
Linearly-used Continuations
in the Enriched Effect Calculus

Jeff Egger ?1, Rasmus Ejlers Møgelberg ??2, and Alex Simpson∗1

1 LFCS, School of Informatics, University of Edinburgh, Scotland, UK
2 IT University of Copenhagen, Copenhagen, Denmark

Abstract. The enriched effect calculus is an extension of Moggi’s com-
putational metalanguage with a selection of primitives from linear logic.
In this paper, we present an extended case study within the enriched
effect calculus: the linear usage of continuations. We show that estab-
lished call-by-value and call-by name linearly-used CPS translations are
uniformly captured by a single generic translation of the enriched ef-
fect calculus into itself. As a main syntactic theorem, we prove that the
generic translation is involutive up to isomorphism. As corollaries, we
obtain full completeness results for the original call-by-value and call-
by-name translations. The main syntactic theorem is proved using a
category-theoretic semantics for the enriched effect calculus. We show
that models are closed under a natural dual model construction. The
canonical linearly-used CPS translation then arises as the unique (up to
isomorphism) map from the syntactic initial model to its own dual. This
map is an equivalence of models. Thus the initial model is self-dual.

1 Introduction

The continuations monad ((−) → R) → R is commonly used to model con-
trol effects. Following Moggi’s idea of interpreting call-by-value programs in the
Kleisli category [11, 12], a call-by-value program from X to Y is interpreted as
a continuation transformer (Y → R) → (X → R). In an influential paper [3],
Berdine et al. observe that, in many programming situations, continuation trans-
formers satisfy an additional property: their argument, the continuation Y → R,
is used linearly. Thus a call-by-value program can be more informatively mod-
elled as a linear function (Y → R) ((X → R), corresponding to a Kleisli map
for the linearly-used continuations monad ((−)→ R) (R.

One goal of the present paper is to address the question: what is the natural
type-theoretic (and semantic) context for modelling linearly-used continuations?
With the presence of both intuitionistic (→) and linear (() arrows, intuition-
istic linear type theory (ILL) (and its model theory) seems a natural answer.
Indeed, ILL has been used as the basis of a systematic study of linearly-used

? Research supported by EPSRC research grant “Linear Observations and Computa-
tional Effects”

?? Research supported by the Danish Agency for Science, Technology and Innovation.

II

continuations by Hasegawa. In [6], he presents a continuation passing style (CPS)
translation of Moggi’s call-by-value computational λ-calculus into ILL, using the
linearly-used continuations monad, and establishes a full completeness result for
this. A follow-up paper [7] considers call-by-name.

In this paper, we use a more general type theory, the enriched effect calculus
(EEC) [4], as a context for modelling linearly-used continuations. On the one
hand, it can be seen as a fragment of ILL and, as such, its models strictly
generalise models of ILL. On the other hand, it is a conservative extension of
the standard calculi for modelling computational effects (Moggi’s computational
metalanguage [12], and Levy’s call-by-push-value (CBPV) [10]) with a selection
of constructs from linear logic. In fact, any adjunction model of CBPV (and
hence any model of Moggi’s computational metalanguage) expands to a model
of EEC [4]. This provides an abundant supply of computationally interesting
models of EEC that are not models of ILL.

The paper begins with a brief presentation of the enriched effect calculus in
Section 2. This is followed, in Section 3, by the treatment of linearly-used con-
tinuations within EEC. The starting point is the observation that Hasegawa’s
call-by-value [6] and call-by-name [7] linearly-used CPS translations of simply-
typed λ-calculus both fall in that fragment of ILL corresponding to EEC. The
first contribution of the paper is to show that, using EEC, we can recover these
translations in a particularly interesting way. This is achieved by identifying a
single canonical linearly-used CPS-translation of the entire enriched effect calcu-
lus into itself. Hasegawa’s call-by-value and call-by-name translations are derived
from this by composing the canonical translation with the standard call-by-value
and call-by-name encodings of typed λ-calculus into effect calculi (cf. Moggi [12],
Filinski [5], Levy [10]).

The canonical linearly-used CPS-translation of EEC into itself possesses a
remarkable property, unexpected in the context of CPS translations: it is invo-
lutive up to isomorphism. That is, the translation of a translated term equals
the original term modulo type isomorphism. This property is the main syntactic
theorem of the paper. As corollaries, we obtain full-completeness results for the
call-by-value and call-by-name linearly-used CPS translations into EEC, mirror-
ing Hasegawa’s results for the translations into ILL.

The second half of the paper provides a semantic context for the first. Sec-
tion 4 reviews the notion of EEC model given in [4]. Following this, Section 5
gives a semantic account of the canonical linearly-used CPS translation. We show
that the linearly-used continuations monad forms the basis of a duality of EEC
models. The dual model of a model can be viewed as a linearly-used continu-
ations model constructed over the original. The “dual” terminology is justified
by every model being isomorphic to its own double dual. Thus, surprisingly, ev-
ery model of the enriched effect calculus arises as a linearly-used continuations
model relative to some other model.

Finally, we specialise the dual model construction to the syntactic model of
EEC given by typed terms modulo equality. By the universal property of this
model [4], there is a unique (up to isomorphism) morphism of models from the

III

Γ, x : A |− ` x : A Γ |z : A ` z : A Γ |∆ ` ∗ : 1

Γ |∆ ` t : A Γ |∆ ` u : B

Γ |∆ ` 〈t, u〉 : A× B

Γ |∆ ` t : A× B

Γ |∆ ` fst(t) : A

Γ |∆ ` t : A× B

Γ |∆ ` snd(t) : B

Γ, x : A |∆ ` t : B

Γ |∆ ` λx : A. t : A→ B

Γ |∆ ` s : A→ B Γ |− ` t : A

Γ |∆ ` s(t) : B

Γ |− ` t : A

Γ |− ` ! t : !A

Γ |∆ ` t : !A Γ, x : A |− ` u : B

Γ |∆ ` let !x be t in u : B

Γ |z : A ` t : B

Γ |− ` λz : A. t : A (B

Γ |− ` s : A (B Γ |∆ ` t : A

Γ |∆ ` s[t] : B

Γ |− ` t : A Γ |∆ ` u : B

Γ |∆ ` !t⊗ u : !A⊗B

Γ |∆ ` s : !A⊗B Γ, x : A |z : B ` t : C

Γ |∆ ` let !x⊗ z be s in t : C

Γ |∆ ` t : 0

Γ |∆ ` image(t) : A

Γ |∆ ` t : A

Γ |∆ ` inl(t) : A⊕ B

Γ |∆ ` t : B

Γ |∆ ` inr(t) : A⊕ B

Γ |∆ ` s : A⊕ B Γ |x : A ` t : C Γ |y : B ` u : C

Γ |∆ ` case s of (inl(x). t; inr(y). u) : C

Fig. 1. Typing rules for the effect calculus

syntactic model to its dual. This morphism is an equivalence of models. Thus
the syntactic model is self-dual. Furthermore, the morphism identified from the
syntactic model to its dual is nothing other than the canonical linearly-used CPS
translation of EEC into itself from Section 3, and it is the equivalence property
of this morphism that proves the involutivity of the translation. Thus we obtain
a semantic proof of the main syntactic theorem of Section 3.

2 The enriched effect calculus

The enriched effect calculus [4] is an extension of Moggi’s computational met-
alanguage [12] with constructors from linear type theory. Similar to Filinski’s
effect PCF [5] and Levy’s CBPV [10], it has two notions of types: value types
and computation types. We use α, β, . . . to range over a set of value type con-
stants, and α, β, . . . to range over a disjoint set of computation type constants.
We then use A,B, . . . to range over value types, and A,B, . . . to range over com-

IV

Γ |∆ ` t = ∗ : 1 if Γ |∆ ` t : 1

Γ |∆ ` fst(〈t, u〉) = t : A if Γ |∆ ` t : A and Γ |∆ ` t : B

Γ |∆ ` snd(〈t, u〉) = u : B if Γ |∆ ` t : A and Γ |∆ ` t : B

Γ |∆ ` 〈fst(t), snd(t)〉 = t : A× B if Γ |∆ ` t : A× B

Γ |∆ ` (λx : A. t)(u) = t[u/x] : B if Γ, x : A |∆ ` t : B and Γ |− ` u : A

Γ |∆ ` λx : A. (t(x)) = t : A→ B if Γ |∆ ` t : A→ B and x 6∈ Γ,∆
Γ |− ` let !x be !t in u = u[t/x] : B if Γ |− ` t : A and Γ, x : A |− ` u : B

Γ |∆ ` let !x be t in u[!x/y] = u[t / y] : B if Γ |∆ ` t : !A and Γ |y : !A ` u : B

Γ |∆ ` (λx : A. t)[u] = t[u/x] : B if Γ |x : A ` t : B and Γ |∆ ` u : A

Γ |− ` λx : A. (t[x]) = t : A (B if Γ |− ` t : A (B and x /∈ Γ
Γ |∆ ` let !x⊗y be !t⊗s in u = u[t, s/x, y] : C if Γ |− ` t : A and Γ |∆ ` s : B

and Γ, x : A |y : B ` u : C

Γ |∆ ` let !x⊗y be t in u[!x⊗y/z] = u[t/z] : C if Γ |∆ ` t : !A⊗B and Γ |z : !A⊗B ` u : C

Γ |x : 0 ` t = image(x) : A if Γ |x : 0 ` t : A

Γ |∆ ` case inl(t) of (inl(x). u; inr(y). u′) if Γ |x : A ` u : C and Γ |y : B ` u′ : C

= u[t/x] : C and Γ |∆ ` t : A

Γ |∆ ` case inr(t) of (inl(x). u; inr(y). u′) if Γ |x : A ` u : C and Γ |y : B ` u′ : C

= u′[t/y] : C and Γ |∆ ` t : B

Γ |∆`case t of (inl(x).u[inl(x)/z]; inr(y). u[inr(y)/z])

= u[t/z] : C if Γ |∆ ` t : A⊕ B and Γ |z : A⊕ B ` u : C

Fig. 2. Equality rules for the enriched effect calculus

putation types, which are specified by the grammar below:

A ::= α | α | 1 | A× B | A→ B | ! A | A (B | !A⊗B | 0 | A⊕ B

A ::= α | 1 | A× B | A→ B | ! A | !A⊗B | 0 | A⊕ B .

The type constructor ! plays the role of Moggi’s monadic type constructor T and
Levy’s F . Our notation has been chosen to exhibit the enriched effect calculus
as a fragment of intuitionistic linear logic, a view which will be enhanced by the
typing rules below.

Note that computation types form a subset of the value types (which is not
the case in CBPV [10]). The reader is referred to [4] for further comparisons
with other calculi and explanations of the enriched effect calculus.

The enriched effect calculus has two typing judgements:

(i) Γ |− ` t : B (ii) Γ |z : A ` t : B ,

where Γ is a context of value-type assignments to variables. On the right of Γ
is a stoup, which may either be empty, as in the case of judgement (i), or may

V

consist of a unique type assignment x : A, in which case the type on the right of
the turnstyle is also required to be a computation type, as in (ii). The typing
rules are given in Figure 1. In them, ∆ ranges over an arbitrary (possibly empty)
stoup, and the rules are only applicable in the case of typing judgements that
conform to (i) or (ii) above.

Rules for equalities between typed terms are presented in Figure 2. They
are to be considered in addition to the expected (typed) congruence and α-
equivalence rules.

There is a standard call-by-value translation of typed λ-calculus into Moggi’s
computational metalanguage, Filinski’s effect PCF [5], and Levy’s CBPV [10].
Similarly, there is a standard call-by-name translation into the latter two, which
exploits the existence of computation types. We recall these using the syntax
of our effect calculus. As a source calculus, we use the simply-typed λ-calculus
with types σ, τ, . . . given by:

σ ::= α | 1 | σ × τ | σ → τ .

The call-by-value interpretation translates a type σ into a value type σcbv, and
the call-by-name interpretation into a computation type σcbn.

αcbv = α αcbn = α

1cbv = 1 1cbn = 1

(σ × τ)cbv = σcbv × τ cbv (σ × τ)cbn = σcbn × τ cbn

(σ → τ)cbv = σcbv → !τ cbv (σ → τ)cbn = σcbn → τ cbn .

Here, we assume that each type constant α of the typed λ-calculus, is included
as a value-type constant, and has an associated computation-type constant α.

On terms, the cbv translation maps a judgement x1 : σ1, . . . , xn : σn` t : τ to

x1 : σcbv
1 , . . . , xn : σcbv

n |− ` tcbv : !τ cbv .

We omit the (routine) details. The cbn translation rather trivially maps a judge-
ment x1 : σ1, . . . , xn : σn ` t : τ to

x1 : σcbn
1 , . . . , xn : σcbn

n |− ` tcbn : τ cbn .

3 Linearly-used continuations

In [6], Hasegawa studies a translation from typed λ-calculus into intuitionistic
linear type theory (ILL) which implements a continuation passing semantics in
which continuations are used linearly. In [7], he defines a corresponding call-
by-name translation (actually for a variant of Parigot’s λµ-calculus [13]). The
call-by-value interpretation translates a type σ into a linear type σcbvR , and the
call-by-name interpretation translates σ to σcbnR , as defined in Figure 3. Both
translations are defined with respect to a distinguished type constant R, which

VI

αcbvR = α αcbnR = α

1cbvR = 1 1cbnR = 0

(σ × τ)cbvR = σcbvR × τ cbvR (σ × τ)cbnR = σcbnR ⊕ τ cbnR

(σ → τ)cbvR = σcbvR → ((τ cbvR → R) (R) (σ → τ)cbnR = !(σcbnR (R) ⊗ τ cbnR .

Fig. 3. Cbv and cbn linearly-used CPS translations of typed λ-calculus.

acts as a result type for continuations. Whereas Hasegawa’s translations are into
ILL, we give them into the enriched effect calculus, for which it is crucial that
R is a computation type, hence the underlining. The important point is that
Hasegawa’s type translations fall into the EEC fragment of ILL.

For terms, Hasegawa [6, 7] gives translations into ILL. Once again, these
translations land in the fragment of ILL given by the enriched effect calculus,
and we shall just give them directly as translations into the latter. On terms,
the cbv translation maps a judgement x1 : σ1, . . . , xn : σn ` t : τ to

x1 : σcbvR

1 , . . . , xn : σcbvR
n |− ` tcbvR : (τ cbvR → R) (R .

The cbn translation maps a typing judgement x1 : σ1, . . . , xn : σn ` t : τ to

x1 : σcbnR

1 (R, . . . , xn : σcbnR
n (R |− ` tcbnR : τ cbnR (R .

For lack of space, we do not give the details of the term translations, see [6, 7].
We now present the canonical linearly-used CPS translation of the entire

EEC into itself. This translation maps any value type A to a value type AVR

and any computation type B to a computation type BCR , as defined in Figure 4.
Note, that the result type R is treated differently from the other computation-
type constants, and α ranges only over the latter. For each computation type A,
we obtain an isomorphism iA : (ACR (R)→ AVR , whose easy definition we omit.

Next, we define the translation of terms. We translate a typing judgement
Γ |− ` t : A as:

ΓVR |− ` tVR : AVR ,

where ΓVR is the context obtained by applying (−)VR to every type in Γ . A
typing judgement Γ |z : A ` t : B is translated to:

ΓVR |z : BCR ` tCR : ACR .

The two translations are given in Figure 5. In this figure, each line corresponds to
one of the typing rules in Figure 1. Observe that each typing rule that mentions
∆ has two cases in Figure 5: one for empty stoup, and one for non-empty stoup.
Also note that, in Figure 5, we always write z for the stoup variable.

We now establish the main properties of the translation. Since it is defined
compositionally on the term structure, a straightforward induction proves:

VII

αVR = α

αVR = αCR (R αCR = α

1VR = 1 1CR = 0

(A× B)VR = AVR × BVR (A× B)CR = ACR ⊕ BCR

(A→ B)VR = AVR → BVR (A→ B)CR = ! AVR ⊗ BCR

(!A)VR = (!A)CR (R (!A)CR = AVR → R

(A (B)VR = BCR (ACR

(!A⊗B)VR = (!A⊗B)CR (R (!A⊗B)CR = AVR → BCR

0VR = 0 CR (R 0CR = 1

(A⊕ B)VR = (A⊕ B)CR (R (A⊕ B)CR = ACR × BCR

RVR = R RCR = ! 1

Fig. 4. Linearly-used CPS translation of enriched effect calculus types.

Proposition 1 (Soundness).

1. If Γ |− ` t = u : A then ΓVR |− ` tVR = uVR : AVR .
2. If Γ |z : A ` t = u : B then ΓVR |z : BCR ` tCR = uCR : ACR .

A fundamental property is that, for the entire enriched effect calculus, the
linearly-used CPS translation is involutive up to type isomorphism.

Theorem 1 (Involution property). For every value type A, there is an iso-
morphism jA : AVRVR → A, and, for every computation type A, there is a linear
isomorphism kA : ACRCR (A, such that:

1. If Γ |− ` t : A then t = jA (tVRVR) [j−1(Γ)], where we write [j−1(Γ)] for the
substitution [j−1(x) / x]x: C∈Γ .

2. If Γ |z : A ` t : B then t = kB (tCRCR) [k−1
A (z) / z] [j−1(Γ)].

For the proof, suitable isomorphisms jA and kA are easily defined by induction on
the structure of types. Given these, it should, in principle, be a routine unwinding
of definitions to verify the equalities in items 1 and 2. However, because of the
intricacy of Figure 5, the terms tVRVR and tCRCR are extremely unwieldy, and such
a direct verification seems impractical. Instead, we shall give a more manageable
(as well as more conceptually appealing) proof of the theorem using categorical
model theory, in Section 5.

Theorem 2 (Full-completeness). The linearly-used CPS translation is full
and faithful, i.e.:

1. If Γ | − ` t, u : A are two terms of the same type and tVR = uVR (i.e., the
equality is provable in context) then t = u.

VIII

ΓVR , x : AVR |− ` xVR = x

ΓVR |z : ACR ` zCR = z

ΓVR |− ` ∗VR = ∗

ΓVR |z : 0 ` ∗CR = image(z)

ΓVR |− ` 〈t, u〉VR = 〈tVR , uVR〉

ΓVR |z : ACR ⊕ BCR ` 〈t, u〉CR = case z of (inl(z). tCR ; inr(z). uCR)

ΓVR |− ` fst(t)VR = fst(tVR)

ΓVR |z : ACR ` fst(t)CR = tCR [inl(z)/z]

ΓVR |− ` snd(t)VR = snd(tVR)

ΓVR |z : ACR ` snd(t)CR = tCR [inr(z)/z]

ΓVR |− ` (λx : A. t)VR = λx : AVR . tVR

ΓVR |z : !AVR ⊗BCR ` (λx : A. t)CR = let !x⊗ z be z in (tCR)

ΓVR |− ` (s(t))VR = sVR(tVR)

ΓVR |z : BCR ` (s(t))CR = sCR [!tVR ⊗ z / z]

ΓVR |− ` (! t)VR = λf : AVR → R. f(tVR)

ΓVR |− ` (let !x be t in u)VR = iB(λz : BCR . tVR [λx : AVR . i−1
B (uVR)[z]])

ΓVR |z : BCR ` (let !x be t in u)CR = tCR [(λx : AVR . i−1
B (uVR)[z]) /z]

ΓVR |− ` (λz : A. t)VR = λz : BCR . tCR

ΓVR |− ` (s[t])VR = iB(λz : BCR . i−1
A (tVR)[sVR [z]])

ΓVR |z : BCR ` (s[t])CR = tCR [sVR [z] / z]

ΓVR |− ` (!t⊗ u)VR = λz : AVR → BCR . i−1
B (uVR)[z(tVR)]

ΓVR |z : AVR → BCR ` (!t⊗ u)CR = uCR [z(tVR) / z]

ΓVR |− ` (let !x⊗ z be s in t)VR = iC(λz : CCR . sVR [λx : AVR . tCR])

ΓVR |z : CCR ` (let !x⊗ z be s in t)CR = sCR [(λx : AVR . tCR) / z]

ΓVR |− ` (image(t))VR = iA(λz : ACR . tVR [∗])

ΓVR |z : ACR ` (image(t))CR = tCR [∗/z]

ΓVR |− ` (inl(t))VR = λz : ACR × BCR . i−1
A (tVR)[fst(z)]

ΓVR |z : ACR × BCR ` (inl(t))CR = tCR [fst(z) / z]

ΓVR |− ` (inr(t))VR = λz : ACR × BCR . i−1
A (tVR)[snd(z)]

ΓVR |z : ACR × BCR ` (inr(t))CR = tCR [snd(z) / z]

ΓVR |− ` (case s of (inl(x). t; inr(y). u))VR = iC(λz : CCR . sVR [〈tCR , uCR〉])

ΓVR |z : CCR ` (case s of (inl(x). t; inr(y). u))CR = sCR [〈tCR , uCR〉 / z]

Fig. 5. Linearly-used CPS translation of terms.

IX

2. If Γ |z : A ` t, u : B and tCR = uCR then t = u.
3. If ΓVR |− ` t : AVR then there exists Γ |− ` u : A such that t = uVR .
4. If ΓVR | z : BCR ` t : ACR is a valid typing judgement, then there exists Γ |

z : A ` u : B such that t = uCR .

Proof. For statement 1, suppose Γ |− ` t, u : A and tVR = uVR . Then:

t = jA (tVRVR) [j−1
C (x) / x]x: C∈Γ (Theorem 1.1)

= jA (uVRVR) [j−1
C (x) / x]x: C∈Γ (Proposition 1)

= u (Theorem 1.1) .

For statement 3, suppose ΓVR |− ` t : AVR . Define u = jA(tVR) [j−1(Γ)]. Then:

uVR = j
A
VR (uVRVRVR) [j−1(ΓVR)] (Theorem 1.1)

= j
A
VR ((j−1

A (u) [j(Γ)])VR) [j−1(ΓVR)] (Theorem 1.1)

= j
A
VR (tVRVR) [j−1(ΓVR)] (Definition u)

= t (Theorem 1.1) .

The proofs of items 2 and 4 are similar. ut

We end this section by showing how the linearly-used CPS translation of the
enriched effect calculus into itself subsumes the call-by-value and call-by-name
linearly-used CPS translations of Figure 3, from [7, 6]. Indeed, these are obtained
uniformly by precomposing the translation on the enriched effect calculus with
the standard call-by-value and call-by-name translations.

Theorem 3 (Recovering (·)cbvR and (·)cbnR).

1. For every simple type σ, we have σcbvR = (σcbv)VR ; and, for every simply-
typed term Θ ` t : σ, we have tcbvR = (tcbv)VR .

2. For every simple type σ, there is a linear isomorphism rσ : (σcbn)CR (σcbnR

such that, for every Θ ` t : σ, it holds that tcbnR = p−1
τcbn((tcbn)VR)[p(Θ)],

where pσ is the isomorphism iσcbn ◦ (rσ (R) : (σcbnR (R)→ (σcbn)VR .

That proofs are by induction on the structure of σ and t.
Statement 2 of the theorem is more complex than one would like because the

types (σcbn)CR and σcbnR are not syntactically identical. The difficulty derives
from ((σ → τ)cbn)CR = ! (σcbn)VR ⊗ (τ cbn)CR ∼= ! ((σcbn)CR (R) ⊗ (τ cbn)CR . But
identity does not hold because we do not have AVR = ACR (R. This technicality
could be avoided by changing to a syntax for EEC with no overloading between
value and computation types, as in Levy’s CBPV [10]. However, then the syntax
of EEC terms would become more complex.

Hasegawa [6] proves full-completeness for the call-by-value linearly-used CPS
translation of Moggi’s computational λ-calculus [11] into ILL. He also has a
similar result for the call-by-name translation of [7] restricted to the simply-
typed λ-calculus (private communication). The corollary below adapts this to

X

our identical translations into EEC. In fact, our results follow from Hasegawa’s
(and not vice versa!). What is interesting is our method of proof, which applies
the results we have established for our canonical translation. In the statement,
we write λc for the equational theory of Moggi’s computational λ-calculus.

Corollary 1 (Full completeness of (·)cbvR and (·)cbnR).

1. If Θ ` t, u : τ and ΘcbvR | − ` tcbvR = ucbvR : (τ cbvR → R) (R then
Θ `λc

t = u : τ .
2. If ΘcbvR | − ` u : (τ cbvR → R) (R then there exists a simply-typed term

Θ ` t : τ such that u = tcbvR .
3. If Θ ` t, u : τ and ΘcbnR |− ` tcbnR = ucbnR : τ cbnR then Θ `βη t = u : τ .
4. If ΘcbnR |− ` u : τ cbnR then there exists a simply-typed term Θ ` t : τ such

that u = tcbnR .

Proof. We only give arguments for call-by-value. It can be shown that the map-
ping (·)cbv from the computational λ-calculus into EEC is full and faithful.3 For
statement 1, suppose ΘcbvR | − ` tcbvR = ucbvR : (τ cbvR → R) (R. Then, by
Theorem 3.1, (Θcbv)VR | − ` (tcbv)VR = (ucbv)VR : ((τ cbv)VR → R) (R. But
we have ((τ cbv)VR → R) (R = (!τ cbv)VR . So, by Theorem 2.1, Θcbv | − `
tcbv = ucbv : ! τ cbv and statement 1 follows from the faithfulness of (·)cbv. For
statement 2, by Theorem 2.3 there exists u′ such that Θcbv |− ` u′ : ! τ cbv and
(u′)VR = u. Statement 2 now follows from the fullness of (·)cbv. ut

4 Models

We review the notion of model of the enriched effect calculus [4]. This is defined
in terms of enriched category theory [8]. Recall that, given a chosen monoidal
category V, a V-enriched category (or, V-category) C is given by a collection
of objects, with, for every pair of objects A,B ∈ C, a specified hom-object
C(A,B) ∈ V, together with families of morphisms in V supplying C with its
identity maps and an associative composition. When V is the category of sets,
a V-category is just an ordinary (locally small) category. When modelling the
enriched effect calculus, it is natural to ask for the category of linear maps
between computation types to be enriched over the category of value types,
since the value types A (B act as hom-objects. In the sequel, we shall assume
some basic knowledge of enriched category theory; see [8] for a detailed account.

We shall consider enrichment only with respect to categories V that are carte-
sian closed (we write BA or [A→ B] for functions spaces). Any such category is
self-enriched. We say that a V-enriched category C has (V-)powers4 if, for all
objects A ∈ V and B ∈ C, there exists an object BA ∈ C with isomorphisms

C(C,BA) - [A→ C(C,B)]
3 E.g., the term model of λc [11] fully embeds in a model of CBPV [10], and every

model of CBPV fully embeds in a model of EEC [4] (the assumptions of sums [10]
and cartesian closedness [4] are not needed for the embeddings).

4 Kelly writes cotensors (resp., tensors) where we write powers (resp., copowers).

XI

V-natural in objects C of C. The dual property is that of having (V-)copowers:
for all A ∈ V and B ∈ C, there must exist an object A·B of C with isomorphisms

C(A ·B,C) - [A→ C(B,C)]

V-natural in C. An enriched adjunction F a U between V-functors F : D→ C
and U : C→ D requires the existence of isomorphisms in V

C(F (A), B) - [A→ U(B)]

which are V-natural in A and B.

Definition 1. An enriched-effect-calculus model comprises: a cartesian closed
category V, with V-enriched finite products, coproducts, powers, copowers, and
a V-adjunction F a U : C→ V.

We shall loosely specify models as F a U : C → V, without making the other
structure (which is, in any case, determined up to isomorphism) explicit.

To interpret the enriched effect calculus in a model, value types A are in-
terpreted as objects V[[A]] of V, and computation types A are interpreted as
pairs (C[[A]], sA) where C[[A]] is an object of C, and sA : U(C[[A]])→ V[[A]] is an
isomorphism in V. The reader is referred to [4] for further details.

In [4], the equational theory of the enriched effect calculus is shown to be
sound and complete with respect to interpretations in models. Completeness is
proved via a syntactic model construction. Since this model will play an impor-
tant role in Section 5, we recall its definition.

The category VSyn has as objects value types and as morphisms from A to
B terms of the form x : A | − ` t : B identified up to the equality theory of
EEC. Composition is given by substitution. The VSyn-enriched category CSyn

has as objects all computation types and as object of morphisms from A to B
the value type A (B. Powers and copowers are given by the constructions
A → B and !A⊗B, respectively. The right adjoint is the forgetful functor from
computation types to value types, with its action on morphisms defined by the
coercion (A (B)→ (A→ B). The left adjoint is given by ! .

The syntactic model is characterised by a universal property. To formulate
this, one needs a notion of morphism of models. Essentially, a morphism from
F a U : C→ V to F ′ a U ′ : C′ → V′, is given by a pair of functors S : V→ V′

and T : C → C′ (jointly) preserving the structure. There are, however, two
complicating factors. First, morphisms need only preserve structure up to iso-
morphism rather than identity. (This choice is both mathematically natural and
essential to the results of Section 5.) Second, C and C′ are enriched over two dif-
ferent categories, which leads to subtle requirements regarding how the functor
T enriches. These issues are treated in [4]. There is a notion of coherent nat-
ural isomorphism (henceforth, cni) between morphisms of models; hence, the
category of models is naturally enriched in that of groupoids, Grpd.

Theorem 4 ([4, Theorem 3]). Given an enriched-effect-calculus model F a
U : C→ V and families of objects, V[[α]] in V and C[[α]] in C, indexed by type

XII

constants, there exists a morphism of models from the syntactic model FSyn a
USyn : CSyn → VSyn to F a U : C → V that extends the given interpretation of
type constants, and this morphism is unique up to cni.

We remark, that the proof of the theorem produces a morphism that preserves
type constants up to equality. Nevertheless, uniqueness (up to isomorphism)
holds relative to the wider class of morphisms that only preserve type constants
up to isomorphism.

5 Dual models

Given a model F a U : C → V of the enriched effect calculus and an object R
of C, one can define another model FR a UR : Cop → V by:

FR := R(−) UR := C(−,R) .

Indeed, Cop is trivially V-enriched. Its enriched powers and copowers are given
by copowers and powers in C, respectively; similarly also products and coprod-
ucts. And it is standard that R(−) a C(−,R) is an enriched adjunction. We call
the constructed model the R-dual of F a U : C→ V.

There are obvious similarities between the dual model construction and the
linearly-used CPS translation on enriched effect calculus types, defined in Fig. 4.
For example, FR corresponds to the (−)→ R action of the translation of !(−) to
computation types. Similarly, UR implements the feature that the translation,
AVR , of A as a value type is obtained (modulo the isomorphism iA) as ACR (R,
where ACR is the interpretation of A as a computation type. Furthermore, the
induced monad C(R(−),R) on V corresponds to the linearly-used continuations
monad ((−)→ R) (R.

Monads of the form C(R(−),R) have been called dual monads by Lawvere [9],
who considers them in the case that U : C→ V exhibits C as a category of al-
gebras for a monad over its enriching category. Our dual model construction
performs the analogous operation on general enriched adjunctions, rather than
on monads. As we shall see below (Theorem 5), in our setting, the “dual” ter-
minology is particularly appropriate.

Because of the choice of object R, the natural context for considering the dual
model construction is as an operation on pointed models, (F a U : C → V, R),
where R is a chosen object of C. A morphism of pointed models is a morphism
of models (S, T) together with an isomorphism TR → R′. For a pointed model
M = (F a U : C → V, R), the dual pointed model M⊥ is defined to be (FR a
UR : Cop → V, F1). The choice of F1 may seem arbitrary here, but it is crucial
to Theorem 5 below.

Proposition 2. The dual model construction is a Grpd-enriched functor on
the Grpd-category of pointed models.

Proof (outline). A morphism (S, T) is mapped to (S, T op : Cop → (C′)op),
and a cni (α : S ⇒ S′, β : T ⇒ T ′) is mapped to (α, β−1 : T op ⇒ (T ′)op). ut

XIII

Theorem 5. For every pointed model M, we have a natural isomorphism of
pointed models between M and M⊥⊥.

Proof (outline). We show that the pair of identity functors is the required
isomorphism from M→M⊥⊥. The double dual M⊥⊥ turns out to be (F⊥⊥ a
U⊥⊥ : C→ V, FR 1), where F⊥⊥ = (−)·F1 (this is the power (F1)(−) calculated
in Cop) and U⊥⊥ = Cop(−, F1). Then we calculate: F⊥⊥ = (−) · F1 ∼= F ,
similarly U⊥⊥ = Cop(−, F1) = C(F1,−) ∼= U , and also FR 1 = R1 ∼= R. ut

Models of intuitionistic linear logic supply a natural collection of models for
the enriched effect calculus. A linear/nonlinear model [2] consists of a cartesian-
closed category V (the intuitionistic category), a symmetric monoidal closed
category C (the linear category), and a symmetric monoidal adjunction F a
G : C→ V. The model has additives if C has finite products and coproducts. It
is classical if C is ∗-autonomous [1]. In [4, Proposition 1], it is shown that every
linear/nonlinear model with additives is a model of the enriched effect calculus.
Given an object R of C, the dual model is thus a model of the enriched effect
calculus. However, it is not (in general) a linear/nonlinear model (e.g., Cop need
not be symmetric monoidal closed). Thus models of the enriched effect calculus
are closed under a natural construction which is not available for models of
intuitionistic linear logic. However, models of classical linear logic are preserved
by the dual model construction, when R is chosen to be the dualizing object. In
fact, unsurprisingly, such models are self-dual.

Proposition 3. If F a G : C → V is a model of classical linear logic with
additives then, defining the pointed model M = (F a G : C → V, ⊥), where ⊥
is the dualizing object, it holds that the M is (pointed) isomorphic to M⊥.

Proof (outline). The isomorphism is given by (Id : V → V, (−)∗ : C → Cop)
from M to M⊥, where (−)∗ is the ∗-autonomous dualizing functor. ut

We next exhibit a more surprising example of self-duality, the syntactic
model. As in Section 3, we assume a computation-type constant R. We then
consider the syntactic model together with R as the chosen object of CSyn:

MSyn,R := (FSyn a USyn : CSyn → VSyn, R) .

By Theorem 4, there is a unique morphism (up to cni) from the model FSyn a
USyn : CSyn → VSyn to the model FR

Syn a U
R
Syn : Cop

Syn → VSyn given by functors
SR : VSyn → VSyn and TR : CSyn → Cop

Syn satisfying:

SR(α) ∼= α TR(α) ∼=
{

!1 if α = R
α otherwise

Obviously, this is a morphism of pointed models from MSyn,R to (MSyn,R)⊥.

Theorem 6. The morphism (SR, TR) is an equivalence of pointed models be-
tween MSyn,R and (MSyn,R)⊥.

XIV

Proof (outline). By Proposition 2, (SR, (TR)op) is a morphism from (MSyn,R)⊥

to (MSyn,R)⊥⊥ and, by (the proof of) Theorem 5, (Id, Id) is a morphism from
(MSyn,R)⊥⊥ to MSyn,R. The composite endomorphism (SR SR, (TR)op TR) on
MSyn,R obviously maps value type constants α and computation type constants
α, other than R, to themselves. In the case of R, we have

(TR)op TR (R) ∼= (TR)op(!1) ∼= (TR)(!1) ∼= 1→ R ∼= R ,

where the penultimate isomorphism is because TR maps the left adjoint !(−)
in MSyn,R to the left adjoint (−) → R in (MSyn,R)⊥. Thus the endomor-
phism (SR SR, (TR)op TR) on MSyn,R preserves all type constants up to isomor-
phism. By Theorem 4, this endomorphism is isomorphic to the identity mor-
phism. For the composite endomorphism (SR SR, TR (TR)op) on (MSyn,R)⊥, we
have TR (TR)op = ((TR)op TR)op, which is again isomorphic to the identity be-
cause (TR)op TR is (as shown above). Hence (SR, TR) : MSyn,R → (MSyn,R)⊥ and
(SR, (TR)op) : (MSyn,R)⊥ →MSyn,R together form an equivalence of models. ut

The self-duality of MSyn,R exhibited above differs in two important respects
from the self-duality for classical linear/nonlinear models of Proposition 3. First,
(SR, TR) is not an isomorphism. Second, the functor SR is not (even isomorphic
to) the identity on VSyn. (Though SRSR is isomorphic to the identity.)

It is now a straightforward matter to finally prove Theorem 1. The cru-
cial observation is that the morphism (SR, TR) is the generic linearly-used CPS
translation of the enriched effect calculus into itself. Indeed, the object actions
of SR and TR are respectively the value-type and computation-type translations
of Fig. 4, and the morphism actions are respectively (·)VR and (·)CR from Fig. 5.
Proof of Theorem 1 (outline). We have seen above that SRSR is isomorphic
to the identity on VSyn, and (TR)op TR is isomorphic to the identity on CSyn. We
define the jA : AVRVR → A to be components of the former natural isomorphism,
and the kA : ACRCR (A to be components of the latter. Statement 1 of the
theorem is equivalent to the naturality of the jA. The naturality condition which
the kA are required to satisfy to be part of a cni, is the diagram below.

(A (B)VRVR
jA(B - A (B

ACRCR (BCRCR

=

?
ACRCR (kB- ACRCR (B

kA (B

?

Hence, if Γ |z : A ` t : B then

λz : A. t = jA(B (λz : A. t)VRVR [j−1(Γ)] (statement 1)

= jA(B (λz : ACRCR . (tCRCR)) [j−1(Γ)] (def. (−)VR)

= (λz : A. kB(tCRCR) [k−1
A (z) / z]) [j−1(Γ)] (naturality k)

proving statement 2 of the theorem. ut

XV

We end the paper by mentioning a couple of issues that there is no space to
cover in detail. We call a pointed model M = (F a U : C → V, R) canonically
pointed if R is isomorphic to F1. Because we have FR 1 = R1 ∼= R, we see that
M⊥ is canonically pointed if and only if M is. We say that F a U : C → V is
canonically self dual if the canonically pointedM = (F a U : C→ V, F1) is self
dual. By an argument similar to the proof of Theorem 6, the syntactic model can
be shown to be canonically self dual. This has syntactic repercussions for EEC.
If the computation-type constant R is replaced uniformly by the computation
type !1 in the canonical linearly-used CPS translation then one still obtains the
involutivity property and its consequences.

Finally, we mention that the key to Theorem 5 is that every V-enriched
adjunction F a U : C→ V is isomorphic to a V-adjunction of the standard form
(−)·I a C(I,−), by setting I ∼= F1. This fact allows models of the enriched effect
calculus to be described more simply as triples (V,C, I), where the adjunction
is replaced by simply requiring a specified object I of C. This approach renders
many properties of dual models obvious. What becomes less straightforward is
to connect semantic and syntactic properties, since the semantic structure is less
close to the syntactic primitives.

Acknowledgement. We thank the anonymous referees for helpful suggestions.

References

1. M. Barr. ∗-autonomous categories. Springer LNM 752, 1979.
2. P.N. Benton. A mixed linear and non-linear logic: Proofs, terms and models. Proc.

CSL 1994, Springer LNCS 933, 1995.
3. J. Berdine, P.W. O’Hearn, U. Reddy, H. Thielecke. Linear continuation-passing.

Higher Order and Symbolic Computation, 15:181–208, 2002.
4. J. Egger, R.E. Møgelberg and A. Simpson. Enriching an effect calculus with linear

types. In Proc. CSL, Springer LNCS 5771, pp. 240–254, 2009.
5. A. Filinski. Controlling Effects. PhD thesis, School of Comp. Sci., CMU, 1996.
6. M. Hasegawa. Linearly used effects: Monadic and CPS transformations into the

linear lambda calculus. In Proc. 6th FLOPS. Springer LNCS 2441, pp. 167–182.
2002.

7. M. Hasegawa. Semantics of linear continuation-passing in call-by-name. In Proc.
7th FLOPS. Springer LNCS 2998, pp. 229–243, 2004.

8. G.M. Kelly. Basic Concepts of Enriched Category Theory, volume 64 of London
Math. Society Lecture Note Series. Cambridge University Press, 1982.

9. F.W. Lawvere. Ordinal sums and equational doctrines. Seminar on Triples and
Categorical Homology Theory (ETH, Zürich), pp. 141–155. Springer, 1969.

10. P.B. Levy. Call-by-push-value. A functional/imperative synthesis. Semantic Struc-
tures in Computation, Springer, 2004.

11. E. Moggi. Computational lambda-calculus and monads. In Proc. 4th LICS, pp. 14–
23, 1989.

12. E. Moggi. Notions of computation and monads. Information and Computation,
93:55–92, 1991.

13. M. Parigot. λµ-calculus: an algorithmic interpretation of classical natural deduc-
tion. In Proc. LPAR. Springer LNCS 624, pp.190–201, 1992.

