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Abstract

According to Strachey, a polymorphic program is para-
metric if it applies a uniform algorithm independently of
the type instantiations at which it is applied. The notion
of relational parametricity, introduced by Reynolds, is one
possible mathematical formulation of this idea. Relational
parametricity provides a powerful tool for establishing data
abstraction properties, proving equivalences of datatypes,
and establishing equalities of programs. Such properties
have been well studied in a pure functional setting. Real
programs, however, exhibit computational effects. In this
paper, we develop a framework for extending the notion of
relational parametricity to languages with effects.

1. Introduction

The theory of relational parametricity, proposed by
Reynolds [21], provides a powerful framework for es-
tablishing properties of polymorphic programs and their
types. Such properties include the “theorems for free”
of Wadler [26], universal properties for datatype encod-
ings, and representation independence properties for ab-
stract datatypes. These results are well established, see
e.g. [18], for the pure Girard/Reynolds second-order -
calculus (a.k.a. system F) which provides a concise yet re-
markably powerful calculus of typed total functions.

The generalisation of relational parametricity to richer
calculi can be problematic. Even the addition of recursion
(hence nontermination) causes difficulties, since the fixed-
point property of recursion is incompatible with certain
consequences of relational parametricity as usually formu-
lated.! This issue led Plotkin [17] to propose using second-
order linear type theory as a framework for combining para-
metricity and recursion. Such an approach has been further
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IRelational parametricity implies types form a cartesian closed cate-
gory with finite sums, and any such category with fixed points is trivial.

investigated in [1, 2]. One of its many good properties is
that it supports a rich collection of polymorphic datatype
encodings with the desired universal properties following
from relational parametricity.

The addition of recursion is just one possible extension
of second-order A-calculus. For example, in [14], Parigot
(implicitly) considers an othogonal extension obtained by
adding control operators. Recently, M. Hasegawa [5] has
developed a syntactic account of relational parametricity
for Parigot’s calculus. An intriguing fact he observes is
that, even though the technical frameworks for the two ap-
proaches are quite different, there are striking analogies be-
tween his “focal” parametricity and Plotkin’s linear para-
metricity. Accordingly, Hasegawa poses the question of
whether it is possible to find a unifying framework for
relational parametricity that includes both his work and
Plotkin’s linear parametricity as special cases.

In this paper we answer this question by providing a gen-
eral theory of relational parametricity for computational ef-
fects. Not only does our approach generalise both Plotkin’s
and Hasegawa’s, but it also applies across the full range of
computational effects (e.g., nondeterminism, probabilistic
choice, input/output, side effects, exceptions, etc.).

We build on the work of Moggi [12, 13], who proposed
incorporating effects into type theory by adding a new type
constructor for typing “computations” rather than values.
For every type B, one has a new type ! B (our non-standard
notation is justified in Section 5) whose elements repre-
sent computations that (potentially) return values in B, and
which (possibly) perform effects along the way. Seman-
tically, ! is interpreted using a computational monad that
encapsulates the relevant kinds of effect.

In order to obtain an account of relational parametricity
for monads, one needs to solve a problem. Basic to rela-
tional parametricity is the idea of treating types as relations.
Polymorphic functions are required to preserve derived re-
lations under all possible instantiations of relations to type
variables. To extend this to computational effects it is neces-
sary to determine how the operation ! determines a relation
IR C A x IB from any relation R C A x B. That is one
needs a “relational lifting” of the | operation. The literature



contains two approaches to defining such a relational lifting
for ! [4, 8] (although neither is presented in the context of
polymorphism). In the present paper we instead side-step
the issue in a surprising way: we show that, given the right
choice of underlying type theory, ! is polymorphically de-
finable in terms of more basic primitives.

Our type theory, which we call PE, is presented in Sec-
tion 2. It is closely related to Levy’s system of call by
push-value (CBPV) [9], which subsumes call-by-name and
call-by-value calculi with effects. Levy emphasises the im-
portance of having two general classes of type: value types,
which classify “values”, and computation types, which clas-
sify “computations”. The intuitive difference between the
two is that “a value is” and “a computation does”. Techni-
cally, this intuition is supported by a wealth of semantic and
operational interpretations of the framework, see [9].

With general computation types at hand, one can give the
! constructor the following polymorphic definition:

IB =get VX.(B— X)— X (X notfreeinB), (1)

where importantly the type variable X ranges over compu-
tation types only. As we shall see, the type constructors
used in the definition all have natural relational interpreta-
tions, and hence the defined ! operation inherits an induced
relational lifting.

In order to reason about parametricity in PE, we build a
relationally parametric model of our calculus. Even in the
case of ordinary second-order A-calculus, the construction
of parametric models is non-trivial. In our case, the interac-
tion between value and computation types contributes sig-
nificant additional complexities. To keep things as simple as
possible, we work with a set-theoretic model, exploiting the
fact that it is consistent to do so if one keeps to intuitionistic
reasoning. The details are presented in Sections 3 and 4. As
a first application of the model, we prove in Section 5 that
the ! operator, as defined by (1) above, does indeed enjoy
its expected universal property (Theorem 5.2).

In Section 6, we consider how to specialise the generic
calculus PE to specific effects of interest. One useful form
of specialisation recurs in many examples. It is common
for effects to have associated operations that trigger and/or
react to “effectful” behaviour. Typically, one would like to
give an n-ary such operation the polymorphic type:

VX, (IX)" = 1X . )

For example, a binary nondeterministic choice operation
forms a computation by choosing between two possible
continuation computations. Also, the “handle” operation
for an exception e, can be viewed as a binary operation
where handle®(p, ¢) behaves like p unless p raises excep-
tion e, in which case ¢ is executed. Since such operations
are computed in a type-independent way, they are “para-
metric” in the informal sense of Strachey. We show that

such operations are also parametric according to our the-
ory of relational parametricity. This involves two technical
developments of independent interest. The first relates to
recent work by Plotkin and Power [20], in which they ob-
serve that many operations on effects are “algebraic oper-
ations” in the sense of universal algebra. As Theorem 6.1,
we obtain that n-ary algebraic operations are in one-to-one
correspondence with (parametric) elements of type:

VX X" - X, 3)

where again X ranges over computation types. Thus alge-
braic operations can be incorporated within PE as constants
of the above type (which is more informative than (2), since
monadic types ! B are always computation types).

Not all useful operations on effects arise as algebraic
operations; e.g., exception handling is a counterexample.
However, exception handling can be added to PE using a
different strengthening of (2) for its type:

VX, (1X)* — IX . (4)

This correctness of this typing is again based on a general
result (Theorem 6.2) which characterises the (parametric)
elements of the above type (the nature of the linear arrow is
explained in the sequel) in terms of a naturality condition.
Finally, in Section 7, we outline the relationship be-
tween PE and other approaches to parametricity and effects.
Plotkin’s linear parametricity arises as a specialisation of
PE valid in the special case of “commutative” monads. We
also briefly discuss how Hasegawa’s account of parametric-
ity and control arises as a specialisation of PE. The details
for this appear in a companion paper [10].
Acknowledgements We are indebted to Masahito
Hasegawa for first suggesting that (1) should be a general
phenomenon within a monadic framework incorporating
both linear and continuation-passing settings as special
cases. We thank him and Paul Levy for helpful discussions.

2. A polymorphic calculus

We start by defining the type theory PE for polymor-
phism and effects. As discussed in the introduction, fol-
lowing [9], PE contains both value types A,B,C,... and
computation types A,B,C,.... A central feature of our
type theory is that we allow polymorphic type quantification
over both value types and computation types. Accordingly,
we use X, Y, Z,... to range over a countable set of value-
type variables, and X,Y, Z,... to range over a disjoint
countable set of computation-type variables. Value types
and computation types are then mutually defined by:

B:= X|B—C|VX.B|X|A -B|VX.B
A:=B—-A|VXA|X|VX.A



Ie:B|AFt:C ''Ars:B—C T|-F¢tB
[ a:B[—Fa:B T|AF Az:B.t:B—C T|AF s(t): C
I'|AF¢t:B I'|AF ¢ VX.B
X ¢ ftv(T, A)
T|AF AX.t: VX.B T |A F t(A): B[A/X]
'lz:AFt:B F'l-Fs:A—-B T|AFt:A
Dlz:AFz:A T'|—F Xz:At:A—oB T'|AF s(t):B
I'|AF¢t:B I'|AF¢:VX. B

I'|AF AX.t:VX.B

X ¢ ftv(T, A)

['[AF t(A): B[A/X]

Figure 1. Typing rules.

Note that the computation types form a subcollection of the
value types. The intuition here is that any (active) com-
putation has a corresponding (static) value, its “thunk”. In
contrast to [9], we make this passage from computations to
values syntactically invisible.

For semantic intuition, one should think of value types as
representing sets, and of computation types as representing
Eilenberg-Moore algebras for some computational monad
on sets. Then B — C is the set of all functions. The spe-
cial case B — A is a computation type because algebras
are closed under powers, with the algebra structure defined
pointwise. The type A —o B represents the set of all algebra
homomorphisms from A to B. In general, there is no natural
algebra structure on this set, hence the type A — B is not a
computation type. Finally VX. B and V.X. B are polymor-
phic types, with the polymorphism ranging over value types
and computation types respectively. In either case, when B
is a computation type, the polymorphic type is again a com-
putation type. This is justified by Proposition 4.1 below.

Our types, which are based on function spaces and poly-
morphism, are are not directly comparable with Levy’s [9],
which include sums and products. Nonetheless, we shall
see in Section 7 that we can encode Levy’s calculus within
ours. Given this, our calculus extends Levy’s with polymor-
phic types (cf. [9, §12.4]) and linear function types. In fact,
the latter have a particularly nice explanation in terms of
Levy’s stack-based operational framework, within which a
value of type A —o B can be understood as a stack turning a
computation of type A into a computation of type B.

Having computation types as special value types allows
us to base our type system on a single judgement form:

F'AFt:B,

where I" and A are disjoint contexts of variable typings sub-
ject to the following conditions: either (i) A is empty, or

(ii) B is a computation type and A has the form z: A, where
A is also a computation type. Thus the context A, which,
following [3], we call the stoup of the typing judgement,
contains at most one typing assertion. When we want to be
explicit about which of (i) or (ii) applies, we write:

G T|-Ft:B
) T'|z:AF¢t:B.

In the first case, the intuitive interpretation of ¢ is as an ar-
bitrary function from the product of all types in T" to the
type B. In the second case, the interpretation of ¢ is as a
function from I' x A to B that is an algebra homomorphism
in its right-hand argument (i.e. for every fixed set of val-
ues for the I" variables, the induced function from A to B is
a homomorphism). From this interpretation, one sees why
the stoup is restricted to computation types, and also why,
when the stoup is nonempty, the result type is required to be
a computation type. (Similar considerations are in fact fa-
miliar from other stoup-based calculi, e.g., Girard’s LU [3].)

The type system is presented in Figure 1. The side condi-
tions refer to the set ftv(I") of free type variables in a context
T", which is defined in the obvious way. Of course, the type
rules are restricted to apply only when the premises satisfy
the conditions on judgements imposed above. In such cases,
the rule conclusions also satisfy these conditions.

It is immediate that the type system for value types ex-
tends the standard second-order A-calculus of Girard and
Reynolds. Indeed, the typing rules for the relevant types
(X, B — Cand VX. B), when restricted to the case with
empty stoup, are just the usual ones. It is well-known that
the second-order A-calculus is powerful enough to encode
many type constructors including products, sums, inductive
and coinductive types. We include those definitions we shall
need later in Figure 2.



1 —ges VX. X — X
AxB=4etVX.(A—=-B—-X)— X
0 =get VX. X
A4+B=4e VX. A—=X) - (B—X) - X (X €ftv(A,B))

(X ¢ftv(A,B))

Figure 2. Definable value types

3. Semantic setting

In the previous section, we appealed to semantic intu-
ition by explaining value types as sets and computation
types as algebras for a monad on sets. Unfortunately, this
intuition runs into the technical problem that there are no
set-theoretic models of polymorphism [22]. However, it
was shown by Pitts [15] that set-theoretic models of poly-
morphism are possible if intuitionistic set theory is used
rather than ordinary classical set theory. We shall exploit
this by working with such an intuitionistic set-theoretic
model. The advantage of this strategy is that the set-
theoretic framework allows the development to concentrate
entirely on the difficulties inherent in defining a suitable
notion of relational parametricity, which are formidable in
themselves, rather than on incidental details specific to a
particular concrete model. Our approach results in no loss
of generality. All denotational models of relational para-
metricity of which we are aware can be exhibited as full
subcategories of models of intuitionistic set theory.

Henceforth in this paper, we use Friedman’s Intuition-
istic Zermelo-Fraenkel set theory (IZF) as our meta-theory,
see e.g. [25]. IZF is the established intuitionistic counterpart
of classical Zermelo-Fraenkel set theory (ZF). Just as in or-
dinary mathematics one works informally in ZF, we shall
work similarly informally within IZF. Readers who are not
familiar with IZF and the distinctions between intuitionis-
tic and classical reasoning will anyway be able to follow
the development, since IZF is a subtheory of ZF. Howeyver,
such readers will have to place their trust in the authors that
the reasoning principles of IZF are never violated.

Value types will be modelled as sets, but it is known that
it is not possible to interpret types in the second-order A-
calculus as arbitrary sets [16]. Thus we require a collection
of special sets for interpreting types. Such special sets need
to be closed under the set-theoretic operations used in the
interpretation. Accordingly, we assume that we have a full
subcategory C of the category Set of sets that satisfies:

(C1) f AeCand A = Bin Set then B € C.

(C2) For any set-indexed family {A4;};c; of sets in C, the
set-theoretic product [, ; A; is again in C.

(C3) Given A, B € C and functions f,g: A — B, the
equalizer {x € A | f(z) = g(z)} is again in C.

(C4) There is a set C of objects of C such that, for any
A € C, there exists B € C with B =2 A.

By items (C2) and (C3), the category C is small-complete
with limits inherited from Set. Since function spaces are
powers, for any set A and any B € C, the function space B
is in C, i.e. C is an exponential ideal of Set. In particular,
C is cartesian closed. By (C1), the category C is not a small
category. However, by (C4) it is weakly equivalent to its
small full subcategory on the set of objects C.

In classical set theory, the above conditions imply that
every object in C is either the empty set or a singleton set.
The reason we work in IZF is that this renders it consistent
for C to be an interesting category. Indeed, it is consistent
for the natural numbers to be an object of C. This consis-
tency property derives from the work of Hyland ez. al. on
small-complete small categories [6, 7]. However, our per-
spective is different. Rather than assuming a small category
that is complete only in a restricted technical sense [7, 23],
our category C is genuinely complete, but only weakly
equivalent to a small category. This approach, which sim-
plifies the development, is taken from [24].

According to our informal explanation of computation
types in Section 2, they should be interpreted as Eilenberg-
Moore algebras for a monad 7" on C. For any such monad
T, the category A of algebras comes with a forgetful functor
U: A — C and the following properties are satisfied.

(A1) U “weakly creates limits” in the following sense. For
every diagram A in A and limiting cone lim U (A) of
U(A) in C, there exists a specified limiting cone lim A
of A in A such that U (lim A) = lim U(A).

(A2) U reflects isomorphisms (i.e. if Uf is an isomorphism
in C then f is an isomorphism in .4).

(A3) For objects A, B of A, the hom-set A(A, B) is an
object of C.

(A4) There exists a set A of objects of A such that for every
A € A, there exists B € A with B isomorphic to A.

Indeed, (A1) and (A2) are standard. Property (A3) holds
because A(A, B) arises as an equalizer in C of two evident
functions (UB)V4 — (UB)TVA. Also, (A4) holds because
the collection of algebra structures on objects of C is a set.

The reason for identifying (A1)-(A4) is that, in order to
interpret the calculus of Section 2, it is sufficient to work
with any category A and functor U: 4 — C satisfying
(A1)—(A4) above.> Henceforth, we assume this situation.

It is convenient to maintain algebraic terminology for the
category A. Thus we call the objects of A algebras. By
(A1) and (A2), the functor U is faithful, thus we can identify
the morphisms A(A, B) with special functions from UA to
UB, which we call homomorphisms. We write A — B for

2In particular, the weakening of limit creation in (A1) is crucial to the
application in [10].



the set of homomorphisms from A to B. (N.B. by (A3) the
set A — B is an object of C.)

In Section 4 we interpret the type theory of Section 2
using U: A — C. In doing so, we formulate relational
parametricity using binary relations in C and A. As usual,
these are defined as subobjects of products. First, we review
the basic properties of subobjects in C and A.

We write Sub¢(A) for the set of subobjects of A in C.
Since the inclusion C — Set preserves limits and hence
monomorphisms, this is explicitly defined by:

Sube(A) = {BeC|BC A}.

We call the elements of Sub¢ (A) the C-subsets of A.
Similarly, we write Sub_4(A) for the collection of sub-
objects of an algebra A in A. Because U preserves lim-
its, every mono B — A in A is mapped by U to a mono
UB ~— UA in C. Thus, for every A € A, the functor U
determines a function Sub4(A) — Subc(UA). By (Al)
and (A2), this function preserves and reflects the ordering.
We say that A C U A carries a subalgebra if it represents a
subobject in the image of the map Sub 4(4) — Sub¢(UA)
induced by U. In fact, Sub 4(A4) is given explicitly by:

Sub4(A) = {B € C| B C UA and carries a subalg. of A} .

We introduce notation for binary relations. For A €
C, we write A4 for the diagonal (identity) relation in
Sub¢(A x A). Similarly, for A € A, we write A 4 for the
diagonal relation on U A, which is indeed in Sub 4 (A x A).
For f: A - A,g: B — BinC and R € Sub¢(A x B)
we write (f,9) "R for {(z,y) | (f(2),9(y)) € R}. No-
tice that if f: A — A,g: B — Bin Aand Q €
Sub4(A x B) then (f,9) ' Q € Suba(A’ x B').

To formulate relational parametricity, we require
two specified collections of admissible relations, one
Rec(A,B) C Sube(A x B) on objects of C and one
RA(A,B) C Sub4(A x B) on objects of A. These are
required to satisfy:

(R1) For each object A of C the diagonal relation A, is
in R¢(A, A) and likewise for each object A of A the
diagonal A 4 isin R 4(4, A).

(R2) Admissible relations are closed under reindexing, i.e.,
if R € Re(A,B) and f: A — A, g: B — B,
then (f,g) 'R € Re(A', B') and if Q € Ra(A, B)
and f: A" — A, g: B' — B, then (f,9)'Q €
Ra(A', B

(R3) For any set of admissible C- (respectively .A-)relations
on the same pair of objects, the intersection is an ad-
missible C- (respectively A-)relation.

(R1) and (R2) imply that graphs of functions are admissible,

ie., if f: A — Bthen (f) =qer {(z,y) | f(z) =y} €
Rec(A,B)andif g: A — B then (g) € Ra(A, B).

By a parametric model of PE we shall mean any cate-
gory C satisfying (C1)—(C4), together with a category A and
functor U: A — C satisfying (A1)—(A4) and collections
Rec and R 4 satisfying (R1)-(R4) above. The proposition
below shows that every monad gives rise to a parametric
model of PE. Thus the theory of relational parametricity for
PE that we shall develop over such models is applicable to
arbitrary computational monads.

Proposition 3.1 Given C satisfying (CI1)-(C4) and a
monad T on C, let A be the category of algebras for the
monad, U the forgetful functor and define R¢(A,B) =
Sube (A x B) and R 4(A, B) = Sub4(A x B). This data
defines a parametric model of PE.

Although the above is a useful general result, we comment
that some applications of PE require a different choice of
model. For example, the application of PE to control in [10]
makes crucial use of the permitted flexibility in the choice
of A, U and R 4. (The situation is analogous to that for
Levy’s CBPV [9], where the natural adjunction model of
control does not involve the Eilenberg-Moore category.)

4. Interpreting the calculus

In this section we interpret PE in any parametric model
as defined in Section 3. As adumbrated there, a value type
B will be interpreted as a set C[B] in C, and a computa-
tion type A will be interpreted as an algebra A[JA]. In order
to incorporate relational parametricity, we shall also give
a second interpretation of a value type B as an admissible
C-relation R[B]. For computation types A, it will hold au-
tomatically that R[A] is also an admissible .A-relation.

Given a set of type variables ©, a O-environment is a
function v mapping every value-type variable X € © to an
object v(X) of C, and every computation-type variable X €
O to an object (X)) of A. A relational ©-environment is a
tuple p = (p1, p2, pr), Where: pi, po are ©-environments;
for every value-type variable X € O,

pR(X) € RC(pl(X)apQ(X)) ;

and, for every computation-type variable X € ©,

PrR(X) € Ra(p1(X), p2(X)) -

For each value type B(©) (i.e. type B with ftv(B) C ©)
and O-environment -, we define an object C[B], of C;
and, for each computation type A(©) and O-environment
7, we define an object A[A], of A. Interdependently
with the above, for each value type B(©) and relational ©-
environment p, we define an admissible C-relation R[B], €
Rc(C[B],.,C[B]p,)- The definitions are given in Figure 3
(although see below for an important caveat). In these def-
initions, the products and powers used in the definition of



CIX]y =~(X)
c[g - ], =[],
ClvX.B], ={re J[ c[B

AeC

ClX], =U(v(X))
C[A — B], = A[A], — A[B],

ClvX.B], ={se [] c[B
AcA

A[B — A], = A[A],
AYX. A, = {m € [ AIA]

Aec
AlX]y = ~(X)
AIYX. A, = {r € ] AlA]
AcA

R[[X]]p(x17x2 ( )(xhl'g)

]]’Y[A/X] | VA,Be€C,VR € Rc(/LB). R

~y[A/X] |VA BecC, VRER(:(A B)

Ja/x) | VA, B e A, VQ € Ra(A,B). R

[Bla,(r/x)(ma,7B)}

[Bla,@/x)(ka, kB)} -

RIA]A. (r/x)(Ta,7B)}

[Ala,i@/x)(ka, kB)} -

R[B — C],(f1, f2) & V1 € C[B],,, 22 € C[B]p,- R[B],(21,22) = R[C],(f1(21), f2(22))
R[VX.B],(m1,m2) & VA1, A € C,VR € Re (A1, A2). R[B]pir/x1((71) Ay (72) 45)

) &

)

)
R[X]p(z1,22) & pr(X) (21, 22)

)

)

(

(

R[A — Bly(h1, he) & Va1 € C[A]p,, 22 € C[Alp,- R[A]p(21,22) = R[B],(h1(x
RIVX. B],(k1,k2) < VA, Ay € A,VQ € Ra(A;, Ay). R[Bl o x1((K1) A4,

1), ha(22))

(K2)a,) -

Figure 3. Interpretation of Types

C[B], are the ones in C, and those used in the definition of
A[A], are those in A, as (weakly) created by U. We write
A, for the relational ©-environment that maps X (resp.
X) to Ay (x) (resp. A, (x)). We also use an obvious no-
tation for update of environments. The algebras defined by
A[VY. A], and A[VX. A], are the canonical algebras car-
ried by the subsets of the product algebras.

The caveat referred to above is that the interpretations
of the polymorphic types in Figure 3 do not, on the face
of it, make sense, since they involve products over proper
classes of objects. Remarkably, the definitions are rescued
by the fact that, in them, the fictitious products are cut down
to their parametric elements. For example, using condition
(C4), one can show that each tuple 7 satisfying the para-
metricity property:

VA,Be(C,VR € Rc(A,B). RIIB]]A,Y[R/X](/]TA77TB)

is determined by its elements {74 } 4cc. Similarly, by (A4),
each parametric « is determined by {k4}aca. Thus, in ei-
ther case, there are only set-many parametric tuples. For
space reasons, we omit the proof of this claim (which essen-
tially goes back to [24]), preferring to focus on applications
of the model rather than on technicalities in its construction.

Proposition 4.1 C[B],, A[A], and R[B], are well de-
fined by Figure 3. Further, for every computation type
A it holds that C[A], = U(A[A],) and R[A], €
RA(A[[ ]]pmA[[A]]pa)-

Lemma 4.2 (Identity extension) For any type B(©) and
©-environment v, it holds that R[B]a., = Acqg],-

Next, we define the interpretation of terms. Given a con-
text I" with all free type variables in O, a ©-I'-environment
is a function defined on both the type variables in © and the
term variables in I, such that the restriction of ~y to © is
a O-environment, and, for every type assigment z: B in T,
it holds that y(z) € C[B],. Aterm I" | A kg ¢: B (ie.
such that ftv(I', A, ¢, B) C ©) is interpreted as an element
[t]y € C[B],, relative to any ©-(I", A)-environment . The
definition of [t], is given in Figure 4. In the two clauses that
apply to t(A), we distinguish between the cases for ¢ of type
VX.B and VX.B. Note that the definition of [s(¢)], applies
uniformly, whether s has type B — Cor A — B.

Proposition 4.3 IfT |A g t: B then:

1. (Well-definedness) For any O-(T', A)-environment -,
the value [t] € C[B], is well defined.



[[l‘]]w= v(x)
[A\z:B.t], = [Nz:A. 1], = (d: C[B], [[t]]v[d/z)
[[ ()]]7:[[8]] (Itly)
[[ X t]y = A{[tly1a/x taec
[t[: vX. BJ(A)], = ([t],)(CIAl4)
[[ X. t]]'y = {[[t]]'yL/X }aeca
[t[: vX. BJ(A)]y = ([t]1)(A[Al)

Figure 4. Interpretation of Terms

2. (Relational invariance) For any relational ©O-
environment p, and O-(T', A)-environments ~1,72
extending p1, pa respectively, define

R[], (1,72) © Vz:A e (T, A).

Then R[[F]]p(’Yh’YZ) implies R[[B]]p([[t]]vn [[tﬂ’h)'
IfT |x: A Fo t: B then:

3. (Homomorphism property) For any ©-I"-environment
v, the function d € C[A]y — [t]4(a/2] is @ homomor-
phism from A[A], to A[B],.

Our main application of the model will be to establish
equalities between terms. Henceforth, for I' | A + s: B
and T |A + ¢: B,wewritel' | A s = t: Btomean
that s], = [t], for all appropriate .

5. Monadic types

In this section, we study the encoding of monadic types
!B in our calculus, as defined by equation (1) of Section 1.
One sees immediately that ! B is always a computation type.
We show that it enjoys the following derived introduction
and elimination rules.

l—F¢B T|AF#:!IB T,z:B|—Fu:A
I'l—F1¢: 1B I'|AF let!zbetinu: A

Indeed, for this simply define:

It —def AK )\p:B —>X.p(t)
let !z betinu =qer t(A)(Az:B.w) .

It is the above rules that motivate our notation for the ! type
constructor, since these are simply restrictions of the usual
rules for the exponential ! of intuitionistic linear logic.

As a first application of relational parametricity for our
system, we show that ! B has the correct universal property
for Moggi’s monadic type. To keep the notation bearable,

RIAL (11 (), v2(2)).

we frequently omit semantic brackets, treating syntactic ob-
jects as the semantic elements they define, and we freely
mix syntactic expressions with semantic values. For exam-
ple, given any set A in C, we simply write ! A rather than
C[! X]a/x) or A[! X]14/x)» referring to ! A as a set or as
an algebra respectively when disambiguation is needed.

Lemma5.1 [ IfT|—F ¢t:BandT, 2:B|— F u: A
thenT |— F let!zbeltinu = uft/x]: A

22T |y:'AF gy = let!lzbeyinlx: TA.

3. Suppose thatT |A F s: A, T,z:A|— Ft¢: Band
Dly:BF u:CthenT |A F let!lzbesinult/y] =
u[let!lzbesint/y]: C

Proof. Item 1 is a straightforward consequence of the se-
mantic validity of beta equality.

For 2, we must show that y = y(!A)(Az: A. lz) at
type VX. (A — X) — X. By evident extensionality
properties of the model, it suffices to show that, for any
algebra B and f: A — UB in C, we have y(B)(f) =

y(IA) (A A 12)(B)(f).
Consider the homomorphism g: !A — B defined by

g(z) = z(B)(f). Then (g) € R4('A,B). So, by para-
metricity,

((Aa — (9)) — (9)) (W('A), y(B)) - 5
(AX. \p.p(x))(B)(f) =

(Aa — (g)) (Az:Alz, f) . (6)
Combining (5) and (6), we obtain that
y(B)(f))

ie. g(y('A)(Az: A lx)) = y(B)(f). Thus it indeed holds
that y(1 A)\e: A L) (B)(F) = y(B)(f).

For 3, h = Xy:B. u: B — C is a homomorphism, so
(h) € Ra(B, C). By parametricity, we have that

((Aa = (1)) — () (s(B), s(C)) - ©)

For any « € A, we have g(lz) =

fx),ie.

(9) (LAY (Az: A lz),

Consider Az:A. t: A — B and \x: A. uft/y]: A — C.
Then, for z € A, it holds that h((A\x: A. t)(z)) = u[t/y] =
(Az: A ult/y])(x), ie

(Ap — (h)) Az Aty Ax: A ult/y]) - (3)

Combining (7) and (8), we obtain that

s(O)(Az: A ult/yl))

ie. h(s(B)(Axz:A. 1)) = s(C)(Az: A. u[t/y]). So indeed
we have u[let !z be s int/y] = h(s(B)(Ax:A.t)) =
s(C)(Ax: A uft/y]) = let !z be s in u[t/y]. O

For any set Ain C definens: A — |Abyng = Az. lz.

(h) (s(B) (A A 8),



Theorem 5.2 The function ny: A — A presents 'A as
the free algebra over A, i.e. for any algebra A and func-
tion f: A — UA, there exists a unique homomorphism
h: 1A — A such that h o ng = f. Indeed, h is given
by Xy.let !z bey in f(x).

Proof. Clearly X°y. let !z be y in f(z) is a homomor-
phism, and (Xy. let !z be y in f(z)) o na = f because
let Iz be lz in f(z) = f(x) by Lemma 5.1.1. For unique-
ness, suppose h is such that h o ng4 = f. Then

h(y) = h(let !z be y in lz)

=let 'z bey in h(lx)
=let!axbeyin f(z)

(Lemma 5.1.2)
(Lemma 5.1.3)

(h onaA = f) ;
as required. O

It follows from the above theorem that the operation map-
ping A to the algebra !A is the object part of a functor
F:C — A left adjoint to U. We write T' for the associ-
ated monad UF on C.

The bijective correspondence of Theorem 5.2 can be ex-
pressed in the type theory PE as an isomorphism of (value)
types between !A — B and A — B. Thus we have a
Girard decomposition of function spaces with computation
type codomains, further motivating the ! notation.

We end this section with a characterisation of the in-
duced relational lifting of the ! type constructor.

Proposition 5.3 Suppose A, B are objects of C and
R: Rc(A, B) is a relation. Then | R: R A(! A,! B) is the
smallest admissible A-relation containing all pairs of the
form (n(z),n(y)) for (z,y) € R.

6. Specialising the calculus to specific effects

The type theory PE is a generic calculus for effects since
the type ! B can be interpreted as an arbitrary monad, and no
further effect-specific features are included. In this regard,
PE is analogous to Moggi’s computational A-calculus [12],
computational metalanguage [13] and Levy’s call-by-push-
value [9]. As with those calculi, specific effects can be in-
corporated by specialising the calculus appropriately. In
this section we consider various such specialisations, em-
phasising, in particular, the interaction with parametricity.

In a recent programme of research [20], Plotkin and
Power have shown that many monads of computational in-
terest can be profitably viewed as free algebra constructions
for equational theories. This approach arises naturally from
a computational viewpoint: the “algebraic operations” used
to specify the theory correspond to programming primi-
tives that cause effects, and the equational theory simply
expresses natural behavioural equivalences between such

primitives. We begin this section with an analysis of how
to specialise PE to the case of such “algebraic effects”.

Our approach is justified by a general theorem, which
we now present. As one of their central results about al-
gebraic effects, Plotkin and Power establish a one-to-one
correspondence between ‘“algebraic operations” and (what
they call) “generic effects” [19]. The theorem below re-
formulates this correspondence in our setting, and adds a
third equivalent induced by our polymorphic description of
monadic types. We shall apply this third equivalent to ob-
tain the correct polymorphic typing for algebraic operations
in effect-specific specialisations of PE.

Theorem 6.1 For any set A in C, there are one-to-one cor-
respondences between:

1. “algebraic operations of arity A”, i.e. natural trans-
formations from the functor (U(—))*: A — Cto U,

2. “generic effects over A”, i.e. elements of T A, and

3. “polymorphic computation type operations of arity

A”, i.e. elements of VX. (A — X) — X.

The simplifications in the formulation of statement 1 above,
compared with [19], are due to our set-theoretic setting,
which renders it unnecessary to consider issues relating to
enrichment or tensorial strength. Also note that, by state-
ment 2, the other two statements, in spite of appearances,
depend only on the monad 7" on C, not on how it is resolved
into an adjunction F 1 U: A — C.

To illustrate how Theorem 6.1 informs the specialisation
of PE to algebraic effects, we consider nondeterminism as a
typical example. As in [20], nondeterministic choice is nat-
urally formulated using a binary operation “or” satisfying
the semilattice equations:

xorx =x, xory=yorx, zor(yorz)= (rory)orz .

Define the category 4,4 of “nondeterministic algebras” to
have, as objects, structures (A, or4) where A is a set in C
andory: A x A — A satisfies the semilattice equations,
and, as morphisms from (A,or4) to (B,orp), functions
from A to B that are homomorphisms with respect to the
“or” operations. It is easily verified that the obvious forget-
ful functor U : A,y — C satisfies conditions (A1)—(A4).

Since the morphisms in A4 are homomorphisms, the op-
eration mapping any nondeterministic algebra (A,or4) to
the function or 4 : A2 — A is an algebraic operation of arity
2 in the sense of statement 1 of Theorem 6.1. Thus, apply-
ing Theorem 6.1 and currying, one obtains a corresponding
polymorphic operation:

or: VX. X—-X—-X.

Accordingly, nondeterministic choice can be incorporated
in PE by adding a constant or, typed as above, to the type



theory. This example illustrates the general pattern for
adding algebraic operations as polymorphic constants to our
type theory, and readily adapts to the algebraic operations
associated with other algebraic effects.

A limitation of the notion of algebraic operation is that
there exist effect-specific programming primitives that are
not algebraic operations. One well-known example of such
a primitive is exception handling. Below, we show how ex-
ception handling may also be incorporated within our ap-
proach as a suitably typed polymorphic constant. The ap-
proach is justified by a general theorem, giving another in-
stance of a coincidence between natural transformations and
elements of polymorphic type.

Theorem 6.2 For any n € N, there are one-to-one corre-
spondences between:

1. Natural transformations from (F(=))": C — A to
F:C— A and

2. elements of VX. (n — 1X) — | X,

where, in statement 2, we write n for the n-fold coproduct
type 1 + - - - + 1, as defined in Figure 2.

We now consider exception handling in detail. We
assume we have a set E' of exceptions with decidable
equality (i.e. for all e,e/ € FE either e = ¢ or e #
e’). We also assume (for simplicity) that C is closed un-
der binary coproduct in Set. We define the category
Aexe of “exception algebras” to have, as objects, struc-
tures (A, {raise$ }ccp) where raise§ € A, and, as mor-
phisms from (A4, {raise$ }ccp) to (B, {raise; }ecr), func-
tions from A to B that map each raise to raise%. Since the
raise. elements are algebraic constants (operations of arity
0), they can be added to PE as constants:

raise®: VX. X .

As is standard, the forgetful functor functor from Ag to
C, has as its left adjoint the functor F' mapping A to the
exception algebra (A + F,{inr(e)}.cp). For an excep-
tion e € E, the handling operation over A is the function
handle$ : (F(A))? — F(A) defined by

. if inr(e
handle$ (p,q) = { Zq) ifﬁiinrgeg .

It is easily shown that this specifies a natural transformation
from (F(=))?: C — Aexc t0 F': C — Aexe. In particluar,
the component handle, of the natural transformation does
lie in Ay because the interpretation of raise® in the excep-
tion algebra F'(A)? is the pair (inr(e),inr(e)). Thus, by
Theorem 6.2, exception handling can be incorporated in PE
by adding typed constants:

handle®: VX. (2 = 1X) — IX .

The main surprise with this typing is that exception han-
dling is given a “linear” type. From this typing, one of
course obtains an associated term of the expected (but less
informative) type VX. (2 — 1X) — IX.

Both Theorems 6.1 and 6.2 relate elements of certain
polymorphic types with natural transformations between as-
sociated functors. In fact, more generally, for types that de-
termine functors, parametricity implies naturality (cf. [18]).
However, the exact correspondences between natural trans-
formations and parametric elements established above de-
pend heavily on the precise forms of types considered there.

The forms of n-ary operation considered in this section
by no means exhaust the collection of operations of inter-
est from an effects perspective. Control operators provide
a particularly interesting class of examples, since their as-
sociated continuations monads do not naturally fit into the
Plotkin-Power framework for algebraic effects. One way of
specialising PE to the case of control is discussed briefly in
the next section.

7. Relation to other systems

Several computational effects of interest, including non-
termination, nondeterminism, and probabilistic choice, give
rise to monads on C that are commutative, cf. [13]. The
collection of models of PE in which A is the category of
algebras for a commutative monad 7 is of special interest
since, for such monads, the set of homomorphisms A — B
between algebras A, B carries a natural algebra structure
which provides a closed structure on the category A. For
such models, it is thus natural to modify our type system by
including A — B as a computation type. Making this ad-
justment, one obtains second-order intuitionistic linear type
theory as the fragment of computation types:

X|A—-B|A—B|VX.A. ©)

Thus we obtain a rich collection of models for the type
theory proposed by Plotkin as a foundation for combining
polymorphism and recursion [17].

By the above, PE is naturally viewed as a generalisa-
tion of second-order intuitionistic linear type theory valid
in a wider collection of models. A remarkable feature
of second-order intuitionistic linear type theory, due to
Plotkin, is that a rich collection of type constructors can
be defined in terms of the three primitives in (9) above,
cf. [17, 1, 2]. In fact, using well chosen variants of Plotkin’s
definitions, a similar richness of definability is available in
PE, see Figure 5 (which makes use of the definitions in Fig-
ure 2). We briefly discuss these encodings.

Semantically, because U : A — C weakly creates limits,
algebras are closed under products in C. Syntactically, how-
ever, the types 1 and A x B from Figure 2 are not computa-
tion types. Thus the alternative encodings 1° and A x° B are



needed to obtain products of computation types as computa-
tion types. The types 0° and A & B from Figure 5 define re-
spectively an initial object and binary coproduct in the cat-
egory A. This structure in not preserved by U, and coprod-
ucts of algebras behave very differently from coproducts of
sets in C. (The latter are implemented by the sum types
in Figure 2.) The type B- A defines a C[B]-fold copower
of A[A] in A. Figure 5 also contains: existential types,
3°X. A and 3° X.. A, packaged up as computation types; in-
ductive computation types, ©#°X. A; and coinductive com-
putation types, ¥°X. A. As is standard, the (co)inductive
types rely on the functoriality of type expressions in their
positive arguments. It is a consequence of relational para-
metricity that the above types all enjoy the correct universal
properties. The arguments are carried out most naturally
using a suitable logic for relational parametricity in PE, and
will appear in a forthcoming paper [11].

A simple application of Figures 2 and 5 is to translate
Levy’s CBPV calculus [9] into PE. For this, coproducts and
products of value types are translated using + and x from
Figure 2, products of computation types are translated using
x° from Figure 5, Levy’s F' constructor is translated using
!, and U is simply ignored.

Finally, we mention the case of control, which was one
of the motivations for this work. Control primitives can be
modelled naturally within PE by adding a polymorphic con-
stant of type (using 0° from Figure 5):

VX. (X —-0°) —0°) — X .
The resulting theory is studied in a companion article [10],
where it is shown that Hasegawa’s [5] results on polymor-
phic definability the second-order Ap-calculus fall out as
special cases of constructions from Figure 5.

More generally, the theory developed in this paper
should be applicable whenever there is interaction between
polymorphism and effects. This is a topic for future work.
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A. Selected proofs

For the benefit of the referees, this appendix contains a
few ommitted lemmas, and outlines arguments for the main
missing proofs.

A.1 Section 2

The following simple lemmas state basic properties of
the type system.

Lemma A.1 (Unicity of types) For any I', A, t there is at
most one type B such thatT' |A + t: B.

Lemma A.2 (Substitution)

L IfT, 2:A|AF ¢t:BandT |— F s: AthenT |A
t[s/x]: B.

22 IfT |x:AF t:BandT |A + s: AthenT |A F
t[s/z]: B.

A.2 Section 3

Axiom (A1) gives a way of picking representatives in A
for subalgebras presented by subsets:

Lemma A.3 For each A € Sub4(A) there is a specified
algebra B and mono f: B — A in A such that U f is the
inclusion of A into U A.

Proof. Suppose A C U A carries a subalgebra of A. Then
the set

{(B,i) | B€ A,i: B— Amono,U(i) 2 (ACUA)}
(10)
where the last isomorphism is an isomorphism of subob-
jects, is non-empty. The set (10) is a diagram in A4, and A is
a limit in C of U applied to this diagram. Now, (A1) gives
the specified mono projecting to A C U A. O

Lemma A.4 [fC satisfies (C1)~(C4) and U : A — C satis-
fies (Al)—(A4) then the collections R¢(A, B) = Sube(A x
B) and R4(A, B) = Sub4(A x B) satisfy (R1)—(R4).

Proof. We just show that Sub4(A, B) is closed under
intersections. So suppose we are given a set (Q;);cs of
subsets in Sub4(4, B). We need to show that the subset
(; Qi € UA x UB carries a subalgebra of A x B. Denote
foreachi € I by g;: Q; — A X B the mono in .4 above the
inclusion Q; C UAxU B as specified by Lemma A.3. Then
the limit of the diagram given by the g; as weakly created
by U is a subalgebra of A x B above [, @Q; C UA x UB.
O
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Proof of Proposition 3.1. Arguments that (A1)—(A4) are
satisfied exist in the main text, and (R1)—(R4) are satisfied
by Lemma A.4. O

A.3 Section 4

In Section 4, we have formulated the interpretation of
polymorphic types using products over the collections of
objects in C and A. Strictly speaking, such products do not
exist in the set theory, because the collections in question
are not sets but proper classes. We have chosen to give this
presentation in the main text for reasons of space, but here
we show how to make sense of the large products in the set
theoretic framework.

The easiest way to do this is to redefine the interpreta-
tions of polymorphic types by taking, as the “official” defi-
nition, products over the sets C and A rather than over the
classes C and A. The relevant modifications to Figure 3 are
detailed in Figure 6.

Below, we shall explain how the new definition can in-
deed be equivalently viewed as being given in terms of the
large product of Figure 3. First, however, we prove Propo-
sition 4.1 for the official definition, i.e. that the definition is
well defined.

Proof of Proposition 4.1 (sketch). The proof of well de-
finedness is by induction over the structure of types. We
focus first on showing that the relational interpretation of
types defines admissible relations. Notice first that the rela-
tion R[B — C], can be rewritten as

M

(z1,22)ER[B],

(evwl ’ eVI2)71RHCHP

where ev,, denotes the map from R[B — C],, to R[C],,
given by evaluation at x1, and ev, is defined likewise. For
value types B, C it follows that R[B — C], is an admissible
C relation from the induction hypothesis and (R2) and (R3).
If C is a computation type, B — C becomes a computation
type and we must check that R[B — C], is an admissible
A relation. Since the object A[B — C],, is defined as a

product .A[[B]]ﬂcﬂ”1 in A and the evaluation map ev,, is
the projection, it is a homomorphism. So again R[B —
(], being admissible follows from the induction hypothesis
and (R2), (R3). The proof of the other induction cases are
similar.

To prove well definedness of A[VX. A], notice first
that the formula in Figure 6 defines an element in
Suba([T4cc AlAl41a/x)) since it can be exhibited as
an intersection of A-subobjects as above. We define
A[vX. A], to be the specified A object representing the
subset as given by Lemma A.3, thus defining A[VX. A],
up to identity and not just up to isomorphism. O



C[[VX. B]],y = {7‘1‘ S H C[[B]]V[A/X] | VA,Be C,VR € Rc(A,B). R[[BHA,Y[R/X](WAaﬂ'B>}

AcC

CIvX.B], = {rs € [] CIBl,u/x) | VA, B € A,VQ € Ra(A, B). R[Ba, g/x)(k4.5B)} -

AeA

AlVX. Al = {m € [] AlAl,a/x) | VA, B € C, VR € Re(A, B). R[Ala, (r/x)(Ta,75)}

AeC

ANVX. Al ={x € [] AlAlyu/x) | VA B € A, ¥Q € Ra(A, B). R[Ala, 0/x)(Ka, 5B)} -

AcA

R[[VX B]]p(ﬂ'l,ﬂ'g) = VAl,AQ € C,VR € Rc(Al,AQ). R[[B]]p[R/X]((ﬂ-l)Ala (7‘&'2),42)
RIVX. Bl,(k1, 52) < VA, Ay € A, VQ € Rua(Ay, Ay). R[B]pjq/x)((k1)4,, (k2)a,) -

1’ o

Figure 6. Redefinition of interpretations of polymorphic types

With the new definition, for all 7 € C[VX. B],,, where
VX. B has type variables in © and vy is a ©-environment, by
definition, 7 contains a value 7 for each set B € C. How-
ever, to make sense of the large product used in Figure 3, we
shall need to project 7 to an arbitrary set A in C. Similarly,
given k € C[VX. B],, we have a value s for each algebra
B € A, but we shall need to project ~ to an arbitrary alge-
bra A in A. For the definitions of these projections we need
the following lemma.

Lemma A.5 (Groupoid action) For any B(©, X), any O-
environment -y, and isomorphism i: A — B in C, there ex-
ists a unique isomorphism

gpd[B](i): C[B],1a/x) — C[B]ym/x)

such that

R[Bla,y/x) = (gpd[Bl,(4)) .

Moreover, if B is a computation type then gpd[B], (i) is a
homomorphism from A[B]1a,x] to A[B]+(B/x]-

Similarly, for any B(©, X) and isomorphism j: A —o
B, there exists a unique isomorphism

gpd[B]+(j): C[B]ya/x) — C[B]y5/x]

such that

R[Bla,1y/x1 = (gpd[B],(j)) -

Moreover, if B is a computation type then gpd[B]-(j) is a
homomorphism from A[B]1a,x) to A[B]+B/x)-

The mappings i — gpd[B], (i) and j — gpd[B],(j)
are functorial.
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Proof (sketch). The isomorphism gpd[B],(¢) is con-
structed by induction over the structure of B, by instan-
tiating the functorial interpretation of B with ¢ in posi-
tive occurences of X and i~' in negative. For example
gpd[B — C], (i) maps f € C[B — C],a/x to the com-
position gpd[C], (i) o f o gpd[B], (i~ 1). ]

Now, for any set A in C, let B € C be such that
B = A by way of the isomorphism i: B — A. Using the
groupoid action defined above, we have gpd[B] (i)(75) €
C[B],(a/x)- Similarly, for any algebra A in A, let B € A
be such that B =° A3 by way of j: B —o A. Then we have
gpd[B], (j)(xB) € C[B,1a/x)-

Lemma A.6 Form € C[VX.B], and AinC:

1. The value gpd[B],(i)(mg) is independent of the
choice of B and 1.

2. If A € C then gpd[B]~(i)(mp) = ma.
Similarly, for k € C[VX.B], and A € A:

3. The value gpd[B]~(j)(kg) is independent of the
choice of B and j.

4. If A € A then gpd[B],(j)(kB) = Ka.

Proof. We prove 1. Suppose i: B — A,i': B® — A
are isomorphisms. We must show that gpd[B], (i)(7p) =
gpd[B],(¢')(mps). By the parametricity condition in
the definition of C[VX. B],, C[B],ir~10s),x](7B, TB)
which by functoriality of the groupoid action implies
(gpd[[B]]W(z")_1 o gpd[B], (%)) (g, mp) as desired. O

3We write A 2° B if A and B are isomorphic in .A.




The above lemma justifies us writing w(A) for
gpd[B],(i)(mp) for any set A in C. Similarly, we
write k(A) for gpd[B](j)(xp) forany A € A.

Lemma A.7 1. If R[VX. B], (m,n’) then, for all sets
A, B in C and relations R € R¢ (A, B), it holds that

RIB,r/x(m(A), 7' (B)).

2. If R[VX. B], (k,K’) then, for all algebras A,B
in A and relations ) € Ra(A,B), it holds that
R[Blp/x)(r(4), £'(B))-

Proof. We just prove item 1 of the lemma, item
2 is proved similarly.  Suppose we are given sets
A,B in C and a relation R € R¢(A,B). Then we
know that there exists sets A’, B’ € C and isomor-
phisms i: A’ — A, j: B® — B. By definition, if
R[VX. B], (m,7') then R[B],; jy-1p/x] (Tar, 75:). A
simple inductive check shows that R[B],;; ;y-1p/x) =

(gpd[Bl,, (1), 8pd[Bl, () RIBlyrx); 50

(m(A),7'(B)) = (gpd[Bl,, (i"*)(mar). gpd[Bl o, (i) (7y))

are in R[B] ,(r/x](7(A), ' (B)). O

Taken together, Lemmas A.6 and A.7 justify that Fig-
ure 6 can indeed be viewed as defining polymorphic types
in terms of the large products used in Figure 3.

Proof of Proposition 4.3 (sketch). The three statements of
the proposition must be proved simultaniously by structural
induction on t. Most of the cases are standard and we just
show a few.

We prove the homomorphism property in the case of ap-
plication of a polymorphic term ¢: VX. B to a value type A.
By definition A[VX. B], is a subobject of a product taken
in A, and [t(A)] is defined to be

gpd[[ﬁ]]w(i)([[t]]v)f&

for any A € C, and isomorphism i: A — C[A],. But
since the subobject and the product are taken in the cate-
gory A, the inclusion and projection in question are homo-
morphisms, and by Lemma A.5 gpd[B],(¢) is also a homo-
morphism proving the inductive case of the homomorphism
property.

The homomorphism property in the case of function ap-
plication ¢(s) for t: B —o C follows from well definedness:
by induction hypothesis [t], € A[B — C], and so is a
homomorphism, so if d € C[A], — [s],4/+] is @ homo-
morphism so is d € C[A], — [t]~([s]4[a/=])- Likewise
well definedness in the case of linear lambda abstraction:
X°z: A. t follows from the homomorphism property for £.

We show well definedness in one of the cases of poly-
morphic lambda abstraction: AX. ¢: VX. B. Here we must
show that {[t],[a/x} aec satisfies the parametricity con-
dition in the definition of C[VX. B],: for all A, B € C and
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all relations R € R¢(A, B),

RIB]a, (r/x)([tly1a/x7, [ty 1B/ x7)

This follows from the relational invariance property for ¢, as
assumed in the induction hypothesis, since R[I'Ja_(v,7)
holds by the identity extension lemma. Likewise, the re-
lational invariance property in the case of type application
of polymorphic terms follows from well definedness using
Lemma A.7. O

A.4 Section 5

Proof of Proposition 5.3. We first show that if (z,y) € R
then (na(z),ns(y)) € !R. So suppose we are given
A B € Aand Q € Ra(A,B). We must show that if
ftA— UAg: B — UB satisfy (R — Q)(f,g) then
(na(z)(A)(f),ns(y)(B)(g). But this follows from defi-
nition of (R — @) since (na(2)(A)(f),n5(y)(B)(9) =
(f(2),9(y)).

Now, suppose @ € R4(!A,!B) and for all (z,y) €
R we have Q(na(z),np(y)), or in other words (R —
Q)(na,np). We must show that | R C (). So suppose
(z,2") € | R. By definition of ! R using (R — Q)(na,n5)
we have

Q(z(1A)(na), 2 (! B)(n))-

But by definition z(! A)(na) = let !z be z in !z which
by Lemma 5.1 is equal to z. Likewise 2'(! B)(ng) = 2’

proving Q(z, 2"). O

Here is a different description of ! R, that we shall need
below.

Lemma A8 [fA,BeC, A Be A ReRc(AB), Qe
RAa(A,B)and f:!A — A,g: !B — B, then (R —
Q)(f,9) iff (R — Q)(f ona,gons).

Proof. The “only if” direction is simply because (R —
IR)(na,ng). Onthe other hand, if (R — Q)(fona, gong)
then (f, g)le is an admissible relation containing all ele-
ments of the form (n4(z),np(y)) for which R(z,y) hold,
and so by Proposition 5.3 must contain ! R proving (! R —o

Q)(fvg) O

A.5 Section 6

Proof of Theorem 6.1. The equivalence of statements 2
and 3 is immediate from (1), because TA = !A. So we
establish the equivalence of 1 and 3. Suppose that 6 is a
natural transformation from (U(—))# to U. We show that
the mapping A € A — Af: A — UA. 04(f) is an ele-
ment of VX. (A — X) — X. Suppose A,B € A and



Q € Ra(A, B). We must show that (A4 — Q) (f,g) im-
plies Q(04(f),05(g)). The projections m1: @ — UA and
o Q — UB are homomorphisms from the algebra carried
by @ to A and B respectively. By applying naturality to the
corresponding maps in .4, the two squares below commute.

A A
(UA)A‘ (ﬂ—l) QA (’/TQ) . UEA
0 Oc 0
UA ~ Q - UB
1 9

But this says that, for any f, g with Q(f(z), g(z)) for all
x € A, it holds that Q(64(f),0rs(g)), which is what we
needed to show. For the converse direction, consider any
k€VX. (A — X) — X. Then 04(f) = v(A)(f) is the
corresponding algebraic operation. Verifying naturality is a
routine use of graphs of homorphisms cf. [18]. It is obvious
that the two constructions are mutually inverse. O

Lemma A.9 Suppose A,B € Aand R C UA x UB is
any subset. Then there exists a smallest admissible relation
R° € R (A, B) containing R. Moreover,

I.IfR C UAXxUB and R C UA x UB' then
(Rx R)°=R°xR".

22If AB € C and R € TR¢(A,B) then
im(TR —TAxTB)° = |R. Where im(TR —
TA x TB) is the image of map obtained by applying
the functor T to the span corresponding to R.

Proof. The relation R° is the intersection of all admissi-
ble relations containing R. We show property 2. Since
(R — im(TR — TA x TB)°)(na,n5), by Lemma A.8
'R Cim(TR — TA x TB)°. For the other inclusion no-
tice that since (R — ! R)(n4, np), naturality of the corre-
spondence given by Theorem 5.2 implies the existence of a
map h making the diagram

ja ja
FAo—"' pr_1™ . Fpp

idB h idB
FAo IR o F'B

commute. This proves im(TR — T A x TB) C ! R. Since
! R is admissible we get im(TR — TA x TB)° C!R. O

Proof of Theorem 6.2. An element of VX. (n — ! X) —
!X gives for each A € C a map (FA)" — FA, and
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the naturality square for this family follows from the para-
metricity condition satisfied by elements of polymorphic
type, applied to the graph of a function. The difficult part
of this proof is to show that natural transformations sat-
isfy the parametricity condition and thus define elements of
VX.(n—1X) —o!X.

So suppose (fa: (FA)™ — FA)aec is a natural trans-
formation, and A,B € C and R € R¢(A, B). We must
show that ((! R)™ — ! R)(fa, fB). Naturality applied to
the span A < R — B gives us commutativity of

(FA)”O(F )" (FR)" (Fm2)'? (FB)"
B fr fB
FAot™ _pr_ T pp

Since f4 and fp are homomorphisms, this implies
(im((TR)")* —o im(TR)")(fa, f)

which by Lemma A.9 implies

(PR)" — ' R)(fa, fB)

as desired. O



