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Abstract

We present a formalization of a version of Abadi and Plotkin’s logic for parametricity
for a polymorphic dual intuitionistic / linear type theory with fixed points, and show,
following Plotkin’s suggestions, that it can be used to define a wide collection of
types, including solutions to recursive domain equations. We further define a notion
of parametric LAPL-structure and prove that it provides a sound and complete
class of models for the logic, and conclude that such models have solutions for a
wide class of recursive domain equations. Finally, we present a concrete parametric
LAPL-structure based on suitable categories of partial equivalence relations over a
universal model of the untyped lambda calculus.
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1 Introduction

In this paper we show how to define parametric domain-theoretic models of
polymorphic intuitionistic / linear lambda calculus. The work is motivated
by two different observations, due to Reynolds and Plotkin.

In 1983 Reynolds argued that parametric models of the second-order lambda
calculus are very useful for modeling data abstraction in programming [24]
(see also [18] for a recent textbook description). For real programming, one
is of course not just interested in a strongly terminating calculus such as
the second-order lambda calculus, but also in a language with full recursion.
Thus in loc. cit. Reynolds also asked for a parametric domain-theoretic model
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of polymorphism [24]. Informally, what is meant [25] by this is a model of
an extension of the polymorphic lambda calculus [23,9], with a polymorphic
fixed-point operator Y :

∏
α. (α→ α) → α such that

(i) types are modelled as domains, the sublanguage without polymorphism
is modelled in the standard way and Y σ is the least fixed-point operator
for the domain σ;

(ii) the logical relations theorem (also known as the abstraction theorem) is
satisfied when the logical relations are admissible, i.e., strict and closed
under limits of chains;

(iii) every value in the domain representing some polymorphic type is para-
metric in the sense that it satisfies the logical relations theorem (even if
it is not the interpretation of any expression of that type).

Of course, this informal description leaves room for different formalizations
of the problem. Even so, it has proved to be a non-trivial problem. Unpub-
lished work of Plotkin [21] indicates one way to solve the problem model-
theoretically by using strict, admissible partial equivalence relations over a
domain model of the untyped lambda calculus but, as far as we know, the
details of this relationally parametric model have not been worked out in de-
tail before. (We do that here.) In loc. cit. Plotkin also suggested that one
should consider parametric domain-theoretic models not only of polymorphic
lambda calculus but of polymorphic intuitionistic / linear lambda calculus,
since this would give a way to distinguish, in the calculus, between strict and
possibly non-strict continuous functions, and since some type constructions,
e.g., coproducts, should not be modeled in a cartesian closed category with
fixed points [10]. Indeed Plotkin argued that such a calculus could serve as a
very powerful metalanguage for domain theory in which one could also encode
recursive types, using parametricity. To prove such consequences of para-
metricity, Plotkin suggested to use a variant of Abadi and Plotkin’s logic for
parametricity [22] with fixed points.

Thus parametric domain-theoretic models of polymorphic intuitionistic /
linear lambda calculus are important both from a programming language per-
spective (for modeling data abstraction) and from a purely domain-theoretic
perspective.

Recently, Pitts and coworkers [19,2] have presented a syntactic approach
to Reynolds’ challenge, where the notion of domain is essentially taken to be
equivalence classes of terms modulo a particular notion of contextual equiva-
lence derived from an operational semantics for a language called Lily, which
is essentially polymorphic intuitionistic / linear lambda calculus endowed with
an operational semantics.

In parallel with the work presented here, Rosolini and Simpson [27] have
shown how to construct parametric domain-theoretic models using synthetic
domain-theory in intuitionistic set-theory. Moreover, they have shown how to
give a computationally adequate denotational semantics of Lily.
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In the present paper we make the following contributions to the study of
parametric domain-theoretic models of intuitionistic / linear lambda calculus:

• We present a formalization of Linear Abadi-Plotkin Logic with fixed points
(LAPL). The term language, called PILLY for polymorphic intuitionistic
/ linear logic (the Y stands for the fixed point combinator), is a simple
extension of Barber and Plotkin’s calculus for dual intuitionistic / linear
lambda calculus (DILL) with polymorphism and fixed points and the logic
is an extension of Abadi-Plotkin’s logic for parametricity with rules for
forming admissible relations. The logic allows for intuitionistic reasoning
over PILLY terms; i.e., the terms can be linear but the reasoning about
terms is always done intuitionistically. In LAPL we can give detailed proofs
of consequences of parametricity, including the solution of recursive domain
equations; these results and proofs have not been presented formally in the
literature before. We omit them here for reasons of space; they can be found
in the accompanying technical report.

• We give a definition of a parametric LAPL-structure, which is a categori-
cal notion of a parametric model of LAPL, with associated soundness and
completeness theorems.

• We present a definition of a concrete parametric LAPL-structure based on
suitable categories of partial equivalence relations over a universal model
of the untyped lambda calculus, thus confirming the folklore idea that one
should be able to get a parametric domain-theoretic model using partial
equivalence relations over a universal model of the untyped lambda calculus.

We remark that one can see our notion of parametric LAPL-structure as a
suitable categorical axiomatization of a good category of domains. In Ax-
iomatic Domain Theory much of the earlier work has focused on axiomatizing
the adjunction between the category of predomains and continuous functions
and the category of predomains and partial continuous functions [5, Page 7]
– here we axiomatize the adjunction between the category of domains and
strict functions and the category of domains and all continuous functions and
extend it with parametric polymorphism, which then suffices to model also
recursive types.

In the technical development, we make use of a notion of admissible re-
lations, which we axiomatize, since admissible may mean different things in
different models. We believe our axiomatization is reasonable in that it acco-
modates several different kinds of models, such as the classical one described
here and models based on synthetic domain theory [16].

The work presented here builds upon our previous work on categorical
models of Abadi-Plotkin’s logic for parametricity [3], which includes detailed
proofs of consequences of parametricity for polymorphic lamdba calculus and
also includes a description of a parametric completion process that given an
internal model of polymorphic lambda calculus produces a parametric model.
It is not necessary to be familiar with the details of [3] to read the present
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paper (except for Appendix A of [3], which contains some definitions and
theory concerning composable fibrations), but, for readers unfamiliar with
parametricity, it may be helpful to start with [3], since the proofs of conse-
quences of parametricity given here are slightly more sophisticated than the
ones in [3] because of the use of linearity.

In subsequent papers we intend to show how one can define a computation-
ally adequate model of Lily and how to produce parametric LAPL-structures
from Rosolini and Simpson’s models based on intutionistic set theory [27] (this
has been worked out at the time of writing [16]) and from Pitts and cowork-
ers operational models [2] (we conjecture that this is possible, but have not
checked all the details at the time of writing). As a corollary one then has that
the encodings of recursive types mentionend in [27] and [2] really do work out
(these properties were not formally proved in loc. cit.). We will also extend the
parametric completion process of [3] to produce a parametric LAPL-structure
given a model of polymorphic intuitionistic / linear lambda calculus, see [15].

For reasons of space, we have omitted many proofs from this paper. Further
details can be found in the accompanying technical report [4], which includes
proofs of all the properties stated herein. 3

1.1 Outline

The remainder of this paper is organized as follows. In Section 2 we present
LAPL, the logic for reasoning about parametricity over polymorphic intu-
itionistic / linear lambda calculus (PILLY ). In Section 3 we state some of
the main consequences of parametricity (see [4] for detailed proofs). In Sec-
tion 4 we present our definition of an LAPL-structure and show soundness
and completeness. In Section 5 we present our definition of a parametric
LAPL-structure and prove that one may solve recursive domains equations in
such. In Section 6 we present a concrete parametric LAPL-structure based
on partial equivalence relations over a universal domain model. To make the
model easier to understand, we first present a model of PILLY (without para-
metricity) and then show how to make it into a parametric LAPL-structure.
Moreover, as an example of how to calculate in the model, we characterize the
definable natural numbers object.

2 Linear Abadi-Plotkin Logic

In this section we define a logic for reasoning about parametricity for Poly-
morphic Intuitionistic Linear Lambda calculus with fixed points (PILLY ). The
logic is based on Abadi and Plotkin’s logic for parametricity [22] for the second-
order lambda calculus and thus we refer to the logic as Linear Abadi-Plotkin
Logic (LAPL).

3 The reader can find an online copy of the technical report at
www.itu.dk/people/birkedal/papers.
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The logic for parametricity is basically a higher-order logic over PILLY .
Expressions of the logic are formulas in contexts of variables of PILLY and
relations among types of PILLY . Thus we start by defining PILLY .

2.1 PILLY

PILLY is essentially Barber and Plotkin’s DILL [1] extended with polymor-
phism and a fixed point combinator.

Well-formed type expressions in PILLY are expressions of the form:

α1 : Type, . . . , αn : Type ` σ : Type

where σ is built using the syntax

σ ::= α | I | σ ⊗ τ | σ ( τ | !σ |
∏
α. σ,

and all the free type variables of σ appear on the left hand side of the turnstile.
The list of α’s is called the kind context, and is often denoted simply by Ξ or
α. We have included ⊗, I in the type system even though Plotkin’s original
idea was to define them using parametricity, since in models of the type system
these constructions are always required to exist.

The terms of PILLY are of the form:

Ξ | x1 : σ1, . . . , xn : σn;x′1 : σ′1, . . . , x
′
m : σ′m ` t : τ

where the σi, σ
′
j, and τ are well-formed types in the kind context Ξ. The list

x is called the intuitionistic type context and is often denoted Γ, and the list
x′ is called the linear type context, often denoted ∆. No repetition of variable
names is allowed in any of the contexts, but permutation akin to having an
exchange rule is. Due to the nature of the formation rules, weakening and
contraction can be derived for all but the linear context.

The grammar for terms is:

t ::= x | ? | Y | λ◦x : σ.t | t t | t⊗ t |!t | Λα : Type. t | t(σ) |
let x : σ ⊗ y : τ be t in t | let !x : σ be t in t | let ? be t in t

We use λ◦, which bear some graphical resemblance to (, to denote linear
function abstraction. And we use s, t, u. . . to range over terms.

The formation rules given are the standard ones for DILL [1], extended to
contexts with type variables, plus the standard rules for type abstraction and
type application and the axiom

Ξ | Γ;− ` Y :
∏
α. !(!α ( α) ( α.

Ξ | Γ; ∆ is considered well-formed if for all types σ appearing in Γ and ∆,
Ξ ` σ : Type is a well-formed type construction. ∆ and ∆′ are considered
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disjoint if the set of variables appearing in ∆ is disjoint from the set of variables
appearing in ∆′. We use − to denote an empty context. As the types of
variables in the let-constructions and function abstractions are often apparent
from the context, these will just as often be omitted.

The external equality relation on PILLY terms is the least equivalence
relation given by the rules of DILL [1] extended with an obvious rule for
Y and β- and η-rules for polymorphic types. We encode ordinary lambda
abstraction in the usual way by defining σ → τ =!σ ( τ and λx : σ. t =
λ◦y : !σ. let !x be y in t, where y is a fresh variable. Using this notation the
constant Y appears with the more familiar looking type Y : Πα. (α→ α) → α.

2.2 The logic

As mentioned, expressions of LAPL live in contexts of variables of PILLY and
relations among types of PILLY . The contexts look like this:

Ξ | Γ | R1 : Rel(τ1, τ
′
1), . . . , Rn : Rel(τn, τ

′
n),

S1 : AdmRel(ω1, ω
′
1), . . . , Sm : AdmRel(ωm, ω

′
m)

where Ξ | Γ;− is a context of PILLY and the τi, τ
′
i , ωi, ω

′
i are well-formed types

in context Ξ, for all i. The list of R’s and S’s is called the relational context
and is often denoted Θ. As for the other contexts we allow permutation, but
no repetion of variables.

The concept of admissible relations is taken from domain theory. Intu-
itively admissible relations relate ⊥ to ⊥, and are closed under least upper
bounds of chains.

It is important to note that there is no linear component ∆ in the contexts
— the point is that the logic only allows for intuitionistic reasoning about
terms of PILLY , whereas PILLY terms can behave linearly.

Propositions in the logic are given by the syntax:

φ ::= (t =σ u) | ρ(t, u) | φ ⊃ ψ | ⊥ | > | φ ∧ ψ | φ ∨ ψ |

∀α : Type. φ | ∀x : σ. φ | ∀R : Rel(σ, τ). φ | ∀S : AdmRel(σ, τ). φ |

∃α : Type. φ | ∃x : σ. φ | ∃R : Rel(σ, τ). φ | ∃S : AdmRel(σ, τ). φ

where ρ is a definable relation (to be defined below).

2.2.1 Definable relations

Definable relations, ranged over by ρ, are defined by rules below. Definable
relations always have a domain and a codomain, just as terms always have
types. The basic formation rules for definable relations are:

Ξ | Γ | Θ, R : Rel(σ, τ) ` R : Rel(σ, τ)
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Ξ | Γ, x : σ, y : τ | Θ ` φ : Prop

Ξ | Γ | Θ ` (x : σ, y : τ). φ : Rel(σ, τ)

Ξ | Γ | Θ ` ρ : AdmRel(σ, τ)

Ξ | Γ | Θ ` ρ : Rel(σ, τ)

Notice that in the second rule we can only abstract intuitionistic variables to
obtain definable relations. In the last rule, ρ : AdmRel(σ, τ) is an admissible
relation, to be discussed below. The rule says that the admissible relations
constitute a subset of the definable relations.

An example of a definable relation is the graph relation of a function:
〈f〉 = (x : σ, y : τ). fx =τ y, for f : σ ( τ . The equality relation eqσ is defined
as the graph of the identity map.

If ρ : Rel(σ, τ) is a definable relation, and we are given terms of the right
types, then we may form the proposition stating that the two terms are related
by the definable relation:

Ξ | Γ | Θ ` ρ : Rel(σ, τ) Ξ | Γ;− ` t : σ, s : τ

Ξ | Γ | Θ ` ρ(t, s)
(1)

We shall also write tρs for ρ(t, s).

We introduce some shorthand notation for reindexing of relations. For
f : σ′ ( σ, g : τ ′ ( τ and ρ : Rel(σ, τ), we write (f, g)∗ρ for the definable
relation

(x : σ′, y : τ ′). ρ(f x, g y).

2.2.2 Constructions on definable relations

In this subsection we present some constructions on definable relations, which
will be used to give a relational interpretation of the types of PILLY . We define
(, ∀, !, and ⊗ on relations in such a way that they make LinAdmRelations
— a category of relations introduced in Section 4 — into a linear category,
i.e., a model of PILLY .

If ρ : Rel(σ, τ) and ρ′ : Rel(σ′, τ ′), then we may construct a definable relation

(ρ ( ρ′) : Rel((σ ( σ′), (τ ( τ ′)),

defined by

ρ ( ρ′ = (f : σ ( σ′, g : τ ( τ ′).∀x : σ.∀y : τ. ρ(x, y) ⊃ ρ′(fx, gy).

If
Ξ, α, β | Γ | Θ, R : AdmRel(α, β) ` ρ : Rel(σ, τ)

is well-formed and Ξ | Γ | Θ is well-formed, Ξ, α ` σ : Type, and Ξ, β ` τ : Type
we may define

Ξ | Γ | Θ ` ∀(α, β,R : AdmRel(α, β)). ρ : Rel((
∏
α. σ), (

∏
β. τ))
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as

(t :
∏
α : Type. σ, u :

∏
β : Type. τ).∀α, β : Type.∀R : AdmRel(α, β). ρ(tα, uβ).

For ρ : Rel(σ, τ), we seek to define a relation !ρ : Rel(!σ, !τ). First we define for
any type σ the proposition (−) ↓ on σ as

x ↓ ≡ ∃f : σ ( I. f(x) =I ?.

This definition is due to [27]. The intuition here is that since we have fixed
points we may think of types as domains, and so x ↓ is thought of as x 6= ⊥.

We further define the map ε : !σ ( σ as λ◦x : !σ. let !y be x in y = λx : σ. x.
We can now define

!ρ = (x : !σ, y : !τ). x ↓⊃⊂ y ↓ ∧(x ↓⊃ ρ(εx, εy)).

Following the intuition of domains, ! is to be thought of as lifting, and ε the
unit providing the unlifted version of an element. The formula then expresses
that either both x and y are ⊥ or they are both lifted elements whose unlifted
versions are related.

Next we will define the tensor product of ρ and ρ′

ρ⊗ ρ′ : Rel((σ ⊗ σ′), (τ ⊗ τ ′)),

for ρ : Rel(σ, τ) and ρ′ : Rel(σ′, τ ′). The basic requirement on the definition
is that ⊗ should become a left adjoint to ( in the category of relations
LinAdmRelations to be introduced in Section 4. To give a concrete def-
inition satisfying this requirement, we take a slightly long route. We first
introduce the map

f : σ ⊗ τ (
∏
α. (σ ( τ ( α) ( α

defined as

f x = let x′ ⊗ x′′ : σ ⊗ τ be x in Λα. λ◦h : σ ( τ ( α. h x′ x′′.

Then we define

ρ⊗ ρ′ = (f, f)∗(∀(α, β,R : AdmRel(α, β)). (ρ ( ρ′ ( R) ( R),

or, if we write it out, ρ⊗ ρ′ =

(x : σ ⊗ σ′, y : τ ⊗ τ ′).∀α, β,R : AdmRel(α, β).∀t : σ ( τ ( α, t′ : σ′ ( τ ′ ( β.

(ρ ( ρ′ ( R)(t, t′) ⊃ R(let x′ ⊗ x′′ be x in t x′ x′′, let y′ ⊗ y′′ be y in t′ y′ y′′).

The reason for this seemingly convoluted definition, is that we will later prove,
using parametricity, that σ⊗ τ is isomorphic to

∏
α. (σ ( τ ( α) ( α, and
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we already have a relational interpretation of the latter. The idea of using
this definition of ⊗ is due to Alex Simpson.

Similarly, to define the relation IRel : AdmRel(I, I) we define the map f : I (∏
α. α ( α as λ◦x : I. let ? be x in id , where id = Λα. λ◦x : α. x and define

IRel = (f, f)∗(∀(α, β,R : AdmRel(α, β)). R ( R),

which, if we write it out, is

(x : I, y : I).∀(α, β,R : AdmRel(α, β)).∀z : α,w : β.

zRw ⊃ (let ? be x in z)R(let ? be y in w).

2.2.3 Admissible relations

The key notion used in Reynolds definition of relational parametricity [24]
is the relational interpretation of a type. The relational interpretation of a
type with n free variables is a function taking n relations and returning a
new relation. However, we will not require that this function is defined on
all vectors of relations, but only that it is defined on vectors of “admissible
relations”. On the other hand this function should also return admissible
relations. Since “admissible” might mean different things in different settings,
we axiomatize the concept of admissible relations.

The axioms for admissible relations are formulated in Figure 1. In the last
of these rules ρ ≡ ρ′ is a shorthand for ∀x, y. ρ(x, y) ⊃⊂ ρ′(x, y).

Proposition 2.1 The admissible relations contains all graphs and are closed
under the constructions of Section 2.2.2.

Now, finally, we may give the last formation rule for definable relations:

α1, . . . , αn ` σ(α) : Type Ξ | Γ | Θ ` ρ1 : AdmRel(τ1, τ
′
1), . . . , ρn : AdmRel(τn, τ

′
n)

Ξ | Γ | Θ ` σ[ρ] : AdmRel(σ(τ), σ(τ ′))

We call σ[ρ] the relational interpretation of the type σ.

Remark 2.2 Observe that σ[ρ] is a syntactic construction and is not obtained
by substitution as in [3]. Still σ[ρ1/α1, . . . , ρn/αn] might be a more complete
notation, but this quickly becomes overly verbose. In [22] σ[ρ] is to some
extent defined inductively on the structure of σ, but in our case that is not
enough, since we will need to form σ[ρ] for type constants (when using the
internal language of a model of LAPL). We capture the inductive definitions
in axioms.

2.2.4 Axioms and Rules

Having specified the language of LAPL, it is time to specify the axioms and
inference rules. We have all the usual axioms and rules of predicate logic plus
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Ξ | Γ | Θ, R : AdmRel(σ, τ) ` R : AdmRel(σ, τ)

Ξ | Γ | Θ ` eqσ : AdmRel(σ, σ)

Ξ | Γ | Θ ` ρ : AdmRel(σ, τ) Ξ | Γ;− ` t : σ′ ( σ, u : τ ′ ( τ x, y /∈ Γ

Ξ | Γ | Θ ` (x : σ′, y : τ ′). ρ(t x, u y) : AdmRel(σ′, τ ′)

Ξ | Γ | Θ ` ρ, ρ′ : AdmRel(σ, τ) x, y /∈ Γ

Ξ | Γ | Θ ` (x : σ, y : τ). ρ(x, y) ∧ ρ′(x, y) : AdmRel(σ, τ)

Ξ | Γ | Θ ` ρ : AdmRel(σ, τ) x, y /∈ Γ

Ξ | Γ | Θ ` (y : τ, x : σ). ρ(x, y) : AdmRel(τ, σ)

Ξ | Γ | Θ ` ρ : AdmRel(σ, τ)

Ξ | Γ | Θ `!ρ : AdmRel(!σ, !τ)

x, y /∈ Γ

Ξ | Γ | Θ ` (x : σ, y : τ).> : AdmRel(σ, τ)

Ξ | Γ | Θ ` ρ : AdmRel(σ, τ) Ξ | Γ | Θ ` φ : Prop x, y /∈ Γ

Ξ | Γ | Θ ` (x : σ, y : τ). φ ⊃ ρ(x, y) : AdmRel(σ, τ)

Ξ, α | Γ | Θ ` ρ : AdmRel(σ, τ) Ξ | Γ | Θ Ξ ` σ : Type Ξ ` τ : Type x, y /∈ Γ

Ξ | Γ | Θ ` (x : σ, y : τ).∀α : Type. ρ(x, y) : AdmRel(σ, τ)

Ξ | Γ, z : ω | Θ ` ρ : AdmRel(σ, τ) x, y /∈ Γ

Ξ | Γ | Θ ` (x : σ, y : τ).∀z : ω. ρ(x, y) : AdmRel(σ, τ)

Ξ | Γ | Θ, R : AdmRel(ω, ω′) ` ρ : AdmRel(σ, τ) x, y /∈ Γ

Ξ | Γ | Θ ` (x : σ, y : τ).∀R : AdmRel(ω, ω′). ρ(x, y) : AdmRel(σ, τ)

Ξ | Γ | Θ, R : Rel(ω, ω′) ` ρ : AdmRel(σ, τ) x, y /∈ Γ

Ξ | Γ | Θ ` (x : σ, y : τ).∀R : Rel(ω, ω′). ρ(x, y) : AdmRel(σ, τ)

Ξ | Γ | Θ ` ρ : AdmRel(σ, τ), ρ′ : Rel(σ, τ) Ξ | Γ | Θ | > ` ρ ≡ ρ′

Ξ | Γ | Θ ` ρ′ : AdmRel(σ, τ)

Fig. 1. Rules for admissible relations

the axioms and rules specified below. There are obvious rules for substitution
of terms, definable relations, and types for variables, relation variables, and
type variables.

The rules for universal and existential quantification over types, terms,
and relations, are standard.

As usual, external equality implies internal equality, and there are obvious
rules expressing that internal equality is an equivalence relation.

Intuitively admissible relations should relate ⊥ to ⊥ and we need an axiom
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stating this. In general, we will use (−) ↓ as the test for x 6= ⊥.

Ξ | Γ | Θ ` ρ : Rel(!σ, !τ), ρ′ : AdmRel(!σ, !τ) x, y /∈ Γ

Ξ | Γ | Θ | ∀x : σ, y : τ. ρ(!x, !y) ⊃ ρ′(!x, !y) `

∀x : !σ, y : !τ. x ↓⊃⊂ y ↓⊃ (ρ(x, y) ⊃ ρ′(x, y))

(2)

We have rules concerning the interpretation of types as relations:

α ` αi : Type Ξ | Γ | Θ ` ρ : AdmRel(τ , τ ′)

Ξ | Γ | Θ | > ` αi[ρ] ≡ ρi

α ` σ ( σ′ : Type Ξ | Γ | Θ ` ρ : AdmRel(τ , τ ′)

Ξ | Γ | Θ | > ` (σ ( σ′)[ρ] ≡ (σ[ρ] ( σ′[ρ])

α ` σ ⊗ σ′ : Type Ξ | Γ | Θ ` ρ : AdmRel(τ , τ ′)

Ξ | Γ | Θ | > ` (σ ⊗ σ′)[ρ] ≡ (σ[ρ]⊗ σ′[ρ])

Ξ | Γ | Θ ` ρ : AdmRel(τ , τ ′)

Ξ | Γ | Θ | > ` I[ρ] ≡ IRel

α `
∏
β. σ(α, β) : Type Ξ | Γ | Θ ` ρ : AdmRel(τ , τ ′)

Ξ | Γ | > ` (
∏
β. σ(α, β))[ρ] ≡ ∀(β, β′, R : AdmRel(β, β′)). σ[ρ,R])

α `!σ : Type Ξ | Γ | Θ ` ρ : AdmRel(τ , τ ′)

Ξ | Γ | Θ | > ` (!σ)[ρ] ≡!(σ[ρ])

Here ρ ≡ ρ′ is shorthand for ∀x, y. xρy ⊃⊂ xρ′y.

If the definable relation ρ is of the form (x : σ, y : τ). φ(x, y), then ρ(t, u)
should be equivalent to φ with x, y substituted by t, u:

Ξ | Γ, x : σ, y : τ | Θ ` φ : Prop Ξ | Γ;− ` t : σ, u : τ

Ξ | Γ | Θ | > ` ((x : σ, y : τ). φ)(t, u) ⊃⊂ φ[t, u/x, y]

Finally, we need an axiom stating parametricity of the fixed point combinator:

Ξ | Γ;− | Θ ` Y (
∏
α. (α→ α) → α)Y

2.2.5 Extensionality and Identity Extension Schemas

The following two schemas are called extensionality schemas:

(∀x : σ. t x =τ u x) ⊃ t =σ(τ u

(∀α : Type. t α =τ u α) ⊃ t =∏
α : Type.τ u.

Lemma 2.3 It is provable in the logic that

∀f, g : σ → τ. (∀x : σ. f(!x) =τ g(!x)) ⊃ ∀x : !σ. f(x) =τ g(x).

11
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In particular, extensionality implies

∀f, g : σ → τ. (∀x : σ. f(!x) =τ g(!x)) ⊃ f =σ→τ g

The schema

− | − | − ` ∀α : Type. σ[eqα] ≡ eqσ(α)

is called the identity extension schema. Here σ ranges over all type ex-
pressions.

For any type β, α1, . . . , αn ` σ(β, α) we can form the parametricity
schema:

− | − | − ` ∀α∀u : (
∏
β. σ).∀β, β′.∀R : AdmRel(β, β′). (u β)σ[R, eqα](u β′),

where, for readability, we have omitted : Type after β, β′, and eqα is short
notation for eqα1

, . . . , eqαn
. It is easy to show that the identity extension

schema implies the parametricity schema.

3 Proofs in LAPL

In LAPL one can make formal proofs of the definability of a wide collection of
types, including recursive types, as suggested by Plotkin [21]. We have written
out all the proofs in detail, but do not have space to include them here. They
can be found in the accompanying technical report [4].

The main result is

Theorem 3.1 Suppose α ` σ(α) : Type is a type in pure PILLY . There ex-
ists a closed type rec α. σ and a pair of terms f : rec α. σ ( σ(rec α. σ),
g : σ(rec α. σ) ( rec α. σ, such that the identity extension schema implies
that f ◦ g =σ(rec α.σ)(σ(rec α.σ) idσ(rec α.σ) and g ◦ f =rec α.σ(rec α.σ id rec α.σ.

4 LAPL-structures

In this section we introduce the notion of an LAPL-structure. An LAPL-
structure is a model of LAPL.

First, however, we call to mind what a model of PILL (PILL is PILLY

without the term Y ) is and how PILL is interpreted in such a model (for
a full description of models for PILL and interpretations in these, see e.g.
[17,13,1,12]).

A model of PILL is a fibred symmetric monoidal adjunction

LinType

p
&&MMMMMMMMMM

G

11⊥ Type
Fqq

yyttttttttt

Kind,

12
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such that LinType is fibred symmetric monoidal closed; the tensor in Type
is a fibred cartesian product; Type is equivalent to the category of finite
products of free coalgebras; Kind is cartesian; p has a generic object and
simple products with respect to projections forgetting Ω, where Ω is p of the
generic object. See [13] for detailed explanation of this definition.

Recall that PILL is interpreted in such models as follows. A type σ is inter-
preted as an object [[σ]] ∈ LinType and we interpret a term α | x : σ;x′ : σ′ `
t : τ as a morphism

![[σ1]]⊗ . . .⊗![[σn]]⊗ [[σ′1]]⊗ . . .⊗ [[σ′m]] ( [[τ ]]

in LinType, where ! = FG. Of course, [[!σ]] =![[σ]]. Notice that we denote the
morphisms in LinType by (. Further recall that the intuitionistic part of the
calculus, that is, the terms in the calculus with no free linear variables, can be
interpreted in Type. For suppose we are given such a term Ξ | x : σ;− ` t : τ.
Then the interpretation of this term in LinType is

[[Ξ | x : σ;− ` t : τ ]] : ⊗i![[Ξ | σi]] ( [[Ξ | τ ]].

Since ⊗i![[Ξ | σi]] ∼= F (
∏

iG([[Ξ | σi]])) (F can be proved to be strong) and
! = FG, we have, using the adjunction F a G, that such a term corresponds
to

[[Ξ | x : σ;− ` t]]Type :
∏

iG([[σi]]) → G([[τ ]])

in Type.

Finally, a model of PILLY is a model of PILL, which models a fixed point
operator

Y : Πα. (α→ α) → α

Definition 4.1 A pre-LAPL-structure is

(i) a schema of categories and functors

Prop

r

��
LinType

p
**UUUUUUUUUUUUUUUUUU

66Type
vv

%%JJJJJJJJJ
� � I // Ctx

q

��
Kind

such that
• the diagram

LinType

p
&&MMMMMMMMMM

G

11⊥ Type
Fqq

yyttttttttt

Kind
is a model of PILLY .

13
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• q is a fibration with fibred finite products
• (r, q) is an indexed first-order logic fibration which has products and

coproducts with respect to projections Ξ×Ω → Ξ in Kind [3], where Ω
is p applied to the generic object of p. See Remark 4.2 below.

• I is a faithful product-preserving map of fibrations.

(ii) a contravariant morphism of fibrations:

LinType×Kind LinType U //

**TTTTTTTTTTTTTTTT Ctx

zzuuuuuuuuu

Kind

(iii) a family of bijections

ΨΞ : HomCtxΞ
(ξ, U(σ, τ)) → Obj (Propξ×I(G(σ)×G(τ)))

for σ and τ in LinTypeΞ and ξ in CtxΞ, which
• is natural in the domain variable ξ
• is natural in σ, τ
• commutes with reindexing functors; that is, if ρ : Ξ′ → Ξ is a morphism

in Kind and u : ξ → U(σ, τ) is a morphism in CtxΞ, then

ΨΞ′(ρ
∗(u)) = (ρ̄)∗(ΨΞ(u))

where ρ̄ is the cartesian lift of ρ.
Notice that Ψ is only defined on vertical morphisms.

Remark 4.2 We ask for the pair (r, q) to be an indexed first order logic fi-
bration. This means that for each object Ξ in Kind, the restriction of r to the
fibre over Ξ is a first order logic fibration, and the structure commutes with
reindexing. We further require that (r, q) have simple products and coprod-
ucts, which means that the logic models quantification over types. Further
note that, really, U is uniquely defined by the requirements on the rest of the
structure so we will often refer to a pre-LAPL structure simply as the diagram
in item 1.

By contravariance of the fibred functor U we mean that U is contravariant
in each fibre.

We now explain how to interpret a subset of LAPL in a pre-LAPL struc-
ture. The subset of LAPL we consider at this stage is LAPL without admis-
sible relations and without the relational interpretation of types.

We interpret the full contexts of the considered subset of LAPL in the
category Ctx as follows. A context

Ξ | x1 : σ1, . . . xn : σn | R1 : Rel(τ1, τ
′
1), . . . , Rm : Rel(τm, τ

′
m)

14
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is interpreted as ∏
i IG([[σi]])×

∏
j U([[τj]], [[τ

′
j]]),

where the interpretations of the types is the usual interpretation of types in
LinType → Kind.

For notational convenience we shall write [[Ξ | Γ | Θ ` t : τ ]] for the inter-
pretation of t in Ctx, that is for I([[Ξ | Γ;− ` t : τ ]]Type)◦π (note the subscript
Type), where π is the projection π : [[Ξ | Γ | Θ]] → [[Ξ | Γ | −]] in Ctx.

The propositions in the logic are interpreted in Prop in the standard
manner of categorical logic.

Definable relations with domain σ and codomain τ in contexts Ξ | Γ | Θ are
interpreted as maps from [[Ξ | Γ | Θ]] into U([[σ]], [[τ ]]). The definable relation
Ξ | Γ | Θ, R : Rel(σ, τ) ` R : Rel(σ, τ) is interpreted as the projection, and
[[Ξ | Γ | Θ ` (x : σ, y : τ). φ : Rel(σ, τ)]]

Ψ−1([[Ξ | Γ, x : σ, y : τ | Θ ` φ]]).

We now define the interpretation of ρ(t, s), for a definable relation ρ and terms
t, s of the right types. First, for Ξ | Γ | Θ ` ρ : Rel(σ, τ), we define

[[Ξ | Γ, x : σ, y : τ | Θ ` ρ(x, y)]] = Ψ([[Ξ | Γ | Θ ` ρ : Rel(σ, τ)]]).

Next, if Ξ | Γ ` t : σ, s : τ , then [[Ξ | Γ | Θ ` ρ(t, s)]] equals

〈〈π, 〈[[Ξ | Γ | Θ ` t]], [[Ξ | Γ | Θ ` s]]〉〉, π′〉∗[[Ξ | Γ, x : σ, y : τ | Θ ` ρ(x, y)]],

where π, π′ are the projections π : [[Ξ | Γ | Θ]] → [[Ξ | Γ]] and π′ : [[Ξ | Γ | Θ]] →
[[Ξ | − | Θ]].

To interpret admissible relations, we will assume that we are given a sub-
functor V of U , i.e., a contravariant functor V with domain and codomain as U
and a natural transformation V ⇒ U whose components are all monomorphic.
Thus, for all σ, τ , we can consider V (σ, τ) as a subobject of U(σ, τ). We think
of V (σ, τ) as the subset of all admissible relations (since the isomorphism Ψ
allows us to think of U(σ, τ) as the set of all definable relations).

We may interpret the logic containing admissible relations by interpreting
S : AdmRel(σ, τ) as V ([[σ]], [[τ ]]). Admissible relations are interpreted as maps
into V ([[σ]], [[τ ]]). For this to make sense we need, of course, to make sure
that the admissible relations in the model (namely the relations that factor
through the object of admissible relations) in fact contain the relations that
are admissible in the logic. We need to assume that of the functor V .

Definition 4.3 A pre-LAPL structure together with a subfunctor V of U is
said to model admissible relations, if V is closed under the rules of Fig-
ure 1 and Rule 2 holds.

Given a pre-LAPL structure modelling admissible relations, we may define a

15
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fibration

LinAdmRelations

��
AdmRelCtx ,

which we think of as a model of admissible relations. We first define the
category AdmRelCtx by the pullback

AdmRelCtx

〈∂0,∂1〉
��

// Ctx

��
Kind×Kind

× // Kind.

We write an object Θ in AdmRelCtx over (Ξ,Ξ′) as Ξ,Ξ′ | Θ. The fiber of
LinAdmRelations over an object Ξ,Ξ′ | Θ is

objects triples (φ, σ, τ) where σ and τ are objects in LinType over
Ξ and Ξ′ respectively and φ is an admissible relation, i.e. a
vertical map

φ : Θ → V (π∗σ, π′∗τ)

in Ctx.

morphisms A morphism (φ, σ, τ) → (ψ, σ′, τ ′) is a pair of morphisms

(t : σ ( σ′, u : τ ( τ ′)

in LinTypeΞ and LinTypeΞ′ respectively, such that

Ψ(φ) ≤ Ψ(V (t, u) ◦ ψ)),

where we have left the inclusion of V into U implicit.

Reindexing with respect to vertical maps ρ : Θ → Θ′ in Ctx is done by compo-
sition. Reindexing objects of LinAdmRelations with respect to lifts of maps
in Kind×Kind is done by reindexing in the fibration Ctx → Kind. Reindex-
ing of morphisms in LinAdmRelations with respect to maps in Kind×Kind
is done by reindexing each map in LinType → Kind. This defines all reindex-
ing since all maps in AdmRelCtx can be written as a vertical map followed
by a cartesian map.

Remark 4.4 In the internal language, objects of LinAdmRelations are ad-
missible relations

Ξ; Ξ′ | Θ ` ρ : AdmRel(σ, τ).

A vertical morphims in LinAdmRelations from ρ : AdmRel(σ, τ) to ρ′ : AdmRel(σ′, τ ′)
is a pair of morphisms f : σ ( σ′, g : τ ( τ ′ in LinType such that in the
internal language the formula

∀x : σ, y : τ . ρ(x, y) ⊃ ρ′(f x, g y)

holds.

16
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There exist two canonical maps of fibrations:
LinAdmRelations

��
AdmRelCtx

 ∂0 //

∂1

//


LinType

��
Kind

 .

On the base category ∂0, ∂1 map an object Ξ,Ξ′ | Θ to Ξ and Ξ′ respectively.
On the total category they map (φ, σ, τ) to σ and τ respectively. In words, ∂0

and ∂1 map a relation to its domain and codomain respectively.

Lemma 4.5 If we define AdmRelations to be the category of finite products
of coalgebras [13], we obtain a PILL-model

LinAdmRelations

))SSSSSSSSSSSSSS 00⊥ AdmRelations
pp

vvmmmmmmmmmmmmm

AdmRelCtx

and two maps of PILL-models ∂0, ∂1.

Proof. The proof proceeds essentially by verifying that the constructions on
definable relations given in Section 2.2.2 make the fibration

LinAdmRelations → AdmRelCtx

into a fibred linear category with generic object V ([[α ` α : Type]], [[α ` α : Type]]).
Notice that since V is closed under the rules of Figure 1, Proposition 2.1 tells
us that the constructions on definable relations of Section 2.2.2 indeed do
define operations on LinAdmRelations → AdmRelCtx. 2

Definition 4.6 An LAPL-structure is a pre-LAPL-structure modeling ad-
missible relations, together with a map of PILL-models J from

LinType

&&MMMMMMMMMM 11⊥ Type
qq

yyttttttttt

Kind

to

LinAdmRelations

))SSSSSSSSSSSSSS 00⊥ AdmRelations
pp

vvmmmmmmmmmmmmm

AdmRelCtx

such that when restricting to the fibred linear categories, J together with ∂0, ∂1

is a reflexive graph, i.e., ∂0 ◦ J = ∂1 ◦ J = id.

In the following, we will often confuse J with the map of fibred linear categories
from LinType → Kind to LinAdmRelations → AdmRelCtx.

17
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We need to show how to interpret the rule

α1, . . . , αn ` σ(α) : Type Ξ | Γ | Θ ` ρ1 : AdmRel(τ1, τ
′
1), . . . , ρn : AdmRel(τn, τ

′
n)

Ξ | Γ | Θ ` σ[ρ] : AdmRel(σ(τ), σ(τ ′))

in LAPL-structures.

One can show that, since J preserves products in the base and generic
objects, J([[α ` σ(α)]]) is a relation from σ(α) to σ(β) in context [[α; β |
R : AdmRel(α, β)]]. It thus makes sense to define [[α, β | − | R : AdmRel(α, β) `
σ[R]]] to be J([[α | σ(α)]]), so all we need to do now is to reindex this object. We
reindex it to the right Kind context using 〈τ , τ ′〉 : [[Ξ]] → Ω2n, thus obtaining

[[Ξ | − | R : AdmRel(τ , τ ′) ` σ[R] : Rel(σ(τ), σ(τ ′))]].

For Ξ | Γ | Θ ` ρ : AdmRel(τ , τ ′), we define

[[Ξ | Γ | Θ ` σ[ρ] : AdmRel(σ(τ), σ(τ ′))]] =

[[Ξ | − | R : AdmRel(τ , τ ′) ` σ[R]]] ◦ [[Ξ | Γ | Θ ` ρ : AdmRel(τ , τ ′)]].

where by [[Ξ | Γ | Θ ` ρ : AdmRel(τ , τ ′)]] we mean the pairing

〈[[Ξ | Γ | Θ ` ρ1]], . . . , [[Ξ | Γ | Θ ` ρn]]〉.

Soundness and completeness can then be proved by lengthy but fairly
standard calculations.

Theorem 4.7 (Soundness) The interpretation given above of LAPL in LAPL-
structures is sound.

Theorem 4.8 (Completeness) There exists an LAPL-structure with the
property that any formula of LAPL over pure PILLY holds in this model iff it
is provable in LAPL.

5 Parametric LAPL-structures

Definition 5.1 A parametric LAPL-structure is an LAPL-structure with
very strong equality in which identity extension holds in the internal logic.

Recall that very strong equality implies extensionality. We ask that identity
extension and extensionality hold because this means that all the results from
Section 3 apply to the internal logic of the LAPL-structure. Strong equality is
used to conclude that properties proved in the internal logic also hold exter-
nally. This means that we can solve recursive domain equations in parametric
LAPL-structures. In the following we will explain what this means exactly.

Suppose α ` σ is a type in pure PILLY . We may split the occurences of
α in σ into positive and negative obtaining a type α, β ` σ(α, β) such that α

18



Birkedal, Møgelberg, Petersen

occurs only negatively and β only positively. Such a type induces a functor
which is contravariant in the first variable and covariant in the second, in the
sense that there exists a term

M :
∏
α, α′, β, β′. (α′ ( α) → (β ( β′) → (σ(α, β) ( σ(α′, β′))

preserving composition and identities (this is much as in [22]). Such a term
induces a fibred functor

LinTypeop ×Kind LinType //

))RRRRRRRRRRRRRR LinType

{{xxxxxxxx

Kind

The category LinTypeop ×Kind LinType is the fibrewise product of the cat-
egory obtained by taking the fibrewise opposite category of LinType and
LinType. In general, we will call such fibred functors polymorphically strong
if there exists a corresponding type σ and term as above in the internal lan-
guage of the model (i.e. not necessarily in pure PILLY ).

A solution to a domain equation induced by such a functor F is a family
(τΞ)Ξ indexed over Ξ in Kind closed under reindexing such that F (τΞ, τΞ) ∼=
τΞ, i.e., a family of fixed points for the functor.

Theorem 5.2 For parametric LAPL-structures every polymorphically strong
fibred functor as above has a family of fixed points closed under reindexing.

The fixed points are constructed as follows. In the special case of α ` σ
where α occurs only positively in σ, σ can simply be considered a fibred functor

LinType //

&&NNNNNNNNNNN LinType

xxppppppppppp

Kind.

As a result of parametricity, such a functor has an initial algebra µα. σ =∏
α. (σ ( α) ( α and a final coalgebra να. σ =

∏
β. (

∏
α. (!(α ( σ(α)) ⊗

α ( β)) ( β. Plotkin noticed that using the fixed point combinator Y one
can show that initial algebras and final coalgebras coincide. This situation
called is algebraic compactness and has been studied by Freyd [7,6,8], who
has shown that in such categories general bifree solutions to recursive domain
equations exist, and are given as the type τ constructed by

τ ′′(α) = µβ. σ(α, β)

τ ′ = να. σ(τ ′′(α), α)

τ = τ ′′(τ ′)

The generalisation to polymorphically strong fibred functors means that we
can solve recursive domain equations involving types modelled in the language
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which may not exist in pure PILLY . This could be interesting for example in
the case of models with a type for real numbers.

6 A parametric domain-theoretic model of PILLY

In this section we present a concrete parametric LAPL-structure based on
partial equivalence relations over a universal domain model. To make it easier
to understand the model, we first present a model of PILLY (without para-
metricity) and then show how to make it into a parametric LAPL-structure.

Let D be a pointed ω-chain-complete partial order such that we have
Φ: D → [D → D] and Ψ: [D → D] → D, both Scott-continuous and satisfy-
ing Φ ◦Ψ = id[D→D], where [D → D] denotes the cpo of continuous functions
from D to D. An admissible partial equivalence relation on D is a partial
equivalence relation R on D that is strict (relates ⊥D to ⊥D) and ω-chain
complete.

We write PER(D) for the standard category of partial equivalence rela-
tions overD and AP(D) for the full subcategory of PER(D) on the admissible
pers. The category AP(D)⊥ of admissible pers and strict continuous func-
tions is the full-on-objects subcategory of AP(D) with only those morphisms
[f ] : R→ S that have a strict continuous realizer.

Theorem 6.1 The category AP(D) is a cartesian closed category, with ccc-
structure defined as in PER(D), and AP(D)⊥ is a cartesian sub-category of
AP(D). The category AP(D)⊥ is symmetric monoidal closed. There is an
obvious forgetful functor U : AP(D)⊥ → AP(D), which has a left adjoint L.
The adjunction L a U is monoidal.

The L functor is of course a lifting functor. Define two fibrations

UFam(AP(D)) → Set and UFam(AP(D)⊥) → Set

of uniform families of admissible pers in the same way as one standardly defines
the fibration of uniform families of per’s (see, e.g., [11]). The functors L and
U easily lift to fibred functors between these two fibrations:

UFam(AP(D)⊥)
U

00

q
((QQQQQQQQQQQQ ⊥ UFam(AP(D))

Lpp

p
wwnnnnnnnnnnnn

Set.

(3)

The set Ω = Obj(AP(D)⊥) = Obj(AP(D)) is a split generic object of the
fibration q, and the fibration q has Ω-products satisfying the Beck-Chevalley
condition given by intersections of admissible pers.

Theorem 6.2 The diagram (3) constitutes a model of PILLY .

Proof. Given the preceding results it only remains to verify that (1) the
structure in the diagram models the polymorphic fixed point combinator and
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that (2) UFam(AP(D)) is equivalent to the category of products of free
coalgebras of UFam(AP(D))⊥. For (1), the required follows, as expected, by
taking Y to be the equivalence class of the fixed-point operator on D, since the
pers are strict and complete. For (2), observe that by general considerations
it suffices to show that UFam(AP(D)) is equivalent to the coKleisli category
of the adjunction L a U , but this follows from the fact that U is a forgetful
functor and since UFam(AP(D)) has products. 2

6.1 The LAPL-structure

In this section, we introduce a parametric version of the thus far constructed
model. It is essentially obtained through a parametric completion process
such as the one described in [26,3] for internal λ2 models. We end up with the
following diagram of categories and functors:

Fam(Sub(Set))

��
PFam(AP(D)⊥)

((QQQQQQQQQQQQQ
U

44PFam(AP(D))

��

L
tt

� � I // Fam(Set)

vvmmmmmmmmmmmm

PAP(D)

(4)

which, together with a functor V , constitutes a parametric LAPL structure.

The two leftmost fibrations are defined from the two fibrations in (3) in
essentially the same manner as the fibration in [11, Proposition 8.6.3] is de-
fined from the standard fibration of uniform families of pers. The objects of
PAP(D) are natural numbers. Objects in fibres are now families of admis-
sible pers together with families of admissible relations, which are taken to
be regular subobjects in AP(D)⊥. To make it a bit more precise, first recall
that a regular subobject in AP(D)⊥ of an object R in AP(D)⊥ is a set of
equivalence classes of R such that, when considered as a per, it forms an ad-
missible per. A type in PFam(AP(D)⊥) with n free type variables is then a
pair (fp, f r) where

• fp is a map of objects (Obj(AP(D)⊥))n → Obj(AP(D)⊥)

• f r is a map, that to two vectors of objects of AP(D)⊥ associates maps of
subobjects f r ∈

ΠR,S∈(Obj(AP(D)⊥))n

(
Πj∈{1,...,n} RegSub(Rj × Sj) → RegSub(fp(R)× fp(S))

)
satisfying that it maps equality relations to equality relations, that is:

∀R ∈ (Obj(AP(D)⊥))n. f r(R,R)(EqRj
) = Eqfp(R).

Over n, the fibration Fam(Set) contains (Obj(AP(D)⊥))n-indexed families
of sets and functions between such. The functor I takes a family of admis-
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sible pers and relations (fp, f r) to the family of sets of equivalence classes of
the admissible pers, i.e., I(fp, f r) : (Obj(AP(D)⊥))n → Set maps R to the
set of equivalence classes of fp(R). Using Fam(Sub(Set)) → Fam(Set) to
model families of predicates corresponds to the intuitive idea that predicates
on types, i.e., on admissible pers and relations, are simply modelled by subsets
of equivalence classes of the admissible pers. The V functor takes admissible
pers and relations to the set of subsets of equivalence classes of the admissible
pers that correspond to regular subobjects in AP(D)⊥. Long calculations
then verify:

Theorem 6.3 The diagram (4) together with the functor V is a parametric
LAPL-structure.

Observe that the fibre PFam(AP(D)⊥)0 over the terminal object in PAP(D),
which corresponds to closed types and terms, is equivalent to the fibre UFam(AP(D)⊥)
(likewise for PFam(AP(D))). Thus the closed types in the parametric model
are modeled in the same way as in the simple model in (3).

6.2 Example of Calculations in the Model

We consider the type

Nat = [[
∏
α. (α ( α) → α ( α]].

Arguing as for Theorem 5.2 we can show that Nat is a natural numbers object
in the fibre of PFam(AP(D)⊥) → PAP(D) over the terminal object. We
present a concrete description of Nat. By definition d(Nat)d′ iff for all admis-
sible pers R,S and admissible relations A ⊂ R× S, all f, g : (A ( A) and all
(x, y) ∈ A

(d f x, d′ g y) ∈ A.
The domain of Nat contains the elements ⊥ = λfλx.⊥ and n = λf. λx. fn(x),
in particular 0 = λfλx. x.

Lemma 6.4 Suppose n ≤ m. Then n = m.

Proof. Consider the two functions f, g : D → D given by f(d) = 〈d, ι〉, and
g being the first projection. Both are continuous and since g ◦ f = id , f
is injective. Define the sequence of elements xn = fn(⊥). This sequence is
strictly increasing. Now, if n ≤ m then

xn = n f ⊥ ≤ m f ⊥ = xm

so n ≤ m. Further,

xm−n = n g xm ≤ m g xm = ⊥

so m = n. 2
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Corollary 6.5 The per
{{⊥}} ∪ {{n} | n}

is admissible.

Proposition 6.6 Suppose d(Nat)d. Then either d = ⊥ or d = n.

Proof. Consider the discrete admissible per D = {{d} | d ∈ D}. Then given
f, x consider the admissible relation R : AdmRel(Nat, D) given by

⊥R⊥, ∀n. nR(fn(x)).

R is admissible, simply because it contains no interesting increasing chains.
Clearly (succ, f) : R ( R, so

R(d succ 0, d f x),

i.e., if d succ 0 = ⊥, then d f x = ⊥ for all f, x, and if d succ 0 = n for some
n, then d f x = fn(x), for all f, x. In both cases, d succ 0 = d. From the
definition of R we see that there are no other possibilities for d succ 0. 2

Proposition 6.7 Suppose d(Nat)d′, then d = d′.

Proof. We saw in the above proof that d = d succ 0. By considering the
admissible relation R : AdmRel(Nat,Nat) given by

⊥R⊥, ∀n. nRn

we conclude that d succ 0 = d′ succ 0, and so d = d′. 2
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