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Abstract. This paper shows how parametric PILLY (Polymorphic Intuitionis-
tic / Linear Lambda calculus with a fixed point combinatorY ) can be used as a
metalanguage for domain theory, as originally suggested by Plotkin more than a
decade ago. Using recent results about solutions to recursive domain equations in
parametric models of PILLY , we show how to interpret FPC in these. Of particu-
lar interest is a model based on “admissible” pers over a reflexive domain, the the-
ory of which can be seen as a domain theory for (impredicative) polymorphism.
We show how this model gives rise to a parametric and computationally adequate
model of PolyFPC, an extension of FPC with impredicative polymorphism. This
is the first model of a language with parametric polymorphism, recursive terms
and recursive types in a non-linear setting.

1 Introduction

Parametric polymorphism is an important reasoning principle for several reasons. One
is that it provides proofs of modularity principles [27] and other results based on “in-
formation hiding” such as security principles (see for example [28]). Another is that it
can be used to make simple type theories surprisingly expressive by encoding inductive
and coinductive types using polymorphism. If further parametric polymorphism is com-
bined with fixed points on the term level, inductive and coinductive types coincide, and
Freyd’s theory of algebraically compact categories provides solutions to general type
equations. However, when introducing fixed points the parametricity principle must be
weakened for the theory to be consistent. Plotkin [25, 23] suggested using the calculus
PILLY (Polymorphic Intuitionistic / Linear Lambda calculus with a fixed point combi-
natorY ), which in combination with parametricity would have inductive, coinductive
and recursive types in the linear part of the calculus. This theory was worked out in de-
tails, along with a category theoretic treatment by Birkedal, Møgelberg and Petersen [8,
6, 7, 20], see also [10]. Inloc. cit. a concrete model of PILLY is constructed using “ad-
missible” partial equivalence relations (pers) over a reflexive domain. The theory of
admissible pers can be seen as a domain theory for (impredicative) polymorphism.

Plotkin suggested using parametric PILLY as an axiomatic setup for domain theory.
However, as mentioned, the solutions to recursive type equations that PILLY provides
are in a linear calculus, whereas, as is well known, domain theory also provides mod-
els of non-linear lambda calculi with recursive types, such as FPC — a simply typed
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lambda calculus with recursive term definitions and general recursive types, equipped
with an operational call-by-value semantics. In this paper we test Plotkin’s thesis by
showing that the solutions to recursive type equations in the linear type theory PILLY

can be used to model FPC. The interpretation uses a category of coalgebras, and the
resulting translation is basically an extension of Girard’s interpretation of intuitionistic
logic into linear logic presented in [16] and developed on term level in [19]. The new
technical contribution in this part of the paper is the treatment of recursive types.

Of particular interest is the example of the model of admissible pers. When writ-
ing out the model of FPC in this case, it becomes clear that it also models parametric
polymorphism. We use this to show that PolyFPC, an extension of FPC with polymor-
phism defined below, can be modeled soundly in the per-model. In fact this model is
computationally adequate. The model is to the authors knowledge the first model of the
combination of parametric polymorphism, recursive terms and recursive types in a non-
linear setting. For many readers the construction of this model may be the main result
of the paper, but the earlier abstract analysis is needed to show that it models recursive
types.

The adequate model of PolyFPC may be used to derive consequences of parametric-
ity, such as modularity proofs, up to ground contextual equivalence along the lines of the
proofs of [21], but using denotational methods. The model is also interesting because
of the mix of parametricity and partiality, a combination which, as earlier research has
shown, requires an alternative formulation of parametricity, such as the one suggested
in [17]. This paper sketches the resulting parametricity principle derivable from the
model. In future work, the parametric reasoning in the model will be lifted to a logic
for parametricity for PolyFPC.

A related paper is [1], in which a model of polymorphism and recursion is con-
structed using admissible pers (as here) satisfying a uniformity property as well as var-
ious other properties ensuring that recursive types may be constructed as in domain
theory. The main differences betweenloc. cit.and this paper is that the present model is
parametric, and in our model the recursive types are constructed using parametricity.

The paper is organized as follows. Section 2 recalls the language PILLY and the
theory of models for it, in particular the per-model. The language PolyFPC is defined
in Section 3, and Section 4 shows how to model FPC in general models of PILLY . In
Section 5 the interpretation of PolyFPC in the per-model resulting from the general the-
ory is written out in detail and computational adequacy is formulated. Unfortunately the
proof of adequacy is omitted for reasons of space. Finally, Section 6 discusses reasoning
about parametric polymorphism for PolyFPC using the per-model.

Acknowledgments.The paper contains ideas and creative input from the following
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2 Polymorphic intuitionistic / linear lambda calculus

The calculus PILLY is a Polymorphic dual Intuitionistic / Linear Lambda calculus with
a fixed point combinator denotedY . In other words it is the calculus DILL of [2] ex-



tended with polymorphism and fixed points for terms. This section sketches the calcu-
lus, but the reader is referred to [9, 20] for full details.

Types of PILLY are given by the grammar

σ ::= α | I | σ ⊗ τ | σ( τ | !σ |
∏

α. σ,

and we use the notationα1, . . . , αn ` σ:Type to mean thatσ is a well-formed type
with free type variables amongα1, . . . , αn. The grammar for terms is

t ::= x | ? | Y | λ◦x:σ.t | t t | t⊗ t |!t | Λα:Type. t | t(σ) |
let x:σ ⊗ y: τ bet in t | let !x:σ bet in t | let ? bet in t.

Terms have two contexts of ordinary variables — a context of linear variables and a
context of intuitionistic variables. We refer the reader toloc. cit. for the term formation
rules of the calculus and the equality theory for terms. The term constructorλ◦x:σ.t
constructs terms of typeσ ( τ by abstractinglinear term variables. Using the Girard
encodings one can defineσ → τ to be!σ ( τ , and there is a corresponding definable
λ-abstraction forintuitionistic term variables. Under this convention, the type of the
fixed point combinator isY :

∏
α. (α → α) → α.

2.1 PILL Y -models

The most general formulation of models of PILLY uses fibred category theory, but
here we will just consider a large class of PILLY -models, which includes all important
models known by the author (except some constructed from syntax), since the theory
of the next sections is much simpler in this case.

SupposeC is a linear category, i.e., a symmetric monoidal closed category with
a symmetric monoidal comonad! satisfying a few extra properties as described for
example in [18, 20]. We shall writeσ ( τ for morphisms inC. If further any functor
Cn+1

0 → C, whereC0 denotes the objects ofC considered as a discrete category, has
a right Kan extension along the projectionCn+1

0 → Cn
0 , then one can form a model of

PILL, the subset of PILLY not including the fixed point combinator (for a full model
of PILLY , a term modeling the fixed point combinator must exist). Types withn free
type variables are modeled as functorsCn

0 → C (or equivalently mapsCn
0 → C0)

by modelingα ` αi as thei’th projection,⊗, I,( using the symmetric monoidal
structure,! using the comonad and polymorphism using the Kan-extensions.

A category theoretic definition of what aparametricmodel of PILLY is, is given
in [20], but we shall not repeat that now. Instead we mention that the per-model de-
scribed below is parametric, and we sketch the model theoretic formulations of the
consequences of parametricity.

If C is a parametric model of PILLY , one can prove that it has, among other type
constructions, products and coproducts, and that one can solve a large class of recursive
type equations. Syntactically, a recursive type equation is usually given by a typeσ with
a free variableα and a solution is a typeτ such thatσ[τ/α] ∼= τ . Usually, one is not just
interested in any solution, but rather a solution satisfying a universal condition, which
in the case ofα ocurring only positively inσ (e.g. ifσ = α+1) means an initial algebra
or final coalgebra for the functor induced byσ.



For the more general case of both positive and negative occurences ofα in σ (such
asσ = (α → α) + 1), one can split the occurences ofα in σ into positive and negative
and obtain a functor of mixed variance. This way any typeα1, . . . αn ` σ in PILLY

induces a functor(Cop × C)n → C, which is strong in the sense that there exists a
PILLY term of type∏

α,α′,β,β′:Type. (α′( α) → (β( β′) → σ(α,β)( σ(α′,β′)

inducing the functor. In general, a functorF : (Cop ×C)n → C is strongif there exists
a term in the model inducing it. For any strong functorF : (Cop ×C)n+1 → C, there
exists a strong functor FixF : (Cop ×C)n → C such that

F ◦ 〈id (Cop×C)n , ˘FixF 〉 ∼= FixF

where ˘FixF : (Cop×C)n → Cop×C is the functor that maps(A1, B1, . . . An, Bn) to
(FixF (B1, A1, . . . Bn, An), FixF (A1, B1, . . . An, Bn)). The functor FixF is encoded
in PILLY using encodings due to Plotkin. The proof of this proceeds by first showing
that any strong functorC → C has an initial algebra whose inverse is a final coalgebra.
This phenomena called algebraic compactness has been studied by Freyd [14, 13, 15],
who showed how to solve general recursive type equations in this setting. As a con-
sequence of Freyd’s theory, the functor FixF also satisfies a universal property called
the dinaturality condition generalizing at the same time the notion of initial algebra and
final coalgebra. See [9, 20] for full details.

2.2 A per-model

We sketch a model of parametric PILLY . For details, see [9, 20]. The model is a variant
of the parametric per-model for second order lambda calculus, restricted to a notion of
admissible pers to encompass fixed points.

SupposeD is a reflexive domain, i.e., a pointed complete partial order such that
[D → D] is a retract ofD. ThenD has a combinatory algebra structure with application
x · y defined by applying the function corresponding tox by the reflection toy. An
admissible peris a partial equivalence relationR onD closed under chains and relating
⊥ to itself. A map of admissible pers fromR to S is a map of equivalence classes
f :D/R → D/S such that there exists an elemente ∈ D trackingf in the sense that
f([x]R) = [e · x]S . This defines a categoryAP of admissible pers onD. We also
define the subcategoryAP⊥ of AP of morphisms with strict trackers, i.e., trackers
satisfyinge · ⊥ = ⊥. The categoryAP⊥ has products and also a symmetric monoidal
closed structure with tensor product defined as a quotient of the product, andR ( S
as{(d, e) | d · ⊥ = e · ⊥ = ⊥ ∧ ∀x, y ∈ D.xRy ⇒ S(d · x, e · y)}. Finally, there is a
symmetric monoidal comonad! definable onAP⊥, the coKleisli category of which is
AP.

By an admissible proposition on a perR we shall mean a subset of the set of equiv-
alence classes forR which itself constitutes an admissible per. An admissible relation
between persR andS is an admissible proposition onR × S. SinceD/(R × S) ∼=
D/S ×D/R, we will often think of such a relation as a subset of the product of equiv-
alence classes. We writeAdmRelAP⊥ for the category of admissible relations on



admissible pers, with as maps pairs of maps fromAP⊥ mapping related elements to
related elements. There is a reflexive graph of categories

AdmRelAP⊥

//
// AP⊥oo (1)

where the two maps from left to right map a relation to its domain and codomain re-
spectively, and the last map maps a per to the identity relation on the per. The sym-
metric monoidal structure ofAP⊥ can be extended to a symmetric monoidal structure
on AdmRelAP⊥ commuting with the functors of (1) and likewise for the symmetric
monoidal comonad.

In the parametric variant of the per-model, a type is modeled as a pair(σr, σp),
whereσp:APn

0 → AP0 is a map as before andσr is a map taking ann-vector of
admissible relations(Ai: AdmRel(Ri, Si))i≤n and producing an admissible relation
σr(A): AdmRel(σp(R), σp(S)), satisfyingσr(eqR1

, . . . , eqRn
) = eqσp(R). A term

in the model from(σr, σp) to (τ r, τp) (assumed to be two types with the same number
of free variables) is a family of maps(fR:D/σp(R) → D/τp(R))R with a common
tracker, such that for all(Ai: AdmRel(Ri, Si))i≤n and allx, y, if ([x], [y]) ∈ σr(A),
then(fR([x]), fS([y])) ∈ τ r(A). For further details, see [9, 20].

To see how the per-model is an example of the general models described in Sec-
tion 2.1, notice that (1) describes an internal linear category in a presheaf category over
the realizability topos for the combinatory algebraD. Interpreting the general construc-
tion in this presheaf category gives the per-model.

3 Polymorphic FPC

In this section we present the language PolyFPC, an extension of the language FPC,
first defined by Plotkin [24] (see also [12]), with recursive function definitions and full
impredicative polymorphism. This language can be considered a powerful intermediate
language to be used in compilers. In later sections we will show how to interpret FPC
into any PILLY -model of the form of Section 2.1 and how to interpret PolyFPC into the
per-model sketched in Section 2.2.

Since PolyFPC is a language with polymorphism and general (nested) recursive
types, types in the languages may have free type variables (as in PILLY ) and are formed
using the grammar

σ, τ ::= α | 1 | σ + τ | σ × τ | σ → τ | recα. σ |
∏

α. σ

As usual, the constructions
∏

α. σ and recα. σ binds the type variableα. The grammar
for terms is

t ::= x | ? | inl t | inr t | caset of inl x. t′ of inr x. t′′ | 〈t, t′〉 | π1(t) | π2(t) |
λx:σ. t | t(t′) | intro t | elim t | let recfx = t in f t′ | Λα. t | t(τ).

For reasons of space, we shall not repeat the well-known typing rules of FPC, but refer
the reader to [12] for them. However, since our version of FPC also includes an explicit
recursive term constructions, we mention the typing rule for that:

α | x:σ, f : τ → τ ′, x: τ ` t: τ ′ α | x:σ ` t′: τ

α | x:σ ` let recfx = t in f t′: τ ′



(bold letters denote sequents) and since PolyFPC also includes polymorphism, we men-
tion the two typing rules for that:

α, α′ | x:σ ` t: τ
α ` σ

α | x:σ ` Λα′. t:
∏

α′. τ

α | x:σ ` t:
∏

α′. τ α ` τ ′

α | x:σ ` t(τ ′): τ [τ ′/α′]

The terms intro and elim introduce and eliminate terms of recursive types, e.g. if
t:σ[recα. σ/α] then introt: recα. σ.

In the following we shall use the terminology programs, to mean closed typable
terms of closed type. The language PolyFPC is equipped with a call-by-value opera-
tional semantics. Formally, the operational semantics is a relation⇓ relating programs
to values, by which we mean programs following the grammar

v ::= ? | inl v | inr v | 〈v, v′〉 | λx:σ. t | Λα. t | intro v.

Again we refer to [12] for the definition of⇓ on FPC (where it is denoted ), and just
mention the two new rules:

e′ ⇓ v′ e[λx:σ. let recfx′ = e in f x/f, v′/x′] ⇓ v

let recfx′ = e in f e′ ⇓ v

t ⇓ Λα. t′ t′[τ/α] ⇓ v

t(τ) ⇓ v

4 Modeling FPC in categories of coalgebras

In this section we address the problem of interpreting the intuitionistic calculus FPC
into parametric models of the linear calculus PILLY . The inspiration for the general
case will come from attempting to mimic the usual interpretation of FPC into domain
theory (see for example [12, 22]) in the per-model presented in Section 2.2.

In domain theory, types of FPC are interpreted as complete partial orders (cpos)
and terms as partial maps between them, i.e., in the Kleisli category for the lifting
monad on the categoryCpo of cpos. Neither of the categoriesAP⊥ or AP have
the categorical properties needed for playing the role ofCpo in the adaption of the
interpretation of FPC to admissible pers. Instead, the categoryCCP of chain closed
pers onD and tracked maps between them is a good candidate. As in the category of
admissible pers, we will consider as admissible propositions on a chain complete per
R, subsets ofD/R corresponding to chain complete pers, and an admissible relation is
an admissible subset of the product. Admissible relations on chain complete pers form
a categoryAdmRelCCP where maps are pairs of maps mapping related elements to
related elements. The next proposition shows how to recoverCCP from AP⊥, and
AdmRelCCP from AdmRelAP⊥ .

Proposition 1. The co-Eilenberg-Moore categoryAP!
⊥ for the lifting comonad! on

AP⊥ is equivalent toCCP, and the co-Eilenberg-Moore category for! onAdmRelAP⊥

is equivalent toAdmRelCCP.



Recall that the co-Eilenberg-Moore category for a comonad! on a categoryC is
the category whose objects are coalgebras for the monad (mapsξ:σ (!σ satisfying
ε ◦ ξ = id and(!ξ) ◦ ξ = δ ◦ ξ, for ε, δ are counit and comultiplication) and whose
morphisms are maps of coalgebras. Denoting byC! the co-Eilenberg-Moore category,
one may consider the Kleisli category for the induced monadL onC!, which we denote
(C!)L. This category is isomorphic to the category having the same objects asC!, but
as morphisms fromξ:σ(!σ to χ: τ (!τ all morphisms ofC from σ to τ .

For the remainder of this sectionC will denote a parametric PILLY -model. Since
(C!)L is a Kleisli category, it is reasonable to think of it as a category of partial maps
for C!. The next lemma shows how these two categories satisfy some of the properties
needed for interpreting FPC in categories of partial maps as in Fiore’s dissertation [12].

Lemma 1. The categoryC! is cartesian and has finite coproducts. The categoryC! is
partially cartesian closed in the sense that for any objectξ of C!, the composite of the
product functor and the inclusion

C!
ξ×(−) // C! // (C!)L

has a right adjointξ ⇀ (−): (C!)L → C!.

Proof. The first half is well known, the proof can be found in for example [3, Lemma 9].
For ξ:σ (!σ, the functorξ ⇀ (−) mapsχ: τ (!τ to the free coalgebraδ: !(σ (
τ)(!!(σ( τ).

FPC can be interpreted in(C!)L basically as in [12]. A type withn free variables
is interpreted as a map(C!

0)
n → C!

0, with αi interpreted as thei’th projection and
×,+ → using respectively product, coproduct and partial cartesian structure. Recur-
sive terms is modeled using the fixed point combinator inC. What is different from
Fiore’s interpretation however, is that here recursive domain equations are solved using
parametricity. The next definition defines the class of domain equations which can be
solved inC!.

Definition 1. A functorσcoalg: ((C
!)op × C!)n → C! is induced by a type, if there

exists a strong functorσ: ((C)op ×C)n → C making the diagram

((C!)op ×C!)n
σcoalg //

��

C!

��
(Cop ×C)n σ // C

commute, where the vertical functors are the obvious forgetful functors. We say thatσ
inducesσcoalg.

If σ inducesσcoalgas in Definition 1 above, thenσcoalgextends to a functor(((C!)L)op×
(C !)L)n → (C !)L, whose action on morphisms is given byσ.



We show that all recursive domain equations on(C !)L corresponding to functors
induced by types as in Definition 1 can be solved. The precise formulation of this result
is Theorem 1 below. The proof proceeds by first showing that(C !)L is algebraically
compact as in the next lemma, and then applying Freyd’s solution to recursive domain
equations in such categories.

Lemma 2. If the functorσcoalg:C
! → C! is induced by a typeσ, then it has an initial

algebra. Including the initial algebra into(C!)L gives an initial algebra for the func-
tor (C!)L → (C!)L induced by(σ, σcoalg), and the inverse of the algebra is a final
coalgebra.

Proof. We just sketch the construction of the initial algebra. As a consequence of para-
metricity,σ has an initial algebrain:σ(µα. σ) ( µα. σ whose inverse is a final coal-
gebra. The objectµα. σ of C has a coalgebra structure for! defined as the unique map
ξ making the diagram

σ(µα. σ)
∼=

◦

σ(ξ)

◦

µα. σ

ξ

◦
σ(!µα. σ)

σcoalg(δ)
◦!σ(!µα. σ)

!σ(ε)
◦!σ(µα. σ)

∼=
◦!µα. σ

commute.

Theorem 1. For any functorσcoalg: (C
!op ×C!)n+1 → C! induced by a type, sayσ,

there exists a functor Fixσcoalg: ((C
!)op × C!)n → C! induced by a type Fixσ such

that
σcoalg◦ 〈id ((C!)op×C!)n , ˘Fix σcoalg〉 ∼= Fix σcoalg (2)

(where the notation˘(−) is used as in Section 2.1). The corresponding functors on(C!)L

also satisfy (2) and the dinaturality condition. Finally, there exists a general construc-
tion of Fix σcoalg such that ifτcoalg: (C

!op × C!)m → (C!op × C!)n is any functor
induced by a type, then

Fix(σcoalg◦ (τcoalg× id ((C!)op×C!))) = (Fix σcoalg) ◦ τcoalg

Proof (Sketch).The recursive types are constructed as in Freyd’s solution to recursive
type equations as

ω(α1, β1, . . . , αn, βn, α) = µβ. σ(α1, β1, . . . , αn, βn, α, β)
τ(α1, β1, . . . , αn, βn) = µα. σ(β1, α1, . . . , βn, αn, ω(α1, β1, . . . , αn, βn, α), α)

recα. σ(α1, β1, . . . , αn, βn, α, α) = ω(α1, β1, . . . , αn, βn, τ(α1, β1, . . . , αn, βn)).

The dinaturality condition in(C!)L follows from the one inC since these have the same
maps, and the last statement is an easy consequence of the construction.

Of course, to be able to use Theorem 1 for modeling recursive types, one must show
that any FPC typeα1, . . . , αn ` σ induces a functor((C!)op × C!)n → C! induced
by a type, by splitting occurrences of free type variables into positive and negative
occurrences. This is an easy induction on the structure ofσ, and the case of recursive
types is simply that Fixσcoalgof Theorem 1 is induced by a type for allσcoalg.



Theorem 2. FPC can be modeled soundly in(C!)L.

5 Polymorphic FPC in the per-model

The abstract analysis of Section 4 shows that our main example — the per-model —
models recursive types. It also models polymorphism, and Figure 1 shows the inter-
pretation of PolyFPC in the per-model, except the interpretation of recursive types, for
which the categorical properties (dinaturality) are more useful than the concrete de-
scription as shown for instance in [22].

Types in the per-model of PolyFPC are modeled as pairs([[α ` σ]]p, [[α ` σ]]r),
where[[α ` σ]]p is a mapCCPn → CCP and[[α ` σ]]r is a map taking ann-vector
of admissible relations(Ai:AdmRel(Ri, Si)) (admissible in the sense of objects of
AdmRelCCP) on objects ofCCP and produces an admissible relation

[[α ` σ]]r(A):AdmRel([[α ` σ]]p(R), [[α ` σ]]p(S))

satisfying [[α ` σ]]r(eqR) = eq[[α`σ]]p(R). In Figure 1 the symbols1, 2 denote two
incomparable elements ofD, and 〈·, ·〉 denotes the pairing functionD × D → D
definable using the combinatory algebra structure onD. The monad induced by the
comonad onAP⊥ andAdmRelAP⊥ is denotedL. Explicitly, this monad maps a
chain complete perR to {(⊥,⊥)} ∪ {(〈ι, x〉, 〈ι, y〉) | R(x, y)} whereι denotes a code
for the identity function onD, and an admissible relationA on chain complete pers
R,S is mapped to the relation that onLR,LS that relates[⊥] to [⊥] and [〈ι, x〉] to
[〈ι, y〉] if A([x], [y]).

[[α ` αi]]
p(R) = Ri

[[α ` σ × τ ]]p(R) = {(〈x, y〉, 〈x′, y′〉 | [[α ` σ]]p(R)(x, x′) ∧ [[α ` τ ]]p(R)(y, y′)}
[[α ` σ + τ ]]p(R) = {(〈1, x〉, 〈1, x′〉) | [[α ` σ]]p(R)(x, x′)}∪

{(〈2, y〉, 〈2, y′〉) | [[α ` τ ]]p(R)(y, y′)}
[[α ` σ → τ ]]p(R) = {(e, f) | ∀x, y ∈ D. [[α ` σ]]p(R)(x, y) ⇒ L[[α ` τ ]]p(R)(e · x, f · y)}

[[α ` 1]]p(R) = {(⊥,⊥)}
[[α `

∏
α. σ]]p(R) = {(x, y) | ∀S:CCP0. L[[α, α ` σ]]p(R, S)(x, y)∧

∀S, S′:CCP0.∀A: AdmRel(S, S′). L[[α, α ` σ]]r(eqR, A)([x], [y])}

[[α ` αi]]
r(A) = Ai

[[α ` σ × τ ]]r(A) = {([〈x, y〉], [〈x′, y′〉]) | [[α ` σ]]r(A)([x], [x′]) ∧ [[α ` τ ]]r(A)([y], [y′])}
[[α ` σ + τ ]]r(A) = {([〈1, x〉], [〈1, x′〉]) | [[α ` σ]]r(A)([x], [x′])}∪

{([〈2, y〉], [〈2, y′〉]) | [[α ` τ ]]r(A)([y], [y′])}
[[α ` σ → τ ]]r(A) = {([e], [f ]) | ∀([x], [y]) ∈ [[α ` σ]]r(A). ([e · x], [f · y]) ∈ L[[α ` τ ]]r(A)}

[[α ` 1]]r(A) = {([⊥], [⊥])}
[[α `

∏
α. σ]]r(A) = {([x], [y]) | ∀S, S′:CCP0.∀A: AdmRel(S, S′). L[[α, α ` σ]]r(A, A)([x], [y])}

Fig. 1. Interpretation of PolyFPC in per-model



Terms of PolyFPC are modeled in the Kleisli category forL. To be more precise, a
termα | x:σ ` t: τ is modeled as an indexed family of maps

([[t]]R:
∏

i[[α ` σi]]p(R) → L[[α ` τ ]]p(R))R

where the product refers to the product inCCP. Such a family must have a common
tracker, and must preserve relations, which means that ifA:AdmRel(R,S), and for
eachi, ([xi], [yi]) ∈ [[α ` σi]]r(A), then

([[t]]R([x1], . . . , [xm]), [[t]]S([y1], . . . , [ym])) ∈ L[[α ` τ ]]r(A).

Theorem 3. The interpretation of PolyFPC types defined in Figure 1 extends to a sound
interpretation of PolyFPC.

5.1 Computational adequacy

A τ - σ context of PolyFPC for typesσ, τ , whereτ is closed, is an expressionC con-
taining a place holder−τ such that whenever an expressiont of type τ is substituted
for the place holder such that the resultC[t] is a closed term, it has typeσ. Two terms
t, t′: τ of PolyFPC of the same type are called contextually equivalent (writtent ≡ t′),
if for any typeσ, and anyτ - σ contextC,

C[t] ⇓ iff C[t′] ⇓

wheret ⇓ means: There exists av such thatt ⇓ v.

Theorem 4 (Adequacy).For any programt of PolyFPC,[[t]] 6= [⊥] iff t ⇓.

From Theorem 4 the following corollary giving a tight connection between the opera-
tional and denotational semantics is easily provable.

Corollary 1. Supposet, t′ are two PolyFPC terms of the same type. If[[t]] = [[t′]] then
t ≡ t′.

6 Reasoning using the model

The per-model of PolyFPC is parametric by construction, since the interpretations of
types have a build-in relational interpretation ([[α ` σ]]r) satisfying identity extension.
This means that the model can be used to verify parametricity arguments about PolyFPC
programs. For example, for the usual data abstraction arguments as in [27, 21] proving
that two implementations of a data type gives the same final program, one can prove
using parametricity of the model, that the two programs denotations are equal, and then
use Corollary 1 to prove that the programs are ground contextually equivalent.

In future work, it will be interesting to lift the parametricity of the model to a logic
on PolyFPC. Corollary 1 should verify the logic in the sense that two terms that are
provably equal in the logic should be ground contextually equivalent. Since the logic
reasons about partial functions, it needs to include a termination proposition(−) ↓. The
mix of parametricity and partiality will have the following consequences on the logic.



– Only total functions will have graphs that can be used to instantiate the parametric-
ity principle.

– The relational interpretation of the→ type constructor will relatef to g in R → S
for relationsR andS iff f ↓ ⇐⇒ g ↓, and further for all(x, y) ∈ R, f(x) ↓ ⇐⇒
g(y) ↓ andf(x) ↓ impliesS(f(x), g(y)).

– The parametricity principle in the logic will say that two termse, f of, say closed
type

∏
α. σ, are ground contextually equivalent iffe ↓ ⇐⇒ f ↓ and further, for

all pairs of typesτ, τ ′ and any relationR between theme(τ) ↓ ⇐⇒ f(τ ′) ↓ and
e(τ) ↓ implies(e(τ), f(τ ′)) ∈ σ[R].

Related results can be found in [17], and the interpretation of→ above is a symmetric
version of the one inloc. cit..

7 Conclusions

By showing that the solutions to recursive domain equations in the linear part of the
calculus PILLY can be used to interpret recursive types in languages with no linearity,
we have shown that parametric PILLY is a useful axiomatic setup for domain theory.
The parametric model of PolyFPC constructed by applying the general theory to the
case of admissible pers can be used to reason about parametricity for PolyFPC and for
example give proofs of modularity properties along the lines of [21], but this time using
the denotational semantics.

In recent work, Birkedal, Møgelberg, Petersen and Varming [11] have shown how
the programming language lily of Bierman, Pitts and Russo [4] gives rise to a parametric
model of PILLY . Using this result, the techniques developed here should show how
FPC can be translated into lily, but it would be interesting to see if full PolyFPC can be
translated into it.
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