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Abstract
To ensure consistency and decidability of type checking, proof as-
sistants impose a requirement of productivity on corecursive defi-
nitions. In this paper we investigate a type-based alternative to the
existing syntactic productivity checks of Coq and Agda, using a
combination of guarded recursion and quantification over clocks.
This approach was developed by Atkey and McBride in the simply
typed setting, here we extend it to a calculus with dependent types.
Building on previous work on the topos-of-trees model we con-
struct a model of the calculus using a family of presheaf toposes,
each of which can be seen as a multi-dimensional version of the
topos-of-trees. As part of the model construction we must solve the
coherence problem for modelling dependent types in locally carte-
sian closed categories simulatiously in a whole family of locally
cartesian closed categories. We do this by embedding all the cate-
gories in a large one and applying a recent approach to the coher-
ence problem due to Streicher and Voevodsky.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Recursion; F.3.2 [Semantics of Programming Lan-
guages]: Denotational semantics; F.4.1 [Mathematical Logic and
Formal Languages]: Lambda calculus and related systems

Keywords Guarded recursion, corecursion, dependent types, de-
notational semantics, categorical semantics

1. Introduction
Recursive type equations are ubiquitous in semantics of program-
ming languages. Inductive types and coinductive types are initial
and final solutions to covariant type equations, and solutions to con-
travariant and mixed variance type equations are needed for mod-
elling the untyped lambda calculus and programming languages
with advanced type systems.

Guarded recursion [17] is a new approach to solving recursive
type equations, offering unique solutions to all equations of the
form X ∼= F (IX) where I is a modal type operator pronounced
“later”. When combining guarded recursion with dependent types,
one obtains a very powerful type system in which one can, for ex-
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ample, construct models of advanced programming languages [7],
see also [4]. The models obtained are synthetic variants of step-
indexing models [3], but unlike these offer a type system for ex-
pressing the model constructions. Guarded recursion has also been
used to model higher order reactive programming [14].

When considering covariant type equations, guarded recursive
types are a third alternative to inductive and coinductive types. In
this paper, we study the relationship between guarded recursive
types and coinductive types. We show that the latter can be encoded
from the former, and that using a combination of the two suggests
a way of building the productivity checks of corecursive definitions
into the type system of proof assistants.

Consider, for example, a type of streams of natural numbers
S(N). This is a coinductive type satisfying S(N) ∼= N × S(N).
To ensure consistency and decidability of type checking, proof
assistants require corecursive definitions of elements of type S(N)
to be productive, i.e., the n’th element of the stream should be
computable in finite time. For example, the definition xs

def
= xs

is not productive, but zeros def
= 0 :: zeros is (here :: is the cons

operation). Coq and Agda enforce productivity by checking that
all occurences of the recursion variable are directly underneath a
constructor. The syntactic checks do not interact well with higher-
order programming, and this has led to research on how to “code
around” these limitations, e.g., [9].

Consider on the other hand the guarded recursive solution to the
same type equation: StrGR

∼= N × I StrGR. The type I StrGR

should be thought of as typing streams that are only available one
time-step from now, and thus we can think of StrGR as a type of
streams where the tail takes one time-step to compute. To define
elements of StrGR recursively we use a guarded fixpoint opera-
tor fix: (IX → X) → X , satisfying the fixed point equation
f(next(fix(f))) = fix(f), where next : X → IX is an opera-
tion that makes anything available now also available in the future.
Using fix we can define zeros as fix(λz : I StrGR. 0 :: z), but
fix(λxs : StrGR. xs) is not defined. In fact, the type I StrGR →
StrGR exactly captures productive recursive stream definitions.
Since elements of coinductive types are sometimes called codata,
we refer to this approach as productive coprogramming via guarded
recursion. Guarded recursion can be seen as a light-weight alterna-
tive to sized types [1, 18].

To give some intuition for guarded recursion we recall the topos
of trees model.

1.1 The topos of trees
The topos of trees is the category of contravariant presheaves over
ω, the ordered set of natural numbers. In elementary terms, this
means that a type is modelled as a family of sets and maps

X1 X2

rX1oo X3

rX2oo . . .
rX3oo (1)
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Intuitively, the set Xn describes the types as it looks if we have n
computation steps to reason about it. For example, the type StrGR

is modelled as

N N2πoo N3πoo N4πoo . . .
πoo (2)

since in n computation steps we can at most access the n first
elements of a stream.

The operation I maps X of (1) to

1 X1
oo X2

rX1oo X3

rX2oo . . .
rX3oo

and since products are computed pointwise, the object StrGR does
indeed satisfy StrGR

∼= N×I StrGR.

1.2 A calculus with universal quantification over clocks
Guarded recursive types are not a replacement for coinductive
types. Sometimes the time-steps get in the way. For example, the
head of the tail of a stream has type I N. In the topos of trees,
the endomaps on StrGR correspond to the causal stream functions,
i.e., those for which the n first elements of the output stream only
depend on the n first elements of the input stream.

Atkey and McBride [5] suggest a simply typed calculus that
allows one to conveniently switch between guarded recursive types
and coinductive types, using the former whenever constructing
streams, and using the latter when taking them apart. The calculus
types terms in a context of free clock variables ranged over by
κ, κ′ . . . each corresponding to a different notion of time step. For
each κ, there is a Iκ and fixκ etc. The calculus includes universal
quantification over clocks in types, i.e., if A is a type, so is ∀κ.A.

The key result relating guarded types to coinductive types is that
the latter can be encoded using the former. Precisely, they show
that νX.F (X)

def
= ∀κ.FixκX.F (IκX) is a coinductive type, if

FixκX.F (IκX) ∼= F (Iκ(FixκX.F (IκX))). The result holds
for F strictly positive and κ not appearing in F , and is proved with
respect to a denotational model.

For these results to be applicable in proof assistants, they must
be extended to a type theory with dependent types. We do that here,
and give a model using a family of categories GR[∆] indexed by
clock contexts ∆ each a multi-dimensional version of the topos of
trees. Types and terms in the context of a single clock variable are
modelled in the topos of trees, and those in empty clock context
in the category of sets. Universal quantification over clocks is
modelled by taking limits. Note that the limit of the sequence (2) is
the set of streams.

Each GR[∆] is locally cartesian closed, and so to model de-
pendent type theory, we must address the coherence problem, i.e.,
the problem that pullback, which models substitution, usually does
not commute strictly with constructions such as dependent prod-
ucts and is not associative. To do this, we follow a recent approach
by Voevodsky and Streicher using universes, but since we have not
just one locally cartesian closed category but a whole family, we
must first embed all the categories in a single one in a structure
preserving way.

The focus of the paper is on presenting the calculus and the
model construction. Atkey and McBride give a series of examples
illustrating the usefulness of their calculus, including an encoding
of stream processors due to Ghani et al.[10]. Since their calculus is
essentially subsumed by the one presented here, all these examples
can be transferred to our type theory. We shall therefore not argue
further for the usefulness of the type theory, but only give a few
examples, including one (Example 2) that requires dependent types
and therefore cannot be expressed in the calculus of Atkey and
McBride.

X = 0, 1, 2

∆; Γ ` X : Type

∆; Γ ` A : Type ∆; Γ ` B : Type

∆; Γ ` A×B : Type

∆; Γ ` A : Type ∆; Γ ` B : Type

∆; Γ ` A+B : Type

∆; Γ, x : A ` B : Type

∆; Γ `
∏
x :A.B : Type

∆; Γ, x : A ` B : Type

∆; Γ `
∑
x :A.B : Type

∆; Γ, x : A ` B : Type

∆; Γ `Wx :A.B : Type

Figure 1. Types of a basic dependent type theory with clock con-
texts

1.3 Structure of the paper
We extend the simply typed calculus of Atkey and McBride with
dependent types and universes in Section 2 and prove correct the
encoding of coinductive types using guarded recursive types in
Section 3. As a special case we show how to encode M-types
using guarded recursion (Corollary 2). We construct the family of
categories GR[∆] in Section 4, and in Section 5 we show how to
construct universes in these from Grothendieck universes.

The category GR subsuming all the categories GR[∆] is pre-
sented in Section 6, and Section 7 constructs the universes needed
both for solving the coherence problem and to model the universes
in the type theory. The interpretation of the calculus in the model is
presented in Section 8.

2. Syntax
We now describe the calculus in details. To accomodate quantifi-
cation over clocks the calculus has a context of clock variables.
We assume given a countably infinite set CV of clock variables,
and we use κ, κ′ etc to range over this set. A clock context is a
finite list ∆ of clock variables without repetition. For every clock
context ∆ there are judgements of well-formed types and contexts
over ∆, as well as typing judgements for terms. These rules in-
clude basic types like 0 (the empty type), 1 (unit type), 2 (a boolean
type), binary products and sums, and formation of dependent sums
and products and W-types, the type theoretic version of inductive
types. We do not consider identity types in this paper. We consider
an equality theory as corresponding to models in locally cartesian
closed categories with W-types [16]. The rules are standard and for
reasons of space we just include the type formation rules, see Fig-
ure 1. We write A → B (and sometimes BA) for

∏
x :A.B when

x is not free in B.
Figures 2 and 3 describe an extension of dependent type theory

with guarded recursion and universal quantification over clocks.
We consider universal quantification over clocks a binding con-
struction and thus include (implicitly) α-equalities of universally
quantified types and Λ-abstraction. We define the set of free clock
variables fc(t) ⊂ CV of terms, types and contexts in the obvious
way. We say a term or type is closed if it can be typed in an empty
context Γ (the clock context needs not be empty).

We say that two terms t, u of same type in the same context are
provably equal if they are in the least congruence relation generated
by the equalities presented here.

2.1 Guarded recursion
The type constructor Iκ is an applicative functor in the sense of
McBride and Paterson [15]. Note in particular that this means that
there is a term

∆; Γ, f : A→ B ` λx :
κ
IA. (nextκf) ~κ x :

κ
IA→

κ
IB
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wellformed types
∆, κ; Γ ` A : Type κ /∈ fc(Γ)

∆; Γ ` ∀κ.A : Type

∆; Γ ` A : Type κ ∈ ∆

∆; Γ `
κ
IA : Type

Typing rules

∆; Γ ` t : A

∆; Γ ` nextκ(t) :
κ
IA

∆; Γ ` t :
κ
I(A→ B) ∆; Γ ` u :

κ
IA

∆; Γ ` t~κ u :
κ
IB

∆; Γ, x :
κ
IA ` t : A

∆; Γ ` fixκx.t : A

κ /∈ fc(Γ) ∆, κ; Γ ` A : Type ∆, κ′; Γ,Γ′ ` t : ∀κ.A

∆, κ′; Γ,Γ′ ` t[κ′] : A[κ′/κ]

∆, κ; Γ ` t : A κ /∈ fc(Γ)

∆; Γ ` Λκ.t : ∀κ.A

Figure 2. An extension of dependent type theory with guarded recursion and universal quantification over clocks.

(Λκ.t)[κ′] = t[κ′/κ]

Λκ.(t[κ]) = t κ /∈ fc(t)

nextκ(λx.x) ~κ u = u

nextκ(◦) ~κ s~κ t~κ u = s~κ (t~κ u)

nextκ(t) ~κ nextκ(u) = nextκ(t(u))

u~κ nextκ(t) = nextκ(λg.g(t)) ~κ u

t[nextκ(fixκx.t)/x] = fixκx.t

t[nextκ(u)/x] = u

u = fixκx.t

Figure 3. Equational rules for an extension of dependent type
theory with guarded recursion and universal quantification over
clocks. In the fourth equality, ◦ is function composition.

which behaves functorially (i.e., preserves identities and commutes
with function composition). We shall write Iκ f : IκA→ IκB,
whenever f : A → B. On the other hand, Iκ is not a monad. In-
deed, in the model to be described later, there is no map IκIκ 0→
Iκ 0.

There are two ways of distributing Iκ over function types. The
first one is

κ
I(A→ B)→

κ
IA→

κ
IB (3)

obtained by currying ~. This mapping is an isomorphism in the
model, but not in the calculus. The other one is

d :
κ
I(
∏
x :A.B)→

∏
x :A.

κ
IB (4)

defined as λf : Iκ
∏
x :A.B. λx : A. Iκ(evx)(f) where evz

is λg : (
∏
x :A.B). g(z). In the case of κ /∈ fc(A) this is an

isomorphism in the model. Note that it satisfies d(nextκf) =
λx :A. nextκ(f(x))

We say that a term f : A → B is contractive, if there is a κ
and a term g : IκA → B such that f = g ◦ nextκ. Note that
the equational theory states that contractive terms f : A→ A have
unique fixed points.

2.2 Clock quantification
Clock abstraction Λκ.t restricts the clock κ to t, and clock appli-
cation t[κ′] instantiates the restricted clock. The purpose of the as-
sumptions in the rule for clock application is to avoid synchronisa-
tion of clocks; the clock κ′ that t is instantiated with is not allowed
to already occur in A, nor any variable that A depends upon. On

the other hand κ′ can appear in t and in the variables that t depends
on, hence the two components of the context for t.

In categorical terms, universal quantification over clocks is a
right adjoint as we now explain. First we construct categories of
types and terms: if ∆; Γ is a valid context, we can consider the
category whose objects are types A such that ∆; Γ ` A : Type
and morphisms are terms ∆; Γ ` t : A → B considered up to
provable equality. We shall call this category the slice over (∆; Γ).
For κ ∈ ∆, the type former Iκ extends to an endofunctor on the
slice over (∆; Γ) as explained above, and one can show that nextκ

defines a natural transformation. The following lemma introduces
weakening functors between slices.

Lemma 1. Judgements of wellformed types, contexts and typing
judgements are closed under weakening in both clock contexts and
variable contexts, e.g., if ∆; Γ ` t : A is a valid typing judgement
and ∆,∆′; Γ,Γ′ is wellformed, then also ∆,∆′; Γ,Γ′ ` t : A is a
valid typing judgement.

In particular, there is a weakening functor from the slice over
(∆; Γ) to the slice over (∆, κ; Γ) whenever κ /∈ ∆. On the other
hand, if κ /∈ ∆ we can define a functor ∀κ going the other way,
whose action on morphisms maps ∆, κ; Γ ` t : A→ B to

∀κ(t)
def
= λx :∀κ.A. Λκ.t(x[κ]) : ∀κ.A→ ∀κ.B

Proposition 1. Let ∆; Γ be a well-formed context, and let ∆, κ; Γ `
A : Type. There is a natural bijection between terms (considered
up to provable equivalence) of the form ∆, κ; Γ ` t : A and those
of the form ∆; Γ ` s : ∀κ.A. In categorical terms, the functor ∀κ
from the slice over (∆, κ; Γ) to the slice over (∆; Γ) is right adjoint
to the weakening functor.

The correspondence maps ∆, κ; Γ ` t : A to Λκ.t and ∆; Γ `
s : ∀κ.A to s[κ]. The unit of the adjunction is

λx :A. Λκ.x : A→ ∀κ.A (κ /∈ fc(A))

and the counit is

evκ
def
= λx : ∀κ.A. x[κ].

Naturality of evκ is evκ ◦ ∀κ(f) = f ◦ evκ.

2.3 Type isomorphisms
We say that two types A,B well-formed in the same context ∆; Γ
are isomorphic, if they are isomorphic as objects of the slice over
(∆; Γ), i.e., if there are are terms f : A → B and g : B → A
both well-typed in context ∆; Γ such that both compositions are
provably equal to the identity. We write A ∼= B to mean that
A and B are isomorphic. For example, the following three type
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isomorphisms can be constructed in the calculus:

∀κ.A×B ∼= ∀κ.A× ∀κ.B
∀κ.
∏
x :A.B ∼=

∏
x :A.∀κ.B (κ /∈ fc(A))

∀κ.∀κ′.A ∼= ∀κ′.∀κ.A

We extend the type theory with the type isomorphisms of Fig-
ure 4. The justification for these is that they hold in the model (The-
orem 3). Most of these are generalisations of the type equalities
of [5], but will not be identities in our model. Precisely, for all the
type isomorphisms listed, the term from left to right can be defined
canonically in our calculus, but we add the term going the other
way, plus two equalities of terms, stating that the added term is an
inverse to the existing one.

∀κ.A ∼= A (κ /∈ fc(A))

(∀κ.A) + (∀κ.B) ∼= ∀κ.(A+B)∑
x :A.∀κ.B ∼= ∀κ.

∑
x :A.B (κ /∈ fc(A))

κ′

I ∀κ.A ∼= ∀κ.
κ′

IA (κ 6= κ′)

∀κ.A ∼= ∀κ.
κ
IA

Figure 4. Type isomorphisms. The directions from left to right are
definable in the calculus

The first of these states that the unit of the adjunction of Propo-
sition 1 is an isomorphism. Thus, we obtain the following corollary
to Proposition 1.

Corollary 1. Let ∆;− ` A : Type be a closed type and let κ /∈ ∆.
There is a bijective (up to provable equivalence) correspondence
between terms ∆, κ;− ` t : A and terms ∆;− ` s : A.

The last isomorphism of Figure 4 is particularly important.
Following [5] we name it force, and the axioms added state that
force is inverse to the term

λx :∀κ.A. Λκ.nextκ(x[κ]) : ∀κ.A→ ∀κ.
κ
IA

The term force allows us to ignore time steps in universally quan-
tified clocks. It is used in the encoding of coinductive types using
guarded recursive types (proof of Theorem 2).

Atkey and McBride state one more type equality commuting
inductive type formation over ∀κ in special cases. Since the only
inductive types considered in this paper are W-types, we restrict
attention to these. To best describe the type isomorphism, recall
that W-types are initial algebras for polynomial functors, in par-
ticular, the W-type ∆; Γ ` Wx :A.B : Type can be capture up
to isomorphism as the initial algebra for the functor F (X) =∑
a :A.

∏
b :B.X .

Now, consider polynomials of two variables, i.e., of the form

F (X,Y ) =
∑
a :A.(

∏
b :B0.X)× (

∏
b :B1.Y )

for some A,B0, B1 such that

∆; Γ ` A : Type

∆; Γ, a : A ` B0 : Type

∆; Γ, a : A ` B1 : Type

Whenever ∆; Γ ` Y : Type, the initial algebra µX.F (X,Y )
exists for the functor F (−, Y ), since it is a W-Type. This also
extends: if κ /∈ ∆ and ∆, κ; Γ ` Y : Type, also the initial algebra
µX.F (X,Y ) exists for the functor F (−, Y ) on the slice over
(∆, κ; Γ).

We add to the type theory inverses making the canonical map

µX.F (X, ∀κ.Y )→ ∀κ.µX.F (X,Y ) (5)

an isomorphism.

2.4 Universes
Following [8] we use universes to introduce guarded recursive
types. Universes should contain the base types and be closed under
type constructors including Iκ, but of course only for κ in the
current clock context. Since the collection of types in the universe
thus depends on the current clock context, it does not make sense
to talk about a single universe closed under all these constructions,
rather we must consider a family of universes U∆ indexed by
clock contexts ∆. See also Remark 1 for a semantic motivation
for indexing universes by clock contexts.

Figure 5 gives the rules for universes. The Iκ in the hypothesis
for the rule for Bκ is crucial for ensuring a large collection of
contractive functors as we shall see in Section 3.

3. Corecursion via guarded recursion
In this section we show how to encode coinductive types via
guarded recursive types extending the results of [5] to dependent
types. We need to speak of internal slice categories (as opposed to
the external ones of Section 2.2) and functors between them. For
readability we write X rather than El(X).

3.1 Internal slice categories
If ∆;− ` I : Type is a valid judgement, we introduce the internal
slice category over I to be the category whose objects are closed
terms of type X : I → U∆ and morphisms are equivalence classes
of closed terms f :

∏
i : I.X(i)→ Y (i) considered up to provable

equality. We write simply f : X → Y if it is clear from context that
X and Y are objects of the internal slice category.

A functor between slice categories is a pair of closed terms

F0 : (I → U∆)→ (J → U∆′)

F1 :
∏
X,Y : UI

∆.(
∏
i : I.Y (i)X(i))→

∏
j : J.F0Y (j)F0X(j)

preserving identity maps and composition up to provable equality.
Note that F0, F1 must necessarily be typed in a clock context ∆′′

such that ∆,∆′ ⊆ ∆′′. Which ∆′′ we choose is irrelevant by
Corollary 1. Following standard convention from category theory,
we often write simply F for both F0 and F1.

For example, for any slice (∆; I) we can define an endofunctor
Iκ pointwise as (IκX)(i) = Bκ(nextκ(X(i))). If, moreover,
κ /∈ ∆, we can construct the functor ∀κ from the slice over
(∆, κ; I) to that over (∆; I) which acts on objects by

(∀κ.X)(i) = ∀κ(Λκ.X(i))

The universe inclusion in∆′,∆ : U∆′ → U∆ induces a functor from
the slice over (∆′; I) to that over (∆; I) which we shall also call
in∆′,∆. We say that an endofunctor F on the slice over (∆′; I)
extends to (∆; I) if there is an endofunctor G on the slice over
(∆; I) such that G ◦ in∆′,∆ = in∆′,∆ ◦ F . We shall often simply
write F also for the extension of F , since in the examples we have
in mind, these are often just the same (open) type expression.

3.2 Contractive functors
We say that a functor F is contractive if both F0 and F1 are
contractive maps. For example, the endofunctor Iκ is contractive,
as witnessed on objects by the composite

Iκ(I → U∆)
d // (I → Iκ U∆)

(I→Bκ) // (I → U∆)
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wellformed types

∆′ ⊆ ∆

∆; Γ ` U∆′ : Type

∆; Γ ` t : U∆′

∆; Γ ` El(t) : Type

Typing rules

X = 0, 1, 2

∆; Γ ` X : U∆′

∆; Γ ` A : U∆′ ∆; Γ ` B : U∆′

∆; Γ ` A×B : U∆′

∆; Γ ` A : U∆′ ∆; Γ ` B : U∆′

∆; Γ ` A+B : U∆′

∆; Γ ` A : U∆′ ∆; Γ, x : El(A) ` B : U∆′

∆; Γ `
∏
x :A.B : U∆′

∆; Γ ` A : U∆′ ∆; Γ, x : El(A) ` B : U∆′

∆; Γ `
∑
x :A.B : U∆′

∆; Γ ` A : U∆′ ∆; Γ, x : El(A) ` B : U∆′

∆; Γ `Wx :A.B : U∆′

∆; Γ ` A :
κ
IU∆′ κ ∈ ∆′

∆; Γ `
κ
BA : U∆′

∆; Γ ` A : ∀κ.U∆′,κ

∆; Γ ` ∀κ.A : U∆′

∆; Γ ` A : U∆′′ ∆′′ ⊆ ∆′ ⊆ ∆

∆; Γ ` in∆′′,∆′(A) : U∆′

Equalities
El(X) ≡ X X = 0, 1, 2

El(A×B) ≡ El(A)× El(B)

El(A+B) ≡ El(A) + El(B)

El(
κ
Bnextκ(A)) ≡

κ
IEl(A)

El(∀κ.(Λκ.A)) ≡ ∀κ.El(A)

El(
∑
x :A.B) ≡

∑
x : El(A).El(B)

El(
∏
x :A.B) ≡

∏
x : El(A).El(B)

El(Wx :A.B) ≡Wx : El(A).El(B)

El(in∆′′,∆′(A)) ≡ El(A)

in∆′′,∆′(in∆′′′,∆′′(A)) = in∆′′′,∆′(A)

in∆′,∆′(A) = A

Figure 5. Rules for universes

where the first map is the d of (4), and the action on morphisms is
proved contractive similarly. Since f ◦ g is contractive whenever f
or g is, we deduce the following lemma.

Lemma 2. For any functor F between slice categories in context
∆, and for any κ ∈ ∆, the composite functor F ◦Iκ is contractive.

The next theorem shows the interest in contractive functors.

Theorem 1 ([8]). Let F be a contractive endofunctor on a slice.
Then F has a fixed point FixκX.F (X) (up to identity) which
is both an initial algebra and a final coalgebra for F . Moreover

FixκX.F (X) is the unique up-to-identity fixed point, and also
unique up to isomorphism among the up-to-iso fixed points.

Proof. Since F0 is contractive it has a unique fixed point. Given
any fixed point up to isomorphism f : FX ∼= X and an algebra
g : FY → Y the map λh :X → Y.g ◦Fh◦f−1 is contractive and
thus has a unique fixed point, which is a unique algebra map from
f to g. Thus, any up-to-iso fixed point for F is an initial algebra
and thus all up-to-iso fixed point are isomorphic. The case of final
coalgebras is similar.

Note that from the proof we can construct a term

fold :
∏
Z : I → U∆.(FZ → Z)→ (FixκX.F (X))→ Z

giving the unique map from FixκX.F (X) to any other algebra.

Example 1. In the slice over (κ, 1), the endofunctor given by
F (X) = N × IκX is contractive and thus has a unique fixed
point Strκ, which is at the same time an initial algebra and final
coalgebra for F . Note that even if we want to talk about types
rather than codes of types, we get

El(Strκ) ≡ El(N×
κ
B(nextκ(Strκ)))

≡ N×
κ
IEl(Strκ)

Example 2. We now consider a more advanced example involving
dependent types. In the slice category over N (empty clock context),
Altenkirch and Morris [2] define the functor

F (X)(n) = Fin(n) +X(n)×X(n) +X(n+ 1)

where Fin is defined by induction on n:

Fin(0) = 1

Fin(n+ 1) = Fin(n) + 1 .

as interpreted in set theory, the initial algebra Lam for F has
as Lam(n) the set of lambda terms with n free variables. The
final coalgebra for ILam has ILam(n) the set of possibly infinite
lambda terms with n free variables.

We can also consider the type Lamκ defined as the fixed point
of F ◦Iκ, i.e., satisfying

Lamκ(n)=Fin(n)+
κ
ILamκ(n)×

κ
ILamκ(n)+

κ
ILamκ(n+1)

Since λn :N.Lamκ(n+1) carries an algebra for F ◦Iκ, and since
Lamκ is an initial algebra, we obtain an inclusion i : Lamκ(n)→
Lamκ(n + 1) corresponding to weakening. We can use this to
construct the element

l = fixκx :
κ
ILamκ(n).inλ(

κ
I(i)(x))

where inλ : Iκ Lamκ(n + 1) → Lamκ(n) is the inclusion. The
element l corresponds to the infinite lambda term λx.λx.λx. . . . .

3.3 Encoding coinductive types
We can now state the main theorem of this section, relating guarded
recursive types to coinductive types.

Definition 1. Let F be an endofunctor on the slice over (∆; I),
and let κ /∈ ∆. We say that F commutes with ∀κ, if F extends to
(∆, κ; I) (as in Section 3.1) and the canonical map F (∀κ.X) →
∀κ.F (X) is an isomorphism for all X .

Theorem 2. Let F be an endofunctor on a slice over (∆; I) and
let κ /∈ ∆. If F commutes with ∀κ, then

νX.F (X)
def
= ∀κ.FixκX.F (

κ
IX)

carries a final coalgebra structure for F . Moreover, there is a term

unfold:
∏
Z : I → U∆.(Z → FZ)→ Z → νX.F (X)
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computing the unique map from any other coalgebra.

By the type isomorphisms of Section 2.3, dependent and bi-
nary sums and products commute with universal quantification over
clocks. In particular, the functors F of Examples 1 and 2 com-
mute with ∀κ. Thus ∀κ.Strκ is a coinductive type of streams, and
∀κ.Lamκ is a coinductive type of infinite lambda terms. The term
Λκ.l : ∀κ.Lamκ(0) is the element of this type corresponding to
λx.λx.λx. . . . .

All polynomial functors commute with ∀κ and since M-types
by definition are final coalgebras for these we get the following.

Corollary 2. The rule for forming M-types

∆; Γ ` A : U∆′ ∆; Γ, x : El(A) ` B : U∆′

∆; Γ ` Mx :A.B : U∆′

can be encoded as

Mx :A.B
def
= ∀κ.FixκX.(

∑
x :A.(B →

κ
IX)) κ /∈ ∆

Proof of Theorem 2. For readability we define

Y
def
= FixκX.F (

κ
IX)

Z
def
= ∀κ.Y

Thus Y ≡ F (Iκ Y ), and F (Z) ∼= Z by the following isomor-
phism

Z ≡ ∀κ.F (Iκ Y )
∼= // F (∀κ.Iκ Y )

F (force)// F (Z)

We show that given a coalgebra f : X → FX for F , the corre-
spondence between maps h : X → Y and maps h̄ : X → Z of
Proposition 1 restricts to a bijective correspondence between coal-
gebra maps h̄

X
f //

h̄

��

FX

F (h̄)

��
Z

unfoldZ// F (Z)

(6)

in the slice over (∆; I) and coalgebra maps h:

X
f //

h

��

FX
F (nextκ)// F (IκX)

F (Iκ h)

��
Y

unfoldY // F (Iκ Y )

(7)

in the slice over (∆, κ; I) (unfoldY is simply the identity). The
theorem then follows from Y being a final coalgebra.

Suppose first that (7) commutes. Consider the map

φX : ∀κ.F (
κ
IX)→ F (∀κ.X)

defined by composing the F (force) with the commutativity of F
and Iκ. The following commutes

∀κ.X
∀κ(F (nextκ)◦f) //

∀κ(h)

��

∀κ.F (IκX)
φX //

∀κ(F (Iκ h))

��

F (∀κ.X)

F (∀κ(h))

��
∀κ.Y

∀κ(unfoldY ) // ∀κ.F (Iκ Y )
φY // F (∀κ.Y )

Now, the top line of this diagram is isomorphic to f via the isomor-
phism X ∼= ∀κ.X , and thus we obtain (6).

Suppose now that (6) commutes. Let dX : F (∀κ.X)→ ∀κ.F (X)
denote the canonical isomorphism. Note first that

evκ◦unfoldZ
−1

= evκ ◦ ∀κ(unfoldY
−1) ◦ dIκ Y ◦ F (∀κ(nextκ))

= evκ ◦ ∀κ(unfoldY
−1) ◦ ∀κ(F (nextκ)) ◦ dY

= unfoldY
−1 ◦ F (nextκ) ◦ evκ ◦ dY

= unfoldY
−1 ◦ F (nextκ) ◦ F (evκ)

so unfoldY ◦ evκ = F (nextκ) ◦ F (evκ) ◦ unfoldZ . So now,

unfoldY ◦ h = unfoldY ◦ evκ ◦ h̄
= F (nextκ) ◦ F (evκ) ◦ unfoldZ ◦ h̄
= F (nextκ) ◦ F (evκ) ◦ F (h̄) ◦ f
= F (nextκ) ◦ F (h) ◦ f

= F (
κ
I(h)) ◦ F (nextκ) ◦ f

We end the section with an example, showing how a simple
non-causal stream function can be encoded in the type theory.
For more examples of coding with guarded recursion and clock
quantification, see [5].

Example 3. The type S(N)
def
= ∀κ.Strκ was seen above to be

a coinductive type of streams. We now show how to encode the
function odd : S(N)→ S(N) returning the stream of the elements
at odd indices of the input stream. This function is not causal, and
so there is no function Strκ → Strκ that does the same.

Following [8] we first define

∆; Γ, x : A→
κ
IB ` t : A→ B

∆; Γ ` pfixκx.t : A→ B

as pfixκx.t = fixκy : Iκ(A→ B).t[λa.y ~κ nextκ(a)/x]. Note
that it satisfies

pfixκx.t = t[nextκ ◦ (pfixκx.t)/x].

Next define

κ; f : S(N)→
κ
IStrκ ` oddrecκ(f) : S(N)→ Strκ

as

oddrecκ(f)(x :: y ::xs)
def
= x :: κf(xs)

Here the pattern matching syntax on the left hand side uses S(N) ∼=
N× S(N), and the cons operation ::κ on the right hand side is the
one of Strκ, i.e, has type N×Iκ Strκ → Strκ. Now, define

oddκ
def
= pfixκf.(oddrecκ(f)) : S(N)→ Strκ

odd
def
= λxs :S(N). (Λκ.oddκ(xs)) : S(N)→ S(N)

Intuitively, odd breaks the synchronisation between the input and
output stream by using different clocks for them. This allows us to
essentially ignore the timing on the input stream (treating it as an
element of a coinductive type), but still use guarded recursion to
construct the output stream.

To see that odd computes as expected, unfold the definition of
the cons operation on S(N) from the proof of Theorem 2:

x ::xs = Λκ.(x :: κnextκ(xs[κ]))
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Using this we get

odd(x :: y ::xs) = Λκ.oddκ(x :: y ::xs)

= Λκ.oddrecκ(nextκ ◦ oddκ)(x :: y ::xs)

= Λκ.(x :: κ(nextκ(oddκ(xs))))

= x ::(Λκ.oddκ(xs))

= x ::(odd(xs))

4. Model
We now construct a model of the calculus of Section 2. We start in
this section, by describing a family of categories, and constructing
a sketch of a model of the calculus, ignoring the coherence problem
arising from interpreting dependent type theory in locally cartesian
closed categories. We address this problem in Section 6.

The model is a generalisation of the topos-of-trees model of [6,
7] to more dimensions. Types and terms in clock context ∆ are
interpreted in the category

GR[∆]
def
= Set(ω∆)

op

The objects of this category are families of sets Xδ indexed by
maps δ : ∆ → ω (ω are the natural numbers with the usual order),
plus maps rXδ≤δ′ : Xδ′ → Xδ for each δ ≤ δ′ (pointwise order) sat-
isfying functoriality in δ. If, for example, ∆ = κ, κ′ just consists of
two clock variables, an object X can be drawn as a 2-dimensional
lattice of sets and maps

...

��

...

��

...

��
X1,2

��

X2,2
oo

��

X3,2
oo

��

. . .oo

X1,1 X2,1
oo X3,1

oo . . .oo

A morphism f : X → Y is a family of maps fδ : Xδ → Yδ such
that fδ ◦ rXδ≤δ′ = rYδ≤δ′ ◦ fδ′ for each δ ≤ δ′.

Since GR[∆] is a topos it is in particular locally cartesian
closed, i.e., a category with pullbacks, terminal object and, for all
morphisms f : X → Y , a functor

∏
f : GR[∆]/X → GR[∆]/Y ,

right adjoint to the functor f∗ given by pullback. (Recall that the
slice category GR[∆]/X has as object morphisms Z → X and
commutative triangles as morphisms.) We say that

∏
f (g) is the

fibred product of g along f . Recall also that f∗ always has a left
adjoint

∑
f given by composition with f . Since the categories

GR[∆] are toposes, they moreover model W-types [16].
Locally cartesian closed categories (lccc’s) almost model de-

pendent type theory (up to the coherence problem). In our setting
the lccc structure lets us model contexts (∆; Γ) as objects [[∆; Γ]]
of GR[∆], types ∆; Γ ` A : Type as objects of the slice category
GR[∆]/[[∆; Γ]], i.e., as morphisms

p∆;Γ`A : [[A]]→ [[∆; Γ]]

and terms ∆; Γ ` t : A as sections of p∆;Γ`A, i.e., morphisms such
that p∆;Γ`A ◦ [[t]] = id[[∆;Γ]]. Dependent products are modelled
using fibred products and dependent sums by composition.

4.1 Modelling guarded recursion
The operator Iκ, nextκ and fix and ~ can be modelled using
generalisations of the constructions of [6]. For example, in an

empty context we define

(
κ
IA)(δ) =

{
1 if δ(κ) = 0

A(δ[κ 7→ (δ(κ)− 1)]) else (8)

and this is extended to a family of endofunctors on slices
κ
I
Γ

: GR[∆]/Γ→ GR[∆]/Γ

(see [6, 7]), as needed for modelling Iκ in non-empty contexts. In
each slice there is a fixed point combinator (IκΓ X → X) → X
giving unique fixed points.

To model quantification over clocks, we consider functors in-
duced by inclusions of the form i : ∆ → ∆, κ between clock con-
texts. Such an i induces a functor

GR[∆]
i∗ // GR[∆, κ]

defined on objects as i∗(X)(δ) = X(δ◦i). In the simple case of ∆
being empty, i∗ is simply the constant set functor Set → GR[κ].
It is a crucial invariant of the model that the functor i∗ corresponds
to clock-weakening in the sense that, e.g.,

[[∆, κ; Γ ` A : Type]] ∼= i∗[[∆; Γ ` A : Type]] (9)

(in fact, this will be an equality in Lemma 12). Since, by Propo-
sition 1 universal quantification over clocks is a right adjoint to
weakening, we should model it using a right adjoint to i∗. Standard
construtions from topos theory give both a right and a left adjoint
to i∗.

Lemma 3. The functor i∗ has a right adjoint i∗, and a left adjoint
i! defined on objects as

i∗(X)(δ) = lim
←−

(X(δ[κ 7→ −]))

i!(X)(δ) = X(δ[κ 7→ 1])

The unit of the adjunction i∗ a i∗ is an isomorphism.

For example, in the case of ∆ being empty, i∗(X) is the limit
of the sequence X1 ← X2 ← X3 . . .

To interpret ∀κ in contexts, we need to extend i∗ to slice cate-
gories as in the following proposition.

Proposition 2. The functor (i∗)→ : GR[∆]/X → GR[∆, κ]/i∗X ,
mapping an object p : Y → X to i∗p : i∗Y → i∗X has a right
adjoint mapping q : Z → i∗X to ηX−1 ◦ i∗q : i∗Z → X (where η
is the unit of the adjunction). Moreover, the right adjoint commutes
with reindexing between slices.

5. Universes
To model the universes U∆ we need semantic universes in the
following standard sense.

Definition 2. Let C be an lccc with finite coproducts and W-types,
and let E → U be a morphism in C. Say that B → A is small wrt
E → U if it can be presented as a pullback of E → U along some
map B : A→ U . In this case we say that B is a code for B → A.
Say X is small if X → 1 is small.

A universe in C is a mapE → U such that 0, 1, 1+1 and N are
small wrt E → U and moreover the induced notion of smallness
is closed under composition, small fibered products, and W-types.
The latter means that if B → A → Γ are two small maps, then
also the induced W-type (see [16]) is a small map into Γ.

We will often denote a universe E → U simply by U .
If U is a Grothendieck universe in Set, the first projection

(
∐
X∈U X) → U is a universe in the sense of Definition 2. A

morphism f : A → B is small iff each fibre f−1(b) is isomorphic
to an element of U . To construct universes in the categories GR[∆]
we make the following assumption.
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Assumption 1. For the rest of the paper we will assume that we
are given a Grothendieck universe U in Set.

UsingU one can construct universes in presheaf categories such
as GR[∆] via a construction going back to [12] (see also [8, 19]).
The universe V∆ is defined as the object in GR[∆], whose value at
δ ∈ ω∆ is the set of diagrams of the form

{δ′ ∈ ω∆′ | δ′ ≤ δ}
op
→ U

where the indexing set carries the restriction of the order from
(ω∆′)

op
, and U is the full subcategory of Set on the objects from

U . We introduce the notation ↓ δ for the ordered set {δ′ ∈ ω∆ |
δ′ ≤ δ}, thus V∆(δ) is the set of objects of the functor category
U(↓δ)op

The presheaf of elements is

EV∆(δ) =
∑
F∈V∆(δ) F (δ) (10)

with the first projection into V∆.

Proposition 3 ([12]). Each EV∆ → V∆ is a universe in GR[∆] in
the sense of Definition 2. A morphism A → B is small if and only
if each Aδ → Bδ is small.

Remark 1. Note that the family (V∆)∆ is not closed under rein-
dexing, i.e., if ∆′ ⊂ ∆, it is not the case that i∗V∆′

∼= V∆, where
i : ∆′ → ∆ is the inclusion. For example, in the case of ∅ ⊂ κ,
i∗V∅(δ) = U , which is not the same as Vκ(δ). Since the property
(9) is crucial to the model construction, this means that using a
single universe in the calculus with [[∆, κ;− ` U : Type]] = V∆

is not an option. This is our semantic motivation for indexing uni-
verses by clock contexts.

In the calculus, in clock context ∆, there is a universe type
U∆′ for each ∆′ ⊆ ∆. This will be modelled as i∗V∆′ , where
i : ∆′ → ∆ is the inclusion. To model closure of U∆′ under type
forming operations, we need to know that i∗V∆′ is a universe. This
follows from the following lemma.

Lemma 4. Let C be a locally cartesian closed category with W-
types and finite coproducts, and let D be a small category with
a terminal object, such that the functor category CD is locally
cartesian closed. Let E → U be a universe in C, and let D : C→
CD be the diagonal functor D(C)(d) = C. Then D(E) → D(U)
is a universe in CD.

Note that this proves that i∗V∆′ is a universe, since up to the

isomorphism GR[∆] ∼= GR[∆′](ω
∆′′ )

op

(where ∆ = ∆′,∆′′), i∗

is the diagonal functor.
For reasons of space we omit the proof of Lemma 4, but just

state an important lemma on which the proof is based.

Lemma 5. Under the same assumptions as Lemma 4, a map
f : Y → X in CD is small with respect to D(E) → D(U) if
and only if f1 is small with respect to E → U and for each d in D
the naturality square below is a pullback diagram

Y (d) //

��

Y (1)

��
X(d) // X(1)

6. A category subsuming all GR[∆]

We now turn to the coherence problem of interpretation of de-
pendent type theory in locally cartesian closed categories, i.e., the
problem that pullback, which models substitution, usually does not
commute with constructions such as dependent products and is not

associative [11]. Here we follow a recent approach developed in-
dependently by Voevodsky [13] and Streicher [20] using universes,
see also [8, 19]. Voevodsky and Streicher show that given a universe
E → U in a locally cartesian closed category, one can construct a
model of dependent type theory by modelling contexts as objects
and types Γ ` A : Type as morphisms [[Γ]]→ U .

In our setting we have a whole family of locally cartesian
closed categories GR[∆] (indexed over ∆) for which we need to
simultaneously solve the coherence problem, and at the same time
maintain the invariant that [[∆, κ; Γ]] ∼= i∗[[∆; Γ]]. To do this we
introduce a new category

GR
def
= Set(ωCV)

op

Definition 3. An object X of GR is supported by ∆ if whenever
δ ≤ δ′ and δ|∆ = δ′|∆ (where δ|∆ is the restriction of δ to ∆), then
Xδ′ → Xδ is an isomorphism. An objectX is strictly supported by
∆, if, under the conditions above, Xδ′ → Xδ is an identity.

Each of the categories GR[∆] is isomorphic to the full sub-
category of GR consisting of the objects strictly supported by ∆
and is equivalent to the category GR[∆] of objects supported by
∆. Note that up to the equivalence GR[∆] ' GR[∆] the functors
i∗ : GR[∆]→ GR[∆, κ] are simply inclusions of subcategories of
GR.

6.1 Extending operations to GR

Lemma 6. The embeddings GR[∆] → GR preserve the locally
cartesian closed structure and W-types, likewise do GR[∆′] →
GR[∆] for ∆′ ⊆ ∆

The proof of Lemma 6 is similar to that of Lemma 4.
Also the operations Iκ and i∗ can be extended to GR. To state

the properties of i∗, define the subcategory GR[CV \ κ] of GR on
objects supported by CV \ κ.

Proposition 4. For any κ there are functors
κ
I : GR→ GR

Limκ : GR→ GR[CV \ κ]

such that Limκ is right adjoint to the inclusion, and such that the
left square below commutes and the right is a map of adjunctions
whenever κ /∈ ∆.

GR[∆, κ]

��

Iκ // GR[∆, κ]

��

GR[∆, κ]

��

i∗

⊥ // GR[∆]
i∗oo

��
GR

Iκ // GR GR
Limκ

⊥ // GR[CV \ κ]
oo

Moreover, the unit of the extended adjunction is still an isomor-
phism, and if X is in GR[CV \ κ] then the functor

GR/X → GR[CV \ κ]/X

mapping pZ : Z → X to η−1
X ◦ LimκpZ is right adjoint to the

inclusion. If X is in GR[∆] then this adjunction extends the one of
Proposition 2.

6.2 Universes in GR

The model construction uses universes for two purposes: to solve
the coherence problem as indicated above and to model the uni-
verses of the calculus. We need different set theoretic universes for
each purpose and so we strengthen Assumption 1.

Assumption 2. For the rest of the paper we will assume that we are
given two Grothendieck universe U,U ′ in Set, such that U ⊆ U ′,
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U ∈ U ′. Moreover, we will assume that U ′ has unique names, i.e.,
if X,Y ∈ U ′ and X ∼= Y then X = Y .

Using these universes we can construct the universes V and V∆

(for each ∆) in GR:

V (δ) = {X : (↓ δ)op → U′}
V∆(δ) = {X : (↓ δ)op → U | X strictly supported by ∆}

where U′ is the full subcategory of Set on objects of U ′, X as
usual is required to be a functor, ↓ δ is defined as in Section 5, and
X strictly supported by ∆ should be understood as in Definition 3.
The projections

ElV : EV → V El∆ : E∆ → V∆

are defined as in (10). Note that El∆ : E∆ → V∆ is isomorphic to
the universe obtained by including that of Proposition 3 into GR.

Proposition 5. Both EV → V and E∆ → V∆ are universes in
GR.

Proof. That V is a universe is proved in [12]. Since GR ∼=
GR[∆]D

op

(where D = ωCV\∆), Lemma 4 shows that the uni-
verse V∆ of GR[∆] is also a universe in GR.

Proposition 6. The object V∆ is an object of GR[∆].

We will use the universe V for the coherent model, i.e., type
judgements will be interpreted as morphisms with V as codomain,
and V∆ will be used to interpret U∆.

The requirement of uniqueness of names in Assumption 2 cor-
responds to the following category theoretic property.

Definition 4. Let E → U be a universe in a category C. We say
thatE → U has unique names if whenever f, g : Γ→ U are codes
for the same map A→ Γ it is the case that f = g.

Proposition 7. BothEV → V andE∆ → V∆ have unique names.

Lemma 7. Each V∆ is small with respect to V . We write V ∆ : 1→
V for the code.

7. Universe structures
It is essential to the coherent interpretation that type constructors
can be encoded as morphisms on the universe V . For example, for
binary product types we need a map × : V × V → V such that
if A,B : X → V are codes for A,B in the slice over X then
× ◦ 〈A,B〉 is a code for the product of A and B as computed in
the slice category. In the cases of dependent products and sums the
domains of the codes of these operations is the object V (1) defined
as the exponential

(V × V → V )ElV

in the category C/V . This object is essentially the interpretation of
the
∑
X :V .V X and enjoys the universal property that morphisms

X → V (1) correspond naturally to pairs 〈B,A〉 where B : X →
V and A : B → V where B is the pullback of EV along B.

Lemma 8 ([13, 19]). There are unique maps
∏
,
∑
,W: V (1) →

V encoding dependent products, sums and W-types in the sense
that if pA : A → B and pB : B → X are small with codes B
and A respectively, then

∏
◦〈B,A〉,

∑
◦〈B,A〉, and W ◦ 〈B,A〉

are codes of
∏
pB
pA, pB ◦ pA, and the W-type induced by pA, pB

respectively.

The uniqueness statement of Lemma 8 follows from Proposi-
tion 7. Likewise there are unique maps encoding binary products
and sums, as well as 0, 1, 1 + 1.

Definition 5. A universe structure is a universe together with a
choice of codes encoding dependent products, sums, W-types, unit,
0, 1 + 1. A universe embedding is a monomorphism i : U → U ′

between universes such that i is a code for E → U , and which
commutes with the universe structure.

Proposition 8. The inclusions in∆ : V∆ → V and in∆′,∆ : V∆′ →
V∆ are universe embeddings.

Proof. This follows from [19, Remark 9.5].

Remark 2. As mentioned, types in context will be modelled as
morphisms into V , and V∆ will be used to model U∆. The universe
structure on V will be used to model the type constructors and the
universe structure on V∆ will be used to model the corresponding
terms acting on the universe type. Proposition 8 ensures that the
type equality of Figure 5 hold.

Without the assumption of uniqueness of names in the set theo-
retic universes of Assumption 2 it would only be possible to model
these type equalities as isomorphisms. In fact, without this assump-
tion the canonical choice of encoding of function space as a uni-
verse map, does not commute with the universe inclusions.

7.1 Encoding operations for guarded recursion
We now show how to construct codes for the operations specific to
our calculus.

Lemma 9. There is a map Bκ : Iκ V → V encoding Iκ in the
sense that if Γ is an object of GR and B : Γ → V is a code for
B → Γ then Bκ ◦nextκ ◦B is a code for IκΓ B → Γ.

The next lemma uses the notation f̂ : X → LimκY for the
adjoint correspondent to f : X → Y under the adjunction of
Proposition 4 whenever X in GR[CV \ κ].

Lemma 10. There is a map ∀κ : Limκ(V ) → V encoding the
functor of Proposition 2 for all ∆ in the sense that if Γ is in
GR[CV \ κ] and if pB : B → Γ is an object of GR/Γ and
B : Γ→ V is a code for pB then ∀κ ◦ B̂ is a code for η−1 ◦ i∗pB .

Proof. LimκV (δ) is the set of diagrams of the form

F : {δ′ ∈ ωCV | δ′|CV\κ ≤ δ|CV\κ}
op → U′.

Define ∀κ(F )(δ′) to be the limit of F (δ′[κ 7→ −]).

Both these maps restrict to V∆ such that the following diagrams
commute.

LimκV∆
∀κ //

Limκ(in∆)

��

V∆

in∆

��

Iκ V∆
Bκ //

Iκ(in∆)

��

V∆

in∆

��
Limκ(V )

∀κ // V Iκ V
Bκ // V

8. Interpreting the calculus
We have now established the ingredients and can define the inter-
pretation. The basic principles of the interpretation are

• Contexts ∆; Γ are interpreted as objects of GR

• Type judgements in context ∆; Γ ` A : Type are interpreted as
morphisms [[A]] : [[∆; Γ]]→ V in GR

• The empty context is interpreted as the terminal object, and
comprehension, i.e., the rule

∆; Γ ` ∆; Γ ` A : Type

∆; Γ, x : A `
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[[∆; Γ ` X : Type]] = X◦!
[[∆; Γ ` A×B : Type]] = × ◦ 〈[[A]], [[B]]〉
[[∆; Γ ` A+B : Type]] = + ◦ 〈[[A]], [[B]]〉

[[∆; Γ `
∏
x :A.B : Type]] =

∏
◦〈[[A]], [[B]]〉

[[∆; Γ `
∑
x :A.B : Type]] =

∑
◦〈[[A]], [[B]]〉

[[∆; Γ `Wx :A.B : Type]] = W ◦ 〈[[A]], [[B]]〉

[[∆; Γ `
κ
IA : Type]] =

κ
B ◦nextκ ◦ [[A]]

[[∆; Γ ` ∀κ.A : Type]] = ∀κ ◦ [̂[A]]

[[∆; Γ ` U∆′ : Type]] = V ∆′◦!

Figure 6. Interpretation of types. In the first line X ranges over
0, 1, 2, and ! is the unique map to the terminal object

is interpreted using pullback:

[[∆; Γ, x : A]]

p∆;Γ,x : A

��

//
_� ElV

��
[[∆; Γ]]

[[A]] // V

• Term judgements ∆; Γ ` t : A are interpreted as sections of
p∆;Γ,x : A in the sense of Section 4.

Figure 6 summarizes the interpretation of types using the uni-
verse structure on V constructed in Section 7.

Theorem 3 (Soundness). Under Assumption 2, the interpretation
of types and contexts defined above can be extended to an inter-
pretation of the type theory which is well-defined and sound with
respect to the equality theory of Section 2. Moreover, all the terms
of Figure 4 and (5) are interpreted as isomorphisms.

For reasons of space, we omit the interpretation of terms, most
of which is standard. For example, the rules for forming terms in
the universe of Figure 5 are interpreted using the universe structure
on V∆. The interpretation of a term [[∆; Γ ` t : U∆′ ]] corresponds
to a map [[t]] : [[∆; Γ]] → V∆′ and El(t) is interpreted as in∆′ ◦
[[t]] : [[∆; Γ]] → V . The type equalities of Figure 5 follow from the
map in∆′ preserving the universe structure and Bκ,∀κ.

We end by stating the following two lemmas which are crucial
to the interpretation.

Lemma 11. If ∆; Γ is a well-formed context then [[∆; Γ]] is an
object of GR[∆].

Lemma 12. Let κ /∈ ∆, then

• if ∆; Γ is a well-formed context then [[∆; Γ]] = [[∆, κ; Γ]]
• If ∆; Γ ` A : Type then

[[∆; Γ ` A : Type]] = [[∆, κ; Γ ` A : Type]]

• If ∆; Γ ` t : A then [[∆; Γ ` t : A]] = [[∆, κ; Γ ` t : A]]

9. Conclusions and future work
Guarded recursive types are a powerful tool, whose properties are
still to be fully understood. This paper not only shows how they can
be used for productive coprogramming with coinductive types in a
dependently typed setting, but may also be useful for development
of reasoning principles for guarded recursive types.

For future work, I would like to extend the present work to
the case of intensional type theory, building on the results of [8]
which show how to construct intensional models of guarded recur-
sion. Note that the model construction used in this paper constructs
locally cartesian closed categories which are all models of exten-
sional type theory. In the setting of intensional type theory it would
be interesting to see if the constructions of this paper are compati-
ble with other principles of type theory, in particular the univalence
axiom.
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A. Proof of Lemma 5
Suppose first that f is small, and consider the following commu-
tative diagram where the right hand square is part of the code for
f

Y (d) //

��

Y (1) //

��

E

��
X(d) // X(1) // U

(11)

Note that the outer square must also be part of the code for f . Since
pullbacks in CD are computed pointwise, both the outer square and
the right square are pullbacks and so by the pullback lemma (see
e.g. Lemma 5.8 in Awodey: Category theory 2nd ed) also the left
hand square is a pullback.

For the other implication, consider again the square (11), where
this time, the right hand square is a code for f1 as assumed to exist.
We can now construct the code for f by defining the component at
d to be the composite Y (d) → Y (1) → U . This defines a code
because the composite of the two pullbacks of (11) is a pullback,
again by the pullback lemma.

Remark 3. Note that by a further application of the pullback
lemma, every diagram of the form

Y (d′) //

��

Y (d)

��
X(d′) // X(d)

is a pullback

B. Proof of Lemma 4
Since coproducts are given pointwise in CD, it should be clear
from Lemma 5 that the notion of smallness induced by D(E) →
D(U) is closed under these. Likewise, since composition is given
pointwise, it is closed under this too, and since all identity maps are
small, 1 is small. It remains to verify that the notion of smallness is
closed under small fibered products and formation of W types.

We first show that the notion of smallness is closed under fibered
products. Note first that for X in CD, there is a functor

φX : C/X(1)→ CD/X

mapping Z → X(1) to the natural transformation whose com-
ponent Z(d) → X(d) at d is the pullback of Z → X(1) along
X(d)→ X(1). By Lemma 5 a natural transformation p : Y → X
is small wrt D(E) → D(U) if and only if there is a small q such
that p ∼= φX(q).

Suppose f : Y → X is small, and suppose we can prove the
below diagram commutative (up to isomorphism).

C/Y (1)
φY //

∏
f1

��

CD/Y

∏
f

��
C/X(1)

φX // CD/X

(12)

where the vertical maps are the fibered product functors along f
and f1 respectively. We need to show that if pZ : Z → Y is small,
then so is

∏
f (pZ). But by the above observation and (12), if pZ

is small, then
∏
f (pZ) ∼= φX(

∏
f1

(q)) for some small q and thus
small.

It thus remains to show (12) commutative. Since φY has a left
adjoint ψY , mapping p to p1, and moreover f∗ a

∏
f , this is

equivalent to showing the following diagram commutative.

C/Y (1) CD/Y
ψY

oo

C/X(1)

f∗1

OO

CD/X
ψX

oo

f∗

OO

This follows from pullbacks in CD being computed pointwise.
In fact, this argument shows that small fibered products of

small maps are computed pointwise: if f : Y → X is small and
pZ : Z → Y is small then

(
∏
f (pZ))d ∼= X(!)∗(

∏
f1

(pZ(1))) by (12)

∼=
∏
fd

(Y (!)∗pZ(1))

∼=
∏
fd

(pZ(d)) since pZ is small

where the second isomorphism is an instance of the Beck-Chevalley
condition applied to the pullback square

Y (d)

fd

��

Y (!) // Y (1)

f1

��
X(d)

X(!) // X(1)

which is a pullback because f is assumed small.
We now show that the notion of smallness is closed under

formation of W-types. Recall first, that if

B
pB // A

pA // Γ (13)

is a pair of maps in some lccc E, then the W-type induced by pB , pA
is an initial algebra of the functor

E/Γ
(pA◦pB)∗// E/B

∏
pB // E/A

∑
pA // E/Γ

Now suppose, (13) is a diagram in CD, and consider the endo-
functor F on CD/Γ induced by it. Consider on the other hand the
endofunctor Fd on C/Γ(d) induced by the component over some
object d in D. Since pullbacks and dependent products and sums
are given pointwise, F is given pointwise by Fd, in the sense that
if pC : C → Γ, then

F (pC)d = Fd(pC(d))

Let pX(d) : X(d) → Γ(d) be the carrier of the initial algebra for
Fd for all d. Note that each of these is small wrt E → U . Since W-
types commute with pullbacks (Hyland and Gambino: Wellfounded
trees and dependent polynomial functors, Corollary 11), and since
pA and pB are both small, it is the case that for all f : d′ → d in D,
X(d′) ∼= Γ(f)∗X(d), and so in fact, the pX(d) together constitute
a small object pX : X → Γ in CD.

We will show that pX(d) is a carrier of an initial algebra for
F , which will prove the lemma. First we show that the family of
maps Fd(X(d)) → X(d) define a map F (X) → X in CD. The
fact that W-types commute with reindexing means not only that
X(d′) ∼= (Γ(f))∗X(d) but also that the diagram below commutes

Fd′(X(d′))
F (∼=)//

��

Fd′((Γ(f))∗X(d))

��

∼= // (Γ(f))∗(Fd(X(d)))

uukkkkkkkkkkkkkk

X(d′)
∼= // (Γ(f))∗X(d)
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composing this with

(Γ(f))∗(Fd(X(d))) //

��

Fd(X(d))

��
(Γ(f))∗X(d) // (X(d))

we get that the family Fd(X(d)) → X(d) is natural, and thus a
map in CD.

Suppose now, given some other algebra F (Z) → Z in CD/Γ.
Since each X(d) is an initial algebra, there is a unique family of
maps hd such that the diagrams of the form

Fd(X(d)) //

Fd(hd)

��

X(d)

hd

��
Fd(Z(d)) // Z(d)

It remains to show that the family (hd)d is natural, since this will
show existence of an algebra map, and uniqueness of algebra maps
is clear.

But to show commutativity of

X(d) //

hd

��

X(d′)

hd′

��
Z(d) // Z(d′)

is equivalent to showing commutativity of

X(d) //

hd

��

(Γ(f))∗X(d′)

(Γ(f))∗(hd′ )

��
Z(d) // (Γ(f))∗Z(d′)

Since F commutes with reindexing, this is an equality between
two algebra maps for F (d) from X(d) to (Γ(f))∗Z(d′), and thus
commutes, since X(d) is the initial algebra.

C. The map (5) is an isomorphism
We now show the following, which is one of the statements of
Theorem 3.

Proposition 9. The map (5) is interpreted as an isomorphism in
the model.

Write C = GR[∆]/Γ. In context ∆, F (−,−) is interpreted as
a functor

F∆(−,−) : C× C→ C
Note the isomorphism

GR[∆, κ]/i∗Γ ∼= (GR[∆])ω
op

/i∗Γ ∼= (GR[∆]/Γ)ω
op

= Cω
op

and so in context ∆, κ, F (−,−) is interpreted as a functor

F∆,κ(−,−) : Cω
op

× Cω
op

→ Cω
op

Since i∗ : C → Cω
op

preserves the lccc structure (Lemma 6,
see also Appendix B above for an argument), F∆,κ is computed
pointwise from F∆, i.e., if X,Y in Cω

op

and n ≤ m, we get

F∆,κ(X,Y )n ∼= F∆(Xn, Yn)

and up to this isomorphism

F∆,κ(X,Y )n,m = F∆,κ(Xn,m, Yn,m)

: F∆,κ(X,Y )m → F∆,κ(X,Y )n

Now, given an objectX1 ← X2 ← X3 . . . in Cω
op

, we must show
that

µY.F∆(lim←
n

Xn, Y ) ∼= lim←
n

µY.F∆(Xn, Y )

To do this, we use the fact that F∆(Xn,−), being a polynomial
functor on a slice category has rank, and so the initial algebra
can be computed as a colimit. (See e.g., Abbott, Altenkirch and
Ghani, Categories of Containers Theorem 5.6 and Proposition 6.6).
Precisely, there is an ordinal λ such that µY.F∆(Xn, Y ) can be
constructed as the colimit of a diagram (Fα∆(Xn, Y ))α∈λ where
Fα∆(Xn, Y ) is defined by induction as follows

F 0
∆(Xn, 0) = 0

Fα+1
∆ (Xn, 0) = F∆(Xn, F

α
∆(Xn, 0))

Fα∆(Xn, 0) = lim→
β<α

F β∆(Xn, 0)

where in the last case α is a limit ordinal. For α ≤ β, the map

ξα,β : Fα∆(Xn, Y )→ F β∆(Xn, Y )

is defined by cases:

ξ0,β =!

ξα+1,α+2 = F∆(Xn, ξα,α+1)

ξα,β = inα,β β limit ordinal

where inα,β is the inclusion into the colimit. The remaining case is
that of ξα,α+1 for α a limit ordinal, which is defined as the unique
map making the below diagram commute for all β < α

F β∆(Xn, 0)
ξβ,β+1//

ξβ,α

��

F β+1
∆ (Xn, 0)

F∆(Xn,ξβ,α)

��
Fα∆(Xn, 0)

ξα,α+1// Fα+1
∆ (Xn, 0)

In the following, we will assume that we have chosen λ large
enough that all µY.F∆(Xn, Y ) and

µY.F∆(lim←
n

Xn, Y )

can be constructed this way as a colimit over λ.

Lemma 13. If

A //

��

B

��
C // D

is a pullback, then so is

F∆(Xn+1, A) //

��

F∆(Xn+1, B)

��
F∆(Xn, C) // F∆(Xn, D)

Proof. Follows from the fact that all polynomials preserve pull-
backs.

Lemma 14. ξα+1,β+1 = F∆(Xn, ξα,β).

Proof. By an easy induction on β.
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Lemma 15. For all β < α and all n the following is a pullback.

F β∆(Xn+1, 0) //

��

Fα∆(Xn+1, 0)

��
F β∆(Xn, 0) // Fα∆(Xn, 0)

In the proof and in this appendix in general we reason about
limits and colimits as if they are computed in the category of
sets. This is justified by the fact that C is a slice of a presheaf
category, and thus a presheaf category itself, and limits and colimits
in presheaf categories are computed pointwise.

Proof. The proof is by induction on α. Note that the case of β = 0
always holds trivially, and likewise α = 0.

Suppose first thatα is a limit ordinal. Suppose x ∈ Fα∆(Xn+1, 0)
and y ∈ F β∆(Xn, 0) map to the same element in Fα∆(Xn, 0). We
must show that they derive from the same element inF β∆(Xn+1, 0).
Since Fα∆(Xn+1, 0) is a colimit x must live in some F γ∆(Xn+1, 0)
for γ < α. Since x and y map to the same element in the colimit
Fα∆(Xn, 0), they must map to the same element already in some
F γ
′

∆ (Xn, 0) for γ′ < α. Since by the induction hypothesis the
following is a pullback

F β∆(Xn+1, 0) //

��

F γ
′

∆ (Xn+1, 0)

��
F β∆(Xn, 0) // F γ

′

∆ (Xn, 0)

and so x must come from some element in F β∆(Xn+1, 0).
Now suppose α is a successor α = α′ + 1, and β < α′, and

consider the composite diagram

F β∆(Xn+1, 0) //

��

F β+1
∆ (Xn+1, 0) //

��

Fα
′+1

∆ (Xn+1, 0)

��
F β∆(Xn, 0) // F β+1

∆ (Xn, 0) // Fα
′+1

∆ (Xn, 0)

By induction hypothesis the diagram on the left is a pullback, and
by Lemma 14 and Lemma 13 the square on the right is a pullback,
so the composite square is also a pullback.

In the case of α the successor of β, again we consider cases of
β. If β is a successor, then again we get a pullback by Lemma 14
and Lemma 13. If β is a limit, and x ∈ Fα∆(Xn+1, 0) and y ∈
F β∆(Xn, 0), we know that y ∈ F β

′+1
∆ (Xn, 0) already, for β′ < β,

and so we can reduce to the case of β being a successor.

Lemma 16. For all α ≤ λ and all n, the canonical map

Fα∆(lim←
n

Xn, 0)→ lim←
n

Fα∆(Xn, 0)

is an isomorphism.

Proof. By induction on α. Case α = 0 is clear, and α being a
successor follows from the fact that F∆(Xn,−) preserves ωop-
limits (this holds for all polynomial functors).

For the case of α a limit ordinal, suppose

(xn)n ∈ lim←
n

Fα∆(Xn, 0),

then there is a sequence β1, β2 . . . of ordinals all smaller than α
such that each

xn ∈ F βn∆ (Xn, 0)

Now, by Lemma 15 all xn ∈ F β1
∆ (Xn, 0), and thus

(xn)n ∈ F β1
∆ (lim←

n

Xn, 0)

which proves the lemma.

Proof of Proposition 9. By Lemma 16 it suffices to show that the
canonical map

lim→
α<λ

lim←
n

Fα∆(Xn, 0) −→ lim←
n

lim→
α<λ

Fα∆(Xn, 0)

is an isomorphism. This holds by an argument similar to that of
Lemma 16: if

(xn) ∈ lim←
n

lim→
α<λ

Fα∆(Xn, 0)

then each xn ∈ Fαn∆ (Xn, 0) for some αn < λ, and so by
Lemma 15 we conclude that all xn are inFα1

∆ (Xn, 0) which proves
the proposition.
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