
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

A nominal relational model for local store

Rasmus Ejlers Møgelberg 1

IT University of Copenhagen
Denmark

Abstract

The theory of nominal sets is a theory for names, freshness and binders. It has recently been
suggested as a framework for modelling local store because it allows for a more elementary devel-
opment than the traditional presheaf models. However, when modelling the important principle of
relational reasoning for local store all these models use families of relations indexed by relations on
store, and thus essentially return to presheaf models on the relational level. In this paper we show
how relational reasoning can also be modelled using nominal sets. Building on a model suggested
by Pitts and Shinwell we construct a relational model for local store in nominal sets in which types
are interpreted as relations. These relational interpretations of types capture, in a single relation for
each type, the relational reasoning principle for local store which in previous models was captured
using a family of relations for each type. The relational model also demonstrates how the relations
constitute a model in their own right, which hopefully means that they can be used to construct
better models. Using the relational model we construct a relational parametricity principle for the
operation allocating local store, and we show how this implies the relational reasoning principle.

Keywords: local store, denotational semantics, parametric polymorphism, nominal sets

1 Introduction

Most programming languages contain a construction for declaring local store,
i.e., store cells that can only be accessed by a specified piece of the program.
This restriction of access provides an important information hiding principle:
changes to an implementations internal use of local store should not affect the
observable behaviour of the program. When constructing tools for reasoning
about local store a challenging issue is to express the information hiding prin-
ciple. One idea that has proved useful is relational reasoning: if two programs
are implemented using local store, and we can show that there exists a rela-
tion between the local stores preserved by the programs, then the programs

1 This work was supported by the Danish Agency for Science, Technology and Innovation

c©2010 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

Møgelberg

should be contextually equivalent. This method of proof goes back at least
to [12]. Relational reasoning can be proved sound using either syntactic or
denotational methods.

Traditionally, denotational models of local store have used presheaf cat-
egories [11,16,6,14] interpreting types as families of sets indexed over store
shapes, i.e., finite sets of cell names. Recently an alternative approach us-
ing a continuation monad on the category of nominal sets [5] has been sug-
gested [17,1]. The advantage of this new approach is that the technical devel-
opment is simpler, mainly because the exponentials in the category of nominal
sets have a simpler description than the Kripke style exponents of presheaves.
The two approaches are related, because the category of nominal sets is equiv-
alent to a full subcategory of a presheaf topos [5].

In the nominal sets models of local store [1,2] soundness of the relational
reasoning principle is proved by constructing, for each type, a family of re-
lations on the denotations of the type, indexed by relations on store, and
verifying that the relations corresponding to identity relations on store are
contained in contextual equivalence. The construction uses Kripke semantics
as one has to take into account that any program can be called at a later time
where the store contains more cells. This technique has been successful in
creating a useful tool for showing contextual equivalence, but at the moment
these relations seem like a trick for obtaining better equational theories on a
given model, and their semantic status is unclear.

This paper shows how relational reasoning can be build into nominal sets,
and settle the semantic status of the relations by showing that they form a
model in their own right. We start by considering a variant of the model
of local store used in [1] and then show how a model of relations capturing
relational reasoning for local store can be constructed in a very similar way.
The key observation for our construction is that the category of nominal sets
used in the first model is equivalent to a category of sets indexed over store
shapes. Using sorted nominal sets we construct a category of nominal sets
equivalent to a category of sets indexed by relations on store, and use this as
basis for the relational model. The resulting model can be seen as a nominal
representation of the relational presheaf models of [10,9,3].

We treat ground store only. Other authors (e.g. [1,2]) have considered
relational reasoning for more advanced notions of store, but we leave it to
future work to extend the techniques here to those cases.

1.1 Parametricity for store access operations

Earlier work in the context of presheaf models [10,9,3] has show a connec-
tion between local variables and relational parametricity: a procedure can be
called in any extension of the store that it is defined in, and it is relationally

2

Møgelberg

parametric in this store extension. In this paper we approach the connection
between parametricity and local variables from another angle, by showing
that the relational reasoning principle for local store follows from a principle
of relational parametricity for the operation allocating store cells.

The allocation operation is an algebraic operation [14], and we briefly
recall what this means. If T is a (strong) monad, following [8], we think
of T (X) as the collection of computations returning values in X. Effectful
computations can then arise from algebraic operations or equivalently generic
effects [15]. The former are functions that take computations as input and
produce computations, e.g. in the case of store effects we consider operations

updateb,X : T (X)→ ref b→ b→ T (X) (1)

lookupb,X : (b→ T (X))→ ref b→ T (X) (2)

Intuitively, update takes a computation, a reference to a storage cell of type b,
a value of type b, and returns the computation that first updates the storage
cell with the given value and then continues the original computation. The
lookup operation takes a family of computations indexed by values of type b
and a reference to a storage cell, and returns the computation that looks up the
value in the storage cell and continues with the corresponding computation.

The algebraic operation corresponding to allocation has type

newX,b : [Ab]T (X)→ b→ T (X) (3)

For the moment the type [Ab]T (X) should the thought of as a type of compu-
tations in T (X) with a bound name of a reference cell of type b. In Section 3
we shall model this type using atom abstraction in nominal sets. The intu-
ition for newX,b is that it returns the computation that allocates a fresh cell
of type b, initializes it to the given value of type b and continues with the
given computation with the abstracted name bound to the allocated cell.

The relational model constructed here validates a principle of relational
parametricity for newX,b in the type of the allocated cell. The crucial ingredi-
ent in formulating this principle is a relational interpretation of atom abstrac-
tion: for any relation r : Rel(b,b′) we construct a relation from [Ab]T (X) to
[Ab′]T (X), which intuitively relates two computations with bound cell names
if they preserve the relation r (this is to be understood in the sense of the re-
lational reasoning principle for local store). The relational reasoning principle
for local store can be seen as a consequence of this parametricity principle.

Section 2 fixes a language with local store, and Section 3 describes a model
in nominal sets. Section 4 construct a relational model and shows how this
can be used to reason about contextual equivalence. Section 5 describes con-
nections to relational parametricity, and Section 6 gives two examples of using
the relational model to show contextual equivalence of programs. Finally Sec-

3

Møgelberg

tion 7 sketches how a variant of the relational model construction can allow
for reasoning using more advanced relations on store.

Acknowledgement

I thank Nick Benton, Lars Birkedal, Andy Pitts, Alex Simpson, Ian Stark and
Sam Staton for helpful discussions.

2 A call-by-value language with local store

We start by fixing a language in which we can write sample programs to
illustrate the semantic developments. For this we could have chosen some
advanced type theory for effects such as call-by-push-value [6] or the enriched
effect calculus [4] and in fact the semantic construction of this paper can be
used to construct models of these, but here we choose a simple call-by-value
language because it suffices for our purposes.

The language we consider here is a variant of Fine-Grained CBV [7] (Fine-
Grained call-by-value) to which we have added local store. We assume given
a set Σ of base types and we use b to range over elements of Σ. The types
are given by

σ, τ ::= b | ref b | σ ⇀ τ

The type ref b is a type of references to cells of type b. In this paper we only
consider references to base types. The type σ ⇀ τ is a call-by-value function
space; elements take values as input and produce computations.

Rather than giving an operational semantics we give an equality theory
on terms to be considered as an approximation of contextual equality in the
spirit of [13]. Because of the presence of effects it is important to specify eval-
uation order in the language, and for this the language distinguishes between
(pure) values terms and computations terms, each of which has its own typing
judgement written as

Θ | Γ `v V :σ Θ | Γ `c M :σ

respectively. Only computations are allowed to access store.

Typing rules can be found in Figure 1. Open terms have two contexts.
The first is a context of variables x : A in the usual sense for which we use Γ as
a metavariable. Variables in this context should be thought of as place holders
for values. The second context is one of names a : b for which we use Θ as a
metavariable. This should be thought of as a list of references to previously
allocated distinct cells in the store.

Figure 2 presents an equality theory on terms of Fine-Grained-CBV with
local store. The equality theory consist of three different elements: the first

4

Møgelberg

Θ | Γ, x : σ,Γ′ `v x :σ Θ, a : b,Θ′ | Γ `v a : ref b

Θ | Γ `v V :σ

Θ | Γ `c returnV :σ

Θ | Γ `c M :σ Θ | Γ, x : σ `c N : τ

Θ | Γ `c M tox.N : τ

Θ | Γ `v V :σ ⇀ τ Θ | Γ `v W :σ

Θ | Γ `c V W : τ

Θ | Γ, x : σ `c N : τ

Θ | Γ `v λx :σ. N :σ ⇀ τ

Θ | Γ `c N : τ Θ | Γ `v V : b Θ | Γ `v W : ref b

Θ | Γ `c W := V ;N : τ

Θ | Γ, x : b `c N : τ Θ | Γ `v W : ref b

Θ | Γ `c readW asx.N : τ

Θ, a : b | Γ `c N : τ Θ | Γ `v V : b

Θ | Γ `c let a : b = new (V) inN : τ

Fig. 1. Typing rules for the Fine-Grained-CBV calculus with local store

five rules are equality rules of Fine-Grained-CBV [7], the next three are al-
gebraicity axioms [15], and the final 13 axiom schemes are the Plotkin-Power
axioms for local store [14].

The axioms of Figure 2 provide basic axioms for local store, but do not
capture the information hiding principle sketched in the introduction. To il-
lustrate what is needed we give an example of two programs that should be
contextually equivalent, but cannot be proved so using the axioms. In Sec-
tion 6 we show how to prove this using the relational reasoning tools developed
in this paper. We stress, however, that this is a standard example of programs
that have been proved contextually equivalent, e.g. in [1], but the example is
included here for illustration.

Consider the two counters defined as

let a : Int = new (0) in return (λx : Int. reada as z. a := z + x; return (z + x))

let a : Int = new (0) in return (λx : Int. reada as z. a := z − x; return (x− z))

Both of these are computations of type Int ⇀ Int which compute functions,
that given an integer x return the sum of the integers by which they have
been called previously. They also both accomplish this task by allocating a
local store cell, but where the first counter keeps the sum of the previous x’s
in that local cell, the second counter keeps the negative of this number.

5

Møgelberg

returnV tox.N = N [V/x]

M tox. returnx = M

(M tox.N) to y. P = M tox. (N to y. P)

λx :σ. M(V) = M [V/x]

λx :σ. (V x) = V

(readW as z.M) tox.N = readW as z. (M tox.N)

(W := V ;M) tox.N = W := V ; (M tox.N)

(let a : b = new (V) inM) tox.N = let a : b = new (V) in (M tox.N)

readW asx. (W := x;M) = M

readW asx. readW as y.M = readW asx.M [x/y]

W := V ;W := V ′;M = W := V ′;M

W := V ; readW asx.M = W := V ;M [V/x]

reada asx. reada′ as y.M = reada′ as y. reada asx.M

a := V ; a′ := V ′;M = a′ := V ′; a := V ;M

a := V ; reada′ asx.M = reada′ asx. a := V ;M

let a : b = new (V) in (a := V ′;M) = let a : b = new (V ′) inM

let a : b = new (V) in (reada asx.M) = let a : b = new (V) inM [V/x]

let a = new (V) in (let a′ = new (V ′) inM) = let a′ = new (V ′) in (let a = new (V) inM)

let a : b = new (V) in (W := V ′;M) = W := V ′; let a : b = new (V) inM

let a : b = new (V) in (readW asx.M) = readW asx. let a : b = new (V) inM

let a : b = new (V) inM = M , a /∈ FV(M)

Fig. 2. The Fine-Grained-CBV calculus. The equality rules are subject to the usual conventions
on free variables. Moreover, all rules assume a and a′ distinct and the last rule requires a not free
in M .

To prove these programs contextually equivalent one usually uses relational
reasoning: consider the relation on stores relating s to s′ if s(a) = −s′(a). If
we imagine the two counters being run on parallel machines with stores in
this relation, then each pair of calls to the counters with equal inputs not only
gives equal outputs, but also leaves the stores related. Using the techniques
of [12,1] this suffices for showing the programs equivalent.

3 A model in nominal sets

We construct an interpretation of the Fine-Grained CBV calculus with local
store using nominal sets [5]. The interpretation is a variant of the one used
in [17,1]. We assume that we are given for each b ∈ Σ an interpretation of b as
a set [[b]]. Moreover we assume that we are given a sorted collection of atoms
by which we mean a map of sets A → Σ, such that for each sort b there are

6

Møgelberg

infinitely many atoms mapping to b by the sorting function. We shall think
of a sorted collection of atoms as a signature for a typed store. The set A is
the set of cells and the sorting maps a cell to the type of the content stored
in that cell. The set of atoms with sort b is denoted Ab, and we often write
ab to indicate that a is an atom of sort b.

Given a sorted collection of atoms A → Σ we can form the category
of nominal sets, which we denote Nom or sometimes Nom[A→Σ] when the
atom sorting is not clear from context, as usual. First we consider the
group Perm(A → Σ) of finite permutations (i.e. permutations fixing all
but a finite number of elements) of A respecting sortings. The category
Nom has as objects sets with a left Perm(A → Σ)-action, ie., a map
· : Perm(A→ Σ)×X → X such that (π ◦ π′) · x = π · (π′ · x) and id · x = x
such that each x in X has a finite support, i.e. a finite set A of atoms such
that if π fixes all elements of A then π ·x = x. It is well known that Nom is a
cartesian closed category with exponent given by the set of finitely supported
functions with respect to the action defined by (π · f)(x) = π · (f(π−1 · x)),
see [5]. We write A×B and A→fs B or BA for the cartesian closed structure
on the category of nominal sets and reserve A → B for the set of functions
with empty support between a pair of nominal sets. We write x ∈ X for X a
nominal set if x is an element in the underlying set of X.

As in [17,1] we use a cps style semantics, because it greatly simplifies the
interpretation of allocation. So we assume given a nominal set R of results,
which has trivial permutation action. The set A is a nominal set with the
obvious action and recalling that each sort b has an interpretation as a set,
we can consider each of these a nominal set with trivial permutation action.

We define the nominal set of stores as

S =
∏

b∈Σ Ab →fs [[b]].

Note that by this product we mean the product in Nom, i.e., we only consider
elements f with a finite set of atoms which supports all of the fb : Ab →fs [[b]].
We usually assume that all the sets [[b]] are non-empty as otherwise S becomes
empty.

A continuation is a map that takes a store and produces a result in R,
however, by our definition of S, stores are infinite and intuitively, computable
continuations can only look at finite subsets of the store. The restriction to
finitely supported functions is not sufficient to ensure this restriction, as, e.g.,
maps counting the number of cells holding a specific value are finitely sup-
ported (in fact equivariant). Instead we define our collection of continuations
to be the nominal set

K = {k : RS | ∃A ⊆fin A.∀s, s′ ∈ S. (∀a ∈ A. s(a) = s′(a)) =⇒ k(s) = k(s′)} .
(4)

7

Møgelberg

[[readW asx.N]]ρ(k)(s) = [[N]]ρ[x 7→s([[W]]ρ)](k)(s)

[[W := V ;N]]ρ(k)(s) = [[N]]ρ(k)(s[[[W]]ρ 7→ [[V]]ρ])

[[let a : b = new (V) inN]]ρ(k)(s) = fresh ab. [[N]]ρ[a7→ab](k)(s[ab 7→ [[V]]ρ])

Fig. 3. Interpretation of store access operations.

This restriction has important consequences for the model and is also crucial
for the construction of the relational model.

Lemma 3.1 If k ∈ K and s, s′ ∈ S agree on the support of k, then k(s) =
k(s′).

We interpret Fine-Grained CBV using the monad T = KK(−)
on Nom.

The type ref b is interpreted as Ab and σ ⇀ τ is interpreted as [[σ]] →
T ([[τ]]). Value terms Θ | Γ `v V : σ are interpreted as equivariant maps
[[Θ]] × [[Γ]] → [[σ]] and computation terms Θ | Γ `c V : σ are interpreted as
equivariant maps [[Θ]] × [[Γ]] → T ([[σ]]). The context Γ is interpreted as usual
using products, but following the intuition given in Section 2, a name context
Θ = a1 : b1, . . . , an : bn is interpreted as the set ⊗bi∈bAbi of tuples (a1, . . . , an)
of distinct elements with ai ∈ Abi . This is a special case of the tensor product
on Nom:

A⊗B = {(x, y) | x] y} (5)

where x] y means that x, y have disjoint support.

We omit the details of the standard monadic interpretation and focus on
the interpretation of the operations on store. The interpretations are given
in Figure 3. In the figure we use environments ρ which are maps specifying
elements in [[Θ]]×[[Γ]] in the hopefully obvious way. Also the notation s[ab 7→ n]
is used for updating s at location ab, where s ∈ S, i.e., s[ab 7→ n](a′b) is n if
a′b = ab and s(a′b) otherwise. We have used similar notation for updating the
environment ρ.

In the interpretation of cell allocation we have used the notation fresh ab.
This means: pick some ab not in the support of k, s, ρ and compute the element
to the right of the fresh statement. Of course, for this to be well defined, one
must show that the element on the right is independent of the particular choice
of ab, which can be done using standard techniques from nominal set theory.

Proposition 3.2 The model validates the axioms of Figure 2.

The last axiom of Figure 2 (garbage collection) does not hold in the model
of [1], but can only be verified up to relational reasoning. The reason it holds
in this model is the restriction to continuations in K.

Proof. We verify the garbage collection axiom. The condition of a not

8

Møgelberg

free in M means that Θ | Γ `c M : σ is well typed. A simple induc-
tion shows that [[Θ | Γ `c M :σ]]ρ = [[Θ, a : b | Γ `c M :σ]]ρ[a7→ab]. In par-
ticular this means that if ab is fresh for ρ and k then it is also fresh for
[[Θ, a : b | Γ `c M :σ]]ρ[a7→ab](k) which is an element in K. We compute

[[let a : b = new (V) inM]]ρ(k)(s)

= fresh ab. [[Θ, a : b | Γ `c M :σ]]ρ[a7→ab](k)(s[ab 7→ [[V]]ρ])

= fresh ab. [[Θ, a : b | Γ `c M :σ]]ρ[a7→ab](k)(s)

= [[Θ | Γ `c M :σ]]ρ(k)(s) .

The equality between line 2 and 3 is a consequence of Lemma 3.1. 2

3.1 Algebraic operations for local store

The interpretation of local store in Figure 3 can be read as defining alge-
braic operations for local store for the monad T in the sense of Plotkin and
Power [14]. The types of these were suggested in the introduction (1, 2, 3),
but in fact, we can give these more general types, defining e.g.,

updateb,X : KX → Ab →fs [[b]]→fs KX

lookupb,X : ([[b]]→fs KX)→ Ab →fs KX

for all nominal sets X. The operations are defined as

updateb,X(f)(ab)(v) = λx :X. λs : S. f(x)(s[ab 7→ v])

lookupb,X(f)(ab) = λx :X. λs : S. f(s(ab))(x)(s)

As mentioned in the introduction, the algebraic operation for cell allocation
takes a computation with a bound cell name as input. Since the result of
applying the operation should not depend on the name of the abstracted
cell, the appropriate input type is given by atom abstraction [5]. Recall that
the atom abstraction [Ab]X is defined as the quotient Ab × X/ ∼ where
(a, x) ∼ (a′, x′) if (a a′′)x = (a′ a′′)x′ for some (indeed any) fresh a′′. Recall
also that there is a concretion map (−)@ (=): [Ab]X ⊗ Ab → X defined as
[(a, x)]@ a′ = (a a′)x. Note that this is only well defined for a′ fresh for
[(a, x)], i.e., for a′ /∈ supp(x) \ {a}.

Now, the algebraic operation for allocating a fresh storage cell has type

newX,b : [Ab]KX → [[b]]→fs KX

and is defined as newX,b(f)(v) = λx :X.λs : S.fresh ab. (f@ ab)(x)(s[ab 7→ v]) .

Algebraic operations correspond to generic effects [15]. The update and
lookup correspond to maps Ab × [[b]] → T (1) and Ab → T ([[b]]) respectively.

9

Møgelberg

Following Staton [18], one can describe allocation using a family of generic
effects of type

allocb,⊗iAbi
: ⊗i Abi × [[b]]→ T ((⊗iAbi)⊗ Ab) . (6)

These can be thought of as maps computing an extended context from a given
one.

4 A relational model construction

In this section we construct a relational model of Fine-Grained CBV with
local store. The construction is similar to that of Section 3 except that we
pass from sets to relations. We do this first for the base types. Suppose that
we are given a set of base types Σ and an interpretation of each base type as
a set, as in Section 3. Consider the set of relations

ΣRel = {(b,b′, R) | b,b′ ∈ Σ, R : Rel([[b]], [[b′]]), R non-empty} .

The restriction to non-empty relations is necessary to get an interesting model
(if we omit it, the KRel defined below becomes the total relation, relating all
pairs of continuations) and is similar to the restriction that [[b]] is non-empty.
We use r as a metavariable to range over ΣRel and also use r for the relation
part of the triple.

We assume that we are given a sorted collection of atoms p : ARel → ΣRel

(we call the sorting p because the main example is the projection ΣRel ×
N → ΣRel). To give some intuition for why Nom[ARel→ΣRel] is an interesting
category to consider, we recall the relationship between nominal sets and
presheaf categories [5]. Suppose we are given a sorted collection of atoms
A → Σ as in Section 3, following the intuition that this is a signature for
typed store, we define a store shape to be a finite subset of A. An object in
Nom[A→Σ] defines a family of sets indexed by store shapes, namely the family
{x ∈ X | supp(x) ⊆ A}A⊆finA.

Similarly, we may consider finite subsets of ARel to be simple finite relations
on stores, namely A describes the relation relating s to s′ if r(s(ar), s

′(ar))
holds for all ar ∈ A. This way, an object of Nom[ARel→ΣRel] can be considered
as a family of sets indexed by relations on stores. For relational reasoning for
local store we need families of relations indexed over finite relations on stores,
and in this paper we shall consider relations in Nom[ARel→ΣRel]. The relations
on local store described above are extremely simple, but we have chosen this
simplicity for presentation purposes. In Section 5 we sketch how to extend
this idea to more advanced relations on store.

Following the intuition above it is tempting to define a relation on store
objects as follows: writing Sdom and Scod for

∏
r∈ΣRel ARel

r → dom(r) and

10

Møgelberg∏
r∈ΣRel ARel

r → cod(r) respectively define SRel : Rel(Sdom,Scod) by

SRel(s, s
′) ⇐⇒ ∀ar ∈ ARel. r(s(ar), s

′(ar))

Unfortunately the SRel so defined is empty. However, we can define a relation
on continuations as follows. Consider first the continuation objects Kdom ⊆
RSdom ,Kcod ⊆ RScod defined as in Section 3 and define

KRel = {(kd, kc) ∈Kdom ×Kcod | ∃A ⊆fin ARel.∀sd, sc.
(∀ar ∈ A. r(sd(ar), sc(ar))) =⇒ kd(sd) = kc(sc)}

The relation KRel satisfies an equivariance property: if π is a finite permu-
tation respecting the atom sorting ARel → ΣRel then KRel(kd, kc) holds iff
KRel(π · kd, π · kc).

Note the similarity of the definition of KRel to (4).

Lemma 4.1 Let kd ∈ Kdom, kc ∈ Kcod be given. Then (kd, kc) ∈ KRel iff

(∀ar ∈ supp(kd) ∪ supp(kc). r(sd(ar), sc(ar))) =⇒ kd(sd) = kc(sc)

for all sd ∈ Sdom and sc ∈ Scod.

At the moment we have several atom sortings in play. Apart from the
given one p : ARel → ΣRel there are the two compositions of p with the domain
and codomain map dom ◦ p, cod ◦ p : ARel → Σ. There is a pair of functors

Nom[dom ◦ p] - Nom[ARel→ΣRel]
� Nom[cod ◦ p] ,

given simply by restriction of permutation action.

We now define the category Rel which will be the base for the relational
model of local store. Following the intuition given in the beginning of this
section, Rel can be thought of as a category of relations indexed by relations
on stores.

Definition 4.2 The category Rel has

Objects: Triples (X, Y,Q) where X, Y are objects of Nom[dom ◦ p] and
Nom[cod ◦ p] respectively and Q is an equivariant (in the sense of
Nom[ARel→ΣRel]) subset of X × Y .

Morphisms: A morphism from (X, Y,Q) to (X ′, Y ′, Q′) is a pair of maps
f : X → X ′ and g : Y → Y ′ in Nom[dom ◦ p] and Nom[cod ◦ p] respectively,
such that (f, g) map pairs related in Q to pairs related in Q′.

The triple (Kdom,Kcod,KRel) defines an object of Rel by the equivariance
principle noticed above. Any element of ΣRel defines an object of Rel in the
obvious way. For any r we can define a relational interpretation of atoms.

11

Møgelberg

Define first (with a slight misuse of notation)

ARel
dom(r) = {a | dom(p(a)) = dom(r)} (7)

ARel
cod(r) = {a | cod(p(a)) = cod(r)} (8)

with permutation actions given by application. The relation is given (as a
span) by the inclusion of ARel

r = {a | p(a) = r} into both these sets. This
defines an object of Rel for which we shall often simply write ARel

r . In general,
we shall usually simply denote objects of Rel simply by their third component.

Proposition 4.3 The category Rel is cartesian closed and the domain and
codomain functors

Nom[dom ◦ p] � Rel - Nom[cod ◦ p] (9)

preserve the cartesian closed structure.

Proof. The products of two relations relate pairs whose components are re-
lated. The exponent: (X, Y,Q)→ (X ′, Y ′, Q′) is the triple (X →fs X

′, Y →fs

Y ′, Q′Q) where the first two components are constructed using exponents in
Nom[dom ◦ p] and Nom[cod ◦ p] respectively, and Q′Q(f, g) holds if Q(x, y) im-
plies Q′(f(x), g(y)). 2

The tensor products on Nom[dom ◦ p] and Nom[cod ◦ p] (5) extend to a tensor
product on Rel: the tensor of two relations relates pairs whose components
are related.

We now describe how Fine-Grained-CBV can be interpreted in Rel. Each
base type b is interpreted as the identity relation eq[[b]] on the set [[b]] and

ref b is interpreted as ARel
eq[[b]]

. The rest of the types are interpreted using

the cartesian closed structure on Rel and the monad TRel = KK(−)
Rel

Rel . Since
the projections (9) preserve all this structure, the interpretation of a type σ
in the relational model is a relation [[σ]]Rel : Rel([[σ]]dom, [[σ]]cod) where [[σ]]dom

and [[σ]]cod are the interpretations of σ as defined in Section 3 using the atom
sortings dom and cod respectively.

Variable contexts Γ can be interpreted using the products in Rel. Name
contexts Θ = a1 : b1, . . . , an : bn are interpreted as ⊗iAeqbi

. The following
“logical relations lemma” gives the interpretation of terms in the relational
model.

Proposition 4.4 If Θ | Γ `v V :σ and Θ | Γ `c M :σ then

([[V]]dom, [[V]]cod) : [[Θ]]Rel × [[Γ]]Rel → [[σ]]Rel

([[M]]dom, [[M]]cod) : [[Θ]]Rel × [[Γ]]Rel → TRel([[σ]]Rel)

12

Møgelberg

where [[−]]dom, [[−]]cod denote the interpretations of terms in the model of Sec-
tion 3 using the atom sortings dom and cod respectively.

Proposition 4.4 is proved by induction over the typing rules, but we omit
the details. Most cases follow from the fact that the interpretation of Fine-
Grained- CBV is given by the cartesian closed structure and the monad, and
both projections of (9) preserve this structure. This leaves the operations for
local store, and these cases follow from Theorem 5.1 below.

4.1 Approximating contextual equivalence

The semantic relations constructed above define an equality relation on com-
putation terms: if Θ | Γ `c M,N :σ, we write M ∼σ N if

([[M]]dom, [[N]]cod) : [[Θ]]Rel × [[Γ]]Rel → TRel([[σ]]Rel)

In the following we shall show that this defines an equivalence relation on
terms and that it is contained in contextual equivalence.

Is the semantic relation [[σ]]Rel an equivalence relation? At the moment it
is not even an endorelation. Under reasonable assumptions however, we can
make [[σ]]Rel an endorelation. Consider the map (−)op : ΣRel → ΣRel which
maps a relation to its opposite. For the rest of the paper we shall assume that
there is a lift of this map to atoms, i.e., a map making the diagram commute

ARel (−)op
- ARel

ΣRel

p

?
(−)op

- ΣRel

p

?

such that ((ar)
op)op = ar, and aop

eqb
= aeqb . This can be defined for example if

ARel = ΣRel × N with sorting map the first projection. Such a lift induces an
isomorphism of atom sortings between dom◦p : ARel → Σ and cod◦p : ARel →
Σ, which induces an isomorphism of categories Nom[dom ◦ p] ∼= Nom[cod ◦ p] by
the following general proposition.

Proposition 4.5 Suppose α : A → A′ is an isomorphism commuting with
the atom storting A → Σ and A′ → Σ. Then Nom[A→Σ] and Nom[A′→Σ] are
isomorphic. The isomorphism maps a nominal set X to X with action defined
by π · x = (α−1 ◦ π ◦ α) · x.

Up to this isomorphism [[σ]]dom ∼= [[σ]]cod, and we can consider [[σ]]Rel an
endorelation on [[σ]]dom, and we shall often simply write [[σ]] for [[σ]]dom.

Theorem 4.6 sums up the main properties of the relations defined above.

13

Møgelberg

Theorem 4.6 (i) Each relation [[σ]]Rel is symmetric and zigzag-closed, i.e.,

[[σ]]Rel(x, y) ∧ [[σ]]Rel(z, y) ∧ [[σ]]Rel(z, w) =⇒ [[σ]]Rel(x,w)

(ii) The induced relations on computation terms ∼σ is an equivalence relation.

(iii) The union of all the ∼σ relations is a congruence relation on terms.

Proof. The proof of (i) is by induction on the structure of σ, and we refer
to Appendix A for further details. By (i), ∼σ is symmetric and zigzag-closed,
and by Proposition 4.4 it is reflexive. These properties imply transitivity, and
so we conclude that it is an equivalence relation. Item (iii) is a consequence
of compositionality of the interpretation. 2

The relation [[σ]]Rel does not seem to be transitive, and this seems to be a
general fact for relations constructed using relational reasoning for local store.

We end this section by showing that ∼σ is an approximation of contex-
tual equivalence. To do this we first need to define contextual equivalence.
A (Θ,Γ, σ) − b context is a term C[−] with a hole such that whenever
Θ | Γ `c M :σ then − | − `c C[M] : b is well typed. Two open terms in
the same context are contextually equivalent, written Θ | Γ `c M ≡ N : σ if
[[C[M]]] = [[C[N]]] for all (Θ,Γ, σ)− b contexts C[−].

Lemma 4.7 Suppose TRel(eqX)(f, g) for some set X and suppose f, g both
have empty support. Then f = g.

See Appendix B for a proof of Lemma 4.7.

Theorem 4.8 If Θ | Γ `c M,N :σ and M ∼σ N then Θ | Γ `c M ≡ N :σ.

Proof. Suppose C[−] is a (Θ,Γ, σ)−b context. By item (iii) of Theorem 4.6
C[M] ∼b C[N], which by Lemma 4.7 implies [[C[M]]] = [[C[N]]]. 2

5 Algebraic operations in the relational model

We now show how the algebraic operations of Section 3.1 preserve relations
on store by using the relational model. At the moment, we are missing one
ingredient for this: a relational interpretation of the atom abstraction [A(−)]X
from nominal sets. To this end define [ARel

r](X, Y,Q) to be the relation on
([ARel

dom(r)]X, [ARel
cod(r)]Y) relating (x, y) if Q(x@ ar, y@ ar) for all fresh ar.

Theorem 5.1 Let (X, Y,Q) be an object in Rel and r = (b,b′, R) be an
element in ΣRel. Let lookup, update, new be as defined in Section 3.1. Then

(updateX,b, updateY,b′) : KQ
Rel → ARel

r →fs r→fs KQ
Rel

(lookupX,b, lookupY,b′) : (r→fs KQ
Rel)→ ARel

r →fs KQ
Rel

(newX,b, newY,b′) : [ARel
r]KQ

Rel → r→fs KQ
Rel

14

Møgelberg

Proof. We just show the case of new. Suppose ([ARel
r]KQ

Rel)(f, g), r(v, v′) and
Q(x, y). Write A for the union of the supports of f, g, x, y. We must show
that if s, s′ are stores satisfying r(s(ar), s

′(ar)) for all ar ∈ A, then

fresh a. (f@ a)(x)(s[a 7→ v]) = fresh a′. (g@ a′)(y)(s′[a′ 7→ v′]) . (10)

The requirements on a, a′ in the equation above is that they are fresh (i.e.,
not in A) elements of ARel mapped by the sorting ARel → ΣRel to relations
whose domain and codomain are respectively b and b′. As long as these
requirements are satisfied, the elements on both sides of (10) are independent
of the concrete choice of atoms.

This means that we are allowed to choose some fresh ar and use
that for both atoms above. Since ([ARel

r]KQ
Rel)(f, g) and Q(x, y) also

KRel((f@ ar)(x), (g@ ar)(y)). Moreover, the support of both (f@ ar)(x) and
(g@ ar)(y) is contained in A ∪ {ar}, and

r′(s[ar 7→ v](a′r′), s
′[ar 7→ v′](a′r′))

for all a′r′ ∈ A ∪ {ar}. So (f@ ar)(x)(s[ar 7→ v]) = (g@ ar)(y)(s′[ar 7→ v′])
which proves (10). 2

If we instantiate the case for new with Q = KeqX
Rel we get the para-

metricity principle advertised in the introduction. One way to read the
relation [ARel

r](TRel[[σ]]Rel) is that it relates two computations with bound
cell names, if the computations preserve the relation r between the con-
tents of the abstracted cells. The statement for new in Theorem 5.1 is
then the relational reasoning principle for local store. To see this, sup-
pose that a : b | − `c M : σ and a : b′ | − `c N : σ are such that
[ARel

r](TRel([[σ]]Rel))((a. [[M]](a7→a)), (a. [[N]](a7→a))), and r([[V]], [[V ′]]). Then also

TRel([[σ]]Rel)(newb,[[σ]]((a. [[M]](a7→a)))([[V]]), newb′,[[σ]]((a. [[N]](a7→a))([[V
′]])))

i.e.,
let a : b = new (V) inM ∼ let a : b′ = new (V ′) inN ,

which by Theorem 4.8 implies contextual equivalence.

Another consequence of Theorem 5.1 is that we can use the relational
model to interpret not only the Fine-Grained CBV calculus with base types
in Σ as we saw in Section 4, but also the larger Fine-Grained CBV with base
types in ΣRel. Each base type in ΣRel is interpreted as itself, and the store
access operations are interpreted using the algebraic operations

update(X,Y,Q),r = (updateX,b, updateY,b′)

lookup(X,Y,Q),r = (lookupX,b, lookupY,b′)

new(X,Y,Q),r = (newX,b, newY,b′) .

15

Møgelberg

Rather than considering algebraic operations, we could also consider generic
effects, which also preserve relations. For example, the generic effect corre-
sponding to new (6) satisfies

(allocb,⊗iAbi
, allocb′,⊗iAb′

i

) : ⊗i Ari × [[r]]→ TRel((⊗iAri)⊗ Ar) .

6 Examples

To illustrate how the relational model captures relational reasoning for local
store we show how to prove contextual equivalence of the counters defined in
Section 2.

In the example of the counters, the signature Σ consists of the single type
Int interpreted as the set Z of integers. We write counterup and counterdown for
the two counters. Consider the relation R : Rel(Z,Z) relating x, z iff x = −z,
and consider the four functions fd, fc, gd, gc : Z× Z→ Z defined as follows

fd(x, z) = z + x fc(x, z) = z − x gd(x, z) = z + x gc(x, z) = x− z .

The pair f = (fd, fc) defines a morphism eqZ×R→ R and the pair g = (gd, gc)
defines a morphism eqZ ×R→ eqZ in Rel.

Consider a third counter counterrel defined in Fine-Grained-CBV over ΣRel

as

let a : R = new ((0, 0)) in return (λx : eqInt.reada as z. a := f(x, z); return (g(x, z)))

Interpreting counterrel in the relational model gives
([[counterup]], [[counterdown]]) and so by well definedness of the interpreta-
tion in the relational model counterup ∼ counterdown. By Theorem 4.8 we
conclude that counterup and counterdown are contextually equivalent.

For a very different kind of example, consider the two computation terms

p1 = let a : Int = new (0) in returnλx : ref Int. (x == a)

p2 = returnλx : ref Int. return (false) .

Both these have type ref Int→ Bool. This example not only requires Int,Bool
to be base types, but also requires a comparison operator on reference. The
latter, however, can be defined using equality on integers as

λx : ref Int.return (λy : ref Int.readx as z. y := z+1; readx asw. return¬(w == z))

The computations p1, p2 should intuitively be equivalent because the first can
never leak the locally created variable a, and so a can never occur as input to
the function. We can give a formal argument for contextual equivalence using
the relational model as follows.

16

Møgelberg

Since p2 equals let a : Int = new (0) in return (λx : ref Int. return (false)) by
the garbage collection axiom, it suffices to show that

([[a : Int | x : Int `c x == a : Bool]], [[a : Int | x : Int `c return (false) : Bool]])

define a map of type ARel
r × ARel

eqZ
→ TRel(eq[[Bool]]) in Rel for some relation r

on integers containing (0, 0). Recall that ARel
r (a, a′) holds iff a = a′ is some

atom of sort r, so verifying this boils down to showing that we can choose r in
such a way that [[x == a]](a7→ar,x 7→a′eqZ) is η(false) ∈ T ([[Bool]]), for all ar, a

′
eqZ

where η is the unit of T . But in fact, if we choose r different from the identity
relation, then this will always hold, because ar, a′eqZ

will range over the disjoint

sets ARel
r ,ARel

eqZ
.

7 Towards more advanced relations on store

Up to now, the relations on store that we have considered have been the
simplest possible: relating two stores if the contents of their cells are related
pointwise. An obvious next step is to consider relations relating contents of
several cells, such as

{(s, s′) | s(a) + s(a′) = s′(a)}

In this section we sketch how one can construct a relational model for
reasoning with these kinds of relations on store using slightly more advanced
atom sortings. The first step is to change the sorts in the relational model to
relations on vectors of base types

ΣRel = {(b,b′, R) | b,b′ ∈ Σ∗, R : Rel([[b]], [[b′]]), R non-empty} .

where [[b]] is defined to be the product
∏

i[[bi]]. Now consider the sets of atoms
defined as

Adom =
∐

(b,b′,R)∈ΣRel

∐
0≤i≤|b|A ARel = ΣRel × A

Acod =
∐

(b,b′,R)∈ΣRel

∐
0≤i≤|b′|A

The projection defines a sorting ARel → ΣRel, and there are also sortings
dom: Adom → Σ and cod: Acod → Σ defined as dom((b,b′, R), i, a)) = bi and
cod((b,b′, R), i, a)) = b′i. There is a pair of homomorphisms

Perm(Adom → Σ) � Perm(ARel → Σ) - Perm(Acod → Σ)

e.g., the homorphism on the left maps the transposition
(((b,b′, R), a) ((b,b′, R), a′)) to the permutation

(((b,b′, R), 1, a) ((b,b′, R), 1, a′)) ◦ . . . ◦ (((b,b′, R), n, a) ((b,b′, R), n, a′))

17

Møgelberg

where n is the length of b. This pair of homorphisms induces a pair of functors

Nom[dom: Adom→Σ]
- Nom[ARel→ΣRel]

� Nom[cod: Acod→Σ] ,

and with these in hand one can construct the category Rel exactly as before.

As we saw in Section 5, the key ingredient needed for expressing the para-
metricity principle for allocation was the atom abstraction in Rel. The defini-
tion can be generalised to the setting of the current section as follows. Given
r = (b,b′, R) in ΣRel and (X, Y,Q) in Rel, we can defined the relation

[ARel
r]Q ⊆ [Adom

b
]X × [Acod

b′
]Y

where

[Adom
b

]X = [Adom
b1

] . . . [Adom
bn]X

[Acod
b′

]Y = [Acod
b′1

] . . . [Acod
b′m

]Y

by relating (x, y) iff for all fresh (r, a),

Q(x@ (r, 1, a) . . .@ (r, n, a), y@ (r, 1, a) . . .@ (r,m, a)) .

The relation [ARel
r](TRel[[σ]]Rel) relates two computations with bound sequences

of cell names, if the computations preserve the relation r between the contents
of the abstracted cells. Using an appropriate generalisation of Theorem 5.1
involving vectors of update, lookup and new operations on each side, one can
use this to prove soundness of relational reasoning using relations between
vectors of cells. We leave further details to future publications.

References

[1] N. Benton and B. Leperchey. Relational reasoning in a nominal semantics for storage. In
TLCA, volume 3461 of LNCS, pages 86–101. Springer, 2005.

[2] N. Bohr and L. Birkedal. Relational reasoning for recursive types and references. In Naoki
Kobayashi, editor, APLAS, volume 4279 of Lecture Notes in Computer Science, pages 79–96.
Springer, 2006.

[3] Brian Dunphy and Uday S. Reddy. Parametric limits. In LICS, pages 242–251. IEEE
Computer Society, 2004.

[4] J. Egger, R. E. Møgelberg, and A. Simpson. Enriching an effect calculus with linear types. In
CSL, volume 5771 of LNCS, pages 240–254. Springer, 2009.

[5] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding.
Formal Aspects of Computing, 13:341–363, 2001.

[6] Paul Blain Levy. Call By Push Value, a Functional/ Imperative Synthesis. Kluwer, December
2003.

[7] P.B. Levy, J. Power, and H. Thielecke. Modelling environments in call-by-value programming
languages. Information and Computation, 185, 2003.

18

Møgelberg

[8] E. Moggi. Notions of computation and monads. Information and Computation, 93:55–92,
1991.

[9] P. W. O’Hearn and J. C. Reynolds. From algol to polymorphic linear lambda-calculus. Jrnl.
A.C.M., 47(1):167–223, January 2000.

[10] P. W. O’Hearn and R. D. Tennent. Parametricity and local variables. Jrnl. A.C.M., 42(3):658–
709, 1995.

[11] F. J Oles. A category-theoretic approach to the semantics of programming languages. PhD
thesis, Syracuse University, Syracuse, N.Y, 1982.

[12] A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with local state. In Higher
Order Operational Techniques in Semantics, pages 227–273. Cambridge University Press, 1998.

[13] G. Plotkin. Call-by-name, call-by-value, and the λ-calculus. Theoret. Comp. Sci., 1:125–159,
1975.

[14] G. Plotkin and J. Power. Notions of computation determine monads. In FOSSACS, volume
2620 of LNCS, pages 342–356, 2002.

[15] G. D. Plotkin and J. Power. Algebraic operations and generic effects. Appl. Categ. Structures,
11(1):69–94, 2003.

[16] John C. Reynolds. The essence of Algol. In Proceedings of the 1981 International Symposium
on Algorithmic Languages, pages 345–372. North-Holland, 1981.

[17] M. R. Shinwell and A. M. Pitts. On a monadic semantics for freshness. Theor. Comput. Sci,
342(1):28–55, 2005.

[18] S. Staton. Completeness for algebraic theories of local state. In FOSSACS, volume 6014 of
LNCS, pages 48–63. Springer, 2010.

A Proof of Theorem 4.6

We first give the definition of the isomorphisms [[σ]]dom ∼= [[σ]]cod. Abusing
notation, we shall simply write (−)op for both directions of this isomorphism.

The needed isomorphism

[[ref b]]dom = ARel
dom(b) → [[ref b]]cod = ARel

cod(b)

(notation as in (7, 8)) is simply a restriction of the (−)op assumed to exist.
For the case of base types b, we can take the needed isomorphism to be simply
the identity.

For the rest of the cases we need an isomorphism

Kdom
∼= Kcod

This is defined to map k to kop where kop(s) = k(s ◦ (−)op). It is convenient
to write sop for s ◦ (−)op. The rest of the cases of [[σ]]dom ∼= [[σ]]cod are simply
defined by lifting the isomorphism to function spaces in the usual way by
defining f op(x) = (f(xop))op.

We must show that (−)op ◦ [[σ]]Rel is a symmetric and zigzag-closed rela-
tion on [[σ]]dom. This is done by induction on σ. The case of base types is

19

Møgelberg

trivial. In the case of references the relation (−)op ◦ [[ref b]]Rel is the relation
{(aeqb , (aeqb)op) | aeqb ∈ ARel}, which is clearly symmetric and zigzag-closed.

We show that (−)op ◦ KRel is a symmetric relation on Kdom. For this it
suffices to show that (kd, kc) ∈ KRel implies (kop

c , k
op
d) ∈ KRel for any kd ∈

Kdom, kc ∈ Kcod. So, assume that there exists some A ⊆fin ARel such that for
all

∀sd, sc. (∀ar ∈ A. r(sd(ar), sc(ar))) =⇒ kd(sd) = kc(sc) (A.1)

we will show that for all sd, sc

∀sd, sc. (∀ar ∈ Aop. r(sd(ar), sc(ar))) =⇒ kop
c (sd) = kop

d (sc) (A.2)

where Aop = {a | aop ∈ A}. Note first that (A.2) can be reformulated as

∀sd, sc. (∀ar ∈ A. rop(sd(a
op
r), sc(a

op
r))) =⇒ kop

d (sd) = kop
c (sc) (A.3)

If (sd, sc) satisfy the hypothesis of (A.3) then (sop
c , s

op
d) satisfy the hypothesis

of (A.1), from which we conclude kd(s
op
c) = kc(s

op
d). Since kd(s

op
c) = kop

d (sc)
and kc(s

op
d) = kop

c (sd), we conclude the proof of (−)op ◦KRel being symmetric.

To show that (−)op ◦ KRel is zigzag-closed it suffices to show that KRel

is. If A witnesses KRel(kd, kc), A
′ witnesses KRel(k

′
d, kc) and A′′ witnesses

KRel(k
′
d, k
′
c) then A ∪ A′ ∪ A′′ witnesses KRel(kd, k

′
c).

The rest of the proof follows from the following easy lemma.

Lemma A.1 Suppose R ⊆ X×Y and S ⊆ W×Z are relations on sets. Con-
sider the relation R→ S ⊆ (X → W)× (Y → Z) relating f, g if S(f(x), g(y))
for all x, y such that R(x, y). Then

• If R and S are symmetric so is R→ S.

• If S is zigzag-closed, so is R→ S.

B Proof of Lemma 4.7

For the proof we need the following definition and lemma. We say that an
element x has support on the diagonal, if all a in the support of x are mapped
by p to an identity relation.

Lemma B.1 Suppose kd, kc ∈ Kdom both have support on the diagonal. Then
(kd, k

op
c) ∈ KRel iff kd = kc.

Proof. Suppose first (kd, k
op
c) ∈ KRel and s ∈ Sdom. We must show that

kd(s) = kc(s). Note first that since kc has support on the diagonal, so has kop
c .

Since aop
eqb

= aeqb , also s(aeqb) = sop(aeqb) for any aeqb , so the requirement of
support on the diagonal implies the condition

∀ar ∈ supp(kd) ∪ supp(kop
c). r(s(ar), s

op(ar))

20

Møgelberg

to be satsified. Now, by Lemma 4.1 we conclude kd(s) = kop
c (sop). Since by

definition kop
c (sop) = kc(s) we conclude kd = kc.

On the other hand, suppose we are given k with support on the diagonal
and sd, sc such that

∀ar ∈ supp(k) ∪ supp(kop). r(sd(ar), sc(ar)) .

We must show that k(sd) = kop(sc). Since k has support on the diagonal, the
condition says that sd and sc agree on the support of k, so k(sd) = k(sc), by
Lemma 3.1. Since any store s agrees with sop on the support of k, Lemma 3.1
also implies that k = kop, and so we conclude k(sd) = kop(sc). 2

Suppose TRel(eqX)(f, g) for some set X and suppose f, g both have empty

support. Precisely, f, g are both elements of KKXdom
dom and the assumption of

TRel(eqX)(f, g) should be read up to the isomorphism constructed in Section A.
We will show that f(k) = g(k) for all k.

The continuation k may not have support on the diagonal, but there is a
permutation π such that π · k does. Since f, g both have empty support it
suffices to show that f(π · k) = g(π · k).

The assumption says exactly that (f, gop) : (eqX → KRel) → KRel. Note
that for any x, (π · k)(x) has support on the diagonal, and so by Lemma B.1

(eqX → KRel)(π · k, (π · k)op) .

So (f(π · k), gop(π · k)op) ∈ KRel. Since both these elements have support on
the diagonal,

f(π · k) = (gop(π · k)op)op .

Finally, since (gop(π · k)op)op = g(π · k) we conclude f = g.

21

	Introduction
	Parametricity for store access operations

	Acknowledgement
	A call-by-value language with local store
	A model in nominal sets
	Algebraic operations for local store

	A relational model construction
	Approximating contextual equivalence

	Algebraic operations in the relational model
	Examples
	Towards more advanced relations on store
	References
	Proof of Theorem 4.6
	Proof of Lemma 4.7

