Interpreting Polymorphic FPC into domain theoretic
models of parametric polymorphism

Rasmus Ejlers Mggelberg

DISI, Universit di Genova
mogelberg@disi.unige.it

Abstract. This paper shows how parametric PR-L(Polymorphic Intuitionis-

tic / Linear Lambda calculus with a fixed point combinai6y can be used as a
metalanguage for domain theory, as originally suggested by Plotkin more than a
decade ago. Using recent results about solutions to recursive domain equations in
parametric models of PILL, we show how to interpret FPC in these. Of particu-

lar interest is a model based on “admissible” pers over a reflexive domain, the the-
ory of which can be seen as a domain theory for (impredicative) polymorphism.
We show how this model gives rise to a parametric and computationally adequate
model of PolyFPC, an extension of FPC with impredicative polymorphism. This
is the first model of a language with parametric polymorphism, recursive terms
and recursive types in a non-linear setting.

1 Introduction

Parametric polymorphism is an important reasoning principle for several reasons. One
is that it provides proofs of modularity principles [27] and other results based on “in-
formation hiding” such as security principles (see for example [28]). Another is that it
can be used to make simple type theories surprisingly expressive by encoding inductive
and coinductive types using polymorphism. If further parametric polymorphism is com-
bined with fixed points on the term level, inductive and coinductive types coincide, and
Freyd’s theory of algebraically compact categories provides solutions to general type
equations. However, when introducing fixed points the parametricity principle must be
weakened for the theory to be consistent. Plotkin [25, 23] suggested using the calculus
PILLy (Polymorphic Intuitionistic / Linear Lambda calculus with a fixed point combi-
natorY’), which in combination with parametricity would have inductive, coinductive
and recursive types in the linear part of the calculus. This theory was worked out in de-
tails, along with a category theoretic treatment by Birkedal, Mggelberg and Petersen [8,
6,7, 20], see also [10]. lloc. cit. a concrete model of PILi is constructed using “ad-
missible” partial equivalence relations (pers) over a reflexive domain. The theory of
admissible pers can be seen as a domain theory for (impredicative) polymorphism.
Plotkin suggested using parametric PiLas an axiomatic setup for domain theory.
However, as mentioned, the solutions to recursive type equations tha Ritdvides
are in a linear calculus, whereas, as is well known, domain theory also provides mod-
els of non-linear lambda calculi with recursive types, such as FPC — a simply typed

* This work is sponsored by Danish Research Agency stipend no. 272-05-0031



lambda calculus with recursive term definitions and general recursive types, equipped
with an operational call-by-value semantics. In this paper we test Plotkin’s thesis by
showing that the solutions to recursive type equations in the linear type theory PILL
can be used to model FPC. The interpretation uses a category of coalgebras, and the
resulting translation is basically an extension of Girard’s interpretation of intuitionistic
logic into linear logic presented in [16] and developed on term level in [19]. The new
technical contribution in this part of the paper is the treatment of recursive types.

Of particular interest is the example of the model of admissible pers. When writ-
ing out the model of FPC in this case, it becomes clear that it also models parametric
polymorphism. We use this to show that PolyFPC, an extension of FPC with polymor-
phism defined below, can be modeled soundly in the per-model. In fact this model is
computationally adequate. The model is to the authors knowledge the first model of the
combination of parametric polymorphism, recursive terms and recursive types in a non-
linear setting. For many readers the construction of this model may be the main result
of the paper, but the earlier abstract analysis is needed to show that it models recursive
types.

The adequate model of PolyFPC may be used to derive consequences of parametric-
ity, such as modularity proofs, up to ground contextual equivalence along the lines of the
proofs of [21], but using denotational methods. The model is also interesting because
of the mix of parametricity and partiality, a combination which, as earlier research has
shown, requires an alternative formulation of parametricity, such as the one suggested
in [17]. This paper sketches the resulting parametricity principle derivable from the
model. In future work, the parametric reasoning in the model will be lifted to a logic
for parametricity for PolyFPC.

A related paper is [1], in which a model of polymorphism and recursion is con-
structed using admissible pers (as here) satisfying a uniformity property as well as var-
ious other properties ensuring that recursive types may be constructed as in domain
theory. The main differences betweleg. citand this paper is that the present model is
parametric, and in our model the recursive types are constructed using parametricity.

The paper is organized as follows. Section 2 recalls the language,Pdnd the
theory of models for it, in particular the per-model. The language PolyFPC is defined
in Section 3, and Section 4 shows how to model FPC in general models of-PlhL
Section 5 the interpretation of PolyFPC in the per-model resulting from the general the-
ory is written out in detail and computational adequacy is formulated. Unfortunately the
proof of adequacy is omitted for reasons of space. Finally, Section 6 discusses reasoning
about parametric polymorphism for PolyFPC using the per-model.

Acknowledgments.The paper contains ideas and creative input from the following
people: Lars Birkedal, Eugenio Moggi, Rasmus Lerchedahl Petersen, Pino Rosolini and
Alex Simpson.

2 Polymorphic intuitionistic / linear lambda calculus

The calculus PILl is a Polymorphic dual Intuitionistic / Linear Lambda calculus with
a fixed point combinator denotéd. In other words it is the calculus DILL of [2] ex-



tended with polymorphism and fixed points for terms. This section sketches the calcu-
lus, but the reader is referred to [9, 20] for full details.
Types of PILLy are given by the grammar

cu=al|llo®7|oc—o71|lo]|]]ao,

and we use the notatiomy, ..., a, - o: Type to mean that is a well-formed type
with free type variables among,, . . ., «,. The grammar for terms is

tu=x|*|Y | Xxiot|tt]|tet]|t]| Aa: Type.t | t(o) |
letz:o®@y:Tbetint|letlz:o betint|let x betint.

Terms have two contexts of ordinary variables — a context of linear variables and a
context of intuitionistic variables. We refer the readelan cit. for the term formation
rules of the calculus and the equality theory for terms. The term constritior.¢
constructs terms of type — 7 by abstractindinear term variables. Using the Girard
encodings one can defime— 7 to beloc — 7, and there is a corresponding definable
A-abstraction forintuitionistic term variables. Under this convention, the type of the
fixed point combinator i¥": [Ja. (& — @) — «.

2.1 PILLy-models

The most general formulation of models of PR:Luses fibred category theory, but
here we will just consider a large class of Pitimodels, which includes all important
models known by the author (except some constructed from syntax), since the theory
of the next sections is much simpler in this case.

SupposeC is a linear category, i.e., a symmetric monoidal closed category with
a symmetric monoidal comonddsatisfying a few extra properties as described for
example in [18, 20]. We shall write — 7 for morphisms inC. If further any functor
Cit — C, whereC, denotes the objects @ considered as a discrete category, has
a right Kan extension along the projecti@j ' — CZ, then one can form a model of
PILL, the subset of PILL not including the fixed point combinator (for a full model
of PILLy, a term modeling the fixed point combinator must exist). Types wittee
type variables are modeled as funct@§ — C (or equivalently map€y — Co)
by modelinga + «; as thei'th projection, ®, I, — using the symmetric monoidal
structure] using the comonad and polymorphism using the Kan-extensions.

A category theoretic definition of what@arametricmodel of PILLy is, is given
in [20], but we shall not repeat that now. Instead we mention that the per-model de-
scribed below is parametric, and we sketch the model theoretic formulations of the
consequences of parametricity.

If C is a parametric model of PILt, one can prove that it has, among other type
constructions, products and coproducts, and that one can solve a large class of recursive
type equations. Syntactically, a recursive type equation is usually given by a tyjtle
a free variablex and a solution is a type such that'[7/a] = 7. Usually, one is not just
interested in any solution, but rather a solution satisfying a universal condition, which
in the case ofv ocurring only positively iro (e.g. ifoc = a4+ 1) means an initial algebra
or final coalgebra for the functor induced by



For the more general case of both positive and negative occurenads of (such
aso = (o — «) + 1), one can split the occurences®fn o into positive and negative
and obtain a functor of mixed variance. This way any tyge...«a, F o in PILLy
induces a functofC°? x C)™ — C, which is strong in the sense that there exists a
PILLy term of type

[, &', 8,8 Type. (& — &) = (8 — ') — o(a, B) — o(a, B)

inducing the functor. In general, a functdt (C°P x C)™ — C is strongif there exists
aterm in the model inducing it. For any strong functar(C°? x C)"*! — C, there
exists a strong functor Fi: (C°? x C)™ — C such that

F o (id (gonx cyn, FIXF) 2= FixF

whereFixF: (C°P x C)" — C° x C is the functor that map&4,, B, ... A,, B,) to
(FiXF(B1, Ay, ... By, Ay),FiXF(Ay, By, ... Ay, By)). The functor Fixt" is encoded

in PILLy using encodings due to Plotkin. The proof of this proceeds by first showing
that any strong functo€ — C has an initial algebra whose inverse is a final coalgebra.
This phenomena called algebraic compactness has been studied by Freyd [14, 13, 15],
who showed how to solve general recursive type equations in this setting. As a con-
sequence of Freyd's theory, the functor Fialso satisfies a universal property called

the dinaturality condition generalizing at the same time the notion of initial algebra and
final coalgebra. See [9, 20] for full details.

2.2 A per-model

We sketch a model of parametric PH:LFor details, see [9, 20]. The model is a variant
of the parametric per-model for second order lambda calculus, restricted to a notion of
admissible pers to encompass fixed points.

SupposeD is a reflexive domain, i.e., a pointed complete partial order such that
[D — D]isaretract ofD. ThenD has a combinatory algebra structure with application
x - y defined by applying the function correspondingatdy the reflection tay. An
admissible peis a partial equivalence relatidd on D closed under chains and relating
1 to itself. A map of admissible pers frorR to S is a map of equivalence classes
f:D/R — D/S such that there exists an element D tracking f in the sense that
f([z]r) = [e - z]s. This defines a categonkP of admissible pers o. We also
define the subcategok P, of AP of morphisms with strict trackers, i.e., trackers
satisfyinge - 1. = L. The categonA P has products and also a symmetric monoidal
closed structure with tensor product defined as a quotient of the producRk ardS
as{(d,e)|d-L=e-1L =1LAVa,ye D.xRy = S(d-x,e-y)}. Finally, thereis a
symmetric monoidal comonddiefinable onAP | , the coKleisli category of which is
AP.

By an admissible proposition on a pRrwe shall mean a subset of the set of equiv-
alence classes fak which itself constitutes an admissible per. An admissible relation
between perd? and S is an admissible proposition R x S. SinceD/(R x S§) =
D/S x D/R, we will often think of such a relation as a subset of the product of equiv-
alence classes. We writtdmRelap, for the category of admissible relations on



admissible pers, with as maps pairs of maps frAl® ;| mapping related elements to
related elements. There is a reflexive graph of categories

1&(111’11].:{61ApL < APJ_ (1)

where the two maps from left to right map a relation to its domain and codomain re-
spectively, and the last map maps a per to the identity relation on the per. The sym-
metric monoidal structure AP, can be extended to a symmetric monoidal structure
on AdmRelap, commuting with the functors of (1) and likewise for the symmetric
monoidal comonad.

In the parametric variant of the per-model, a type is modeled as & @aio?),
wherec?: AP} — AP, is a map as before and’ is a map taking am-vector of
admissible relationgA;: AdmRelR;, S;))i<, and producing an admissible relation
0" (A): AdmRelo?(R),0?(S)), satisfyingo”(eqg,,...,€0z,) = €0,s(g). A term
in the model from(¢™, o?) to (7", 7P) (assumed to be two types with the same number
of free variables) is a family of maggr: D/o?(R) — D/7P(R))g with a common
tracker, such that for all4;: AdmRelR;, S;))i<» and allz, y, if ([z],[y]) € c"(A),
then(fr([z]), fs([y])) € 7"(A). For further details, see [9, 20].

To see how the per-model is an example of the general models described in Sec-
tion 2.1, notice that (1) describes an internal linear category in a presheaf category over
the realizability topos for the combinatory algelipalnterpreting the general construc-
tion in this presheaf category gives the per-model.

3 Polymorphic FPC

In this section we present the language PolyFPC, an extension of the language FPC,
first defined by Plotkin [24] (see also [12]), with recursive function definitions and full
impredicative polymorphism. This language can be considered a powerful intermediate
language to be used in compilers. In later sections we will show how to interpret FPC
into any PILLy -model of the form of Section 2.1 and how to interpret PolyFPC into the
per-model sketched in Section 2.2.

Since PolyFPC is a language with polymorphism and general (nested) recursive
types, types in the languages may have free type variables (as iR-Pird are formed
using the grammar

ori=all|lo+7|oxT|o—71|reca.o|[Ja.o
As usual, the constructioff§a. o and rece. o binds the type variable. The grammar
for terms is
tu=a|*|inlt]inrt|case ofinl z.t' ofinra.t” | (¢t,t") | m1(t) | ma(t) |
Az:o.t | t(t') |introt | elimt | letrecfz =tin f¢' | Aa.t | t(7).
For reasons of space, we shall not repeat the well-known typing rules of FPC, but refer

the reader to [12] for them. However, since our version of FPC also includes an explicit
recursive term constructions, we mention the typing rule for that:

al|lxzo, fitr—7 nrktT alzobt:T

a|zotletrecfzr=tin ft': 7



(bold letters denote sequents) and since PolyFPC also includes polymorphism, we men-
tion the two typing rules for that:

a,d |zottT . alrzokt][ld.7 a7

a
alzokAd ][ T alzobt(r):7[r/d]

The terms intro and elim introduce and eliminate terms of recursive types, e.g. if
t:o[reca. o/a] then introt: reca. o.

In the following we shall use the terminology programs, to mean closed typable
terms of closed type. The language PolyFPC is equipped with a call-by-value opera-
tional semantics. Formally, the operational semantics is a reldti@tating programs
to values, by which we mean programs following the grammar

vu=xl|inlv|inrv | (v,v") | Ax:o.t | Aa.t | introwv.

Again we refer to [12] for the definition df on FPC (where it is denoteé:), and just
mention the two new rules:
e v ehwoletrecfr’ =cin fz/f, 0" /2] v

letrecfa’ =ein fe' v

tl Aa.t’  t[r/a] v
t(r) $v

4 Modeling FPC in categories of coalgebras

In this section we address the problem of interpreting the intuitionistic calculus FPC
into parametric models of the linear calculus P{LLThe inspiration for the general
case will come from attempting to mimic the usual interpretation of FPC into domain
theory (see for example [12, 22]) in the per-model presented in Section 2.2.

In domain theory, types of FPC are interpreted as complete partial orders (cpos)
and terms as partial maps between them, i.e., in the Kleisli category for the lifting
monad on the categor¢po of cpos. Neither of the categorieSP; or AP have
the categorical properties needed for playing the rol€gpb in the adaption of the
interpretation of FPC to admissible pers. Instead, the cateG&¥ of chain closed
pers onD and tracked maps between them is a good candidate. As in the category of
admissible pers, we will consider as admissible propositions on a chain complete per
R, subsets oD/ R corresponding to chain complete pers, and an admissible relation is
an admissible subset of the product. Admissible relations on chain complete pers form
a categoryAdmRelccp Where maps are pairs of maps mapping related elements to
related elements. The next proposition shows how to recG@P from AP, and
AdmRelccp from AdmRelApL.

Proposition 1. The co-Eilenberg-Moore categorzgtPIL for the lifting comonad on
AP, isequivalenttdCCP, and the co-Eilenberg-Moore category imn AdmRelap |
is equivalent ttAdmRelccp.



Recall that the co-Eilenberg-Moore category for a comohad a categonC is
the category whose objects are coalgebras for the monad (fnaps~!c satisfying
eof =idand(1§) o & = § o ¢, for e, § are counit and comultiplication) and whose
morphisms are maps of coalgebras. Denotingbyhe co-Eilenberg-Moore category,
one may consider the Kleisli category for the induced mahad C', which we denote
(C"). This category is isomorphic to the category having the same obje@s asit
as morphisms fronj: ¢ —olo to x: 7 —o!7 all morphisms ofC from o to .

For the remainder of this sectid@l will denote a parametric PlL{--model. Since
(Chy is a Kleisli category, it is reasonable to think of it as a category of partial maps
for C'. The next lemma shows how these two categories satisfy some of the properties
needed for interpreting FPC in categories of partial maps as in Fiore’s dissertation [12].

Lemma 1. The categoryC' is cartesian and has finite coproducts. The categohys
partially cartesian closed in the sense that for any obeof C', the composite of the
product functor and the inclusion

L Ex(=) !
C'—cCc' —(C');

has a right adjoint — (—): (C'), — C".

Proof. The first half is well known, the proof can be found in for example [3, Lemma 9].
For&: 0 —olo, the functoré — (—) mapsy: T —o!r to the free coalgebra: !(c —
7) —oll(o —o 7).

FPC can be interpreted {tC'), basically as in [12]. A type witt free variables
is interpreted as a mafC;,)" — Cj, with «; interpreted as théth projection and
x,+ — using respectively product, coproduct and partial cartesian structure. Recur-
sive terms is modeled using the fixed point combinato€inWhat is different from
Fiore’s interpretation however, is that here recursive domain equations are solved using
parametricity. The next definition defines the class of domain equations which can be
solved inC'.

Definition 1. A functoro¢oaig ((C')” x €)™ — C'is induced by a typeif there
exists a strong functar: ((C)°Y x C)"* — C making the diagram

o Icoal
(€ x ¢y :

|

(Cop X C)n

C

commute, where the vertical functors are the obvious forgetful functors. We say that
inducesopgg

If o inducesscog)gas in Definition 1 above, them,oaigextends to a functdi((C') )™ x
(CY)* — (CY) 1, whose action on morphisms is given by



We show that all recursive domain equations(6H);, corresponding to functors
induced by types as in Definition 1 can be solved. The precise formulation of this result
is Theorem 1 below. The proof proceeds by first showing (64}, is algebraically
compact as in the next lemma, and then applying Freyd’s solution to recursive domain
equations in such categories.

Lemma 2. If the functorocogig C' — C' is induced by a type, then it has an initial
algebra. Including the initial algebra int¢C'), gives an initial algebra for the func-
tor (C'), — (C')r. induced by(c, ocoalg), and the inverse of the algebra is a final
coalgebra.

Proof. We just sketch the construction of the initial algebra. As a consequence of para-
metricity, o has an initial algebran: o (ua. o) — pa. o whose inverse is a final coal-
gebra. The objegta. o of C has a coalgebra structure fodefined as the unique map

£ making the diagram

1R

o(pa. o) po. o
(&) 3
“coald®) lo (e o~
o(lpa. o) Jo!a(!;mz. o) L<>!c7(/wz. o) —olpa.o

commute.

Theorem 1. For any functorogqig (C'™ x C')"*! — C'induced by a type, say,

there exists a functor Firtcoqigi ((C')™ x C')" — C'induced by a type Fix such
that

Icoalg® (id((cyr xcnym» FiX 0¢oalg) = FiX o¢oalg (2)

(where the notati0|(li) is used as in Section 2.1). The corresponding functorgBiy,

also satisfy (2) and the dinaturality condition. Finally, there exists a general construc-
tion of Fix g¢oalg SUch that ifreogig (C'™7 x CH™ — (C'*" x C')™ is any functor
induced by a type, then

FiX(cocoalg© (Teoalg X id((cyrxct))) = (FiX o¢oalg) © Teoalg

Proof (Sketch)The recursive types are constructed as in Freyd’s solution to recursive
type equations as

w(alvﬁla"'aanvﬁnaa) ::U’ﬁ'o'(alaﬁla"'7anaﬁnaaaﬁ)
T(ahﬂla"'aafwﬂ’ﬂ) :,UOC-O'(ﬂl,Oél,-.-,67L,Oén,CL)(O{1,ﬂ17.-.,Oén,ﬂn7a),a)
reca~0(a17617"'70471;61170‘304) :W(Oflvﬁla"'70477,761177_(0417613'"7O‘nvﬂn))~

The dinaturality condition ifC') ;, follows from the one irC since these have the same
maps, and the last statement is an easy consequence of the construction.

Of course, to be able to use Theorem 1 for modeling recursive types, one must show
that any FPC type,...,a, F o induces a functof(C")*” x C""* — C'induced
by a type, by splitting occurrences of free type variables into positive and negative
occurrences. This is an easy induction on the structuee ahd the case of recursive
types is simply that Fixcoq1gOf Theorem 1 is induced by a type for allq)q



Theorem 2. FPC can be modeled soundly (€") .

5 Polymorphic FPC in the per-model

The abstract analysis of Section 4 shows that our main example — the per-model —
models recursive types. It also models polymorphism, and Figure 1 shows the inter-
pretation of PolyFPC in the per-model, except the interpretation of recursive types, for
which the categorical properties (dinaturality) are more useful than the concrete de-
scription as shown for instance in [22].

Types in the per-model of PolyFPC are modeled as pdiss- o]?, [a - o]"),
where[a F o]? is a mapCCP" — CCP and[a I o]" is a map taking am-vector
of admissible relation§A;: AdmRel(R;, S;)) (admissible in the sense of objects of
AdmRelccp) on objects of CCP and produces an admissible relation

[at o] (A): AdmRel([a F o]?(R), [a F o]P(S))

satisfying [a - o]"(edg) = €Qropr(r)- IN Figure 1 the symbolg, 2 denote two
incomparable elements dp, and (-,-) denotes the pairing functio® x D — D
definable using the combinatory algebra structurelonThe monad induced by the
comonad onAP,; and AdmRelap, is denotedL. Explicitly, this monad maps a
chain complete peR to {(L, L)} U {({t,z), (¢t,y)) | R(x,y)} where. denotes a code
for the identity function onD, and an admissible relatioA on chain complete pers
R, S is mapped to the relation that dhR, LS that relateq L] to [L] and [{¢, z)] tO

[(e, )] i A([z], [y])-

[+ a;]P(R) = R;
[a o x7]"(R) = {((z,9), (=", ¢) | [a = o] (R)(z,2") A b 7]P(R)(y, ')}
[a o+ 7] (R) = {((L, ), (1,2")) | [ F o]"(R) (2, 2") }U
{(2,9),2,9) | [a - IP(R)(y,4)}
[aFo—7]P(R) ={(e, f) |Vz,y € D.[a } o]P(R)(z,y) = L] - 7]?(R)(e -z, f - y)}
[o E1]P(R) = {(L, L)}
[aFT]a. o]P(R) = {(z,y) | VS: CCPy. L[, a - o]P(R, S)(z, y)A

VS, S': CCPy.VA: AdmRel S, S'). L]e, a - o] (eqr, A)([z], [y])}
[a o x7]"(A) = {([{z, )], [(2",9")]) | [ = o] (A)([], [2']) A [ee = 7] (A)([y], [y' D)}
[a o+ 7]"(A) = {({L,2)], (1, 2)]) | [e = o]"(A)([z], [=]) }U
{2, 9], 12,90 | Tee B 77 (A (W], [}
[a ko —7]"(A) = {([e],[f]) | V([z], [¥]) € [a - o]"(A).([e-z],[f-y]) € L[ - 7]"(A)}
[a F1]"(A) = {([L],[L]}
[t [Ta. o] (A) = {([z], [y]) | VS, S": CCPy.VA: AdmRel S, S’). L[e, a t- o] (A, A)([z], [y]) }

Fig. 1. Interpretation of PolyFPC in per-model



Terms of PolyFPC are modeled in the Kleisli categoryfoifo be more precise, a
terma | x: o - t: 7 is modeled as an indexed family of maps

([r: 1Ll F oi]"(R) = Lla F7]7(R))r

where the product refers to the product@CP. Such a family must have a common
tracker, and must preserve relations, which means th&t AdmRel(R, S), and for
eachi, ([z;], [y:]) € [ F 0;]"(A), then

([[t]]R([xl]v SR ['rm])a [[t]]s([yl]a EERE) [ym])) € L[[Oé = T]]T(A)'

Theorem 3. The interpretation of PolyFPC types defined in Figure 1 extends to a sound
interpretation of PolyFPC.

5.1 Computational adequacy

A 7 - o context of PolyFPC for types, r, wherer is closed, is an expressidr con-
taining a place holder.. such that whenever an expressioaf type 7 is substituted
for the place holder such that the restilt] is a closed term, it has type Two terms
t,t': 7 of PolyFPC of the same type are called contextually equivalent (writtert’),

if for any typeo, and anyr - o contextC,

Cl 4 iff C[t'] 4
wheret || means: There existstasuch that |} v.

Theorem 4 (Adequacy).For any programi of PolyFPC,[¢] # [L]iff ¢ |.

From Theorem 4 the following corollary giving a tight connection between the opera-
tional and denotational semantics is easily provable.

Corollary 1. Suppose,t’ are two PolyFPC terms of the same typeftlf = [¢'] then
t=t.

6 Reasoning using the model

The per-model of PolyFPC is parametric by construction, since the interpretations of
types have a build-in relational interpretatidiex(- ¢]") satisfying identity extension.
This means that the model can be used to verify parametricity arguments about PolyFPC
programs. For example, for the usual data abstraction arguments as in [27, 21] proving
that two implementations of a data type gives the same final program, one can prove
using parametricity of the model, that the two programs denotations are equal, and then
use Corollary 1 to prove that the programs are ground contextually equivalent.

In future work, it will be interesting to lift the parametricity of the model to a logic
on PolyFPC. Corollary 1 should verify the logic in the sense that two terms that are
provably equal in the logic should be ground contextually equivalent. Since the logic
reasons about partial functions, it needs to include a termination propasition The
mix of parametricity and partiality will have the following consequences on the logic.



— Only total functions will have graphs that can be used to instantiate the parametric-
ity principle.
— The relational interpretation of the type constructor will relatg¢ togin R — S
for relationsR andS iff f | < g |, and further for al(z, y) € R, f(z) | <
g(y) L andf(x) | impliesS(f(z),g(y))-
— The parametricity principle in the logic will say that two termgf of, say closed
type [ [«. o, are ground contextually equivalent #f| < f | and further, for
all pairs of typesr, 7/ and any relatior? between thene(r) | < f(7/) | and
e(r) | implies(e(r), f(7')) € o[R].

Related results can be found in [17], and the interpretation @fbove is a symmetric
version of the one itoc. cit.

7 Conclusions

By showing that the solutions to recursive domain equations in the linear part of the
calculus PILLy can be used to interpret recursive types in languages with no linearity,
we have shown that parametric Pli:Lis a useful axiomatic setup for domain theory.
The parametric model of PolyFPC constructed by applying the general theory to the
case of admissible pers can be used to reason about parametricity for PolyFPC and for
example give proofs of modularity properties along the lines of [21], but this time using
the denotational semantics.

In recent work, Birkedal, Mggelberg, Petersen and Varming [11] have shown how
the programming language lily of Bierman, Pitts and Russo [4] gives rise to a parametric
model of PILLy . Using this result, the techniques developed here should show how
FPC can be translated into lily, but it would be interesting to see if full PolyFPC can be
translated into it.

References

1. M. Abadi and G.D. Plotkin. A per model of polymorphism and recursive typessthn
Annual IEEE Symposium on Logic in Computer Sciepegies 355-365. IEEE Computer
Society Press, 1990.

2. A. Barber. Linear Type Theories, Semantics and Action CalcihD thesis, Edinburgh
University, 1997.

3. P.N. Benton. A mixed linear and non-linear logic: Proofs, terms and models (preliminary
report). Technical report, University of Cambridge, 1995.

4. G. M. Bierman, A. M. Pitts, and C. V. Russo. Operational properties of Lily, a polymor-
phic linear lambda calculus with recursion. Fourth International Workshop on Higher
Order Operational Techniques in Semantics, Méatrvolume 41 ofElectronic Notes in
Theoretical Computer Sciendglsevier, September 2000.

5. L. Birkedal and R. E. Mggelberg. Categorical models of Abadi-Plotkin’s logic for para-
metricity. Mathematical Structures in Computer Scient®(4):709—-772, 2005.

6. L.Birkedal, R. E. Mggelberg, and R. L. Petersen. Category theoretic models of linear Abadi
& Plotkin logic. Submitted.

7. L. Birkedal, R. E. Mggelberg, and R. L. Petersen. Domain theoretic models of parametric
polymorphism. Submitted.



8. L. Birkedal, R. E. Mggelberg, and R. L. Petersen. Linear Abadi & Plotkin logic. Submitted.
9. L. Birkedal, R. E. Mggelberg, and R. L. Petersen. Parametric domain-theoretic models of
linear Abadi & Plotkin logic. 2005. Submitted.

10. L. Birkedal, R. E. Mggelberg, and R. L. Petersen. Parametric domain-theoretic models of
polymorphic intuitionistic / linear lambda calculus. Rroceedings of the Twenty-first Con-
ference on the Mathematical Foundations of Programming Semagtés. To appear.

11. L. Birkedal, R.L. Petersen, R.E. Mggelberg, and C. Varming. Operational semantics and
models of linear Abadi-Plotkin logic. Manuscript.

12. M. Fiore.Axiomatic Domain Theory in Categories of Partial Mafgistinguished Disserta-
tions in Computer Science. Cambridge University Press, 1996.

13. P.J. Freyd. Algebraically complete categories. In A. Carboni, M. C. Pedicchio, and
G. Rosolini, editorsCategory Theory. Proceedings, Como 1996lume 1488 ofLecture
Notes in Mathematicpages 95-104. Springer-Verlag, 1990.

14. P.J. Freyd. Recursive types reduced to inductive type?rdoeedings of the fifth IEEE
Conference on Logic in Computer Scienpages 498-507, 1990.

15. P.J. Freyd. Remarks on algebraically compact categories. In M. P. Fourman, P.T. Johnstone,
and A. M. Pitts, editorsipplications of Categories in Computer Science. Proceedings of the
LMS Symposium, Durham 199blume 177 ofLondon Mathematical Society Lecture Note
Series pages 95-106. Cambridge University Press, 1991.

16. Jean-Yves Girard. Linear logiTheoretical Computer Sciencg0:1-102, 1987.

17. Patricia Johann and Janis Voigttler. Free theorems in the presencead In Proc. of
31st ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, POPL 2004,
Venice, Italy, 14-16 Jan. 200gages 99—110. ACM Press, New York, 2004.

18. Paola ManeggiaModels of Linear PolymorphisnPhD thesis, University of Birmingham,

Feb. 2004.

19. Maraist, Odersky, Turner, and Wadler. Call-by-name, call-by-value, call-by-need and the
linear lambda calculusTCS: Theoretical Computer Scien@28:175-210, 1999.

20. R. E. Mggelberg.Categorical and domain theoretic models of parametric polymorphism
PhD thesis, IT University of Copenhagen, 2005.

21. A. M. Pitts. Typed operational reasoning. In B. C. Pierce, edidvanced Topics in Types
and Programming Languaggeshapter 7, pages 245-289. The MIT Press, 2005.

22. AM. Pitts. Relational properties of domainmformation and Computatiqril27:66—90,

1996.

23. G.D. Plotkin. Type theory and recursion (extended abstrad®rdeeedings, Eighth Annual
IEEE Symposium on Logic in Computer Scierage 374, Montreal, Canada, 19-23 June
1993. IEEE Computer Society Press.

24. G.D. Plotkin. Lectures on predomains and partial functions. Notes for a course given at the
Center for the Study of Language and Information, Stanford, 1985.

25. G.D. Plotkin. Second order type theory and recursion. Notes for a talk at the Scott Fest,
February 1993.

26. Gordon Plotkin and Mdrt Abadi. A logic for parametric polymorphism. fyped lambda
calculi and applications (Utrecht, 1993Jolume 664 of_ecture Notes in Comput. Sqhages
361-375. Springer, Berlin, 1993.

27. J.C. Reynolds. Types, abstraction, and parametric polymorphigormation Processing
83:513-523, 1983.

28. Stephen Tse and Steve Zdancewic. Translating dependency into param@t8aRLAN
39(9):115-125, September 2004.



