
Denotational semantics of recursive types
in synthetic guarded domain theory

Rasmus Ejlers Møgelberg Marco Paviotti
IT University of Copenhagen, Denmark

mogel@itu.dk, mpav@itu.dk

Abstract
Guarded recursion is a form of recursion where recursive calls
are guarded by delay modalities. Previous work has shown how
guarded recursion is useful for reasoning operationally about pro-
gramming languages with advanced features including general ref-
erences, recursive types, countable non-determinism and concur-
rency.

Guarded recursion also offers a way of adding recursion to type
theory while maintaining logical consistency. In previous work we
initiated a programme of denotational semantics in type theory us-
ing guarded recursion, by constructing a computationally adequate
model of the language PCF (simply typed lambda calculus with
fixed points). This model was intensional in that it could distinguish
between computations computing the same result using a different
number of fixed point unfoldings.

In this work we show how also programming languages with
recursive types can be given denotational semantics in type theory
with guarded recursion. More precisely, we give a computation-
ally adequate denotational semantics to the language FPC (simply
typed lambda calculus extended with recursive types), modelling
recursive types using guarded recursive types. The model is inten-
sional in the same way as was the case in previous work, but we
show how to recover extensionality using a logical relation.

All constructions and reasoning in this paper, including proofs
of theorems such as soundness and adequacy, are by (informal)
reasoning in type theory, often using guarded recursion.

Keywords Denotational Semantics, Recursive Types, Type The-
ory, Guarded Recursion, Synthetic Domain Theory

1. Introduction
Recent years have seen great advances in formalisation of math-
ematics in type theory, in particular with the development of ho-
motopy type theory (Univalent Foundations Program 2013). Such
formalisations are an important step towards machine assisted ver-
ification of mathematical proofs. Rather than adapting classical set
theory based mathematics to type theory, new synthetic approaches
sometimes offer simpler and clearer presentations in type theory, as
illustrated by the development of synthetic homotopy theory.

[Copyright notice will appear here once ’preprint’ option is removed.]

Just like any other branch of mathematics, domain theory and
denotational semantics for programming languages with recursion
should be formalised in type theory, and, as was the case of ho-
motopy theory, synthetic approaches can provide clearer and more
abstract proofs.

Guarded recursion (Nakano 2000) can be seen as a synthetic
form of domain theory, or, perhaps more accurately, a synthetic
form of step-indexing (Birkedal et al. 2012; Appel et al. 2007).
Recent work has shown how guarded recursion can be used to
construct syntactic models and operational reasoning principles
for (also combinations of) advanced programming language fea-
tures including general references, recursive types, countable non-
determinism and concurrency (Birkedal et al. 2012; Bizjak et al.
2014; Svendsen and Birkedal 2014). The hope is that synthetic
guarded domain theory can also provide denotational models of
these features.

1.1 Synthetic guarded domain theory
The synthetic approach to domain theory is to assume that types
are domains, rather than constructing a notion of domain as a
type equipped with a certain structure. To model recursion a fixed
point combinator is needed, but adding unrestricted fixed points
makes the type theory inconsistent when read as a logical system.
The approach of guarded recursion is to introduce a new type
constructor ., pronounced “later”. Elements of .A are to be thought
of as elements of typeA available only one time step from now, and
the introduction form next : A → .A makes anything available
now, available later. The fixed point operator has type

fix : (.A→ A)→ A

and maps an f to a fixed point of f ◦ next. Guarded recursion
also assumes solutions to all guarded recursive type equations, i.e.,
equations where all occurences of the type variable are under a .,
as for example in the equation

LA ∼= A+ .LA (1)

used to define the lifting monad L below, but guarded recursive
equations can also have negative or even non-functorial occurences.
Guarded recursion can be proved consistent with type theory using
the topos of trees model and related variants (Birkedal et al. 2012;
Bizjak and Møgelberg 2015; Bizjak et al. 2016). In this paper we
will be working in guarded dependent type theory (gDTT) (Bizjak
et al. 2016), an extensional type theory with guarded recursion.

In previous work (Paviotti et al. 2015), we initiated a study
of denotational semantics inside guarded dependent type theory,
constructing a model of PCF (simply typed lambda calculus with
fixed points). By carefully aligning the fixpoint unfoldings of PCF
with the steps of the metalanguage (represented by .), we proved
a computational adequacy result for the model inside type theory.
Guarded recursive types were used both in the denotational seman-

Denotational semantics in Guarded Type Theory 1 2016/4/27

tics (to define a lifting monad) and in the proof of computational
adequacy. Likewise, the fixed point operator fix of gDTT was used
both to model fixed points of PCF and as a proof principle.

1.2 Contributions
Here we extend on our previous work in two ways. First we extend
the denotational semantics and adequacy proof to languages with
recursive types. More precisely, we consider the language FPC
(simply typed lambda calculus extended with general recursive
types), modelling recursive types using guarded recursive types.
The proof of computational adequacy shows an interesting aspect
of guarded domain theory. It uses a logical relation between syntax
and semantics defined by induction over the structure of types.
The case of recursive types requires a solution to a recursive type
equation. In the setting of classical domain theory, the existence of
this solution requires a separate argument (Pitts 1996), but here it
is simply a guarded recursive type.

The second contribution is a relation capturing extensionally
equal elements in the model. Like the model for PCF in our pre-
vious work, the model for FPC constructed here distinguishes be-
tween programs computing the same value using a different number
of fixed point unfoldings. We construct a relation on the interpreta-
tion of types, that relates elements that only differ by a finite num-
ber of computation steps. The relation is proved sound, meaning
that, if the denotations of two terms are related, then the terms are
contextually equivalent.

All constructions and proofs are carried out working informally
in gDTT. This work illustrates the strength of gDTT, and indeed
influenced the design of the type theory.

1.3 Related work
Escardó constructs a model of PCF using a category of ultrametric
spaces (Escardó 1999). Since this category can be seen as a subcat-
egory of the topos of trees (Birkedal et al. 2012), our previous work
on PCF is a synthetic version of Escardó’s model. Escardó’s model
also distinguishes between computations using different number of
steps, and captures extensional behaviour using a logical relation
similar to the one constructed here. Escardó however, does not con-
sider recursive types. Although Escardó’s model was useful for in-
tuitions, the synthetic construction in type theory presented here is
very different, in particular the proof of adequacy, which here is
formulated in guarded dependent type theory.

Synthetic approaches to domain theory have been developed
based on a wide range of models and axiomatisations dating back
to (Rosolini 1986; Hyland 1991; Reus 1996). Indeed, the inter-
nal languages of these models can be used to construct models
of FPC and prove computational adequacy (Simpson 2002). Un-
like guarded synthetic domain theory, these models do not distin-
guish between computations using different numbers of steps. On
the other hand, with the success of guarded recursion for syntac-
tic models, we believe that the guarded approach could model lan-
guages with more advanced features.

The lifting monad used in this paper is a guarded recursive vari-
ant of the partiality monad considered by among others (Danielsson
2012; Capretta 2005; Benton et al. 2009, 2010). Danielsson also de-
fines a weak bisimulation on this monad, similar to the one defined
in Definition 10. As reported by Danielsson, working with the par-
tiality monad requires convincing Agda of productivity of coinduc-
tive definitions using workarounds. Here, productivity is ensured
by the type system for guarded recursion.

The paper is organized as follows. Section 2 gives a brief intro-
duction to the most important concepts of gDTT. More advanced
constructions of the type theory are introduced as needed. Section 3
defines the encoding of FPC and its operational semantics in gDTT.
The denotational semantics and soundness is proved in Section 4.

Computational adequacy is proved in Section 5, and the relation
capturing extensional equivalence is defined in Section 6. We con-
clude and discuss future work in Section 7.

2. Guarded recursion
In this paper we work informally within a type theory with depen-
dent types, inductive types and guarded recursion. Although induc-
tive types are not mentioned in (Bizjak et al. 2016) the ones used
here can be safely added, and so the arguments of this paper can
be formalised in gDTT. We start by recalling some core features
of this theory. In fact, for the first part of the development, we will
need just the features of (Birkedal and Møgelberg 2013), which
corresponds to the fragment of gDTT with a single clock and no
delayed substitutions. Quantification over clocks and delayed sub-
stitutions will be introduced later, when needed.

When working in type theory, we use ≡ for judgemental equal-
ity of types and terms and = for propositional equality (sometimes
=A when we want to be explicit about the type). We also use = for
(external) set theoretical equality.

The type constructor . introduced in Section 1.1 is an ap-
plicative functor in the sense of (McBride and Paterson 2008),
which means that there is a “later application” ~ : .(A → B) →
.A→ .B written infix, satisfying next(f)~next(t) ≡ next(f(t))
among other axioms (see also (Birkedal and Møgelberg 2013)).
In particular, . extends to a functor mapping f : A → B to
λx : .A. next(f) ~ x.

Guarded dependent type theory comes with universes in the
style of Tarski. In this paper, we will just use a single universe
U. Readers familiar with (Bizjak et al. 2016) should think of this
as Uκ, but since we work with a unique clock κ, we will omit
the subscript. The universe comes with codes for type operations,
including +̂ : U×U → U for binary sum types, codes for dependent
sums and products, and .̂ : .U → U satisfying El(.̂(next(A))) ≡
.El(A), where we use El(A) for the type corresponding to an
element A : U. The type of .̂ allows us to solve recursive type
equations using the fixed point combinator. For example, if A is
small, i.e., has a code Â in U, the type equation (1) can be solved
by computing a code of LA as

fix(λX : .U. +̂(Â, .̂X)) .

In this paper, we will only apply the monad L to small types A.
To ease presentation, we will usually not distinguish between

types and type operations on the one hand, and their codes on the
other. We generally leave El implicit.

2.1 The topos of trees model
The topos of trees model of guarded recursion (Birkedal et al. 2012)
provides useful intuitions, and so we briefly recall it.

In the model, a closed type is modelled as a family of sets
X(n) indexed by natural numbers together with restriction maps
rXn : X(n + 1) → X(n). The . type operator is modelled as
.X(1) = 1, .X(n + 1) = X(n). Intuitively, X(n) is the nth
approximation for computations of type X , thus X(n) describes
the type X as it looks if we have n computational steps to reason
about it.

Using the proposition-as-types principle, types like .420 are
non-standard truth values. Intuitively, this is the truthvalue of
propositions that appear true for 42 computation steps, but then
are falsified after 43.

For guarded recursive type equations, X(n) describes the nth
unfolding of the type equation. For example, fixing an object A,
the unique solution to (1) is

LA(n) = 1 +A(1) + · · ·+A(n)

Denotational semantics in Guarded Type Theory 2 2016/4/27

Θ ∈ Type Contexts def
== 〈〉 | 〈Θ, α〉

` 〈〉
` Θ

` Θ, α
α 6∈ Θ

` Θ

Θ ` Θi
1 ≤ i ≤| Θ | ` Θ

Θ ` 1

Θ, α ` τ
Θ ` µα.τ

Θ ` τ1 Θ ` τ2
Θ ` τ1op τ2

for op ∈ {+,×,→}

Figure 1: Rules for welformed FPC types

Γ ∈ Expression Contexts def
== 〈〉 | 〈Γ, x : τ〉

` Θ

Θ ` 〈〉
Θ ` Γ Θ ` τ
Θ ` Γ, x : τ

x 6∈ Γ

Figure 2: Rules for welformed FPC contexts

with restriction maps defined using the restriction maps of A.
In particular, if A is a constant presheaf, i.e., A(n) = X for
some fixed X and rAn identities, then we can think of LA(n) as
{0, . . . , n − 1} ×X + {⊥}. The set of global elements of LA is
then isomorphic to N ×X + {⊥}. In particular, if X = 1, the set
of global elements is ω̄, the natural numbers extended with a point
at infinity.

3. FPC
This section defines the syntax, typing judgements and operational
semantics of FPC. These are inductive types in guarded type theory,
but, as mentioned earlier, we work informally in type theory, and in
particular remain agnostic with respect to choice of representation
of syntax with binding.

Unlike the operational semantics to be defined below, the typing
judgements of FPC are defined in an entirely standard way. The
grammar for terms of FPC

L,M,N ::= 〈〉 | x | inlM | inrM | fstM | sndM
| case L of x1.M ;x2.N | 〈M,N〉 | λx : τ.M |MN

| foldM | unfold N
should be read as an inductive type of terms in the standard way.
Likewise the grammars for types and contexts and the typing judge-
ments defined in Figures 1, 2 and 3 should read as defining induc-
tive types in type theory, allowing us to do proofs by induction over
e.g. typing judgements.

We denote by Type
FPC

, TermFPC and ValueFPC the types of
closed FPC types and terms, and values of FPC. By a value we
mean a closed term matching the grammar

v ::= 〈〉 | inlM | inrM | 〈M,N〉 | λx : τ.M | foldM

3.1 Small-step semantics
Figure 4 defines the reductions of the small-step call-by-name
operational semantics. Since the denotational semantics of FPC are
intensional, counting reduction steps, it is necessary to also count
the steps in the operational semantics in order to state the soundness
and adequacy theorems precisely. More precisely, the semantics
counts the number of unfold-fold reductions.

We next define the transitive closure of the small-step opera-
tional semantics. To ease the comparison with the big-step opera-
tional semantics, we define a generalisation of the transitive clo-

x : σ ∈ Γ · ` Γ

Γ ` x : σ Γ ` 〈〉 : 1

Γ, x : σ `M : τ

Γ ` (λx : σ.M) : σ → τ

Γ `M : σ → τ Γ ` N : σ

Γ `MN : τ
Γ ` e : τ1

Γ ` inl e : τ1 + τ2

Γ ` e : τ2
Γ ` inr e : τ1 + τ2

Γ ` L : τ1 + τ2 Γ, x1 : τ1 `M : σ Γ, x2 : τ2 ` N : σ

Γ ` case L of x1.M ;x2.N : σ

Γ `M : τ1 × τ2
Γ ` fstM : τ1

Γ `M : τ1 × τ2
Γ ` snd e : τ2

Γ `M : τ1 Γ ` N : τ2
Γ ` 〈M,N〉 : τ1 × τ2

Γ `M : µα.τ

Γ ` unfoldM : τ [µα.τ/α]

Γ `M : τ [µα.τ/α]

Γ ` foldM : µα.τ

Figure 3: Typing rules for FPC terms

(λx : σ.M)(N)→0 M [N/x] unfold (foldM)→1 M

case (inl L) of x1.M ;x2.N →0 M [L/x1]

case (inr L) of x1.M ;x2.N →0 N [L/x2]

fst 〈M,N〉 →0 M snd 〈M,N〉 →0 N

M1 →k M2

E[M1]→k E[M2]

E ::= [·] | EM | case E of x1.M ;x2.N

| fst E | snd E | unfold E

Figure 4: Reductions of the small-step call-by-name operational
semantics. In the last rule, k is either 0 or 1.

sure as a relation of the form M ⇒k Q to be read as ’M reduces
in k steps to a term N satisfying Q’. Here Q : TermFPC → U is a
(proof relevant) predicate on closed terms. The more standard big-
step evaluation of terms to values can be defined as

M ⇒k v
def
== M ⇒k (λN.N = v)

Definition 1. The transitive closure of the small-step relation is
defined by induction on k as follows.

M ⇒0 Q
def
== ΣN : TermFPC.M →0

∗ N and Q(N)

M ⇒k+1 Q
def
== ΣM ′M ′′ : TermFPC.M →0

∗ M
′ and

M ′ →1 M ′′ and .(M ′′ ⇒k Q)

Here→0
∗ is the reflexive-transitive closure of→0.

The use of . in the second clause of Definition 1 synchronizes
the steps of FPC with those of the metalogic. This allows guarded
recursion to be used as a proof principle for operational semantics,
and is also needed to get the precise relationship to the denotational
semantics.

Denotational semantics in Guarded Type Theory 3 2016/4/27

v ⇓k Q def
== Q(v, k)

case L of x1.M ;x2.N ⇓k Q
def
== L ⇓k Q′ where

Q′(inl L, l)
def
== M [L/x1] ⇓l Q

Q′(inr L, l)
def
== N [L/x2] ⇓l Q

fst L ⇓k Q def
== L ⇓k Q′ where Q′(〈M,N〉,m)

def
== M ⇓m Q

snd L ⇓k Q def
== L ⇓k Q′ where Q′(〈M,N〉,m)

def
== N ⇓m Q

MN ⇓k Q def
== M ⇓k Q′ where Q′(λx.L,m)

def
== L[N/x] ⇓m Q

unfoldM ⇓k Q def
== M ⇓k Q′ where Q′(fold N,m+ 1)

def
== .(N ⇓m Q)

Figure 5: The big-step operational semantics. In the definitions of Q′ only non-empty cases are given, e.g., in the case of unfold M ,
Q′(P, n) is defined to be the empty type unless P is of the form fold N and n is a successor.

3.2 Big-step semantics
We now define a big-step call-by-name operational semantics for
FPC. Big-step semantics are usually defined as relations between
closed terms and values. Here, we generalize to a (proof relevant)
relation of the form

M ⇓k Q (2)
where M is a term, k a natural number, and Q : ValueFPC × N →
U a proof relevant relation on values and natural numbers. The
statement (2) should be read as ’M evaluates in l ≤ k steps to a
value v such that Q(v, k − l)’. As for the small-step semantics,
a step is an unfold-fold reduction. If Q : ValueFPC → U we
overload notation and write

M ⇓k Q def
== M ⇓k (λ 〈v, l〉 .l = 0 and Q(v)) (3)

to be read as ’M evaluates in exactly k steps to a value satisfying
Q’. We can define more standard big-step evaluation predicates as
follows

M ⇓k v def
== M ⇓k (λw.w = v)

M ⇓ v def
== Σk.M ⇓k v

The big-step relation is defined as an inductive type in Fig-
ure 5. Following the reading of the big-step predicate given above,
MN ⇓k Q holds if M reduces in l steps (for some l ≤ k) to a
term of the form λx.L, such that L[N/x] ⇓k−l Q. The cases of
projections and case are similar. In the case of unfold, once M
has been reduced to fold N , one time step is consumed to reduce
unfold (fold N) to N before continuing reduction. Just as was
the case for the small-step semantics, the use of . in this rule syn-
chronizes the steps of FPC with those of the metalogic.

The use of predicates on the right hand sides of the big-step
semantics is crucial for the equivalence of the small-step and big-
step semantics. More precisely, it allows us to postpone existence
of terms to the time they are needed. For example, if MN ⇓k v,
and M uses one step to reduce to a value, the term λx.L that M
should reduce to is only required to exist later, rather than now,
as a more direct big-step semantics would require. This makes a
difference, since Σ and . do not commute.

3.3 Examples
As an example of a recursive type, one can encode the natural
numbers as

nat def
== µα.1 + α

zero
def
== fold (inl (〈〉))

succ M
def
== fold (inr (M))

Using this definition we can define the term ifz of PCF. If L is a
closed term of type nat and M ,N are closed terms of type σ then
define ifz as

ifz L M N
def
== case (unfold L) of x1.M ;x2.N

where x1, x2 are fresh. It is easy to see that ifz zero M N ⇓k Q
iff .(M ⇓k−1 Q) and that ifz (succ L) M N ⇓k Q iff
.(N ⇓k−1 Q) for any L closed term of type nat. For example,
ifz 1 0 1 ⇓2 42 is .0.

Recursive types introduce divergent terms. For example, given
a type A, the Turing fixed point combinator on A can be encoded
as follows:

B
def
== µα.(α→ (A→ A)→ A)

θ : B → (A→ A)→ A

θ
def
== λxλy.y(unfold x x y)

YA
def
== θ(fold θ)

An easy induction shows that Yσ (λx.x) ⇓k Q = .k0, where
0 is the empty type.

To understand the relationship of the operational semantics de-
fined in this paper to more traditional semantics defined without
delays in the form of ., write M →k

∗ N to mean that M reduces
to N in the transitive closure of the reduction semantics, where k
is the sum of the steps in the reduction. If M →k

∗ v then

• M ⇓k v is true

• M ⇓n v is logically equivalent to .min(n,k)0 if n 6= k, where 0
is the empty type

If, on the other hand, M is divergent in the sense that for any k
there exists an N such that M →k

∗ N , then M ⇓n v is equivalent
to .n0.

3.4 Equivalence of small-step and big-step semantics
We now state the equivalence of the two operational semantics
given above. Since the big-step operational semantics as defined
in (3) uses predicates on values, and the transitive closure of the
small-step semantics (Definition 1) uses predicates on terms, we
first introduce the notation

QT (N)
def
== Σv.N = v and Q(v)

such that QT : TermFPC → U whenever Q : ValueFPC → U.

Proposition 2. If M : TermFPC and Q : ValueFPC → U, then
M ⇓k Q iff M ⇒k QT .

This has an immediate corollary.

Denotational semantics in Guarded Type Theory 4 2016/4/27

Corollary 1. M ⇓k v ⇔M ⇒k v

The proof Proposition 2, uses a strengthened induction hypoth-
esis obtained by overloading the small step predicate once again. If
Q : TermFPC × N→ U, define

M ⇒k Q
def
==ΣN : TermFPC.M →0

∗ N and Q(N, k)

or (Σk′,M ′,M ′′.k = k′ + 1 and M →0
∗ M

′

and M ′ →1 M ′′ and .(M ′′ ⇒k′ Q))

One easily proves that if Q : TermFPC → U then

(M ⇒k λ 〈N, k〉 .(k = 0 and Q(N))) iff M ⇒k Q

We omit the inductive proof for reasons of space.

4. Denotational Semantics
We now define the denotational semantics of FPC. First we recall
the definition of the guarded recursive version of the lifting monad
on types from (Paviotti et al. 2015). This is defined as the unique
solution to the guarded recursive type equation1

LA ∼= A+ .LA

which exists because the recursive variable is guarded by a ..
This isomorphism induces a map θLA : .LA → LA and a map
η : A → LA. An element of LA is either of the form η(a) or
θ(r). We think of these cases as values “now” or computations
that “tick”. Moreover, given f : A → B with B a .-algebra
(i.e., equipped with a map θB : .B → B), we can lift f to a
homomorphism of .-algebras f̂ : LA→ B as follows

f̂(η(a))
def
== f(a)

f̂(θ(r))
def
== θLB(next(f̂) ~ r)

Formally f̂ is defined as a fixed point of a term of type .(LA →
B)→ LA→ B.

Intuitively LA is the type of computations possibly returning
an element of A, recording the number of steps used in the com-
putation. We can define the divergent computation as ⊥ def

== fix(θ)

and a “delay” map δLA of type LA → LA for any A as δLA
def
==

θLA ◦ next. The latter can be thought of as adding a step to a com-
putation.

4.1 Interpretation of types
The typing judgement Θ ` τ is interpreted as a map of type
U |Θ| → U, where |Θ| is the cardinality of the set of variables in
Θ. This interpretation map is defined by a combination of induction
and guarded recursion for the case of recursive types as in Figure 6.

More precisely, the case of recursive types is defined the fixed
point of a map from .(U |Θ| → U) to U |Θ| → U defined as follows:

λX.λρ..̂(next(JτK) ~ next(ρ) ~ (X ~ next(ρ))

ensuring (using El(−) explicitly)

El(JΘ ` µα.τK ρ)

≡ El(.̂(next(JτK) ~ next(ρ) ~ (next(JΘ ` µα.τK) ~ next(ρ))))

≡ El(.̂(next(JτK (ρ, (JΘ ` µα.τK ρ)))))

≡ .El(JτK (ρ, (JΘ ` µα.τK ρ)))

The substitution lemma for types can be proved using guarded
recursion in the case of recursive types.

1 Since guarded recursive types are encoded using universes, L is strictly an
operation on U. As stated in Section 2 we will only apply L to types that
have codes in U.

JΘ ` αK (ρ)
def
== ρ(α)

JΘ ` 1K (ρ)
def
== L1

JΘ ` τ1 × τ2K (ρ)
def
== JΘ ` τ1K (ρ)× JΘ ` τ2K (ρ)

JΘ ` τ1 + τ2K (ρ)
def
== L(JΘ ` τ1K (ρ) + JΘ ` τ2K (ρ))

JΘ ` τ1 → τ2K (ρ)
def
== JΘ ` τ1K (ρ)→ JΘ ` τ2K (ρ)

JΘ ` µα.τK (ρ)
def
== .(JΘ, α ` τK (ρ, JΘ ` µα.τK (ρ)))

Figure 6: Interpretation of FPC types

θ1
def
== λx : . J1K .θLJ1K(x)

θτ1×τ2
def
== λx : . Jτ1 × τ2K .〈θτ1(.(π1)(x)), θτ2(.(π2)(x))〉

θτ1+τ2
def
== λx : . Jτ1 + τ2K .θLJτ1+τ2K(x)

θσ→τ
def
== λf : (.(JσK→ JτK).λx : JσK .θτ (f ~ (next(x)))

θµα.τ
def
== λx : . Jµα.τK . next(θτ [µα.τ/α]) ~ (x)

Figure 7: Definition of θσ : . JσK→ JσK

Lemma 3 (Substitution Lemma for Types). Let σ be a well-formed
type with variables in Θ and let ρ be of type U |Θ|, for Θ, β ` τ ,
JΘ ` τ [σ/β]K (ρ) = JΘ, β ` τK (ρ, JΘ ` σK (ρ))

The following lemma follows directly from the substitution
lemma.

Lemma 4. For all types τ and environments ρ of type U |Θ|,
JΘ ` µα.τK (ρ) = . JΘ ` τ [µα.τ/α]K (ρ).

The interpretation of every closed type τ carries a .-algebra
structure, i.e., a map θτ : . JτK → JτK, defined by guarded re-
cursion and structural induction on τ as in Figure 7. The case of
products uses the functorial action of . as described in Section 2.
The .-algebra for the unit type and for the sum type exists due
to them being interpreted using the lifting monad. The case of re-
cursive types is welltyped by Lemma 4. More formally, θ can be
defined using a fix, but since this is most easily done using delayed
substitutions, we postpone this to Section 5.2.

Using the θ we define the delay operation which, intuitively,
takes a computation and adds one step.

δσ
def
== θσ ◦ next .

4.2 Interpretation of terms
Figure 8 defines the interpretation of judgements Γ ` M : σ

as functions from JΓK to JσK where Jx1 : σ1, · · · , xn : σnK
def
==

Jσ1K × · · · × JσnK. In the case of case, f̂ refers to the exten-
sion of functions to homomorphisms defined above, using the fact
that all types carry a .-algebra structure. The interpretation of
fold is welltyped because next(JMK (γ)) has type . Jτ [µα.τ/α]K
which by Lemma 4 is equal to Jµα.τK. In the case of unfold,
since JMK (γ) has type Jµα.τK, which by Lemma 4 is equal to
. Jτ [µα.τ/α]K, the type of θτ [µα.τ/α](JMK (γ)) is Jτ [µα.τ/α]K.

Clearly, Junfold (foldM)K (γ) = δσ(JMK) for every M of
type τ [µα.τ/α]. This is used to prove the soundness theorem.

Theorem 5 (Soundness). Let M be a closed term of type τ , if
M ⇓k v then JMK (∗) = δk JvK (∗)

Denotational semantics in Guarded Type Theory 5 2016/4/27

JΓ ` t : σK : JΓK→ JσK

JΓ ` xK (γ)
def
== γ(x)

JΓ ` 〈〉K (γ)
def
== η(?)

JΓ ` 〈M,N〉K (γ)
def
== 〈JMK (γ), JNK (γ)〉

JΓ ` fstMK (γ)
def
== π1(JMK (γ))

JΓ ` sndMK (γ)
def
== π2(JMK (γ))

JΓ ` λx.MK (γ)
def
== λx. JMK (γ, x)

JΓ `MNK (γ)
def
== JMK (γ)(JNK (γ))

JΓ ` inl EK (γ)
def
== η(inlJEK (γ))

JΓ ` inr EK (γ)
def
== η(inrJEK (γ))

JΓ ` case L of x1.M ;x2.NK (γ)
def
== f̂(JLK (γ))

where f(inl(x1))
def
== JMK (γ, x1)

f(inr(x2))
def
== JNK (γ, x2)

JΓ ` foldMK (γ)
def
== next(JMK (γ))

JΓ ` unfoldMK (γ)
def
== θτ [µα.τ/α](JMK (γ))

Figure 8: Interpretation of FPC terms

5. Computational Adequacy
Computational adequacy is opposite implication of Theorem 5 in
the case of terms of unit type. It is proved by constructing a (proof
relevant) logical relation between syntax and semantics. The re-
lation cannot be constructed just by induction on the structure of
types, since in the case of recursive types, the unfolding can be big-
ger than the recursive type. Instead, the relation is constructed by
guarded recursion: we assume the relation exists later, and from
that assumption construct the relation now by structural induction
on types. Thus the well-definedness of the logical relation is en-
sured by the type system of gDTT, more specifically by the rules
for guarded recursion. This is in contrast to the classical proof in
domain theory (Pitts 1996), where existence requires a separate ar-
gument.

The logical relation uses a lifting of relations on values available
now, to relations on values available later. To define this lifting, we
need delayed substitutions, an advanced feature of gDTT.

5.1 Delayed substitutions
In gDTT, if Γ, x : A ` B type is a well formed type and t has
type .A in context Γ, one can form the type . [x � t] .B. One
motivation for this is to generalise ~ (described in Section 2) to a
dependent version: if f : .(Π(x : A).B), then f ~ t : . [x � t] .B.
The idea is that if t will eventually reduce to a term of the form
nextu, and then . [x � t] .B will be equal to .B[u/x]. But if t is
open, we may not be able to do this reduction yet.

More generally, we define the notion of delayed substitution as
follows. Suppose Γ, x1 : A1 . . . xn : An ` is a wellformed context,
and all Ai are independent, i.e., no xj appears in an Ai. A delayed
substitution ξ : Γ _ x1 : A1 . . . xn : An is a vector of terms ξ =
[x1 � t1, . . . , xn � tn] such that Γ ` ti : Ai. (Bizjak et al. 2016)
gives a more general definition of delayed substitution allowing
dependencies between the Ai’s, but for this paper we just need the
definition above.

next ξ [x � next ξ.t] .B ≡ next ξ.(B[t/x]) (4)

next ξ [x � t] .x ≡ t (5)

next ξ [x � t] .u ≡ next ξ.u (6)

next ξ [x � t, y � u] ξ′.v ≡ next ξ [y � u, x � t] ξ′.v (7)

next ξ. next ξ′.u ≡ next ξ′. next ξ.u (8)

(next ξ.t =.ξ.A next ξ.s) ≡ .ξ.(t =A s) (9)

∀κ.(x[κ] =A y[κ]) ≡ (x =∀κ.A y) (10)

El(.̂(next ξ.A)) ≡ .ξ.El(A) (11)

Figure 9: The notation ξ [x � t] means the extension of the delayed
substitution ξ with [x � t]. Rule (6) requires x not free in u. Rule
(8) requires that none of the variables in the codomains of ξ and
ξ′ appear in the type of u, and that the codomains of ξ and ξ′ are
independent.

If ξ : Γ _ Γ′ is a delayed substitution and Γ,Γ′ ` B type is
a wellformed type, then the type .ξ.B is wellformed in context Γ.
The introduction form states next ξ.u : .ξ.B if Γ,Γ′ ` u : B.

In Figure 9 we recall some rules from (Bizjak et al. 2016)
needed below. Of these, (4) and (5) can be considered β and η laws,
and (6) is a weakening principle. Rules (4), (6) and (7) also have
obvious versions for types, e.g.,

.ξ [x � next ξ.t] .B ≡ .ξ.(B[t/x]) (12)

Rather than be taken as primitive, later application ~ can be
defined using delayed substitutions as

g ~ y
def
== next [f � g, x � y] .f(x) (13)

Note that with this definition, the rule next(f(t)) ≡ next f~next t
from Section 2 generalises to

next ξ.(f t) ≡ (next ξ.f) ~ (next ξ.t) (14)

which follows from (4).
Rules (5), (6) and (8) imply the rule

next ξ [x � t] . nextx ≡ next ξ [x � t] .t

which by (9) gives an inhabitant of

.ξ [x � t] .(nextx = t) (15)

Rule (10) is simply clock extensionality.

5.2 Well-definedness of θ
As advertised above, we now show how θ of Figure 7 can be
formally constructed as a fixed point of a term of type

G : .(Πσ : Type
FPC
.(. JσK→ JσK))→ Πσ.(. JσK→ JσK)

Suppose F : .(Πσ : Type
FPC
.(. JσK → JσK)), and define G(F)

essentially as in Figure 7 but with the clause G(F)τ [µα.τ/α] for
recursive types being defined as

λx : . Jµα.τK . next
[
F ′ � F, x′ � x

]
.(F ′τ [µα.τ/α](x

′))

Define θ as the fixed point of G. Then

θµα.τ (x) ≡ G(next (θ))µα.τ (x)

≡ next
[
F ′ � next (θ), x′ � x

]
.(F ′τ [µα.τ/α](x

′))

≡ next
[
x′ � x

]
.(θτ [µα.τ/α](x

′))

≡ next(θτ [µα.τ/α]) ~ (x)

Denotational semantics in Guarded Type Theory 6 2016/4/27

η(∗)R1 M
def
== M ⇓0 〈〉

θ1(x)R1 M
def
== ΣM ′,M ′′ : TermFPC.M →0

∗ M
′ →1 M ′′

and x .R1 next(M ′′)

xRτ1×τ2 M
def
== π1(x)Rτ1 fst (M)

and π2(x)Rτ2 snd (M)

η(inl(x))Rτ1+τ2 M
def
== ΣL.M ⇓0

inl L s.t. xRτ1 L

η(inr(x))Rτ1+τ2 M
def
== ΣL.M ⇓0

inr L s.t. xRτ2 L

θτ1+τ2(x)Rτ1+τ2 L
def
== ΣM ′,M ′′ : TermFPC.M →0

∗ M
′ →1 M ′′

and x .Rτ1+τ2 next(M ′′)

f Rτ→σ M
def
== Πx : JτK , N : TermFPC.xRτ N

→ f(x)Rσ (MN)

xRµα.τ M
def
== ΣM ′M ′′.unfoldM →0

∗ M
′ →1 M ′′

and x .Rτ [µα.τ/α] next(M ′′)

Figure 10: The logical relationRτ : JτK× TermFPC → U.

5.3 A logical relation between syntax and semantics
Figure 10 defines the logical relation between syntax and seman-
tics. It uses the following operation lifting relations from A to B to
relations from .A to .B:

t .R u
def
== . [x � t, y � u] .(xR y) (16)

As a consequence of (12) the following statement holds:

(next ξ.t) .R (next ξ.u) ≡ .ξ.(tR u) (17)

This lifting operation can also be expressed on codes mapping
R : A→ B → U to

λx : .A, y : .B..̂(next
[
x′ � x, y′ � y

]
.(x′ R y′))

in fact, this operation can be shown to factor as F ◦ next, for some
F : .(A → B → U) → .A → .B → U. Using this, one can
formally define the logical relation as a fixed point of a function of
type

.(Π(τ : Type
FPC

). JτK× TermFPC → U)→
(Π(τ : Type

FPC
). JτK× TermFPC → U)

similarly to the formal definition of θ explained in Section 5.2.

5.4 Proof of computational adequacy
Computational adequacy follows from the fundamental lemma be-
low, stating that all terms respect the logical relation. The proof of
the fundamental lemma rests on the following two key lemmas.

Lemma 6. If xRσ N and M →0
∗ N then xRσ M .

Lemma 7. If x .Rτ next(M) andM ′ →1 M then θτ (x)Rτ M ′.

Proof. The proof is by guarded recursion, so we assume that the
lemma is “later true”, i.e., that we have an inhabitant of the type
obtained by applying . to the statement of the lemma. We proceed
by induction on τ . The interesting case is the one of µα.τ . Assume
x .Rµα.τ next(M) and M ′ →1 M . By definition of .R this
implies . [y � x] .(y Rµα.τ M) which by definition of Rµα.τ is

. [y � x] .ΣN ′N ′′.unfoldM →0
∗ N

′ and

N ′ →1 N ′′ and (y .Rτ [µα.τ/α] next(N ′′))

Since zero-step reductions cannot eliminate outer unfold’s, N ′

must be on the form unfold N for some N , such that M →0
∗ N .

Thus, we can apply the guarded induction hypothesis to get

. [y � x] .(ΣN.M →0
∗ N and

(θτ [µα.τ/α](y)Rτ [µα.τ/α] unfold N))

Since unfoldM →0
∗ unfold N , by Lemma 6 we get

. [y � x] .(θτ [µα.τ/α](y)Rτ [µα.τ/α] unfoldM)

which by (17) is

next [y � x] .(θτ [µα.τ/α](y)) .Rτ [µα.τ/α] next(unfoldM)

By (13) this implies

next(θτ [µα.τ/α]) ~ x .Rτ [µα.τ/α] next(unfoldM)

Since by assumption M ′ →1 M also unfoldM ′ →1 unfoldM
thus, by definition of the logical relation

next(θτ [µα.τ/α]) ~ xRµα.τ M ′

By definition next(θτ [µα.τ/α]) ~ x is equal to θµα.τ (x) thus we
can derive

θµα.τ (x)Rµα.τ M ′

as we wanted.

Lemma 8 (Fundamental Lemma). Suppose Γ ` M : τ , for
Γ ≡ x1 : τ1, · · · , xn : τn and Ni : τi, γi : JτiK and γi RJτiK Ni
for i ∈ {1, . . . , n}, then JMK (~γ)Rτ M [~N/~x]

Proof. The proof is by induction on the typing judgment. Here we
sketch the most interesting cases, namely those of unfold and
fold .

Γ ` unfoldM : τ [µα.τ/α] we want to show that

JunfoldMK (~γ)Rτ [µα.τ/α] (unfoldM)[~N/~x]

By induction hypothesis we know that

JMK (~γ)Rµα.τ (M [~N/~x])

which means that there exists M ′ and M ′′ such that

unfold (M [~N/~x])→0
∗ M

′ and M ′ →1 M ′′

and that JMK (~γ) .Rτ [µα.τ/α] next(M ′′). By Lemma 7

θτ [µα.τ/α](JMK (~γ))Rτ [µα.τ/α] M
′

and since unfold (M [~N/~x])→0
∗ M

′ by Lemma 6 we get

θτ [µα.τ/α](JMK (~γ))Rτ [µα.τ/α] unfold (M [~N/~x])

By definition of the interpretation

JunfoldMK (~γ)Rτ [µα.τ/α] unfold (M [~N/~x])

which is what we wanted.
For the case Γ ` foldM : µα.τ we want to show that

JfoldMK (~γ)Rµα.τ (foldM)[~N/~x]

First off, by definition of the substitution function (foldM)[~N/~x])

is equal to fold (M [~N/~x]). Thus, by definition of the logi-
cal relation we have to show that there exist M ′ and M ′′ such
that unfold (fold (M [~N/~x])) →0

∗ M ′, M ′ →1 M ′′ and
that JfoldMK (~γ) .Rτ [µα.τ/α] next(M ′′). Setting M ′′ to be
(M [~N/~x]), we are left to show that

JfoldMK (~γ) .Rτ [µα.τ/α] next(M [~N/~x])

which is equal by definition of the interpretation function to

next(JMK (~γ)) .Rτ [µα.τ/α] next((M [~N/~x]))

Denotational semantics in Guarded Type Theory 7 2016/4/27

The latter is equal by (17) to

.(JMK (~γ)Rτ [µα.τ/α] (M [~N/~x]))

which is true by induction hypothesis.

From the Fundamental lemma we can now prove computational
adequacy.

Theorem 9 (Intensional Computational Adequacy). If M : 1 is a
closed term then M ⇓k 〈〉 iff JMK (∗) = δk(η(?)).

Proof. The proof is similar to (Paviotti et al. 2015).

From Theorem 9 one can deduce that whenever two terms
have equal denotations they are contextually equivalent in a very
intensional way, as we now describe. By a context, we mean a term
C[−] with a hole, and we say that C[−] has type Γ, τ → (−, 1) if
C[M] is a closed term of type 1, whenever Γ ` M : τ .

Corollary 2. Suppose Γ ` M : τ and JMK = JNK. If C[−] has
type Γ, τ → (−, 1) and C[M] ⇓k 〈〉 also C[N] ⇓k 〈〉.

6. Extensional Computational Adequacy
Our model of FPC is intensional in the sense that it distinguishes
between computations computing the same value in a different
number of steps. In this section we define a logical relation which
relates elements of the model if they differ only by a finite number
of computation steps. In particular, this also means relating⊥ to⊥.

To do this we need to consider global behaviour of computa-
tions, as opposed to the local (or finitely computable) behaviour
captured by the guarded recursive lifting monad L. To understand
what this means, consider the interpretation of L1 in the topos of
trees as described in Section 2.1. For each number n, the set

L1(n) = {⊥, 0, 1, . . . , n− 1}
describes computations terminating in at most n− 1 steps or using
at least n steps (corresponding to⊥). It cannot distinguish between
termination in more than n − 1 steps and real divergence. Our
relation should relate a terminating value x in L1(n) to any other
terminating value, but not real divergence, which is impossible, if
divergence cannot be distinguished from slow termination.

On the other hand, consider the partiality monad (Capretta
2005) Lgl defined as the coinductive solution to the type equation

LglA ∼= A+ LglA (18)

When interpreted in Set, Lgl1 is ω̄, i.e., describes the set of all
possible behaviors of a computation of unit type.

Coinductive types can be encoded in gDTT using guarded re-
cursive types, following ideas of Atkey and McBride (Atkey and
McBride 2013; Møgelberg 2014). The encoding uses universal
quantification over clocks, which we now briefly recall, refering
to (Bizjak et al. 2016) for details.

6.1 Universal quantification over clocks
In gDTT all types and terms are typed in a clock context, i.e., a
finite set of names of clocks. For each clock κ, there is a type con-
structor

κ
., a fixed point combinator, and so on. The development of

this paper so far has been in a context of a single implicit clock κ
which we are going to make explicit only when necessary to avoid
clutter.

If A is a type in a context where κ does not appear, one can
form the type ∀κ.A, binding κ. This construction behaves in many
ways similarly to polymorphic quantification over types in System
F. There is an associated binding introduction form Λκ.(−) (appli-
cable to terms, where κ does not appear free in the context), and
elimination form t[κ′] having type A[κ′/κ] whenever t : ∀κ.A.

The type system allows for a restricted elimination rule for ..
If t is of type .A in a context where κ does not appear free, then
prev κ.t has type ∀κ.A. Using prev κ. we can define a term force:

force : ∀κ..A→ ∀κ.A

force
def
== λx. prev κ.x[κ]

(19)

The type constructor ∀κ.(−) is modelled by taking sets of
global elements. In particular, ∀κ.L1 is modelled as ω̄. In fact, one
can prove in the type theory, that defining

LglA
def
== ∀κ.LA

gives a coinductive solution to (18), if κ is not free inA (Møgelberg
2014). For types A and B we say the two are type isomorphic if
there exist two terms f : A → B and g : B → A such that
f(g(x)) ≡ x and g(f(x)) ≡ x. When A is a type that does not
mention any free clock variables and B is free with x : A and a
clock variable κ, the following type isomorphism is derivable from
the gDTTrules (Bizjak et al. 2016)

∀κ.Σ(x : A).B ∼= Σ(x : A).∀κ.B (20)

6.2 Global interpretation of types and terms
As said above, the model of FPC can be considered as being defined
w.r.t. an implicit clock κ. To be consistent with the notation of the
previous sections, κ will remain implicit in the denotations of types
and terms, although one might choose to write e.g. JσKκ to make
the clock explicit.

We define global interpretations of types and terms as follows:

JσKgl def
== ∀κ. JσK

JMKgl def
== Λκ. JMK

such that if Γ ` M : τ , then

JMK : ∀κ.(JΓK→ JτK)

Note that JσKgl is a wellformed type, because JσK is a wellformed
type in context σ : Type

FPC
and Type

FPC
is an inductive type

formed without reference to clocks or guarded recursion, thus κ
does not appear in Type

FPC
. By a similar argument JMKgl is well-

typed.
Define for all σ the delay operator δgl

σ : JσKgl → JσKgl as
follows

δgl
σ (x)

def
== Λκ.δσ(x[κ]) (21)

Similarly for LA, δgl
LA(x)

def
== Λκ.δLA(x[κ]).

6.3 A weak bisimulation relation for the lifting monad
Before defining the logical relation on the interpretation of types,
we define a relational version of the guarded recursive lifting
monad L. If applied to the identity relation on a type A in which
κ does not appear, we obtain a weak bisimulation relation sim-
ilar to the one defined by Danielsson (Danielsson 2012) for the
coinductive partiality monad.

Definition 10. For a relation R : A × B → U define the lifting
LR : LA × LB → U by guarded recursion and case analysis on
the elements of LA and LB:

η(x) LR η(y)
def
== x R y

η(x) LR θLB(y)
def
== Σn, y′.θLB(y) = δnLB(η(y′)) and x R y′

θLA(x) LR η(y)
def
== Σn, x′.θLA(x) = δnLA(η(x′)) and x′ R y

θLA(x) LR θLB(y)
def
== x .LR y

Denotational semantics in Guarded Type Theory 8 2016/4/27

The lifting of R, intuitively, captures computations that differ
for a finite amount of computational steps or both diverge. For
example, ⊥ as defined in Section 4 is always related to itself
which can be shown by guarded recursion as follows. Suppose
.(⊥ LR ⊥). Since ⊥ = θ(next(⊥)), to prove ⊥ LR ⊥, we
must prove next(⊥) .LR next(⊥). But, this type is equal to the
assumption .(⊥ LR ⊥) by (17).

We can also prove that LR is closed under application of δ on
either side.

Lemma 11. If R : A× B → U, and x LR y then x LR δLB(y)
and δLA(x) LR y.

Proof. Assume x LR y. We show x LR δLB(y). The proof is by
guarded recursion, hence we first assume:

.(Πx : LA, y : LB.x LR y ⇒ x LR δLB(y)). (22)

We proceed by case analysis on x and y.
If x = η(x′), then, since x LR y, there exist n and y′ such that

y = δnLB(η(y′)) and x′ R y′. So then δLB(y) = δn+1
LB (η(y′)),

from which it follows that x LR δLB(y).
For the case where x = θLA(x′) and y = η(v), it suffices to

show that δnLA(η(w)) LR η(v) implies δnLA(η(w)) LR δLB(η(v)).
The case of n = 0 was proved above. For n = m + 1 we know
that if δnLA(η(w)) LR η(v) also δmLA(η(w)) LR η(v) holds by
definition, and this implies .(δmLA(η(w)) LR η(v)). But this type
can be rewritten as follows

.(δmLA(η(w)) LR η(v))

≡ next(δmLA(η(w)) .LR next(η(v)))

≡ θLA(next(δmLA(η(w)))) LR θLB(next(η(v))))

≡ δnLA(η(w)) LR δLB(η(v))

proving the case.
Now the case when x = θLA(x′) and y = θLB(y′). The

assumption in this case is x′ .LR y′, which means by (16),
. [x′′ � x′, y′′ � y′] .x′′ LR y′′. By the guarded recursion hy-
pothesis (22) we get

.
[
x′′ � x′, y′′ � y′

]
.x′′ LR δLB(y′′)

which can be rewritten to

.
[
x′′ � x′, y′′ � y′

]
.x′′ LR θLB(next(y′′)) (23)

By (15) there is an inhabitant of the type

.
[
x′′ � x′, y′′ � y′

]
.(next(y′′) = y′)

and thus (23) implies . [x′′ � x′] .x′′ LR θLB(y′), which, by (17)
and since y = θLB(y′) equals x′ .LR next(y). By definition,
this is θLA(x′) LR θLB(next(y)) which since x = θLA(x′) is
x LR δLB(y).

We can lift this result to Lgl as follows. Suppose R : A×B →
U and κ not in A or B. Define LglR : LglA× LglB → U as

x LglR y
def
== ∀κ.x[κ] LR y[κ]

Lemma 12. Let x : LglA and y : LglB. If x LglR y then
x LglR δgl(y) and δgl(x) LglR y.

One might expect that δLA(x) LR δLB(y) implies x LR y.
This is not true, it only implies .(x LR y). In the case of Lgl,
however, we can use force to remove the ..

Lemma 13. For all x : LglA and y : LglB and for all R :
A×B → U, if δgl

LA(x) LglR δgl
LB(y) then x LglR y.

x ≈1 y
def
== x L(=1) y

x ≈τ1+τ2 y
def
== x L(≈τ1 + ≈τ2) y

x ≈τ1×τ2 y
def
== π1(x) ≈τ1 π1(y) and π2(x) ≈τ2 π2(y)

f ≈σ→τ g
def
== Π(x, y : JσK).x ≈σ y → f(x) ≈τ g(y)

x ≈µα.τ y
def
== x . ≈τ [µα.τ/α] y

Figure 11: The logical relation ≈τ is a predicate over denotations
of τ of type JτK× JτK→ U

Proof. Assume δgl
LA(x) LglR δgl

LB(y). We can rewrite this type by
unfolding definitions and (17) as follows.

δgl
LA(x) LglR δgl

LB(y) ≡ ∀κ.(δgl
LA(x))[κ] LR (δgl

LB(y))[κ]

≡ ∀κ.(δLA(x[κ])) LR (δLB(y[κ]))

≡ ∀κ.(next(x[κ]) .LR next(y[κ]))

≡ ∀κ..(x[κ] LR (y[κ]))

Using force (19) this implies ∀κ.(x[κ] LR (y[κ])) which is equal
to x LglR y.

Lemma 14. For all x of type LglA and y of type LglB, if
δgl
LA(x) LglR y then x LglR y.

Proof. Assume δgl
LA(x) LglR y. Then by applying Lemma 12 we

get δgl
LA(x) LglR δgl

LB(y) and by applying Lemma 13 we get
x LglR y.

6.4 Relating terms up to extensional equivalence
Figure 11 defines for each FPC type τ the logical relation ≈τ :
JτK × JτK → U. The definition is by guarded recursion, and the
well-definedness can be formalised using an argument similar to
that used for well-definedness of θ explained in Section 5.2. The
case of recursive types is well typed by Lemma 4. The figure uses
the following lifting of relations to sum types.

Definition 15. LetR : A×B → U andR′ : A′×B′ → U. Define
(R+R′) : (A+A′)× (B+B′)→ U by case analysis as follows
(omitting false cases)

inl(x) (R+R′) inl(y)
def
== x R y

inr(x) (R+R′) inr(y)
def
== x R′ y

The logical relation can be generalised to open terms and the
global interpretation of terms as in the next two definitions.

Definition 16. For Γ ≡ x1 : σ1, · · · , xn : σn and for f , g of type
JΓK→ JτK define

f ≈Γ,τ g
def
== Π(~x, ~y : J~σK).~x ≈~σ ~y → f(~x) ≈τ g(~y)

Definition 17. For f, g of type ∀κ.(JΓK→ JτK) define

f ≈gl
Γ,τ g

def
== ∀κ.f [κ] ≈Γ,τ g[κ]

Contextual equivalence of FPC is defined in the standard way
by observing convergence at unit type.

Definition 18. Let Γ ` M,N : τ . We say that M,N are contex-
tually equivalent, written M ≈CTX N , if for all contexts C of type
(Γ, τ)→ (−, 1)

∀κ.C[M] ⇓ 〈〉 ⇐⇒ ∀κ.C[N] ⇓ 〈〉

Denotational semantics in Guarded Type Theory 9 2016/4/27

Finally we can state the main theorem of this section.

Theorem 19 (Extensional Computational Adequacy). If Γ `
M,N : τ and JMKgl ≈gl

Γ,τ JNKgl then M ≈CTX N

We now sketch a proof of Theorem 19. The first lemma needed
for the proof states that the interpretation of any term is related to it
self. This needs to be proved by induction over terms, as the logical
relation is not reflexive, as also noted by Escardó (Escardó 1999).
As a counter example, consider a function f : J1K → J1K which
diverges if its input takes a step and converges otherwise. Such a
function is definable in the metalanguage, but not in FPC.

Lemma 20. If Γ ` M : σ, then JMK ≈Γ,σ JMK.

The global lifting of the logical relation is closed under context.

Lemma 21. If Γ ` M,N : τ and JMK ≈gl
Γ,τ JNK then for all

contexts C of type (Γ, τ)→ (−, 1), JC[M]K ≈gl
(−,1) JC[N]K

The following lemma states that if two computations of unit
type are related then the first converges iff the second converges.
Note that this lemma needs to be stated using the fact that the two
computations are globally related.

Lemma 22. For all x, y of type J1Kgl, if x ≈gl
(−,1) y then

Σn.x = (δgl
1)n(η(?))⇔ Σm.y = (δgl

1)m(η(?))

Proof. (Sketch). We show the left to right implication, so suppose
x = (δgl

1)n(η(?)). The proof proceeds by induction on n. If n = 0
then since by assumption ∀κ.x[κ] ≈1 y[κ], by definition of
≈1 , for all κ, there exists an m such that y[κ] = δm1 (η(?)). By
type isomorphism (20), since m is a natural number, this implies
there exists m such that for all κ, y[κ] = δm1 (η(?)) which implies
y = (δgl

1)m(η(?)) by clock extensionality (10).
In the inductive case n = n′ + 1, since by Lemma 14

(δgl
1)n

′
(JvKgl) ≈gl

1 y, the induction hypothesis implies Σm.y =
(δgl

1)m(η(?)).

Proof of Theorem 19. Suppose JMKgl ≈gl
Γ,τ JNKgl and that C

has type (Γ, τ) → (−, 1). We show that if ∀κ.C[M] ⇓ 〈〉
also ∀κ.C[N] ⇓ 〈〉. So suppose ∀κ.C[M] ⇓ 〈〉. By defini-
tion this means ∀κ.Σn.C[M] ⇓n 〈〉. Since n is a natural num-
ber, i.e. a type that does not mention any clock variable, by
type isomorphism (20) we have that there exists n such that
∀κ.C[M] ⇓n 〈〉. By Adequacy Theorem 9 we get ∀κ. JC[M]K =
(δ1)n(η(?)) which is equivalent to JC[M]Kgl = (δgl

1)n(η(?)).
We can apply Lemma 21 together with the assumption and get
JC[M]Kgl ≈gl

1 JC[N]Kgl, so by Lemma 22 there exists an m
such that JC[N]Kgl = (δgl

1)m(η(?)) which means there exists an
m such that ∀κ. JC[N]K = (δ1)m(η(?)). By applying Adequacy
Theorem 9 once again we get ∀κ.C[N] ⇓ 〈〉 as desired.

7. Conclusions and Future Work
We have shown that programming languages with recursive types
can be given sound and computationally adequate denotational se-
mantics in guarded dependent type theory. The semantics is inten-
sional, in the sense that it can distinguish between computations
computing the same result in different number of steps, but we
have shown how to capture extensional equivalence in the model
by constructing a logical relation on the interpretation of types.

This work can be seen as a first step towards a formalisation
of domain theory in type theory. Other, more direct formalisations
have been carried out in Coq, e.g. (Benton et al. 2009) but we
believe that the synthetic viewpoint offers a more abstract and
simpler presentation of the theory. Moreover, we hope that the

success of guarded recursion for operational reasoning, mentioned
in the introduction, can be carried over to denotational models of
advanced programming language features in future work.

Future work also includes implementation of gDTT in a proof
assistant, allowing for the theory of this paper to be machine veri-
fied. Currently, initial experiments are being carried out in this di-
rection.

Acknowledgments
This research was supported by DFF-Research Project 1 Grant no.
4002-00442, from The Danish Council for Independent Research
for the Natural Sciences (FNU).

References
A. W. Appel, P. Melliès, C. D. Richards, and J. Vouillon. A very modal

model of a modern, major, general type system. In POPL, pages 109–
122, 2007.

R. Atkey and C. McBride. Productive coprogramming with guarded recur-
sion. In ICFP, pages 197–208, 2013.

N. Benton, A. Kennedy, and C. Varming. Some domain theory and denota-
tional semantics in coq. In TPHOLs, pages 115–130, 2009.

N. Benton, L. Birkedal, A. Kennedy, and C. Varming. Formalizing domains,
ultrametric spaces and semantics of programming languages. 2010.

L. Birkedal and R. E. Møgelberg. Intensional type theory with guarded
recursive types qua fixed points on universes. In LICS, pages 213–222,
2013.

L. Birkedal, R. E. Møgelberg, J. Schwinghammer, and K. Støvring. First
steps in synthetic guarded domain theory: step-indexing in the topos of
trees. LMCS, 8(4), 2012.

A. Bizjak and R. E. Møgelberg. A model of guarded recursion with clock
synchronisation. In MFPS, 2015.

A. Bizjak, L. Birkedal, and M. Miculan. A model of countable nondeter-
minism in guarded type theory. In RTA-TLCA, pages 108–123, 2014.

A. Bizjak, H. B. Grathwohl, R. Clouston, R. E. Møgelberg, and L. Birkedal.
Guarded dependent type theory with coinductive types. In FoSSaCS,
2016.

V. Capretta. General recursion via coinductive types. Logical Methods in
Computer Science, 1(2), 2005.

N. A. Danielsson. Operational semantics using the partiality monad. In
ICFP, pages 127–138, 2012.

M. Escardó. A metric model of PCF. Unpublished, 1999.
J. M. E. Hyland. First steps in synthetic domain theory. In Category Theory,

pages 131–156, 1991.
C. McBride and R. Paterson. Applicative programming with effects. Jour-

nal of Functional Programming, 18(1), 2008.
R. E. Møgelberg. A type theory for productive coprogramming via guarded

recursion. In CSL-LICS, 2014.
H. Nakano. A modality for recursion. In LICS, pages 255–266, 2000.
M. Paviotti, R. E. Møgelberg, and L. Birkedal. A model of PCF in guarded

type theory. Electr. Notes Theor. Comput. Sci., 319:333–349, 2015.
A. M. Pitts. Relational properties of domains. Inf. Comput., 127(2):66–90,

1996.
B. Reus. Synthetic domain theory in type theory: Another logic of com-

putable functions. In TPHOLs, 1996.
G. Rosolini. Continuity and effectiveness in topoi. PhD thesis, University

of Oxford, 1986.
A. K. Simpson. Computational adequacy for recursive types in models of

intuitionistic set theory. In LICS, pages 287–298, 2002.
K. Svendsen and L. Birkedal. Impredicative concurrent abstract predicates.

In ESOP, 2014.
T. Univalent Foundations Program. Homotopy Type Theory: Univalent

Foundations of Mathematics. 2013.

Denotational semantics in Guarded Type Theory 10 2016/4/27

	Introduction
	Synthetic guarded domain theory
	Contributions
	Related work

	Guarded recursion
	The topos of trees model

	FPC
	Small-step semantics
	Big-step semantics
	Examples
	Equivalence of small-step and big-step semantics

	Denotational Semantics
	Interpretation of types
	Interpretation of terms

	Computational Adequacy
	Delayed substitutions
	Well-definedness of
	A logical relation between syntax and semantics
	Proof of computational adequacy

	Extensional Computational Adequacy
	Universal quantification over clocks
	Global interpretation of types and terms
	A weak bisimulation relation for the lifting monad
	Relating terms up to extensional equivalence

	Conclusions and Future Work

