
The Clocks Are Ticking: No More Delays!
Reduction Semantics for Type Theory with Guarded Recursion

Patrick Bahr
IT University of Copenhagen

Hans Bugge Grathwohl
Aarhus University

Rasmus Ejlers Møgelberg
IT University of Copenhagen

Abstract—Guarded recursion in the sense of Nakano allows
general recursive types and terms to be added to type theory
without breaking consistency. Recent work has demonstrated
applications of guarded recursion such as programming with
codata, reasoning about coinductive types, as well as constructing
and reasoning about denotational models of general recursive
types. Guarded recursion can also be used as an abstract form of
step-indexing for reasoning about programming languages with
advanced features.

Ultimately, we would like to have an implementation of a type
theory with guarded recursion in which all these applications can
be carried out and machine-checked. In this paper, we take a
step towards this goal by devising a suitable reduction semantics.

We present Clocked Type Theory, a new type theory for
guarded recursion that is more suitable for reduction semantics
than the existing ones. We prove confluence, strong normalisation
and canonicity for its reduction semantics, constructing the
theoretical basis for a future implementation. We show how
coinductive types as exemplified by streams can be encoded,
and derive that the type system ensures productivity of stream
definitions.

I. INTRODUCTION

Type theory in the sense of Martin-Löf [1] plays a double
role as a programming language and a logic for verifying pro-
grams and formalising mathematics. The logical interpretation
forces a requirement of totality on the programming language
interpretation, and in particular rules out general recursion.
While total programming can be very expressive, it does have
limitations also in practice. For example, when programming
with coinductive types, the totality requirement enforces the
restriction that all coinductive definitions must be productive.
In the case of streams, productivity means that any particular
element of the stream can be computed in finite time. Modern
implementations of type theory such as Coq and Agda, have
syntactic productivity checks, but these are not modular and
can therefore be difficult to work with [2].

Another place where the limitation of total programming
shows is modelling or reasoning about programming languages
inside type theory: A common problem is that type theory
(like set theory) lacks the recursive types or terms needed, e.g.
for modelling the untyped lambda calculus or programming
languages with higher-order store. One solution is to formalise
theories for recursion, e.g. domain theory, inside type theory,
but this can be non-trivial. Having fixed points directly in type
theory would allow a more direct (synthetic) approach.

Guarded recursion [3] allows recursion to be added to type
theory without breaking consistency by introducing time steps

in the form of a delay type modality . (pronounced ‘later’).
Elements of type .A are to be thought of as elements of type A
only available one time step from now. Recursion arises from
a fixed point operator mapping each productive endofunction
(i.e. a function of type .A → A) to its unique fixed point.
Recursive types are fixed points of productive endofunctions
on a universe of types. We refer to these as guarded recursive
types and emphasize that these include recursive types with
negative occurrences of type variables.

The most advanced type theory with guarded recursion
to date is Guarded Dependent Type Theory (GDTT) [4],
an extensional type theory with a notion of clocks, which
each have a delay modality. Following an idea of Atkey and
McBride [5], coinductive types can be encoded using guarded
recursive types and universal quantification over clocks, which
allows productivity to be expressed in types. In addition,
GDTT has a notion of delayed substitutions allowing for
coinductive, type theoretic reasoning about coinductive data
and functions manipulating coinductive data.

GDTT can also be used as a language for denotational
semantics. Møgelberg and Paviotti [6] have shown how to
construct a denotational model of FPC (simply typed lambda
calculus extended with general recursive types) inside GDTT
modeling the recursive types of FPC as guarded recursive
types in GDTT. The constructed model is computationally
adequate, and this can be proved entirely within the type theory
GDTT using guarded recursive terms and types. This applica-
tion of GDTT can be viewed as a form of synthetic domain
theory, and it allows for often simpler proofs than those of the
classical domain theoretic counterparts, in the same way that
the abstract setting of synthetic homotopy theory [7] allows
for homotopy theoretic proofs to be simplified.

Guarded recursion has also been used for operational rea-
soning about languages beyond the reach of known domain
theoretic techniques. These include languages with combina-
tions of advanced features such as general references, recursive
types, countable non-determinism, and concurrency [8], [9],
[10]. The logics used for reasoning about these features,
and the syntactic models on which they are based can be
understood as a synthetic approach to step-indexing [11]. Thus
guarded recursion provides an abstract setting for this powerful
technique that hides the intricacies of step-indexing and reveals
a formal type system for expressing the model constructions.
Note that although these applications use guarded recursion,
they have not been formalised in GDTT, but we expect that
this is possible.978-1-5090-3018-7/17/$31.00 c©2017 IEEE

So far, most work on guarded recursion has used denota-
tional arguments. Indeed, the soundness of GDTT is argued
for by using a denotational model. In this work we take the
first step towards a syntactic metatheory for GDTT, focusing
on the fragment obtained by removing identity types. The
development of Guarded Cubical Type Theory [12] has shown
that in type theories with guarded recursion, propositional
equality should be treated using path types in the sense of
Cubical Type Theory [13]. However, the metatheory of the
latter is still an open problem.

A. Clocked Type Theory

Delayed substitutions make it difficult to define a reduction
semantics directly on GDTT. To solve this problem, we
introduce a new type theory called Clocked Type Theory
(CloTT), which can be seen as a refinement of GDTT. Like
GDTT, CloTT has a notion of clocks, but it also has a
notion of ticks on a clock, which can be used to translate
the delayed substitutions of GDTT to actual substitutions in
CloTT (justifying the title of the paper). Ticks are resources
that can be used to unfold fixed point definitions, an operation
that must be restricted to avoid divergence. The delay modality
. is replaced by a form of dependent function type over clocks
with introduction and elimination rules given by abstraction
over ticks, and application to ticks, respectively.

We argue that CloTT is at least as expressive as the fragment
of GDTT without identity types, by giving a translation of
the latter into the former. The translation maps most of the
equational rules of GDTT to equalities that follow from the
reduction semantics of CloTT. In particular, most of the rules
for delayed substitutions follow in fact from the β and η
rules for tick abstraction and standard rules for substitutions.
Some of the equational rules of GDTT do not follow from the
reduction semantics, but we argue that these are most naturally
expressed in CloTT as propositional equalities stating that ‘all
ticks are equal’ and ‘all clocks are equal’. We argue informally
why these can be added to a future extension of CloTT with
path types without breaking canonicity.

Our main results concern the reduction semantics of CloTT,
which we show is confluent and strongly normalising. As
a consequence of this, equality of terms and types can be
decided by reducing these to their unique normal forms. This
decision procedure is a major step towards a type checking
algorithm for CloTT. We also prove a canonicity theorem
stating that every closed term of type Nat reduces to a natural
number. As a consequence of this we derive the statement of
productivity: Given a well typed closed term of stream type,
its n’th element can be computed in finite time. This is a
formal statement of the fact that guarded recursion captures
productivity of coinductive definitions in types.

B. Related work

This paper is part of a line of work on guarded recursion
including the already mentioned Guarded Dependent Type
Theory [4] and Guarded Cubical Type Theory [12]. The
latter (GCTT) is an extension of Cubical Type Theory [13]

with guarded recursion for a single clock (i.e. with no clock
variables, disallowing encoding of coinductive types). It has
a denotational semantics given by a presheaf model and
a prototype implementation. Fixed points are not unfolded
automatically, instead there is a path from a fixed point to
its unfolding.

In GCTT (like CloTT) guarded dependent types are con-
structed as fixed points of productive endomaps on a universe.
The fold and unfold terms of guarded recursive types arise as
transports along the path from the fixed point to its unfolding.
Since CloTT has no path types, we have added the fold
and unfold terms as primitives to CloTT, but the reduction
semantics of these mimic closely those of GCTT. For example,
there are no β and η rules for fold and unfold, since these are
equivalences of types in GCTT – but not isomorphisms.

Clouston et at. [14] study operational semantics for a simply
typed lambda calculus with guarded recursive types and a
modal operator related to universal quantification over clocks,
which allows coinductive types to be encoded. They show
a canonicity result for closed terms of natural number type
and construct a logic for the language. Our work extends
this in many ways, for example by considering dependent
types, reduction of open terms and not fixing the evaluation
strategy. These extensions are necessary (the last one perhaps
just convenient) for type checking type theories.

The typing rules for ticks, tick abstraction and tick appli-
cation in CloTT are remarkably similar to those for names
in Cheney’s Dependent Nominal Type Theory [15]. In CloTT
the position of a tick variable in a context can be read as
dividing the context into a collection of variables available
before that tick (the left half) and those available after. In
Dependent Nominal Type Theory, variables declared before a
name variable in a context are considered fresh for that name,
whereas the ones following are not assumed fresh.

Copatterns [16] and sized types [17], [18] are an alternative
approach to ensuring productivity of coinductive definitions
through types, whose syntactic metatheory is much further
developed than that of guarded recursion. For example, Abel
and Pientka [19] construct a type checking algorithm for an
extension of System Fω with these features. The two ap-
proaches appear related, since guarded recursion essentially is
a synthetic form of step-indexing, and sized types index types
with steps, but no formal relation has yet been established. We
emphasize that the goal of guarded recursion is more general,
since general recursive types are treated, also with negative
occurrences of type variables.

Abel and Vezzosi [20] study an increasing, natural number
indexed family of reduction relations for a simply typed
lambda calculus with guarded recursive types. They prove
strong normalisation for each of the reduction relations, but
none of them are confluent. Unlike them, we do not unfold
fixed points automatically, but instead we gain confluence.

Severi and de Vries [21] study Pure Type Systems, which
include dependently typed calculi such as the Calculus of
Constructions, extended with essentially a guarded recursive
type of streams. Instead of restricting the unfolding of fixed

points to obtain strong normalisation as we do for CloTT, their
calculi allow arbitrary unfolding of fixed points. While this
choice prevents these calculi from being strongly normalising,
Severi and de Vries are able to establish an infinitary strong
normalisation property, which implies productivity.

A number of authors [22], [23], [24] have suggested using
essentially guarded recursive methods in functional reactive
programming. The benefit in that setting is to allow static
checking for the lack of time-leaks, a property similar to
productivity.

C. Overview

Sections II and III present Clocked Type Theory, its reduc-
tion semantics, and the main metatheoretic results. Section IV
shows how the guarded recursive types can be used to con-
struct a type of streams and gives examples of basic programs
for constructing, manipulating, and reasoning about streams.

Section V recalls the delayed substitutions of GDTT and
constructs the translation from GDTT to CloTT. Section VI
outlines the proofs of the main results with emphasis on strong
normalisation. The full proofs are quite long and technical
and we therefore omit them from this extended abstract. The
referees can find full proofs in the online appendix [25].
Finally, we conclude in Section VII.

II. CLOCKED TYPE THEORY

Clocked Type Theory is an extension of dependent type
theory with a special collection of sorts called clocks. An
inhabitant of a clock is referred to as a tick, and these are
resources that can be used to unfold fixed point definitions
or fold or unfold elements of recursive types. We use κ to
range over clock variables and α to range over ticks, so that
an assumption of the form α : κ states that α is a tick on clock
κ. Clock contexts ∆ are finite sets of clock variables and in
our syntax these are given a special role by being subscript to
the turnstile as in e.g. typing judgements Γ `∆ t : A.

Context and type formation rules of the calculus are shown
in Figure 1. Apart from the three base types 1, Bool, and Nat,
the calculus has standard Π- and Σ-types as well as a Tarski-
style universe U with a corresponding interpretation operator
El (·). There are no constructors for clocks, they are just names,
and clocks are not types, so declarations like α : κ → κ′ are
not allowed. By not being types, the status of clocks is similar
to that of the interval in Cubical Type Theory [13].

In a context Γ, α : κ,Γ′ `∆, tick variable α represents the
assumption that a tick of time occurs on clock κ between the
time when the values represented by the variables in Γ and
those in Γ′ are received. Since values can be implicitly stored
over time steps, the context Γ, x : B,α : κ,Γ′ `∆ represents
a stronger assumption than Γ, α : κ, x : B,Γ′ `∆. The former
requires availability of x for one more time step. This intuition
is reflected in the structural rules. For example, the rule

Γ, α : κ, y : B,Γ′ `∆ C type Γ, y : B,α : κ,Γ′ `∆

Γ, y : B,α : κ,Γ′ `∆ C type

is admissible, but the opposite direction is not.

Contexts:

· `∆

Γ `∆ Γ `∆ A type

Γ, x : A `∆

Γ `∆ κ ∈ ∆

Γ, α : κ `∆

Types:

Γ, α : κ `∆ A type κ ∈ ∆

Γ `∆ . (α : κ).A type

Γ `∆,κ A type Γ `∆

Γ `∆ ∀κ.A type

Γ `∆

Γ `∆ 1 type

Γ `∆

Γ `∆ Bool type

Γ, x : A `∆ B type

Γ `∆ Πx : A.B type

Γ, x : A `∆ B type

Γ `∆ Σx : A.B type

Γ `∆

Γ `∆ Nat type

Γ `∆

Γ `∆ U type

Γ `∆ A : U
Γ `∆ El (A) type

Fig. 1. Context and type formation rules for Clocked Type Theory.

Selected typing rules can be found in Figure 2. We omit
rules for sum types, unit types and natural numbers which
are just standard rules ignoring the new context ∆, as in the
rules for dependent products included in the figure. Note that,
although we think of ticks as resources, the type discipline is
not linear as in linear logic [26]. For example, in a function
application t u a tick variable α can appear both in t and u.
Rather, the typing discipline ensures that a tick is not used to
unfold a fixed point twice.

The type . (α : κ).A is a type of suspended computations
requiring a tick on the clock to compute elements of type A.
This can be understood as a dependent function type, but we
stick to the notation of the guarded recursion literature, where
the . (pronounced ‘later’) is a type modality. We write simply
.κA for . (α : κ).A if α is not free in A. In the elimination
rule for . (α : κ).A, a term t can be applied to a tick α′, only
if t computes to a value of type . (α : κ).A before α′, i.e., if
all of the variables that t depend on are available before α′.

A suspended computation represented by a closed term
of type . (α : κ).A can be forced by applying it to the
tick constant �. In general, this is unsafe for open terms,
since it breaks the productivity guarantees that the typing
system should provide. For example, the term λ(x : .κA).x [�]
should not be typeable, because it is not productive. It is safe,
however, to force an open term if the clock κ does not appear
free in the context Γ as in the rule

Γ `∆,κ t : . (α : κ).A Γ `∆

Γ `∆,κ t [�] : A [�/α]
(1)

In that case the context can be thought of as being κ-stable,
i.e., not affected by ticks on clock κ. Rule (1) is not closed
under substitution (or even weakening) since introducing a
variable with a type containing κ breaks the assumption of
the rule. The rule for application to � in Figure 2 (third line,

Γ `∆ t : A A ∗ B Γ `∆ B type

Γ `∆ t : B

Γ, x : A `∆ t : B

Γ `∆ λ(x : A).t : Π(x : A). B

Γ `∆ t : Π(x : A). B Γ `∆ u : A

Γ `∆ t u : B [u/x]

Γ `∆,κ t : A Γ `∆

Γ `∆ Λκ.t : ∀κ.A
Γ `∆ t : ∀κ.A κ′ ∈ ∆

Γ `∆ t[κ′] : A [κ′/κ]

Γ, α : κ `∆ t : A κ ∈ ∆

Γ `∆ λ(α : κ).t : . (α : κ).A

Γ `∆ t : . (α : κ).A Γ, α′ : κ,Γ′ `∆

Γ, α′ : κ,Γ′ `∆ t [α′] : A [α′/α]

Γ `∆,κ t : . (α : κ).A Γ `∆ κ′ ∈ ∆

Γ `∆ (t [κ′/κ]) [�] : A [κ′/κ] [�/α]

Γ `∆ t : .κA→ A

Γ `∆ dfixκ t : .κA

Γ `∆ F : .κ(A→ U)→ A→ U Γ `∆ u : A Γ `∆ t : El ((dfixκ F) [α]u) Γ `∆ α : κ

Γ `∆ unfoldα t : El (F (dfixκ F)u)

Γ `∆ F : .κ(A→ U)→ A→ U Γ `∆ u : A Γ `∆ t : El (F (dfixκ F)u) Γ `∆ α : κ

Γ `∆ foldα t : El ((dfixκ F) [α]u)

Γ, x : El (A) `∆ B : U
Γ `∆ Π̂x : A.B : U

Γ, α : κ `∆ A : U κ ∈ ∆

Γ `∆ .̂ α : κ.A : U
Γ `∆,κ A : U Γ `∆

Γ `∆ ∀̂κ.A : U
Γ, x : El (A) `∆ B : U
Γ `∆ Σ̂x : A.B : U

Γ `∆

Γ `∆ 1̂ : U
Γ `∆

Γ `∆
ˆBool : U

Γ `∆

Γ `∆ N̂at : U

Fig. 2. Selected typing rules of Clocked Type Theory. In the first rule ∗ is the least equivalence relation containing the reduction relation.

second rule) solves this problem by substituting away the
clock κ in the conclusion. An easy induction argument shows
that typing judgements are closed under weakening in clock
variables, and renaming of clocks. Using this, one can show
that rule (1) is admissible.

The type ∀κ.A is a dependent product over clocks. An
element of this type is a term of type A that can compute for an
arbitrary number of ticks on clock κ. For example, the operator
force : (∀κ..κA) → ∀κ.A of Atkey and McBride [5] can be
encoded as λx : (∀κ..κA).Λκ.x[κ] [�]. If t : . (α : κ).A with
α not free in A, then t [�] can be encoded using force, and
application to � is also equivalent to prev as used in GDTT.
We prefer the present formulation because it can be expressed
without reference to quantification over clocks, and can thus
be seen as an eliminator for .κ.

A term f : .κA → A is a productive function taking
suspended computations of type A and returning values of
type A. The delayed fixed point dfixκf of f is an element of
type .κA which, when given a tick, applies f to itself.

Recursive types arise as fixed points of productive endo-
functions on the universe. To treat dependent recursive types,
the endofunctions are allowed to have a parameter type A, so
the general type considered is F : .κ(A→ U)→ A→ U . To
ensure termination, fixed points do not unfold until applied
to the tick constant �, so although El (F (dfixκ F)u) and
El (dfixκF [�]u) are equal, the types El (F (dfixκ F)u) and
El (dfixκF [α]u) are not, if α is a tick variable. The terms
foldα and unfoldα allow us to program with this suspended
type equality. This corresponds to the situation in Guarded

Cubical Type Theory [12], where (under the translation given
in Section V) the terms dfixκ F and λ(α : κ).F (dfixκ F) are
propositionally equal and the terms unfoldα and foldα are the
equivalence of types arising from this equality. Section IV
shows how to use foldα and unfoldα to program and reason
about streams.

Unlike GDTT which has a family of universes indexed by
clock contexts, for simplicity of presentation, here CloTT has a
single universe. The indexing of universes is needed in GDTT
for soundness of the clock irrelevance rule stating essentially
that types ∀κ.A and A are isomorphic if κ is not free in A.
The clock irrelevance rule does not follow from the reduction
semantics given here (see the discussion in Section V-C).

Remark II.1. We will sometimes assume a single clock con-
stant κ0. Since there are no special rules for κ0 that do not
apply to all clock variables, this corresponds to working in a
clock context ∆ containing κ0.

III. REDUCTION SEMANTICS

Figure 3 describes the reduction semantics. The reduction
semantics is given in full and also includes rules for the
introduction and elimination forms of Bool (true, false, if)
and Nat (0, suc , rec), which were omitted in the typing rules
in Figure 4. As stated above, ticks are resources that can
be spent to unfold fixed points. This can be seen from the
reduction rule for dfixκ. Tick variables should be understood as
placeholders for the actual tick �, and thus do not themselves
force unfoldings of fixed points. Similarly, the β and η
reductions for recursive types requires an actual tick, in the

(λx : A.t)s t [s/x] (Λκ.t)[κ′] t [κ′/κ]

(λ(α′ : κ).t) [α] t [α/α′] λ(α : κ).(t [α]) t

(Λκ.t[κ]) t πi 〈t1, t2〉 ti

fold�t t unfold�t t

if true t1 t2 t1 if false t1 t2 t2

rec (suc t1) t2 t3 t3 t1 (rec t1 t2 t3) rec 0 t s t

(dfixκ t) [�] t (dfixκ t)

t u

C[t] C[u]

El
(

Π̂x : s. t
)

Πx : El (s) .El (t)

El
(

Σ̂x : s. t
)

Σx : El (s) .El (t)

El
(

N̂at
)

Nat

El
(

1̂
)

1

El
(

ˆBool
)

Bool

El
(
∀̂κ.t

)
∀κ.El (t)

El (.̂ α : κ.t) . (α : κ).El (t)

Fig. 3. Reduction relation on terms. The η reductions for tick and clock abstraction are subject to the usual side condition that α 6∈ ft(t) and κ 6∈ fc(t),
respectively. The notation C[−] ranges over all contexts.

sense that e.g. unfoldα(foldα t) does not reduce. Only when �
is substituted for α do the reductions apply. More precisely,
at this point the folded type (El ((dfixκ F) [�]u)) and unfolded
type (El (F (dfixκ F)u)) are equal, and so the folds and unfolds
simply disappear.

We include η reductions for tick and clock abstractions.
The former is needed for the correctness of the translation of
GDTT into CloTT. These η reductions are subject to the usual
side condition that α is not in the set ft(t) of free tick variables
of t, and κ is not in the set fc(t) of free clock variables
of t. However, for well-typed terms, the side condition for
η reduction for tick abstractions is always satisfied.

A. Metatheoretic results

We now state our main metatheoretic results. Section VI
outlines the proofs, but full proofs are beyond the scope of
this extended abstract. Referees can find the full proofs in the
online appendix [25].

Proposition III.1 (Subject reduction). If Γ `∆ s : A and
s t, then Γ `∆ t : A.

Theorem III.2 (Confluence). If s ∗ t1, s
∗ t2, then t1 ∗

t and t2 ∗ t for some t.

Theorem III.3 (Strong normalisation). If Γ `∆ t : A, then
t is strongly normalising. If Γ `∆ A type then A is strongly
normalising.

As is standard, strong normalisation and confluence together
yield a decision procedure for the equational theory ∗

defined as the least equivalence relation containing : Given
two terms, reduce them to their unique normal forms and
compare them.

Corollary III.4. The equational theory ∗ is decidable.

Finally, we state the canonicity theorem. Note that the
closed terms we consider may have free clock variables.
Consequently, canonicity is preserved when clock constants
are added, which is needed for productivity of coinductive
definitions (see Corollary IV.1).

Theorem III.5 (Canonicity). If `∆ t : Nat, then t ∗ suc n 0
for some n ∈ N.

IV. EXAMPLE: PROGRAMMING WITH STREAMS

We now show how to encode a type of streams in CloTT.
The purpose of this section is to illustrate how to program in
the type theory, rather than to argue for expressiveness. The
latter is addressed in Section V.

Following Remark II.1, we will assume a clock constant
κ0. We use the standard type theoretic notation A × B for
Σx : A.B and A → B for Πx : A.B assuming x is not free
in B.

Let F : .κ U → U be λx : .κ U .N̂at ×̂ .̂ α : κ.x [α] and
define

Strκ := El (F (dfixκF))

Strκα := El (dfixκF [α])

In a context containing α : κ, this definition gives us the terms1

foldα : Strκ → Strκα
unfoldα : Strκα → Strκ

Since Strκ ∗ Nat× . (α : κ).Strκα we can define

consκ : Nat→ .κ Strκ → Strκ

consκ := λx : Nat.λy : .κ Strκ. 〈x, λ(α : κ).foldα(y [α])〉
hdκ : Strκ → Nat

hdκ := λx : Strκ.π1 x

tlκ : Strκ → .κ Strκ

tlκ := λx : Strκ.λ(α : κ).unfoldα((π2 x) [α])

We write x ::κα xs for consκ x (λ(α : κ).xs). Note that x ::κα
xs binds α in xs .

The type Strκ is a guarded recursive type of streams, i.e.,
it is clock sensitive as can be seen e.g. by the type of tlκ.
One consequence of this is that all functions Strκ → Strκ are
causal in the sense that the n’th output element depends only
on the n first inputs [27]. Universal quantification over clocks

1Strictly speaking, F would need to have the type .κ(1→ U)→ 1→ U ,
but for the sake of clarity we define it with type .κ U → U instead.

is used to convert guarded recursive types to coinductive types,
as explained by Atkey and McBride [5]. For example, we can
define a type Str of coinductive streams as

Str := ∀κ.Strκ

The functions consκ, tlκ, and hdκ can be lifted to coinductive
streams using the fixed clock constant κ0:

cons : Nat→ Str→ Str

cons := λx : Nat.λy : Str.Λκ. x ::κα (y [κ])

hd : Str→ Nat

hd := λx : Str.hdκ0 (x [κ0])

tl : Str→ Str

tl := λx : Str.Λκ.(tlκ (x [κ])) [�]

The function nth : Nat → Str → Nat returning the n’th
element of a stream can be defined by ordinary natural number
recursion. As a corollary to canonicity we then get a statement
of productivity for streams.

Corollary IV.1 (Productivity). If t is a closed term of type
Str and n is a closed term of type Nat then nthn t reduces to
a natural number.

Note that the clock constant κ0 is needed to define nth.
Since κ0 is added by working in a context where it is a free
variable, it is important that the closed terms considered in
Theorem III.5 can have free clock variables. On the other hand,
for this result, the canonicity result does not need to allow
other clock variables than κ0 in closed terms.

A. Example programs

We now give a few examples of streams. We use the notation
fixκx.t defined as (λx : .κA.t)(dfixκ(λx : .κA.t)). First the
constant stream: if n is of type Nat define

constκ n := fixκx.n ::κα x [α] : Strκ

constn := Λκ.constκ n : Str

Map over streams can be defined as

mapκ : (Nat→ Nat)→ Strκ → Strκ

mapκ f := fixκg.λx : Strκ.f(hdκx) ::κα g [α](tlκ x [α])

map : (Nat→ Nat)→ Str→ Str

map f x := Λκ.mapκ f(x [κ])

Using these we can define a stream of natural numbers

natsκ := fixκx.0 ::κα mapκsuc (x [α]) : Strκ

nats := Λκ.natsκ : Str .

It is easy to check that hd(tl(nats)) reduces to suc 0.

As a simple example of a non-causal function on streams,
we define the function eo that removes every other element of
the input stream.

eoκ : Str→ Strκ

eoκ := fixκf.λx : Str.(hdx) ::κα (f [α] (tl (tlx)))

eo : Str→ Str

eo := λx : Str.Λκ.eoκ x

B. Reasoning about streams

We now consider an example of reasoning about streams.
Since CloTT does not have identity types the example is very
basic. We show how to lift a predicate P : N → U to a
pointwise predicate LP on coinductive streams, and how to
lift a proof of Π(x : N).P (x) to a proof of Π(x : Str).LP (x).

Define G : .κ(Strκ → U)→ (Strκ → U) as

GX x := P (hdκx) ×̂ .̂ α : κ.X [α](tlκx [α])

and define, for x : Strκ,

LκP (x) := El (G(dfixκG)x)

LκαP (x) := El (dfixκG [α]x) .

Note that LκP x ∗ El (P (hdκx))× . (α : κ).LκαP (tlκx [α]).
An element of LκP x is essentially a pair of a proof of
P (hdκx) and a delayed proof of LκP applied to the tail
of x. More precisely, if p : El (P (hdκx)), q : (. (α :
κ).LκP (tlκx [α])) and r : LκP (tlκx [α]) define

consκ p q := 〈p, λ(α : κ).foldα(q [α])〉 : LκP (x)

p ::κα r := consκ p (λ(α : κ).r) : LκP (x)

Suppose now that we are given p of type Πx : Nat.El (P (x)).
Then p lifts to a proof q of Πx : Strκ.LκP (x) defined as

q := fixκr.λx : Strκ.p(hdκx) ::κα (r [α](tlκx [α])) (2)

All this lifts to coinductive streams. Define, for x : Str the
type LP (x) as ∀κ.LκP (x[κ]), and define the lifting of a proof
p of Πx : Nat.El (P (x)) to be

λx : Str.Λκ.q(x[κ])

where q is as in (2).

V. TRANSLATION FROM GDTT

In this section we show how the fragment of GDTT [4]
obtained by removing identity types can be translated to
CloTT, thus showing that CloTT is at least as expressive as
this fragment of GDTT. Recalling the applications of GDTT
listed in the introduction, this shows a range of application
of CloTT. The translation preserves most of the equalities of
GDTT, but some equalities are not preserved, and we believe
these should be considered propositional equalities (see the
discussion in Section V-C).

Delayed substitutions:

∆ `∆ Γ `∆ κ

`∆ · : Γ
κ
_ ·

`∆ ξ : Γ
κ
_ Γ′ Γ `∆ t : .κξ.A

`∆ ξ [x← t] : Γ
κ
_ Γ′, x : A

Typing rules:

Γ,Γ′ `∆ A type `∆ ξ : Γ
κ
_ Γ′

Γ `∆ .κξ.A type

∆′ ⊆ ∆

Γ `∆ U∆′ type

`∆′ κ Γ `∆ A : .κU∆′

Γ `∆ .̂
κ
A : U∆′

Γ,Γ′ `∆ t : A `∆ ξ : Γ
κ
_ Γ′

Γ `∆ nextκξ.t : .κξ.A

`∆ κ Γ, x : .κA `∆ t : A

Γ `∆ fixκx.t : A

Γ `∆ Γ `∆,κ t : .κξ.A

Γ `∆ prevκ.t : ∀κ.(A(advκ∆(ξ)))

Advancing delayed substitutions:

`∆,κ · : Γ
κ
_ · ∆ `∆ Γ

advκ∆(·) := id : Γ→ Γ

`∆,κ ξ[x← t] : Γ
κ
_ Γ′, x : A ∆ `∆ Γ

advκ∆(ξ[x← t]) := advκ∆(ξ)[(prevκ.t)[κ] /x]

Fig. 4. GDTT typing rules and rules for delayed substitutions. The judgement
`∆ κ means κ ∈ ∆ or κ = κ0 the clock constant.

A. Guarded dependent type theory

Like CloTT, GDTT is a dependent type theory with a spe-
cial context of clocks subscript to the turnstile in judgements.
It has guarded recursive fixed points, and a type operator .κ

with introduction form nextκt : .κA if t : A, but there are no
ticks on clocks. Reasoning about delayed data is done using
delayed substitutions, a restricted kind of elimination form for
.κ that we now explain. If t : A in context x : B and u : .κB
then nextκ [x← u] .t has type .κ [x← u] .A. Intuitively, the
delayed substitution [x← u] means ‘reduce u to nextκs, then
substitute s for x in t and A’, but since u can be open, it
may not be possible to reduce it to the form nextκs, and thus
delayed substitutions are necessary for reasoning about data of
type .κB. General delayed substitutions substitute more than
one variable, and there can be dependencies in the types of
these.

Figure 4 recalls the typing rules for delayed substitutions
and the typing rules for the fragment of GDTT relating to .κ.
Figure 5 recalls the equality theory. Constructions, such as
dependent products and sums, and quantification over clocks
that have direct counterparts in CloTT are therefore omitted.

In GDTT universes are indexed by sets of clocks. This is

Definitional type equalities:

.κξ [x← t] .A ≡ .κξ.A (3)
.κξ [x← t, y ← u] ξ′.A ≡ .κξ [y ← u, x← t] ξ′.A (4)
.κξ [x← nextκξ.t] .A ≡ .κξ.A [t/x] (5)

El
(
.̂
κ

(nextκξ.t)
)
≡ .κξ.El (t) (6)

Definitional term equalities:

nextκξ [x← t] .u ≡ nextκξ.u (7)
nextκξ [x← t, y ← u] ξ′.v ≡ nextκξ [y ← u, x← t] ξ′.v (8)

nextκξ [x← nextκξ.t] .u ≡ nextκξ.u [t/x] (9)
nextκξ [x← t] .x ≡ t (10)

prevκ.nextκξ.t ≡ Λκ.t(advκ∆(ξ)) (11)
nextκ((prevκ.t)[κ]) ≡ t (12)

nextκξ.nextκξ′.u ≡ nextκξ′.nextκξ.u (13)
fixκx.t ≡ t [nextκ(fixκx.t)/x] (14)

t : ∀κ.A κ /∈ fc(A)

t[κ′] ≡ t[κ′′]
(15)

Fig. 5. Type and term equalities of GDTT. All rules should be read as
equalities in a context, and have the implicit assumption that both sides are
wellformed and welltyped in that context. For example, rules (3) and (7)
require that A and u are well-formed in a context without x. Rule (13)
moreover assumes that none of the variables in the codomains of ξ and ξ′
appear in the type of u.

necessary for soundness of rule (15) of Figure 5. A delayed
substitution `∆ ξ : Γ

κ
_ Γ′ can be advanced to yield an

ordinary substitution advκ∆(ξ) from Γ to Γ,Γ′. In the rule
for prevκ.t as well as in equality (11) this substitution is
performed on type A and term t respectively.

B. Translation

The translation from GDTT to CloTT is presented in
Figure 6. Again we focus on the non-trivial fragment, but the
translation can be extended to the entire fragment of GDTT not
mentioning identity types in a trivial way. The figure defines a
translation of types and terms simultaneously with a translation
of delayed substitutions to ordinary substitutions of dependent
contexts.

Proposition V.1. The translation preserves wellformed judge-
ments in the following sense.

1) If Γ `∆ A type is a wellformed type judgement in
GDTT, then Γ∗ `∆,κ0 A

∗ type is wellformed in CloTT.
2) If Γ `∆ t : A is a wellformed GDTT typing judgement,

then Γ∗ `∆,κ0
t∗ : A∗ is wellformed in CloTT.

3) If `∆ ξ : Γ
κ
_ Γ′ is a delayed substitution in GDTT,

then ξ∗α is a substitution from Γ∗, α : κ `∆,κ0
to Γ∗, α :

κ, (Γ′)∗ `∆,κ0
in CloTT.

Because of the special status of tick variables, the notion
of substitutions between CloTT contexts is non-standard. For
reasons of space, we omit the details.

Translation of contexts:

(·)∗ := · (Γ, x : A)∗ := Γ∗, x : A∗

Translation of delayed substitutions

(·)∗α := id(Γ,α:κ`∆) (ξ [x← t])∗α := ξ∗α[x 7→ t∗ [α]]

Translation of types:

U∗∆′ := U El (t)∗ := El (t∗)

(.κξ.A)∗ := . (α : κ).A∗ ξ∗α

Translation of terms:

(.̂
κ
A)∗ := .̂ α : κ.A∗ [α]

(nextκξ.t)∗ := λ(α : κ).t∗ξ∗α

(prevκ.t)∗ := Λκ.t∗ [�]
(fixκx.t)∗ := t∗ [dfixκ(λx.t∗)/x]

Fig. 6. Translation from GDTT to CloTT. The notation A∗ ξ∗α means
perform the substitution ξ∗α in type A∗. Likewise for t∗ξ∗α.

We say that the translation preserves a set of rules X , if
whenever t ≡ u can be proved using the rules in X , also
t∗ ∗ u∗ and, similarly, A ≡ B implies A∗ ∗ B∗.

Theorem V.2. The translation from GDTT to CloTT pre-
serves all rules of Figure 5 except (12), (13), (14) and (15).

C. Discussion: The remaining equational rules

As noted above, our translation fails to preserve four GDTT
equality rules. In order to maintain the expressivity of GDTT,
these must be added to CloTT as propositional equalities.
We now discuss how this can be achieved without breaking
canonicity in a future version of CloTT with path types in the
sense of Cubical Type Theory [13], but leave the details for
future work.

First consider the fixed point equality (14). This equality is
not preserved by the translation by design, since it requires un-
folding of fixed points, which leads to divergence. Rather than
being unfolded automatically, fixed point unfolding should
be a path that the user should explicitly apply. This is the
approach used in Guarded Cubical Type Theory (GCTT) [12],
which shows how these paths can be used for programming
with relatively little overhead.

The fixed point unfolding path of GCTT can be translated
into CloTT if a constant

pfixκf : . (α : κ).PathA((dfixκf) [α], f(dfixκf))

(for f : .κA → A) is added to an extension of CloTT with
path types. For canonicity it is not necessary that pfixκ f [α]
reduces (since it is an open term), but (pfixκf) [�] must. This
should reduce to the reflexivity path, which is welltyped, since
(dfixκf) [�] f(dfixκf).

Since nextκ((prevκ.t)[κ])
∗ reduces to λ(α : κ).t∗ [�] and

λ(α : κ).t∗ [α] t∗, rule (12) boils down to an equality

between terms of the form u [α] and u [�]. Likewise (13)
compiles to the equality

λ(α : κ).λ(α′ : κ).t∗ ξ∗α ξ
′∗
α′ ≡ λ(α : κ).λ(α′ : κ).t∗ ξ∗α′ ξ′∗α

which can be proved if ξ∗α′ equal to ξ∗α and ξ′∗α′ equal to ξ′∗α
can be proved, i.e., if we can prove equalities between terms
of the form u [α] and u [α′]. Since clocks are not types, we
cannot postulate a path from α to α′, or from α to �, but it
does make sense to postulate a tick irrelevance axiom:

tirrκt : . (α : κ).. (α′ : κ).PathA(t [α], t [α′])

whenever t : .κA. To maintain canonicity (tirrκt) [�] [�] must
reduce to reflexivity.

Similarly, the clock irrelevance rule (5) can be added as an
axiom

cirrκt : ∀κ′.∀κ′′.PathA(t[κ′], t[κ′′])

for t : ∀κ.A and κ /∈ fc(A), with the reduction rule that
cirrκt [κ0] [κ0] reduces to reflexivity. This should suffice to
prove canonicity in the special case that the clock context ∆
consists only of the clock constant κ0, which in turn suffices
for productivity results such as Corollary IV.1.

VI. PROOFS

In this section we briefly outline the proofs of the main
metatheoretic results that we list in Section III-A.

A. Confluence, Subject Reduction, and Canonicity

The proof of confluence (Theorem III.2) is straightforward
and follows the proof technique of Takahashi [28]: We define
a parallel reduction relation satisfying ⊆ ⊆ ∗, and
for each term t we define the term t∗ that is obtained from
t by simultaneously contracting all redexes in t. Confluence
follows from the property that s t implies t s∗, which
can be proved by induction on s.

Also our subject reduction and canonicity results (Propo-
sition V.1 and Theorem III.5) are proved by conventional
methods: Subject reduction follows by an induction on the
typing derivation using the fact that typing is preserved by
clock, term, and tick substitution. One non-standard element
of the subject reduction proof is the case for application
to �, because a clock variable is substituted in the term in
the conclusion of the corresponding typing rule. To conclude
subject reduction from the induction hypothesis for this typing
rule, we need to use the following lemma:

Lemma VI.1. If s σ t for some clock substitution σ, then
there is a term t′ with s t′ and t′ σ = t.

For canonicity, we show by induction that any term `∆ t : A
that is in normal form must be an introduction form, i.e. of
the form λx : A.s, suc s, 〈u, v〉, etc. Then canonicity follows
from strong normalisation and subject reduction.

B. Strong Normalisation

Our proof of strong normalisation follows Tait’s proof
technique [29]: We interpret each type A as a set JAK of
strongly normalising terms and then show that each term of
type A is in JAK. More precisely, the interpretation of types
is given in a Kripke-style [30], that is, JAK is indexed by
objects in a category K. The objects in K are pairs (∆, δ)
consisting of a clock context ∆ and a mapping δ : ∆ → N
and we write J`∆ AKδ instead of JAK(∆,δ). A morphism
σ : (∆, δ)→ (∆′, δ′) is a mapping σ : ∆→ ∆′ (thought of as
a clock substitution) such that δ′(σ(κ)) ≤ δ(κ) for all κ ∈ ∆.
Intuitively, δ(κ) is the time that is left on clock κ. Time passes
when a term is applied to �. Note that the clock substitutions
can synchronise clocks by mapping them to the same clock,
and setting their time to the minimum of the times of the
synchronised clocks.

Since, in a dependent type theory, types depend on terms,
J`∆ AKδ cannot simply be defined inductively on the structure
of A. The set of terms A for which J`∆ AKδ is defined must
be defined simultaneously with their interpretations J`∆ AKδ
in an essentially inductive-recursive definition. To this end, we
follow the approach of Harper [31] and define the interpreta-
tion function J`∆ ·Kδ as the least fixed point of a monotone
function.

The fixed point construction requires a complete pointed
partial order structure. Recall that a complete pointed partial
order (CPPO) is a partially ordered set (S,≤) with a least
element such that every directed subset D of S (i.e. every
pair x, y ∈ D has an upper bound in D) has a least upper
bound. The following fixed point theorem, which appears in
Harper [31], will allow us to construct J`∆ AKδ:

Theorem VI.2. Any monotone function on a CPPO has a
least fixed point.

Specifically, the least fixed point can be constructed as
follows: Given a monotone function f : X → X on a CPPO
(X,≤), we construct the following transfinite sequence (xα)
starting with the least element ⊥:

x0 = ⊥ xα+1 = f(xα)

xγ =
⊔
α<γ

xα if γ is a limit ordinal

Then there is an ordinal α such that xα is the least fixed point.

We shall use the above fixed point construction to simultane-
ously define (1) partial mappings J`∆ ·Kδ from terms to sets of
terms, and (2) the domain of J`∆ ·Kδ . To this end, we use the
notation Terms(∆) to denote the set of terms t with fc(t) ⊆ ∆.
Since the interpretation of types is indexed by clock contexts
∆ and mappings δ : ∆ → N, we consider families of partial
mappings J`∆ ·Kδ and their corresponding domains. That is,
our CPPO consists of pairs (D, φ), where D = (D∆,δ) is a
family of sets D∆,δ ⊆ Terms(∆) and φ = (φ∆,δ) is a family
of partial maps φ∆,δ : Terms(∆) ⇀ P(Terms(∆)). These
pairs (D, φ) are subject to a number of saturation properties,
which are listed in Figure 7. We call a pair (D, φ) that satisfies

(S1) D∆,δ = dom (φ∆,δ).
(S2) If A B, then A ∈ D∆,δ iff B ∈ D∆,δ and A ∈ SN(∆).
(S3) If A B and A,B ∈ D∆,δ , then φ∆,δ(A) = φ∆,δ(B).
(S4) If t ∈ φ∆,δ(A), then t ∈ SN.
(S5) If t ∈ φ∆,δ(A), σ : (∆, δ) → (∆′, δ′), then t σ ∈

φ∆′,δ′(Aσ).
(S6) If t ∈ φ∆,δ(A), s ∈ Terms(∆) and s WH t, then s ∈

φ∆,δ(A).
(S7) If t ∈ Neu(∆) and A ∈ D∆,δ , then t ∈ φ∆,δ(A).

Fig. 7. Saturation Properties.

E ::= [] | E t | E [α] | E [κ] | πiE
| if E t1 t2 | recE t1 t2 | El (E)

where α ranges over TV ∪ {�}.

(λx.s)t 7→ s [t/x] if t ∈ SN

(λ(α : κ).t) [α′] 7→ t [α′/α] if α′ ∈ TV ∪ {�}
(dfixκ t) [�] 7→ t (dfixκ t)

(Λκ.t)[κ′] 7→ t [κ′/κ]

fold�t 7→ t

unfold�t 7→ t

if true t1 t2 7→ t1 if t2 ∈ SN

if false t1 t2 7→ t2 if t1 ∈ SN

πi 〈t1, t2〉 7→ ti if t3−i ∈ SN

rec 0 s t 7→ s if t ∈ SN

rec (suc t) v u 7→ u t (rec t v u)

Fig. 8. Evaluation contexts and weak head reduction.

these properties a saturated family, and write Sat to denote the
set of all saturated families. Before we review the saturation
properties in detail, we need to introduce some notation.

We write SN for the set of all terms that are strongly
normalising and SN(∆) for the set SN∩Terms(∆) of strongly
normalising terms with free clock variables in ∆. Furthermore,
we write TV for the set of tick variables. In addition we also
need to define weak head reduction and neutral terms.

Definition VI.3 (weak head reduction). The weak head re-
duction relation WH is defined as follows: s WH t iff
s = E[s′], t = E[t′], and s′ 7→ t′, where the evaluation
contexts E and the relation 7→ are defined in Figure 8. An
evaluation context E is called SN if every term occurring in E
is in SN. That is, E is obtained from the grammar in Figure 8,
where the form E t is subject to the restriction that t ∈ SN, and
the forms if E t1 t2 and recE t1 t2 are subject to the restriction
t1, t2 ∈ SN. A term is called neutral if it is of the form E[x],
E[unfoldα t], or E[(dfixκ t) [α]], where α ∈ TV, E is SN,
and t ∈ SN. We write Neu(∆) for the set of neutral terms in
Terms(∆).

The notions of evaluation contexts and weak head reduction

are standard: Weak head reduction contracts the β-redex in a
head position. Our notion of neutral terms, on the other hand,
is non-standard since we have to deal with free tick variables:
As usual neutral terms are terms that are “stuck” because of a
variable in head position. But in addition to ordinary term vari-
ables, we also have tick variables. Therefore, also E[unfoldα t]
and E[(dfixκ t) [α]] are neutral, since these terms are “stuck”
due to the occurrence of a tick variable α. However, E[t [α]]
is in general not neutral (only if t = dfixκ u), since t [α] can
in fact be a β-redex, namely in case t = λ(α : κ).u.

The side conditions in the definition of evaluation contexts
and weak head reduction that require terms to be SN are
included to ensure that all neutral terms are SN, and that
the weak expansion of an SN term is itself SN. In addition
both neutral terms and weak head reductions are closed under
clock substitutions. For this to hold, it is crucial that SN
itself is closed under clock substitution, which follows from
Lemma VI.1. These two properties of weak head reduction and
neutral terms are essential for the consistency of the saturation
properties.

We now return to the saturation properties in Figure 7: (S1)
states that D∆,δ is the domain of φ∆,δ; (S2) and (S3) state that
D∆,δ and φ∆,δ are closed under reduction (and expansion to
an SN term); (S5) and (S6) state that φ∆,δ is closed under
clock substitution and weak head expansion; and (S7) states
that φ∆,δ includes at least all neutral terms. Finally, (S4) is the
property we are actually interested in, namely that all terms
in φ∆,δ(A) are SN.

We define a partial order ≤ on the set Sat of saturated
families as follows:

(D, φ) ≤ (D′, φ′) iff
D∆,δ ⊆ D′∆,δ and φ∆,δ ⊆ φ′∆,δ
for all objects (∆, δ) in K

where φ∆,δ ⊆ φ′∆,δ denotes graph inclusion, i.e. φ∆,δ(A) =
φ′∆,δ(A) for all A ∈ dom (φ∆,δ). One can easily check that
(Sat,≤) indeed forms a CPPO, with the least element (D, φ),
where D∆,δ = ∅ and φ∆,δ = ∅ for all ∆ and δ : ∆→ N.

The definition of the interpretation of types is stratified into
two levels: First, we define the interpretation of codes, i.e.
terms that inhabit the universe U . To this end we define a
monotone function T 0 on Sat. The fixed point of T 0 will give
us an interpretation of U . Then, in the second step, we define
the interpretation of types using the interpretation of U that
we have obtained as the fixed point of T 0. This second stage
is given by a monotone function T 1 on Sat. The fixed point
of T 1 will serve as the definition of J`∆ ·Kδ .

In order to ensure that the definition respects the reduction
relation in the sense of the saturation properties (S2) and (S3),
both D and φ are defined in terms of normal forms. To this
end, we write A ∗

nf B to denote that B is a normal form of
A, i.e. A ∗ B and there is no reduction B C for any C.

Definition VI.4. Let T 0 : Sat → Sat be defined by

T 0(D, φ) = (D′, φ′), where

D′∆,δ =
{
A ∈ SN(∆)

∣∣∃B ∈ D′∆,δ.A ∗
nf B

}
φ′∆,δ(A) = φ′∆,δ(B), if A ∈ SN(∆) and A ∗

nf B

and D′, φ′ are defined on terms and types in normal form
in Figure 9, where we use the notation Swh(∆) to denote
the closure of S by weak head expansion, i.e. the set
{t ∈ Terms(∆) | ∃s ∈ S. t ∗

WH s}.

The interpretation of Σ̂, Π̂ and base types is entirely
standard. For the interpretation of neutral terms, we simply
chose the set of all strongly normalising terms. Turning to
∀̂ and .̂, recall that the index δ keeps track of the time
that is available on each clock. In the interpretation of ∀̂,
we are allowed to set the time arbitrarily high for any
fresh clock. In the interpretation of .̂, we require that time
passes whenever the tick constant � is applied: The clock
σ(κ) is replaced by a clock κ′ with a strictly smaller time
counter according to δ′. The quantification over all morphisms
σ : (∆, δ) → ((∆′, σ(κ)), δ′), is necessary in order to satisfy
(S5), similarly to the interpretation of Π̂.

Uniqueness of normal forms, which follows from Theo-
rem III.2, ensures that T 0 is a well-defined function. It is also
straightforward, if tedious, to check that T 0 maps saturated
families to saturated families, and that T 0 is indeed monotone.
Hence, according to Theorem VI.2, T 0 has a least fixed point,
which we shall denote by (D0, φ0). The purpose of T 0 is to
provide us with D0, which serves as the interpretation of U .

Definition VI.5. Let T 1 : Sat → Sat be defined
by T 1(D, φ) = (D′, φ′), where D′, φ′ are defined
on terms and types in normal form in way simi-
lar to Figure 9, with three changes: Code constructors
Π̂, Σ̂, .̂, ∀̂, N̂at, ˆBool, 1̂ are replaced by the corresponding type
constructors Π,Σ, .,∀,Nat,Bool, 1; U is included in each
D′∆,δ; and the equation φ′∆,δ(U) = D0

∆,δ is added to the
definition of φ′∆,δ .

Similarly to T 0, we can check that T 1 is indeed a mapping
from Sat to Sat, and monotone. We write (D1, φ1) to denote
the least fixed point of T 1, according to Theorem VI.2. φ1 is
the interpretation function we are interested in, and we write
J`∆ AKδ instead of φ1

∆,δ(A).
The following lemma relates the two families of interpreta-

tion functions φ0 and φ1:

Lemma VI.6. If A ∈ D0
∆,δ , then

(i) El (A) ∈ D1
∆,δ , and

(ii) φ0
∆,δ(A) = φ1

∆,δ(El (A)).

Proof. Let (D0,α, δ0,α) be the transfinite sequence constructed
as in Theorem VI.2 using the monotone function T 0. That
is, there is some α such that (D0,α, δ0,α) = (D0, δ0).
Hence, the following is a generalisation of this lemma: For
all ordinals α, if A ∈ D0,α

∆,δ , then (i) El (A) ∈ D1
∆,δ , and

(ii) φ0,α
∆,δ(A) = φ1

∆,δ(El (A)). This property can be proved by
transfinite induction on α.

D′∆,δ =
{

1̂, N̂at, ˆBool
}
∪ Neu(∆)

∪
{

Π̂x : A.B
∣∣∣A ∈ D∆,δ,∀σ : (∆, δ)→ (∆′, δ′), t ∈ φ∆′,δ′(Aσ) : (B σ) [t/x] ∈ D∆′,δ′

}
∪
{

Σ̂x : A.B
∣∣∣A ∈ D∆,δ,∀σ : (∆, δ)→ (∆′, δ′), t ∈ φ∆′,δ′(Aσ) : (B σ) [t/x] ∈ D∆′,δ′

}
∪

.̂ α : κ.A

∣∣∣∣∣∣∣
∀α′ ∈ TV : A [α′/α] ∈ D∆,δ;

∀σ : (∆, δ)→ ((∆′, σ(κ)), δ′), κ′ ∈ ∆′ : δ′(κ′) < δ′(σ(κ))

=⇒ ((Aσ) [κ′/σ(κ)]) [�/α] ∈ D∆′,δ′�∆′


∪
{
∀̂κ.A

∣∣∣ ∀κ′ 6∈ ∆, n ∈ N : A [κ′/κ] ∈ D(∆,κ′),δ[κ′ 7→n]

}
If C ∈ D′∆,δ , then φ′∆,δ(C) is defined as follows:

φ′∆,δ(1̂) = ({〈〉} ∪ Neu(∆))wh(∆)

φ′∆,δ(
ˆBool) = ({true, false} ∪ Neu(∆))wh(∆)

φ′∆,δ(N̂at) = N (∆)

φ′∆,δ(Π̂x : A.B) = {t | ∀σ : (∆, δ)→ (∆′, δ′), s ∈ φ∆′,δ′(Aσ). (t σ)s ∈ φ∆′,δ′((B σ) [s/x])}
φ′∆,δ(Σ̂x : A.B) = {t |π1 t ∈ φ∆,δ(A), π2 t ∈ φ∆,δ(B [π1 t/x])}

φ′∆,δ(.̂ α : κ.A) =

t
∣∣∣∣∣∣∣
∀α′ ∈ TV : t [α′] ∈ φ∆,δ(A [α′/α]);

∀σ : (∆, δ)→ ((∆′, σ(κ)), δ′), κ′ ∈ ∆′ : δ′(κ′) < δ′(σ(κ))

=⇒ ((t σ) [�]) [κ′/σ(κ)] ∈ φ∆′,δ�∆′(((Aσ) [κ′/σ(κ)]) [�/α])


φ′∆,δ(∀̂κ.A) =

{
t
∣∣ ∀κ′ 6∈ ∆, n ∈ N.t [κ′] ∈ φ(∆,κ′),δ[κ′ 7→n](A [κ′/κ])

}
φ′∆,δ(A) = SN(∆) if A ∈ Neu(∆)

where N (∆) is inductively defined as follows: (i) 0 ∈ N (∆); (ii) t ∈ N (∆) =⇒ suc t ∈ N (∆); (iii) Neu(∆) ⊆ N (∆); and
(iv) t ∈ N (∆), s ∈ Terms(∆), s WH t =⇒ s ∈ N (∆).

Fig. 9. Definition of T 0

The strategy to establish strong normalisation is to prove
that Γ `∆ t : A implies that t ∈ J`∆ AKδ for all δ. Then
t ∈ SN follows from saturation property (S4). However, to
prove this by induction on the typing derivation, we need to
generalise this property to work in the context of appropriate
substitutions (for terms, ticks, and clocks). The generalisation
to arbitrary clock substitutions is easy: If Γ `∆ t : A, then
t σ ∈ J`∆′ AσKδ for all σ : ∆→ ∆′ and δ : ∆′ → N.

To generalise accordingly over term and tick substitutions,
we need to lift the type interpretation J`∆ ·Kδ to typing
contexts. Given a typing context Γ `∆, a clock substitution
σ : ∆ → ∆′, and an object (∆, δ) in K, the interpretation of
Γ `∆ w.r.t. σ, δ, written JΓ `∆Kσ,δ , is a set of finite mappings
γ : dom (Γ) → Terms ∪ TV ∪ {�} inductively defined as
follows:

(1) ! : ∅ → Terms ∪ TV ∪ {�} ∈ J· `∆Kσ,δ .

(2) Given γ ∈ JΓ `∆Kσ,δ , then
(a) γ [x 7→ t] ∈ JΓ, x : A `∆Kσ,δ , if t ∈ J`∆′ (Aσ) γKδ;

(b) γ [α 7→ α′] ∈ JΓ, α : κ `∆Kσ,δ , if κ ∈ ∆ and α′ ∈ TV;

(c) (γ [κ′/σ(κ)]) [α 7→ �] ∈ JΓ, α : κ `∆K[κ′/σ(κ)]◦σ,δ�∆′′ ,
if κ′ ∈ ∆′, δ(κ′) < δ(σ(κ)), and ∆′′ = ∆′ \ {σ(κ)}.

Note that the interpretation of typing contexts is also indexed

by clock substitutions σ. The σ index is used in the case
where a substitution maps a tick variable to �. The change
of the clock substitution σ to [κ′/σ(κ)]◦σ ensures that such a
mapping can only occur if the clock variable κ is fresh, which
corresponds to the typing rule for � and the interpretation of
.-types as given in Figure 9.

Now we are ready to state the fundamental property of
J`∆ ·Kδ:

Lemma VI.7 (Fundamental property). Let (∆, δ) be an object
in K, σ : ∆→ ∆′, and γ ∈ JΓ `∆Kσ,δ .

(i) If Γ `∆ A type, then (Aσ)γ ∈ D1
∆′,δ .

(ii) If Γ `∆ t : A, then (t σ)γ ∈ J`∆′ (Aσ)γKδ .

Proof sketch. The two properties are proved simultaneously
by induction on the size of the derivation of Γ `∆ A type
and Γ `∆ t : A, respectively. We make use of the fact that
Γ `∆ t : A implies Γ `∆ A type by a derivation of at most
the same size. Hence, we may assume that J`∆′ (Aσ)γKδ is
defined when showing that (t σ)γ ∈ J`∆′ (Aσ)γKδ .

The argument for the code introduction rules is similar to
the argument for the corresponding type introduction rules,
because J`∆ UKδ = D0

∆,δ . In turn, the argument for type
introduction rules is similar (but simpler) to the argument for
the corresponding term introduction rule.

The case of the type conversion rule follows from (S2), (S3),
and Theorem III.2. The case of the introduction rule for dfixκ,
follows by induction on δ(κ). The case of the introduction
rule for El (·) follows from Lemma VI.6. If γ(α) = �, then the
cases for the introduction rules for unfold and fold follow from
the induction hypothesis, (S6), and (S3) using the fact that
unfold� t WH t respectively fold� t WH t as well as the fact
that El (((dfixκ F) [�])u) El (F (dfixκ F)u). If γ(α) 6= �,
then the case for unfold follows from (S7) and the fact that
unfoldγ(α) t is neutral, and the case for fold follows from the
fact that El (((dfixκ F) [γ(α)])u) is neutral.

The cases for the introduction of λ abstractions, for both
terms and ticks, follows from the induction hypothesis and the
definition of JΓ `∆Kσ,δ . The same holds for term application
as well as tick application.

From the above lemma, strong normalisation of closed
well-typed terms follows immediately. To conclude strong
normalisation of open terms, we only require that the identity
substitution is contained in the interpretation of the corre-
sponding typing context:

Lemma VI.8. Let idΓ be the identity on dom (Γ). Then idΓ ∈
JΓ `∆Kσ,δ , for all σ : ∆→ ∆′, δ : ∆′ → N.

Proof. This follows by a straightforward induction on Γ. The
case for tick variables is trivial, and the case for term variables
follows from the saturation property (S7) and the fact that
variables are neutral.

Consequently, if Γ `∆ t : A, then t = (t id∆)idΓ ∈
J`∆ (A id∆)idΓKδ for any δ : ∆ → N, and by (S4), we may
thus conclude that t ∈ SN. Similarly, if Γ `∆ A type, then
A = (A id∆)idΓ ∈ D1

∆,δ , and by (S2) we have that A ∈ SN.

VII. CONCLUSIONS AND FUTURE WORK

We have introduced Clocked Type Theory, a new type the-
ory for guarded recursion, and proved metatheoretic results for
it including strong normalisation, confluence and canonicity.
As a consequence it follows that all coinductive definitions are
productive.

These results form the foundation for a type checking
algorithm and an implementation in future work. The rule
for application to � (cf. Figure 2, second rule on third line)
may cause a challenge for efficient type checking, because
of the unusual substitution in the term in the conclusion
of the rule. However, the restricted rule (1) or the operator
force : (∀κ..κA) → ∀κ.A may be sufficiently expressive in
practice and easier to type check.

Future work also includes denotational semantics of CloTT
and extension with path types as outlined in Section V-C.

ACKNOWLEDGMENT

The authors would like to thank Aleš Bizjak for showing
us the technique for interpreting universes, and Lars Birkedal
and Ranald Clouston for helpful discussions.

This research was supported by The Danish Council for In-
dependent Research for the Natural Sciences (FNU) (grant no.
4002-00442) and research grant 13156 from Villum Fonden.

REFERENCES

[1] P. Martin-Löf, Intuitionistic Type Theory. Napoli: Bibliopolis, 1984.
[2] N. A. Danielsson, “Beating the productivity checker using embedded

languages,” in PAR, vol. 43, 2010, pp. 29–48.
[3] H. Nakano, “A modality for recursion,” in LICS, 2000, pp. 255–266.
[4] A. Bizjak, H. B. Grathwohl, R. Clouston, R. E. Møgelberg, and

L. Birkedal, “Guarded dependent type theory with coinductive types,”
in FOSSACS, 2016.

[5] R. Atkey and C. McBride, “Productive coprogramming with guarded
recursion,” in ICFP. ACM, 2013, pp. 197–208.

[6] R. E. Møgelberg and M. Paviotti, “Denotational semantics of recursive
types in synthetic guarded domain theory,” in LICS, 2016.

[7] T. Univalent Foundations Program, Homotopy Type Theory: Univalent
Foundations of Mathematics, Institute for Advanced Study, 2013.

[8] L. Birkedal, R. E. Møgelberg, J. Schwinghammer, and K. Støvring,
“First steps in synthetic guarded domain theory: step-indexing in the
topos of trees,” LMCS, vol. 8, no. 4, 2012.

[9] A. Bizjak, L. Birkedal, and M. Miculan, “A model of countable
nondeterminism in guarded type theory,” in RTA-TLCA, 2014, pp. 108–
123.

[10] K. Svendsen and L. Birkedal, “Impredicative concurrent abstract predi-
cates,” in ESOP, 2014.

[11] A. W. Appel and D. A. McAllester, “An indexed model of recursive types
for foundational proof-carrying code,” ACM Trans. Program. Lang. Syst,
vol. 23, no. 5, pp. 657–683, 2001.

[12] L. Birkedal, A. Bizjak, R. Clouston, H. B. Grathwohl, B. Spitters, and
A. Vezzosi, “Guarded cubical type theory: Path equality for guarded
recursion,” in CSL, 2016.

[13] C. Cohen, T. Coquand, S. Huber, and A. Mörtberg, “Cubical type
theory: a constructive interpretation of the univalence axiom,” 2016.
[Online]. Available: http://arxiv.org/abs/1611.02108

[14] R. Clouston, A. Bizjak, H. B. Grathwohl, and L. Birkedal, “Program-
ming and reasoning with guarded recursion for coinductive types,” in
FoSSaCS, 2015.

[15] J. Cheney, “A dependent nominal type theory,” LMCS, vol. 8, no. 1,
2012.

[16] A. Abel, B. Pientka, D. Thibodeau, and A. Setzer, “Copatterns: pro-
gramming infinite structures by observations,” in POPL, 2013.

[17] J. Hughes, L. Pareto, and A. Sabry, “Proving the correctness of reactive
systems using sized types,” in POPL, 1996.

[18] G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu, “Type-
based termination of recursive definitions,” Mathematical Structures in
Computer Science, vol. 14, no. 1, pp. 97–141, 2004.

[19] A. Abel and B. Pientka, “Well-founded recursion with copatterns and
sized types,” J. Funct. Program., vol. 26, p. e2, 2016.

[20] A. Abel and A. Vezzosi, “A formalized proof of strong normalization
for guarded recursive types,” in APLAS, 2014.

[21] P. Severi and F. de Vries, “Pure type systems with corecursion on
streams: from finite to infinitary normalisation,” in ICFP, 2012, pp. 141–
152.

[22] A. Jeffrey, “Functional reactive types,” in CSL-LICS. ACM, 2014, pp.
54:1–54:9.

[23] N. R. Krishnaswami, “Higher-order functional reactive programming
without spacetime leaks,” ACM SIGPLAN Notices, vol. 48, no. 9, pp.
221–232, Sep. 2013.

[24] A. Cave, F. Ferreira, P. Panangaden, and B. Pientka, “Fair reactive
programming,” in POPL. ACM, 2014, pp. 361–372.

[25] P. Bahr, H. B. Grathwohl, and R. E. Møgelberg, “The clocks are
ticking: No more delays! – Technical appendix,” available from authors’
websites.

[26] J. Y. Girard, “Linear logic,” Theor. Comput. Sci., vol. 50, pp. 1–102,
1987.

[27] R. E. Møgelberg, “A type theory for productive coprogramming via
guarded recursion,” in CSL-LICS, 2014, pp. 71:1–71:10.

[28] M. Takahashi, “Parallel reductions in λ-calculus,” Information and
Computation, vol. 118, no. 1, pp. 120 – 127, 1995.

[29] W. W. Tait, “Intensional interpretations of functionals of finite type I,”
J. Symbolic Logic, vol. 32, no. 2, pp. 198–212, 1967.

[30] T. Coquand and J. Gallier, “A proof of strong normalization for the
theory of constructions using a Kripke-like interpretation,” in First
Annual Workshop on Logical Frameworks, 1990.

[31] R. Harper, “Constructing type systems over an operational semantics,”
Journal of Symbolic Computation, vol. 14, no. 1, pp. 71 – 84, 1992.

http://arxiv.org/abs/1611.02108

