� �� � � � (
The map

�
is defined as the composition of two maps. The first map maps � to � � ��� ��� � !$���

�
� � � ����! � 


OO

����� � 

� � � ����! � 


OO

����� � 

�)� � ���4! � 


mmmmm
vv QQQQQ

((

	�

� �

��
�
� � � ����! 


OO

����
� 


�)� � ����! 

OO

����
� 


�)� � ����! 

mmmmm
vv QQQQQ

((

	�

�

and the second identifies this with an element of ��� � �	��
 ��� ��� � � �	� � , which in the internal language of
the LAPL-structure may be written as

� ���� � �� � � � ��"� AdmRel � �� � �� ! � � � � �� !L� AdmRel � � � �� ! ��� � �� !6! � �
Since � makes the diagram (7) commute we conclude that� ����� � �#����� � � " � � �E!S3 � ���� � � � � ����� �� � � +

� ���� � � � �� � AdmRel � �� ���� ! � � � � �� !L� AdmRel � � ���� ! ��� � �� !6! � � 3 � ���� � � � � ����� �� � � + � ���� � eq 	/� �� � � � (

Summing up we have:

Theorem 4.20. The pre-LAPL-structure of Lemma 4.11 is a parametric LAPL-structure.
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5 Examples

For any reflexive domain � , one can form the category of admissible pers ��� ��� ! and the category of
admissible pers with maps tracked by strict trackers ������� !�� as in [2]. As is well-known, the category
of pers is an internal subcategory of the category of assemblies � � 
 ��� ! over � , and using the same
construction one may easily show that ��� ��� ! and ��� ��� !�� are internal subcategories of � � 
 ���,! . In
fact �������,!�� is an internal PILL � - model in the quasi-topos � � 
 ���,! with co-Kleisli category ��� ���,! .
The category of regular subobjects of admissible pers internalizes to an internal fibration

�����������
	�� �� ��� � ��� ���,!��
which we may use for a notion of admissible relations. Applying the completion process to this structure,
we obtain the LAPL-structure:

� � � 
;��� �������!	�	���� �� � !
��

� � � 
 � �������,!�� ! 00

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
� � � 
;� �������,!6!pp

**TTTTTTTTTTTTTTT
// � � � 
 � � � 
 ��� !6!

��
� �������,! (

(8)

The PILL � -model on the left is the PILL � model of [2]. The fibre of

� � � 
 � � � 
;���,!6! � � ��� ��� !
over an object  has as objects maps ��� ���,! � � � � 
;���,! and as morphisms uniformly tracked morphisms
between assemblies. The logic

� � � 
;�����������!	 	���� �� � ! � � � � 
 � � � 
 ��� ! !
is the fibration of families of regular subobjects of assemblies, i.e., a subobject of ����������� ! � � � � 
;���,!
is a family of subsets � �� � � � � �� ! � , where

� � � is the forgetful functor from � � 
;��� ! to ��� � .
The LAPL-structure (8) is the LAPL-structure of [2] with the category of sets replaced by assemblies. The
logic of the two are the same since we have a pullback

� � � 
 �����������!	 	���� �� � ! //

��

���!	�� �%� � !
��� � � 
 � � � 
 ���,!6! // G�HJI � ��� � ! (

Therefore, even though the presentation is different, the LAPL-structure of [2] is basically the LAPL-
structure obtained from parametric completion as presented in this paper.

5.1 The LAPL-structure from synthetic domain theory

The LAPL-structure from [11, 8, 9] is not directly an application of the parametric completion process
presented in this paper. The logic is given by sets, and the PILL � -model is constructed using the category
of domains, which is not small.
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A natural way to view the LAPL-structure from SDT is to view it as coming from � � 
 � as seen as an
internal category in the category of (not necessarily small) groupoids via the following construction:

Consider the functor � � ! iso from the category of categories to the category of groupoids mapping a category
to its restriction to isomorphisms. Suppose

O
is a category, then the diagram

O �
iso

//
//
O

iso
oo (9)

is an internal category in the category of groupoids. The category
O �

iso has as objects arrows of
O

and as
morphisms pairs of isomorphisms making the obvious square commute. The two left to right going maps
map an arrow to its domain and codomain respectively and the last map maps an object to the identity on
that object. This construction extends to a functor from the category of categories to the category of internal
categories in the category of groupoids.

The externalization of (9) has as object over
O �

iso functors
O �

iso
� O

(since these are the same as functorsO �
iso

�	O
iso ) and as morphisms natural transformations.

Using the above construction on the category � � 
 � of domains with strict morphisms, we obtain an in-
ternal PILL � -model in the category of groupoids. We may further apply the construction to the fibration
of regular subobjects on � � 
 � . Using this as our notion of admissible relations, the PILL � -model con-
structed as in the parametric completion process is the model presented in [11, 8, 9].

The LAPL-structure of [9], however, is not derived from the internal logic in the category of groupoids. In-
stead, the category of contexts and the logic fibration in the LAPL-structure of loc. cit. is the externalization
of

���!	�� ��� � ! � �%� �

seen as an internal fibration in the category of groupoids using the construction above.

6 Conclusion

We have defined a notion of internal PILL � -model in a quasi-topos and shown how the externalization of
an internal PILL � -model can be extended to a pre-LAPL-structure in which the logic is given by the regular
subobject logic of the quasi-topos. This corresponds to the way one would usually think of parametricity for
such internal models.

We have described a parametric completion process based on the parametric completion process of [10]
which takes an internal PILL � -model in a quasi-topos and returns an internal PILL � - model in a presheaf-
category over the original quasi-topos. The externalization of the resulting PILL � -model extends to a para-
metric LAPL-structure. This LAPL-structure is different from the canonical LAPL-structure associated to
internal PILL � -models as mentioned above, and in fact the logic of the LAPL-structure is the logic of the
original quasi-topos.

The concrete LAPL-structure of [2] is an example of this parametric completion process, although it is
presented a bit different in loc. cit.. The PILL � -model constructed using synthetic domain theory in [11, 8,
9] is an example of an application of the parametric completion process, but the LAPL-structure provided
for it in [8, 9] is different from the one presented here.
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