Polymorphism

Strict typing discipline has proven to be an efficient tool for
developing structured programs

Limitations

However, distinguishing programs with different types, the typ-
ing discipline would consider the following two programs differ-
ent

int — reverse : int — list — int — list
string — reverse : string — list — string — list

although they both simply reverse a list, and thus perform es-
sentially the same operation.

Solution

Polymorphism allows one to define a general reverse function
reverse : Va.a — list — o — list

which yields the needed functions upon instantiation:

int — reverse = reverse(int)
string — reverse = reverse(string)

reverse is then called a polymorphic function.

POLYMORPHISM: the quality or state of being able to
assume different forms

Parametricity

A Property of Polymoérphism

h Rasmus Ejlers Mggelberg

Rasmus Lerchedahl Petersen
Lars Birkedal

=

['T-University of Copenhagen

Parametric Polymorphism
-intuitively

Intuitively parametricity is the statement that

“Polymorphic functions behave the same on all
type-instantiations

For example, a function ¢ of type Va.aoe — « can not instantiate
to the identity on some types and to the successor function
on the natural numbers. In fact, it can not instantiate to the
sucessor function on natural numbers at all, since the successor
function is specific to the natural numbers, and is not available
on all other types. It is actually provable that the program ¢
can only be the polymorphic identity function.

Likewise, functions of type Va.a—list — a—1list (like
reverse) can only manipulate the order of lists, throw away
elements and duplicate elements. Thus, we may conclude on the
behaviour of polymorphic functions simply from their types.

Consequences

Inductive Datatypes

Restricting the set of functions of a given polymorphic type,
parametricity allows inductive datatypes to be defined through
polymorphic types, as only functions that truly behave in the
spirit of the datatype are admitted as members of the polymor-
phic type.

For instance, parametricity ensures that all functions of type

o—lists =Va.a— (0 > a— a) > «

behave as lists.
Other definable types:

Natural Numbers = Va.(a = a) > a — «

o —trees = Va.a— (0 2a—a—a) =«
ox1=Va(c >T—a) =«
oc+717=Va.(c »a)—=>(T—>a) =«
Empty = Va.«

N

Data abstraction

Suppose programmer A is writing a program using a datatype
implemented by programmer B. A will view this datatype as a
type plus some operations on that type, and programmer B will
implement a concrete type plus concrete operations.

Using parametricity, one can prove that the program written
by A can only access the concrete implementation through the
given operations, and thus one can prove that the result of the
program given by A will be independent of the concrete imple-
mentation of the datatype given by B.

Models v

There i1s a correspondence between languages with polymor-
phism and certain mathematical structures called Ao-fibrations
modelling polymorphism. A good understanding of parametric-
ity for languages with polymorphism should be based on a math-
ematical understanding of parametricity in these mathematical
structures.

Many models of polymorphism are known, but for most of these
it is unknown whether they are parametric. Providing models of
parametric polymorphisms in combination with many of the fea-
tures of modern programming languages is yet to be done, and
will provide mathematical foundation for applying the conse-
quences above, such as data abstraction to reasoning principles
for programming languages.

On-going research at I'TU

Aims of our work:
1. Give a precise definition of parametricity for Ao-fibrations.

2. Provide domain-theoretic models of parametric polymmor-
phism, since mixing domain-theory with parametricity pro-
vides powerful principles of reasoning enabling the solution of
recursive domain-equations. This is also important because
Turing complete programming languages have fixpoints.

3. Study these models.

4. Apply this knowledge to obtain reasoning principles for pro-
gramming languages.

References

[1] R. Mggelberg and L. Birkedal. Categorical models of para-
metric polymorphism. 2004. www.itu.dk/people/mogel

2] J.C. Reynolds. Types, abstraction, and parametric polymor-
phism. Information Processing, 83:513-523, 1983.

3] P. Wadler. Theorems for free! In 4’th Symposium on Func-
tional Programming Languages and Computer Architec-
ture, ACM, London, September 1989.




