.-ﬁ
=

The IT University

of Copenhagen

Categorical and domain theoretic models of
parametric polymor phism

Rasmus Ejlers Mggelberg

PhD Dissertation






Abstract

Parametric polymorphism in functional programming languages with explicit polymorphism is the property
that polymorphic programs behave the same way at all type instantiations. This can be formulated more
precisely using Reynold’s notion of relational parametricity, which states that polymorphic functions should
preserve relations. It has been known for a long time that parametric polymorphism can be used to encode
inductive and coinductive data types, and this has been shown in a logic for parametricity suggested by
Abadi and Plotkin.

In this dissertation we propose new category theoretic formulations of parametricity for models of the
second-order lambda-calculus and models of a polymorphic lambda-calculus with linear function types and
fixed points. These parametric models are models of Abadi and Plotkin’s logic for parametricity, called para-
metric APL-structures and LAPL-structures, respectively. We show how that the encodings of inductive and
coinductive types using parametric polymorphism give rise to initial algebras and final coalgebras in APL-
and LAPL-structures and, using Plotkin’s encodings, we show how to solve recursive domain equations in
LAPL-structures.

Moreover, we show that the notions of APL- and LAPL-structures are general by constructing different
examples. We construct a parametric APL-structure based on the per-model and a domain-theoretic para-
metric LAPL-structure. Based on recent work by Simpson and Rosolini we show how to construct paramet-
ric LAPL-structures using synthetic domain theory, and we device general ways of constructing parametric
LAPL- and APL-structures using parametric completion processes.

Using the LAPL-structure constructed using synthetic domain theory we prove consequences of parametric-
ity for a variant of the Lily programming language.
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Introduction

This PhD dissertation is a collection of five papers on models of parametric polymorphism, which we shall
refer to as Paper 1, etc. in this introduction. The introduction at hand is organized as follows: $é¢tjons 1, 2
contain background material on parametric polymorphism, Section 3 discusses models of parametric poly-
morphism, Sectioh]4 gives a summary of the results of this dissertation, Sejction 5 discusses related work,
Section § contains an overview of the papers in this dissertation, and Section 7 concludes and discusses
future work.

1 Parametric Polymorphism

Polymorphism in typed programming languages enables the programmer to write functions that can act on
input of many types. Consider for example the functien that reverses a list. This function can act on
integer-lists, string-lists or lists of any type. In languages with explicit polymorphism, such as ML and the
second-order lambda calculus, the functien will have the type (in the syntax of the second-order lambda
calculus)

[]o: Type. lists(a) — lists(av),

to be read as “for all types, lists(«) to lists(«)”. An element of this type is a family, indexed over types
A, of functions takingA-lists and returningd-lists.

Christopher Strachey [37] identified two types of polymorphism. The first, caliedoc polymorphism

allows the behavior of a polymorphic function to depend on the type of in-data. The second type, called
parametric polymorphisponly includes functions based on a common algorithm for all input types. For
examplerev is parametric, whereas the function that adds one to each element of an integer list, but is the
identity on lists of all other types is ad-hoc.

A programming language is said to haparametric polymorphisnif it has explicit polymorphism and

all polymorphic programs are parametric. In the following we sketch two reasons why such programming
languages are interesting. We argue informally and use the syntax of the second order lambda calculus, but
the arguments are not limited to the second-order lambda calculus.

1.1 Encoding of inductive and coinductive types

Consider the type
[Ta: Type. (@ — a) — (a — )

in a language with parametric polymorphism. A function of this type takes for anydypinctionf: A —
A and produces a new functioh— A. For each natural number, we can define the function that maps
to f (f is the identity onA), and this way we can think of the tyj¢ o.: Type. (a« — a) — (o — a) as
containing a copy of the natural numbers.

Since a parametric function of the typ¢a: Type. (¢ — a) — (o — «) is not allowed to use specific
information about the typd, the only access it has té is the functionf, and so intuitively all it can do is



map f to f”ﬂ Since parametric functions should use the same algorithm for all types of input,ghauld
be the same for all typed, and all functionsf.

The above establishes the intuition why the tfger: Type. (@« — a) — (o — «) in a language with
parametric polymorphism can be used as a reasonable type of natural numbers. Of course we have not given
a formal argument for this, and we have not defined what we mean by a reasonable type of natural numbers.
Notice that the natural numbers were always present in the type, and we used parametricity to argue that no
other elements of the type could exist. In general, encoding of all inductive and coinductive types such as
finite lists, potentially infinite lists, trees etc. exist.

1.2 Data abstraction

In this section we will assume we are working in a language with parametric polymorphism and data types
for natural number®at, products and lists. This is not an unreasonable assumption as these data types can
be encoded in languages with parametric polymorphism as described in $edtion 1.1.

Suppose that a programmer is writing a program for which he needs to use a data type for stacks of natural
numbers, which should be implemented by another programmer. Such a data type would have operations

new: Stack
push: Nat x Stack — Stack
pop: Stack — Stack
top: Stack — Nat

wherenew creates a new stackush pushes numbers onto the stapkp pops the number on top of the
stack, andop returns the number on top of the stack. A concrete implementation of theéStypk could
for example implement it using lists, witkew being the empty listpush adding a new element to the first
position of the listpop taking the first element out of the list, angb returning the first number in a list.

Even though the programmer may not have the implementation of thestyipk yet, he can still write his
program as a functio® taking as input a concrete implementationSofick. If for example the program
should return a natural numbé?,would have the type

[ ] Stack: Type. Stack — (Nat x Stack — Stack) — (Stack — Stack) — (Stack — Nat) — Nat.

P then takes as input a concrete type and concrete operations.

Since the progran® is parametric, it should only be able to access the 8tpek through the operations
new, pop, push, top provided, since this is the only available information about the §tpek, and it should
never be able to use information about a specific implementation of the type it is instantiated with.

We can use this to prove that if two concrete implementations of theStypéd behave the same way with
respect to the interface operatiomsw, push, pop, top then the result of° instantiated with either of the
two concrete implementations will be the same. This is a way of ensuring robust modularized programming.

Existential types present a different approach to data abstracCtion [20]. Existential types can be encoded
using parametric polymorphism.

Data abstraction can be seen as a sort of information hiding; we hide information about the specific im-
plementation of a data type from the programmer using the data type. Parametricity has also been used
to implement other forms of information hiding such as hiding local variables from called procedures in
imperative languages (see Secfior 5.4).

1In this example, we have assumed that the polymorphic language does not have fixed points. If the language has fixed points,
the situation is different, as we describe in Se 2.2



1.3 Relational parametricity

Of course the arguments above are quite informal, since we have not formulated the concept of parametric
polymorphism very precisely. John Reynolds has given a precise formulation of parametricityrekaied

tional parametricity[30]. The basic idea is that the parametric elements of a polymorphic type are those
that preserve relations. For example, a polymorphic funcfiofitype [[ «: Type. @« — « is parametric if

for all pairs of typesA, B and all relations? between them: if:: A, y: B are related irRk, then so arg (z)

andf(y).

Let me sketch how this captures data abstraction. We can express the notion of two implementations of
Stack behaving the same way with respect to the interface operations using relations as follows: There
should be a relation relating elements of the first implementatiéGnaatk to elements of the other, such that

the interface operations preserve the relations. This means that the stacks created by¢hedparations

should be related, pushing the same number onto related stacks should produce related stacks, popping
related stacks should produce related stackstapdmaps related stacks to equal numbers. Relational
parametricity states that the prografnof Sectior] 1.R applied to related implementation$tfck should

produce related results, which, since the typ&tafck does not occur in the result type 6fshould mean

that the results are equal.

Martin Abadi and Gordon Plotkin have devised a logic for reasoning about parametricity for the second-
order lambda calculus [29]. In this logic one can prove correctness of encoding of inductive and coinductive
types from parametricity.

Of course, to use relational parametricity in practice for a specific programming language, one will have to
specify what is meant by relations.

2 Models of Polymorphism

In this section we sketch the two polymorphic languages we consider in this dissertation, namely the second-
order lambda calculus and PIkL(Polymorphic Intuitionistic / Linear Lambda calculus with fixed point
combinatorY’). We also sketch the categorical notions of models for these languages. The purpose of this
section is not to give precise definitions, but to give an idea of the models used, to prepare for the discussion
of parametric models of these calculi.

2.1 The second-order lambda calculus

The second-order lambda calculus)is the simply typed lambda calculus (with products) extended with
(impredicative) polymorphism. Types are given by the grammar

cu=alo—o|loxo|l|][]ao

wherea ranges over an infinite set of type variables. The construgtjen o binds the type variable. We
useo, 7, w to range over types. Terms are given by the grammar

to=ax | dz:ot|tl)| tt) | nt|n't] Aa: Type.t|t(o) | .
Terms exist in contexts of free type variables and ordinary variables written as

QlyeeyQp | T1: 01,00 T O BT



where the free type variables of theand+ are amongyy, . .., a,. We will often write=Z for a4, ..., a,
andl' for zy: o1,...,2y: o, and we shall often omit the Type in types and terms. Most of the typing
rules are as in the simple typed lambda calculus, so we just mention the two related to polymorphism.

If

Qlyeney Oy Qg ] | T1: 01,y o oy Tt O EE0 T

is a term andv,, 1 is not free in any of the types,, . .. o, then
Qlyeeos O | T1: 01,00 Tt O F Aapg.t: [] g T

IfZ|TFt: [[]a. 7, ando is atype with all free variables &, we may form= | I' + ¢(0): 7[o/«a], where
T[o/a] denotes capture free substitutioncofor free appearances ofin  defined as usual.

We notice two properties of,. First, for every collection of free type variablgswe have a simple typed
lambda calculus of terms with free type variablegirSecond s has a very strong notion of polymorphism
called impredicative polymorphism, meaning that terms of polymorphic types may be instantiated at all
types. If for examplé is a term of type] [ a.. o, thent(] ] .. ) also has typd [ «v. «, and so applying a
polymorphic term to a type need not result in a term with a simpler type. Impredicativity is what has made
models of)\, difficult to find.

For a long time it was hoped that one could find set-theoretic models. @y this we mean models based

on a set or class of seté such that one can model types withree variables as mag@s™ — U, and model

product types and exponent types pointwise using set theoretic products and exponents. In fact Reynolds
defined parametric polymorphisin_|30] hoping that such set theoretic models could be constructed using
parametric polymorphism in the interpretation of polymorphic types.

In 1984 Reynolds [31] (see also [32]) showed that set theoretic models adn not exist unless they are
trivial. However, if one replaces set theory with other more constructive universes, such as certain toposes,
models as described above may exist [26, 24].

The most famous example of such a model is the per-model, which can be seen as a set-theoretic model
living inside the effective topos, or the quasi-topos of assemblies. The per-model is based orPiae set

of partial equivalence relations on the natural numbers (symmetric, transitive, but not necessarily reflexive
relations). A type withn free variables is modeled by a map

Per” — Per.
Exponents are modeled pointwise by defining for each pair of Refsa perR — S relatingn, m if
Ve,y: NR(x,y) Dn-z | Am-y | AS(n-x,m-y)

wheren - x denotes Kleene application, i.e., application oftfth partial recursive function ta. Finally, if
f: Per"t! — Per is a type, we model the polymorphic type obtained by abstracting the last type variable
by intersection, i.e., iRy, .., R, are perstheq[ [ f)(Ri,. .. Rn)(n, m) holds iff

VR,+1 € Per. f(Rl, ce ,Rn_H)(n, m)

holds.

Terms of the form
Ay 0 ot T

are modeled as families of morphisms

([@ | z: o+ t: 7)(R): N/[@+ o](R) — N/[@ F 7)(R)) jepepns
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whereN/[a I o] (R) denotes the set of equivalence classes of the partial equivalence réfation], such

that[t] is uniformly tracked, i.e., there exists a natural numbsuch that for allR, [@ | z: o - ¢: 7](R)

is given by[m] [a-ol(R) [n - m] [G-] ()"

In general, second-order lambda calculus is modelegd-iibrations These are defined to be fibred cartesian
closed fibrations, with cartesian base and a generic object and simple products. We sketch what this means,
but choose for simplicity to describe split fibrations and split generic objects. The reader interested in further
details should consult [15].

Suppose: E — Bis a functor. For each objegt € B we can consider the fibfié= of E over=, defined to

be the subcategory @ on objects mapped 6 via p and morphisms mapped to the identity®nA (split)
fibration is a functop: E — B satisfying a technical condition basically ensuring that every morphism
f: 2 — Z'in B induces a functorf*: Ez» — Ez, and further(f o g)* = ¢* o f* andid* = id. The
categorie€ andB are called theotal categoryandbase categoryespectively and a functor of the forjit

is called areindexing functor

A fibred cartesian closefibration has cartesian closed fibres, and this structure is preserved by reindexing
functors. A)s-fibration further has products in the base category and a (gplitric objecti.e., an object

Q2 € B such that for any2 € B there exists a bijective correspondence between rBaps 2 in B and
objects ofEgz. This correspondence should be naturaEiim the sense that if : = — € corresponds to

X € Ez andg: =’ — Z, thenfg corresponds tg* X € Ez.

Finally a,-fibration is required to have&mple productsvith respect to projections of the form =x Q2 —
=. This means that for each sughthe reindexing functor

T EE —>EE><Q

is required to have a right adjoif{_...

We model)s in As-fibrations as follows. Types with free variables are modeled in the fibre categbgy:
and terms with. free type variables

Ay ey | X1 01,0 T O E E2 T

are modeled as maps &y from [[,[&@ F o;] to [@ - 7], where] ], denotes product in the fibre. Since
the generic object induces a correspondence between faps (2 in B and objectsEg~» we can model
a1,. ..oy Fa; asthe object corresponding to il projection. The simple type constructions are modeled
using the cartesian closed structureéfgf., and polymorphic type& - [] a,+1. 0 are modeled as

Hﬂ— [[0_27 On+1 - O-H

wherer: Q" x Q0 — Q™ is the projection.

The per-model can be seen aa-afibration as follows. The base category has as objects natural numbers,
and as morphisms from to m set theoretic mapPer” — Per™. The total category has as objects maps
f: Per™ — Per for somen, and a morphism fronf: Per” — Per to g: Per™ — Per is a pair(h, k)

such thati: Per” — Per™ is a map, and is an indexed family of maps

(k(R): N/f(R) = N/g o h(R)) sepepn

with a uniform tracker as defined above. The fibration maps an opjeBer™ — Per ton and a morphism
(h, k) to h.



Modeling X2 in this fibration gives the per-model described above. Since types and terms \vitle
variables are modeled in the fibre ovettypes are modeled as maper™” — Per andtermsy | z: o Ft: 7
are modeled as vertical maps, i.e., families of maps of the form

([@F2: ok t: 7)(R): N/[@ F o](R) — N/[@ - 7](R)) 5

with a uniform tracker.

2.2 Adding fixed points

The second-order lambda calculus is a strongly normalizing language, and so does not have very strong
computational power. To study a more expressive language we would like to add fixed points to the language,
but since parametricity should give encodings of sum types, one can show, using a general result from [14],
that adding fixed points to parametpig causes inconsistencies.

One way to deal with this problem is to think of the domain theoretic models. The category of cpos with
continuous maps has a fixed point combinator, and is cartesian closed. It does not have coproducts, but
the category of cpos with strict continuous maps does. Based on this observation, Gordon [Plotkinh [28, 27]
suggested to study a polymorphic calculus in which one could distinguish between strict and non-strict
maps. The encoding of sum types using parametricity would then work in the category of strict maps.

Gordon Plotkin also realized that in this language the encoding of inductive and coinductive types using
parametricity could be generalized to an encoding of recursive types, such as types satistyjig— A],

where the isomorphism is in the category of strict maps. This means that this language can be considered an
alternative approach to axiomatic domain theory, where the mentioned encoding of recursive types replaces
the well-known limit-colimit construction.

We now sketch the language suggested by Plotkin. The language is calleg Bid_is an extension of
DILL [3] with polymorphism and a fixed point combinator.

The grammar for types of PILk is
ocu=al|l|lo®c|o—ool|lo|]]ao

whereq ranges over an infinite set of type variables. The type construetgives linear function types.
The grammar for terms is

t = x| x|Y | XNzrot|tt|t®t|lt] Aa: Type.t|t(o) |
letx: c®@y: Thetint|letlz: o betint |let x betint.

Terms of PILL- are written as
Q| T1: 01, Ty Oy YL Tl e ey Ym: Tm E L0 w.

Thea’'s are type variables as iy, thez;’s are intuitionistic variables and thg’s are linear variables which
can only occur linearly in. The A-abstractiom\°z: . ¢ produces terms of linear function type— =, and
since linear variables of tyde behave as intuitionistic variables of typewe may define a type of ordinary
functionsc — 7 =lo — 7. The fixed point combinatdr” has type[ [ a: Type. (o — o) — a.

The encoding of inductive and coinductive data types in Rili& different from that of\,. For example
the type of natural numbers can be encoded as

[[a. (@ —a) = (o — a).

6



For further details on PILL: we refer to Paper 2.

We derive the notion of models of PlkLfrom the models of DILL[[3, 1/7]. A model of DILL is a symmetric
monoidal adjunction

C<_ 1 =D
such thatC is symmetric monoidal closedl is cartesian, antd is the category of finite products of coalge-

bras for the comonad o@i induced by the adjunction (see Paper 3 for an explanation of these concepts).
A PILLy-model is a fibred symmetric monoidal adjunction

(basically a family of symmetric monoidal adjunctions between fibre categories, with all structure com-
muting with reindexing) such th&t is fibored symmetric monoidal closef), is fibred cartesian, ang is

the category of finite products of coalgebras for the comona@ oxuced by the adjunction. We further
require thatB is cartesian, and that the fibrati@h— B has a generic object, ovérin B say, and simple
products with respect to projectioisx (2 — = for = € B. Finally, we require that there is a term modeling
the fixed point combinator.

The language PILL: is modeled in the fibratio® — B using the fibred symmetric monoidal structure to
model®, —o, I. The type constructdris modeled by the fibred comondd= onC — B. Polymorphism is
modeled using the simple product as was the casg.foA term

|70t
is modeled as a vertical morphism

[1]: (QFGEF o) @ (QIEF o)) — [EF 7]
i J

in C.
The reader may be wondering why a Pitdmodel is an adjunction and not just a fibred comonad satisfying

certain conditions. Of course we might as well have given the definition this way, but we like to keep the
category of finite products of algebras for the comonad in the picture for the following reason.

Suppose
Elda -kt

is aterm. Thert is modeled as a map
[t]: @ FGIEF o] — [EF 7]

One can prove that for any symmetric monoidal adjunction the left adjoint is strond;'{4),® F(B) =
F(A x B), and so using the adjunctidn 4 G, [t] corresponds to a map

—

Itl: 1L, GIE+F 0i] — G[E+ 7].

in D. Thus, the fibratio® — B models the part of the calculus consisting of terms with purely intuitionistic
variable contexts.



3 Models of Parametric Polymorphism

Having seen what models of polymorphism are, a natural question to ask is “What does it mean-for a
fibration or a PILLy-model to modeparametricpolymorphism?”. This dissertation proposes an answer to
this question, but before presenting it we discuss what a good notion of parametric model should be.

General requirement. A good notion of parametricity for models of polymorphism should be such that all
parametric models satisfy the consequences of parametricity described in Sectjon$ 1.1,1.2. This means that
we should be able to prove correctness of the encoding of inductive / coinductive types and data abstraction
results.

Recall the example of thi-type
Nat = [[a: Type. (@ — a) — (@ — «)

from Sectioff 1.1. The interpretation of this type inafibration modeling parametric polymorphism should

be a type of natural numbers, which in the language of category theory means that it should be a natural
numbers object. Since terms are interpreted as maps in the fibre categories\gffithration, the inter-
pretation ofNat should be a natural numbers object in the fibres. For)anfjbration one can prove that

[@ F Nat] =!%.[— - Nat] wherelg» : Q" — 1 is the unique map into the terminal object of the base cate-
gory. We require that for each object in the base categofy[— + Nat] is a natural numbers object in the

fibre over=. Notice that the family!X[— - Nat] )= is closed under reindexing.

In general — since the category theoretic correspondent to inductive types is initial algebras — the inter-
pretations of the encodings of inductive types should induce families of initial algebras in any parametric
Ao-fibration. Likewise the interpretation of coinductive types should induce families of final coalgebras. In
parametric models of PILi- the interpretations of the encodings of recursive types should produce solutions
to recursive domain equations in the model.

To my knowledge no definitive categorical formulation of data abstraction has emerged. One approach is
to ask for the existence of a logic to reason about the internal language of the model, in which one can
formulate data abstraction properties. Another approach is to require existential types to exist in the fibres
of the model, in which case this requirement resembles that of inductive and coinductive data types. In this
dissertation | have focused on the requirements for encoding of data types.

3.1 Models of Abadi & Plotkin’s logic

Our notion of parametricity for models of polymorphism will be based on relational parametricity. As
mentioned, to formulate relational parametricity one must specify what is meant by relations. Some models
may be parametric with respect to one notion of relations but not with respect to other (as is the case for the
domain theoretic model of Paper 2).

Many models considered in the literature (such as the per-model) exist inside an ambient set theory (such
as the internal language of a topos) and thus have a natural notion of relations available. In such cases a
natural definition of parametric model is obtained by formulating the parametricity schema in the set theory
available. Basically, having modeled the parametricity schema in the ambient logic, one should be able to
do the proofs as presented in Abadi & Plotkin’s logic (or variants of it) in the ambient logic and use this to
prove correctness of the encoding of data types of Sectipn 1.1.

Often, however, only a subset of the relations available in the set theory is used in the formulation of
parametricity. Examples includé T- closed relations as in_[25] 5] and relations given by subdomains
as in [35].



Generalizing the cases mentioned above, in this dissertation a parametric magdetiifbe a model of
Abadi & Plotkin’s logic for parametricity satisfying the parametricity schema.

The interest in working out the details of such a definition is two-fold. First, we will be able to unify the
proofs of consequences of parametricity worked out in specific models (such/as [35, 5]). These consequences
should not be worked out in each specific model, but be consequences of the parametric structure on the
model, proved once and for all. We should also be able to use these results on models obtained from
parametric completion [33]. To my knowledge the proofs of correctness of encoding of data types for these
in general do not exist in the literature.

Second, we should be able to identify what exactly is needed to model the logic for parametricity and
reasoning with it. For example, models of Abadi & Plotkin’s logic often come from some ambient logic of

a model, but exactly how close to set theory does this logic have to be? It has also been unclear whether
parametricity only implied correctness of encoding of data types for well-pointed models [7] (the answer is
negative). Finally, as mentioned, some models use only a subset of the relations available in the logic when
reasoning about parametricity. What exactly is required for such a subset to be usable for reasoning about
parametricity?

4 Contributions of this dissertation

In this section we list the main contributions of this dissertation. The discussion here will be a bit more
precise than the text above, but still the results will not always be described in full detail, and so we refer to
the full papers.

4.1 Abadi & Plotkin’s logic

As said, we define models of parametric polymorphism to be models of Abadi & Plotkin’s logic for para-
metricity. Before discussing the models however, we sketch Abadi & Plotkin’s logic. A full description of
the logic can be found in Paper 1.

Abadi & Plotkin’s logic is a logic for reasoning about parametricity fgr We need to be able to formulate
propositions quantifying over types and terms\inand relations on types ih,. Therefore propositions
of the logic live in contexts of free type variables, free ordinary variables and free relational variables. We
write

alxy:on,...,xn: on | Ri: RellTy, 7),..., Ry Rel(Ty,, 7)) F ¢: Prop.

The vectord is a vector of type variables and eaehy7;, 7} is a type of), with free variables inv. The
x;'s are the free variables and tifg’s are the free relational variables. Atomic propositions can be formed
using equality: ift, u are terms of\, of typew in the context

alxy:o1,...,Tp: oy

thent =, u is a proposition.

In the logic, we also have a notion of definable relations. Any relaiignRel(7;, 77) in the context is a
definable relation. I is a proposition in the logic with free variables o,y: 7 then we can form the
relation(z: o,y: 7). ¢: Rel(o, 7). As an example, we mention the equality relatiap on a types defined

by

(x:0,y:0).2=4y.



If p: Rel(o, 7) is a definable relation and o, u: T are terms, thep(¢, u) is a proposition. In particular, if
R;: Rel(r;, 7}) is a relation in the context, andu are terms of type;, 7; respectively ther; (¢, u) is a
proposition.

Further constructions in the logic include the constructions of propositional logic and quantification over
type variables, ordinary variables and relational variables.

Finally, there is arelational interpretationof types: If o(&@) is a type withn free type variables and
p1: Rel(ri,77), ...pn: Rel(r,, 7)) are definable relations, therip, ... p,]: Rel(o(7), (7)) is a defin-
able relation.

The relational interpretation of types is used to formulate relational parametricity (as Reynolds did) as the
identity extension schenstating thatr[eq;] is the equality relation oa(&). The intuition is that for any

type of the form[ [ . o (let us assume that this type is closed) and any elemefthat type(z, x) is in

the relational interpretation gf] «. o, which by axioms of the logic should be equivalent to requiring that

Va, B: Type.VR: Rella, B). o[R](z(a), z(5)).

In words, for all pairs of typesa, 8 and all relations between the®: Rel(«, 5) the a- and3-components
of x are related in the relational interpretationoof

The definition of the relational interpretation of types differs from the original presentation of the logic [29],
whereq[p] is defined by induction over the structureaf What we require is basically a relational inter-
pretation of all type constants in the language as well. Suppose for instance that some type construction
between pairs of types is addedXe. To talk about parametricity for the new language, we should add a
relational interpretation of, i.e., for each pair of relationg8: Rel(o, o), S: Rel(r,7") we must define the
relationR¢ S: Rel(oc o7, 0’ o7'). This means that we may reason about parametricity at types formed using
also these type constructors.

The inductive definition of the relational interpretation of types of [29] is captured in axioms of the logic.

The correctness of the encodings of data types can be expressed in Abadi & Plotkin’s logic, and can be
proved to follow from parametricity. This was stated in theorems in [29], but the proofs were not included
in the paper. Some arguments of this sort appear in [39] and some proofs are written out for a specific model
in [12]. However, even with these references at hand, the proofs are non-trivial to construct, and so we have
included them in this dissertation.

4.2 APL-structures

An APL-structure is a model of Abadi & Plotkin’s logic. To define the notion of APL-structure we first
define a notion of pre-APL-structure. gke-APL-structurds a diagram

Prop

|

Type L. Ctx

N

Kind

whereType — Kind is a A,-fibration (the model we reason about) ahds a fibred faithful product-
preserving inclusion offype into a larger category containing for each pair of objects of the same
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fibre of Type an objectl (o, 7) of all relations between, 7. Prop — Ctx is a logic fibration in which
we interpret the formulas of Abadi & Plotkin’s logic. dtx we can model the full contexts of propositions

as
lee | z1: 01, .. xn: on | Ri: Rel(Ty,7]),..., Ry Rel(Tm, 7)) =

[L; I(loal) < I1; U([75]; [750)

using the inclusion/ and modeling Rét;, 7/) as the object of all relations from to 7/ in Ctx. The
products in this definition are the products of the fibre category.

From a pre-APL-structure we can defingafibration of relations denoted
Relations — RelCtx.

Basically the objects of each fibre are relations, and\thstructure is defined using the same constructions
that give the inductive definition of relational interpretation of types_in [29]. For example, for relations
p: Rel(o, ), p': Rel(o’, 7") the relationp — p’ is defined as the relation

(fro—dg:7— 7). Veioy: 7.p(z,y) Do (f(2), 9(y)).

There exists a pair of maps af-fibrations

Relations Type
o
01

RelCtx Kind

mapping a relation to its domain and codomain respectively. An APL-structure is a pre-APL-structure such
that there is a map ofy-fibrationsJ going the other way satisfying, c J = 91 o J = id. The functorJ
models the relational interpretation of types.

We show that the interpretation of Abadi & Plotkin’s logic in an APL-structure is sound. Moreover, the
class of APL-structures is complete with respect to Abadi & Plotkin’s logic, i.e., any sentence of Abadi &
Plotkin’s logic that holds in all APL-structures is provable in the logic.

We can reason about APL-structures using Abadi & Plotkin’s logic. Thus, if the parametricity schema
holds in the internal logic of the APL-structure, we can prove correctness of the encoding of inductive and
coinductive types in the internal logic. However, to conclude from the statement in the internal logic to the
structure of the fibres d'ype, we need to know that morphismsType that can be proved equal in the
internal logic of the APL-structure in fact are equal in the catedbBype. This property is a well-known
property of logic fibrations calledery strong equality

A key ingredient in the proofs isxtensionalityor functions and polymorphic elements, i.e. the logical rules

Vr:o. f(x) =r g(x) D f =o—r g
Va: Type.ta =; ua Dt =[] q.5 U-

We thus define parametric APL-structuréo be an APL-structure with very strong equality in which para-
metricity and extensionality holds in the internal language.

The main theorem of APL-structures states that they model inductive and coinductive types. Before we state
it, we should be more precise about what we mean by inductive types. First we introduce the distinction
betweerpure A, and )\, calculi in general. Pur@s has no extra type or term constants. We may also talk
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about),-calculi in general. These have added type and term constants, and include for example the internal
language of a\,-fibration.

A type o F o(«) defined in pure\s in which a occurs only positively (see for example Paper 1 or [29])
induces a functor in the sense that there exists a term

M: [Ta,B: Type.(a — B) — (o(a) — o(B))

preserving identities and composition. The interpretationsafid A/ induce a fibred functor

Type Type

~

Kind

and we shall be interested in initial algebras and final coalgebras for the restrictions of this functor to the
fibres of Type — Kind.

In general we define polymorphically strondibred functor to be a functor with a corresponding typend
term M existingin the modebut not necessarily in pur®,. This is clearly a generalization of the above
construction.

The main theorem is the following.

Theorem 4.1. Every polymorphically strong fibred functor has families of initial algebras and final coal-
gebras, i.e., there exists a family of initial algebras / final coalgebras for each restriction of the functor to a
fibre overKind and these families are closed under reindexing along map&iind.

For example, we can show that each fibre has coproducts and the initial algebra corresponding to the type
a F a+1is anatural numbers object. This natural numbers object is the interpretafipnofe — o) —
o — .

Thus the notion of parametric APL-structure gives a categorical notion of models of parametric polymor-
phism satisfying our requirements.

As an example of a model we consider a well-known parametric variant of the per-mbdel [2]. This model
has as types paifg’?, /) of maps such thaf?: Per™ — Per and for each vector

Ry: RE|(A1, Bl), . ,Rni REKAH, Bn),

of relations on pers . . B

fT(R): Rel(fP(A), f*(B)),
where by relationg: Rel(A, B) for persA, B we mean subsets 8f/A x N/B. We require thaf” applied
to a vector of equality relations gives an equality relation. We show that this model can be embedded into
a parametric APL-structure, such that Theofenj 4.1 applies. A variant of this construction in relative real-
izability [6] gives usnon-wellpointecharametric APL-structures (the fibresB§pe are not well-pointed).
This shows that well-pointedness is not necessary for correctness of the encodings of data types to hold.

It is also worth noticing that the construction of models of Abadi & Plotkin’s logic has proved consistency
of the logic.

I have not studied morphisms between APL-structures, since it is not clear to me why these could be inter-
esting. One weakness of APL-structures as models of Abadi & Plotkins logic, which would probably show
up when giving such a definition of morphisms, is that Abadi & Plotkin’s logic only gives notation for the
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objects inCtx of the form (o) or U(o, 1) for o, T objects ofT'ype. Thus, there would not be a bijective
correspondence between maps between APL-structures and translations between the internal languages of
the APL-structures. However, this is of no concern to us as long as we are only interested in using the
APL-structure for reasoning about the includedfibration.

4.3 LAPL-structures

The language PIL}: was first sketched by Plotkin in [28] in which he also sketched a version of the logic
for parametricity for PILL-, and gave a rough sketch of a concrete parametric model ofyRILA this
dissertation we give a full presentation of the logic and a notion of LAPL-structures (Linear Abadi-Plotkin
Logic) which model the logic. We have also worked out the details of the concrete model.

As mentioned, many of the concrete parametric domain theoretic models we consider have a canonical logic,
but are only parametric with respect to a subset of the relations in the logic. To handle these cases, our logic
for parametricity will have to include a notion of admissible relations. For reasoning about parametricity
one needs a good supply of these relations, in particular graphs of linear functions should be admissible
relations. We state a number of rules that the set of admissible relations should be closed under.

Even though the language Pli:Lis combined linear and intuitionistic, the logic we present is purely intu-
itionistic, i.e., it only has intuitionistic variables. Expressions in the logic are written as

a|%:¢| R:Rell?,7),5: AdmRels, ') b ¢: Prop.
The propositiony can contain termssuch that
ald:a;—Ft:1

is a term of PILLy. The constructions in the logic are much as in the logic Xprexcept that we also
have admissible relations. We omit the details here, but mention that for &yyéth n free variables, the
relational interpretation[5] is only defined fors a vector of admissible relations.

As with the APL-structures, to define the notion of LAPL-structure, we must first define the notion of pre-
LAPL-structure. Roughly, a pre-LAPL-structure is a diagram

Prop

|

LinType Type L. Ctx

\\)J{

Kind
The left hand side of the diagram is the model of PiLthat we reason about. The functbis a fibred
product preserving faithful functor, and as usRabp — Ctx is a logic fibration andCtx contains objects
of relations for all pairs of types, 7 in the same fibre oLinType. A notion of admissible relations for
a pre-LAPL-structure is a family of subobjects of the objects of relatiorStir closed under the rules for
admissible relations in the logic.

From a pre-LAPL-structure with a notion of admissible relations, one can construct a model of PILL (it does
not necessarily model the fixed point combinatQr The model is denoted

LinAdmRelations 1 > AdmRelations
AdmRelCtx.
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The objects ofLinAdmRelations are admissible relations, and the morphisms are pairs of strict mor-
phisms preserving relations.

As for the APL-structures there exists two majgso; of PILL-models out of the constructed PILL-model
mapping an admissible relation to its domain and codomain respectively. An LAPL-structure is a pre-LAPL-
structure such that there exists a map of PILL-modai®ing the other way satisfyingyoJ = 0;0J = id.

Again J gives a relational interpretation of types.

We show soundness of the interpretation of Abadi & Plotkin’s logic in LAPL-structures and we show a
completeness result as for APL-structures.

As in the case of APL-structures a parametric LAPL-structure should be an LAPL-structure with very strong
equality such that parametricity and extensionality holds in the internal logic.

We can define a notion of polymorphically strong fibred functor and show that these have initial algebras and
final coalgebras as we did with APL-structures, but as mentioned the new setting here should also enable us
to solve recursive domain equations.

Supposex - o is a type inpure PILLy. A solution to the recursive domain equation inducedsbig a

closed typer such that (7) is isomorphic tor. If o had all its occurrences of as positive, it would define

a functor, and the initial algebra as well as the final coalgebra would be solutions to the domain equation
o(t) =T.

We may split the occurrences afin o into positive and negative obtaining a types - o(«a, 3) such that

« occurs only negatively and only positively. Such a type induces a functor which is contravariant in the
first variable and covariant in the second, in the sense that there exists a term

M: e, o, 8,6 (o) —a) = (8 — ) = (0(a, ) — o (c, 7))

preserving composition and identities. Such a term induces a fibred functor

LinType®? Xkinq LinType LinType

T

Kind.

The categonLinType® xking LinType is the fibrewise product of the category obtained by taking
fibrewise opposite category dfinType andLinType. In general, such fibred functors gselymorphi-
cally strongif there exists a corresponding typeand term as above in the internal language of the model
(i.e. not necessarily in pure PlLl).

A solution to a domain equation induced by such a funétas a family (=)= indexed ovel= in Kind

closed under reindexing such thatr=, 7=) = 7=, i.e., a family of fixed points for the functor.

Theorem 4.2. For parametric LAPL-structures

e every polymorphically strong fibred endofunctorbinType — Kind has a family of initial alge-
bras and a family of final coalgebras.

e every polymorphically strong fibred functor

LinType®? Xkina LinType LinType

T

Kind
has a family of fixed points closed under reindexing.
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The logical part of the proof of Theorém 4.2 was sketched by Plotkin in [28]. Our contribution has been to
write out the details and to show how this could be applied to LAPL-structures.

As mentioned, we also construct a concrete LAPL-structure based on the one sketched by Plotkin. This
model of PILLy involves admissible pers over a reflexive domain, i.e., a domain (a cpo with a least element
1) such tha{D — D] is a retract ofD. An admissible per is a partial equivalence relation which is closed
under lub’s of chains and which relatégo itself. The concrete model is then constructed as the parametric
variant of the per-model, where we only consider admissible pers.

4.4 Completion Processes

Recall from Sectiop|2 that even though no classical set theoretic models of polymorphism exist, set theoretic
models of polymorphism might still exist in intuitionistic set theories. The examples we have in mind are
internal cartesian closed subcategofiem quasi-toposes. I is sufficiently complete, we can construct a
model of Ay in which types withn free variables are modeled as morphisms

Ci — Co

in the topos, wher€ is the object of objects fo€ (i.e. the model is the externalization @f). We call
such internal categories interngl-models.

In this dissertation we show how the ambient set theory of the model gives rise to a canonical pre-APL-
structure corresponding to the interpretation of Abadi & Plotkin’s logic in the internal logic of the quasi-
topos.

For this restricted class of modelsof there exists a parametric completion process constructing parametric
models based on the original model. This process was originally described in [33]. Our contribution has
been to show that this process can be extended to construct parametric APL-structures.

The completion process described[inl[33] goes as follows: Since the quasiHapodels an intuitionistic

set theory, we may construct an internal catedaR/(C) whose objects are logical relations on object€of

from the quasi-topos, and whose morphisms are pairs of morphis@graserving relations (i.e. mapping

related elements to related elements). There exists a diagram of internal functors in the quasi-topos
LR(C)=——C

—_—

mapping a relation to its domain and codomain respectively, and mapping an obf8dibathe identity
relation on the same object. This graph is reflexive, meaning that the two compositions starting and ending
in C are the identity.

The diagramLR(C) =<— C makes up an internal category in the quasi-topos of reflexive gragBs in

We denote this quasi-topos Bf*. We can now apply the construction above to this internal category and
obtain a\y-fibration.

We can describe this model more explicitly. A type in the parametrically completed modehite
variables is a type in the original model C;j — C, plus a mapp that takesn-vectors of relations
(R1: Rel(Ay, By), ..., Ry: Rel(A,, By,)) and produces a new relation

— -,

p(R): Rello(4),(B))

such thap(eqy,,...,eqqa,) = €d, () Terms are terms in the old model preserving relations.

A type in the parametrically completed model has a built-in relational interpretatjo8ifice this relational
interpretation satisfies identity extension, the model should be parametric.
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In this dissertation, we show that the parametric completion process produces models that fit into a para-
metric APL-structure. This provides formal proofs of the correctness of the encodings of inductive and
coinductive types in these models. This result is of course expected, but to our knowledge it has not been
formally proved before in this generality. The APL-structure is also interesting, because we clarify with
respect to which logic the completed category is parametric. The parametrically completed model is not
parametric with respect to the internal logic of the quasi-tdgfosbut with respect to a related logic corre-
sponding to the internal logic .

The concrete APL-structure mentioned in Secfior} 4.2 arises as the result of a completion process, when
considering the category of pers as an internal category in the category of assemblies. Since the category
of assemblies is a quasi-topos, this provides the motivation for using quasi-toposes instead of toposes. Of
course, the category of pers is also an internal category in the effective topos, but this viewpoint gives a
different logic.

We also construct a parametric completion process for LAPL-structures. First we describe which kind
of data is needed for an internal model of PiLIlto give rise to an LAPL-structure as above. Next we
describe the parametric completion process. This is basically the same as for APL-structures, but still some
constructions in this process are new and so the construction is non-trivial.

The parametric LAPL-structure mentioned in Secfion 4.3 can be seen as a result of the parametric completion
process for LAPL-structures.

4.5 An LAPL-structure from Synthetic Domain Theory

In recent work[[35] Alex Simpson and Pino Rosolini have studied a language which we shall cgll.Lily

This language is basically PILwith linear functions replaced by strict functions. Ldly, is equipped with

two operational semantics: a call-by-name semantics and a call-by-value semantics (with these operational
semantics, Lily;.; is simply Lily [5] with linearity replaced by strictness).

Simpson and Rosolini give an interpretation of this language using Synthetic Domain Theory (SDT), and
prove this interpretation to be adequate with respect to the two notions of contextual equivalence obtained
from each of the operational semantics. Using this they show that the two contextual equivalence relations
coincide. Since Lily,;; and Lily are almost the same language, this result was basically proved in [5] using
operational tools.

The interpretation lives inside an intuitionistic set theory. The construction resembles that of the paramet-
ric completion process, and so all types in the interpretation are equipped with a relational interpretation
satisfying an identity extension condition. Thus the interpretation is parametric with respect to the interpre-
tation of parametricity in the ambient set theory and we would expect that the encoding of the inductive and
coinductive data types is correct, but[35] does not formally prove this.

We construct a parametric LAPL-structure based on the interpretation Qf;Lilysing SDT. Since linear
functions are strict we may translate PHlinto Lily i, and up to this translation, the interpretation of
PILLy in the parametric LAPL-structure we construct agrees with the interpretation QfLilgiven by
Simpson and Rosolini.

The construction of this LAPL-structure serves two purposes: first it helps to show that the notion of LAPL-
structures is general enough to handle different types of models. In this case, it strengthens the idea that
parametric PILL- is a good language for domain theoretic models of parametric polymorphism. Second,
using adequacy of the interpretation of L}y, we can use the parametric model to show consequences

of parametricity (i.e. correctness of the encodings of data types) ig,|.lup to operational equivalence.
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This is very much in the spirit of Simpson and Rosolini’s proof of coincidence of the contextual equivalence
relations using the adequate interpretation [35].

5 Related Work

In this section we focus on three related directions of research, Ma & Reynold’s categorical definition
of parametricity, Dunphy’s parametricity graphs and the work on consequences of parametricity for the
programming language Lily by Bierman Pitts and Russo. Finally, we sketch some of the other directions of
research related to parametricity.

5.1 Ma & Reynolds notion of parametricity

QingMing Ma and John Reynolds [30] have proposed a category-theoretic definition of parametricity for
models of\; [16]. The definition can basically be restated as follows: SupfioseB is a\ fibration, and
suppose we are given a logic fibratibn— E; on the fibre off over the terminal object (this is the category

of closedtypes).

Ma & Reynolds defindl — B to be parametric if there exists a reflexive graphgfibrations

E F
B C

(i.e. a graph, where the two compositions starting at- B are the identity) whose restriction to the fibres
over the terminal objects is isomorphic to

LR(E|) =—E,

whereLR(E,) is a category of relations di; formed using the logi® — E; and the morphisms map a
relation to its domain and codomain respectively and a closed type to the equality relation on that type.

An APL-structure is parametric in the sense of Ma & Reynolds, since the fibrRiédations — RelCtx

can play the role o — C, and in general the intuition of the reflexive graph)atfibrations is that the
fibrationF — C is a fibration of relations. But since this is only formulated for the closed types, we cannot
use it to prove consequences of parametricity for open types. See Paper 1 for a further discussion of the
relation to Ma & Reynolds definition.

5.2 Parametricity graphs

In arecent PhD dissertation Brian Dunphyi[7, 8] together with his adviser Uday Reddy, has studied a class of
models of polymorphism based on reflexive graphs of categc(Elgs;E)> G, . Under certain conditions

on such a reflexive graph one can build a model of polymorphism where types:\fi¢le variables are
modeled as pairs of functors making the diagram

|Ge’n4>Ge

ol

‘GV|n4>Gv
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commute, wheréG,, | denotes the discrete category on the object&ef Dunphy states conditions under
which the categoryz, can be considered a category of relationg@g|. Reflexive graphs satisfying these
conditions are calleparametricity graphsand correctness of the encoding of data types can be shown for
these using a logic resembling a logic called System R [1] for reasoning about parametricity.

One technical issue worth mentioning is that Dunphy can only in general prove correctness of the encoding
of data types fowell-pointedparametricity graphs. Dunphy even gives an example of a non-wellpointed
parametricity graphs in which the encodings are not correct. Since we give an example of a non-wellpointed
parametric APL-structure, we show that parametricity is in fact useful in a setting without well-pointedness.

The main difference between Dunphy’s work and this dissertation is that Dunphy does not give a general
notion of parametricity for\o-fibrations. He only considers models given by reflexive graphs. So, for
example the question of whether the standard per-model (as described in §egtion 2.1) is parametric does
not make sense in Dunphy’s setting. In this sense APL-structures may be more general than parametricity
graphs. It should be mentioned that tp@rametricmodels considered in this dissertation all come from
reflexive graphs and so are probably all parametricity graphs. But, as mentioned, some of these models
are not well-pointed and so cannot be shown to satisfy consequences of parametricity using the tools of
parametricity graphs, but only using the tools of APL-structures.

On the other hand, parametricity graphs model a logic that is different from Abadi & Plotkin’s logic and so
may incorporate some models that cannot fit into an APL-structure.

Finally, we mention that Dunphy also considers models of predicative polymorphism, which is not covered
in this dissertation. It should however be easy to find a variant of the definition of APL-structures that would

handle predicative polymorphism. However, most of our arguments for correctness of encoding of inductive
and coinductive types use impredicativity, and so Dunphy’s proofs would have to be adopted for this to work
out.

In his dissertation Dunphy also considers parametricity graphs modeling FIké& languages.
Claudio Hermida and Robert Tennent study a related framework of parametric models in [13].

5.3 Parametricity in operational semantics

Parametric polymorphism has also been used in a more syntactic setting by Andrew PRitis in [25] and by
Gavin Bierman, Andrew Pitts and Claudio Russd_in [5] to prove properties of programming languages with
operational semantics up to contextual equivalence.! In [5] for example, the language Lily which is basically
PILLy equipped with two operational semantics: a call-by-name and a call-by-value operational semantics
is considered. For each of these operational semantics a notion of contextual equivalence is defined by
observing termination at types of the folm Using operational methods the two notions of equivalence

are shown to coincide.

Because there is a set of closed terms of Lily, one can use set theoretic relations to reason aboutithem. In [5]
a particular subset of these relations called-closed relations are used to reason about these terms, and

it is shown that up to contextual equivalence Lily is parametric with respectiteclosed relations. This
parametricity result is then used to show correctness of an encoding of coproducts for closed types of Lily
up to contextual equivalence.

It would be interesting to see if the language Lily with terms considered up to contextual equivalence gives
rise to a parametric LAPL-structure. To show this, we need to checKTthatelations give a notion of
admissible relations as defined in this dissertation. We do believe this is the case, and it is on the schedule
for future work.
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Showing that Lily gives rise to an LAPL-structure would formally prove that the encodings of inductive,
coinductive and recursive types are correct. In fact we have almost done this already, as we have shown a
similar result for Lily,., using the LAPL-structure obtained from SDT (see Sedtioh 4.5).

5.4 More related research

Ryu Hasegawa has studied a specific family of models for polymorphism and shown that for these para-
metricity of encoding of inductive and coinductive types is equivalent to correctness of these encodings
[12]. The proofs in[[12] inspired some of the proofs of the consequences of parametricity used in this
dissertation. Ryu Hasegawa is also working on a model of a polymorphic linear type theory [11].

Parametric polymorphism has also been used to model local variables [22, 21]. The idea is to use para-
metricity to hide local variables from called procedures, the same way parametricity can be used to hide
information about specific implementations of data types.[In [22] models of an Algol-like language are
given using reflexive graphs and it is shown how these models model hiding of local variables using para-
metricity. In [21] two versions of Algol are translated into a predicative version of polymorphic linear
lambda-calculus (basically a predicative version of BH.LModels of polymorphic linear lambda calculus

can then give models of the Algol-like languages. The idea behind using linearity is that it can be used
to rule out nonimperative behavior in the model such as functions restoring the old state after running an
expression with side effects, since this requires copying the old state before running the expression. Many
of the same ideas are used|inl[23] to construct fully abstract translations of PCF and an idealized version of
Algol into a language with parametric polymorphism.

Other logics for reasoning about parametricity exist. Before Abadi & Plotkin’s logic appeared a different
logic had been proposed!|[1]. As mentioned Dunphy and Relddy [7, 8] use a variant of this logic. Izumi
Takeuti has constructed a variant of Abadi & Plotkin’s logic, in which one can also discuss other arities of
parametricity (such as unary parametricity involving predicates instead of relations).

Ivar Rummelhoff[[36] has studied the encoding of natural numbers in per-models over different PCA's, and
showed that in some of these models, the encoding contains more than natural numbers. So these models
cannot be parametric. Even though he does not mention it, this shows that unary parametricity is different
from binary (relational) parametricity, since one can easily show that the encoding of the natural numbers
in any per-model is unary parametric. Other studies of parametric polymorphism for per-models include
[34,Q].

Philip Wadler [40] presents a viewpoint, where the abstraction property of [30] corresponds to the existence
of a map mapping terms of second-order lambda calculus to expressions in a logic. On the other hand, a
representation result of Girard’s corresponds to a map going the other way.

6 Structure of the dissertation
This dissertation consists of five papers. Here follows a description of each paper.

Paper 1: L. Birkedal and R. E. Mggelberg. Categorical models of Abadi-Plotkin’s logic for parametricity.
Mathematical Structures in Computer Scien2@05. To Appear (Accepted for publication).

We give a detailed description of Abadi & Plotkin’s logic for parametricity, the definition of APL-
structures and the interpretation of the logic in these. This is followed by proofs of soundness and
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completeness for the interpretation. We define parametric APL-structures and proceed to show The-
orem[4.] above. This involves proving the logical versions of these results as stated in [29]. We
compare our notion of parametricity to that of Ma & Reynolds [16]. The parametric completion pro-
cess is described for APL-structures and in connection with this we discuss parametricity for internal
models of), in quasi-toposes.

Paper 2: L. Birkedal, R. E. Mggelberg, and R. L. Petersen. Parametric domain-theoretic models of linear
Abadi & Plotkin logic. Technical Report TR-2005-57, IT University of Copenhagen, February 2005.

In this article we describe the language PiLhAnd the variant of Abadi & Plotkin’s logic used for it.

We show how to reason in this logic and in particular we prove correctness of encoding of inductive,
coinductive and recursive data types in the logic. As in the first article, we define LAPL-structures,
show how to interpret the logic in these and show that the interpretation is sound and complete. Para-
metric LAPL-structures are introduced, and we show how to use the logical proofs of the correctness
of the encoding of data types to solve recursive domain equations in parametric LAPL-structures
(Theorenj 4.p). Finally we construct the parametric domain theoretic per-model, show that it fits into
a natural parametric LAPL-structure and describe the interpretation of the encoding of the natural
numbers in this.

Paper 3: R. E. Mggelberg, L. Birkedal, and R. L. Petersen. Categorical models of PILL. Technical Report
TR-2005-58, IT University of Copenhagen, February 2005.

This paper contains mostly well-known material on models of PILL, based on in particular [3, 4, 10,
17,18/19]. Since none of the above mentioned present all the material needed for this dissertation, we
have included an exposition of the theory. The material covered includes the 2-category of symmetric
monoidal categories, linear categories, models of LNL and DILL, and a fibrational account of these
concepts ending with models of PILL and PH:L

Paper 4: R. E. Mggelberg, L. Birkedal, and G. Rosolini. Synthetic domain theory and models of linear
Abadi & Plotkin logic. Technical Report TR-2005-59, IT University of Copenhagen, February 2005.

Here we present the LAPL-structure constructed from synthetic domain theory and use it to show con-
sequences of parametricity for the operational semantics og,|.jlyFor readability we have included

a full description of the setup of synthetic domain theory as presentedlin [35], the languagg,Lily
and a formulation of the adequacy result for the interpretation of.jlyas shown by Simpson and
Rosolini. The presentation of the setup of synthetic domain theory follows the presentafioh in [35]
closely.

Paper 5: R. E. Mggelberg. Parametric completion for models of polymorphic intuitionistic / linear lambda
calculus. Technical Report TR-2005-60, IT University of Copenhagen, February 2005.

The main result of this article is the description of the parametric completion process for LAPL-
structures. Before this however, we review some theory of internal categories including internal fibra-
tions and internal linear categories. We define a notion of internal yitlodel in a quasi-topos, and
show that the externalization of an internal Pitimodel gives rise to an LAPL-structure.

Dependencies are as follows. It is not necessary to read Paper 1 before Paper 2, except that Paper 2 uses a
few definitions of Appendix A in Paper 1, but, for readers unfamiliar with parametricity, it may be helpful

to start with Paper 1, since the proofs of consequences of parametricity given in Paper 2 are slightly more
sophisticated than the ones in Paper 1 due to the use of linearity.
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The material in Paper 2 depends on Paper 3, but since we think of the latter as a (long) appendix to Paper 2,
we have placed it after Paper 2. Paper 3 can be read independently of all other papers in this dissertation.
Paper 4 and Paper 5 can be read independently of each other, but they both depend on Paper 2.

7 Conclusion

We have introduced a notion of parametric APL structures which can be taken as definition of parametric
models of second-ordercalculus. These structures can be shown to have initial algebras and final coalge-
bras for a large class of fibred endofunctors, which means that parametric APL-structures give a good notion
of parametric models as discussed in Segtion 3.

Likewise we have defined a notion of parametric LAPL-structures. These give a good notion of domain
theoretic models of parametric polymorphism, since we can solve recursive domain equations in LAPL-
structures, as we would expect to be able to in parametric domain theoretic models.

The definition of APL-structure ask for quite a lot of structure — besides\thdibration in question we

ask for another fibration with a fibration on top, etc. But in the concrete case providing such extra structure
to show that a\o-fibration is parametric just corresponds to answering the question “with respect to which
logic is the model parametric”.

This becomes even more apparent in the case of LAPL-structures. Concrete models considered in the
literature, have often been parametric with respect to some logic, and a relational interpretation of types
defined only on a subset of the relations of the logic: the ones we call admissible. Providing a full parametric
LAPL-structure to a model corresponds to answering the question “with respect to which logic and which
set of admissible relations is the model parametric?”.

In both cases the APL- and LAPL-structures provide a check-list for what kind of structure is needed to
reason about parametricity. In particular, for the LAPL-structures, we have a set of axioms that a notion of
admissible relations should satisfy for it to be strong enough for reasoning about parametricity.

We have shown that parametric APL- and LAPL-structures provide a general and usable framework by
showing that very different parametric models known from the literature are of this form. These involve
parametric versions of per-models, and a family of models constructed using synthetic domain theory. We
even have a very general way of constructing these models, namely using parametric completion processes.

Of the models presented in this dissertation, most were known as models of polymorphism, but for most
of them, the correctness of the encodings of data types had not been shown formally. These proofs are
presented in all details in this dissertation.

Another contribution of this dissertation is to sort out the details of the PtMersion of Abadi & Plotkin’s
logic. In fact, for both versions of the logic considered here, we have worked out the details of models for
them, thereby showing them to be consistent.

This dissertation has also provided detailed proofs of theorems that have been known to the community for
long, but whose proofs have never appeared in print. These proofs are the proofs of correctness of encoding
of initial algebras, final coalgebras and recursive types. These proofs are non-trivial, and it is my hope that
making the details available will contribute to the accessibility of parametricity as a research area.
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7.1 Future work

As said, we have provided a couple of very different parametric LAPL-structures showing that the notion
is quite general. It would be interesting to see if Lily with terms identified up to contextual equivalence
and T T-closed relations as admissible relations gives rise to a parametric LAPL-structure. This would
imply that the correctness of the encodings of inductive and coinductive data types as sketched in [5] would
be consequences of the same results for parametric LAPL-structures in a more direct way than the results
proved in this dissertation using the SDT-model. This work is already under way.

We have shown how parametric polymorphism allows us to encode certain types with the right category
theoretic properties. Parametricity also gives us reasoning principles for these types, but it is unclear whether
these are the principles one will want to use in practice for reasoning about the language. In particular, for the
LAPL-structures the reasoning principles only apply to admissible relations, which may not be a sufficiently
large class of relations.

This dissertation is an abstract study of parametricity, and it would be interesting to show that these results
can be used in the theory of programming languages in general. In this dissertation we have only once
applied the abstract theory to show results about a programming language with an operational semantics,
namely for the parametricity results for Lily.; up to operational equivalence. Can we use these models to
show for example data abstraction results for real programming languages? How does our work relate to
that of O’'Hearn, Reynolds and Tennentl[22, 21, 23] as briefly mentioned in Sgctjon 5.4.

The second-order lambda-calculus is a programming language (or an equational theory) suitable for studying
parametricity, since it has few constructions. The language Plhaving fixed points is closer to a “real

life” programming language. To be able to apply the theory of parametric polymorphism to programming
languages used in practice, it needs to be studied in connection with effects.

Finally | do not think that the concept of parametricity is fully understood at this point. Parametric models
contain less “junk” than other models at polymorphic types, so parametricity seems to provide a way of
constructing better models. But how good are these models, and what are the connections to other good
properties of models such as adequacy, universality and full abstraction? Not much work has been done in
that area,[[38] is an exception.
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Categorical Models for Abadi-Plotkin’s Logic for Parametricity

Lars Birkedal
Rasmus Ejlers Mggelberg

Abstract

We propose a new category-theoretic formulation of relational parametricity based on a logic for
reasoning about parametricity given by Abadi and Plotkin [12]. The logic can be used to reason about
parametric models, such that we may prove consequences of parametricity that to our knowledge have
not been proved before for existing category-theoretic notions of relational parametricity. We provide
examples of parametric models and we describe a way of constructing parametric models from given

models of the second-order lambda calculus.
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1 Introduction

The notion of parametricity for models of polymorphic type theories intuitively states that a function of
polymorphic type behaves the same way on all type instances. Reynalds [13] discovered that parametricity
is central for modeling data abstraction and proving representation independence results. The idea is that
a client of an abstract data type is modeled as a polymorphic function; parametricity then guarantees that
the client cannot distinguish between different implementations of the abstract data type. Reynolds also
observed that parametricity can be used for encoding (inductive and coinductive) data types! [See [20, 8] for
expository introductions.

In 1983 Reynolds gave a precise formulation of parametricity called relational parametricity for set-theoretic
models[13]. It basically states that a term of polymorphic type preserves relations between typesuif term
has type] [ a: Type.o andR: Rel(r, ') is a relation between and7’, then

u(7) (e [R)u(r"),

whereco[R] is a relational interpretation of the typedefined inductively over the structure of Equiva-
lently, parametricity could be defined as the identity extension property: for all termsf type o (a),

u(oled,))v <= u=n.

However, Reynolds himself later proved that set-theoretic models do notlexist [14] in classical set-theory (it
was later discovered that set theoretic models do exist in some models of intuitionistic setlthgary [10, 9]). In
1992 Ma and Reynold$§][6] then gave a new formulation of parametricity phrased in terms of more general
models (PL-categories of Seely [18]). One may formulate Ma and Reynolds’ notion in the langugage of
fibrationﬁ as follows. The fibratiorEE — B is parametric with respect to a given logic énhif there exist a
reflexive graph of\,-fibrations, whose restriction to the fibres over the terminal object is the reflexive graph

E; —=LR(FE1)

of logical relations with domain, codomain maps and the middle map mapping a type to the identity on that
type. (See]6,/5] for more details.)

In recent work by Birkedal and Rosolini on parametric domain-theoretic models it became clear that this

is not the right categorical formulation of parametricity: it appears that the definition does not allow one to
prove the expected consequences of parametricity such as data abstraction and the encoding of data types.
Indeed, these consequences have only been proved for specific models, see,le.g., [20, 3], using specific
properties of the models.

In this article we propose a new category-theoretic formulation of parametricity, cgtlachenetric APL-
structure whichdoesallow one to prove the expected properties of parametricity in general. We build upon

a logic for reasoning about parametricity given by Abadi and Ploikin [12]. In this logic one can formulate
parametricity as a schema and prove the expected consequences of parametricity. An APL-structure is a
category-theoretic model of Abadi and Plotkin’s logic, for which we prove soundness and completeness,
thereby answering a question posed.in [12, Page 5]. Each APL-structure contains a model of the second-
order lambda calculus, which we may reason about using the logic.

We also provide a completion process that given an internal model @ee [4| 15]) produces a parametric
APL-structure. In special cases, the-fibration of this APL-structure is the one obtained[inl[15] and thus

1A X.-fibration is a fibration with enough properties to model second-order lambda calculus, seé, e.g., [5].
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we prove that the models obtained[in[[15] in fact satisfy the consequences of parametricity (as expected, but
not shown in the literature before).

The consequences of parametricity proved earlier for specific mddels |[3,) 20, 1] all seem to use well-

pointedness, i.e., the property, that morphigmsA — B are determined by their values on global elements

a: 1 — A. For parametric APL-structures, we do not need to use well-pointedness to prove the expected
consequences of parametricity. Loosely speaking, the point is that our notion of parametric APL-structure
includes an appropriate extensional logic to reason withlodn cit,, the ambient world of set theory is

used as the logic and thus extensionality there amounts to asking for well-pointedness. We provide a family
of concrete parametric APL-structures, including non-well pointed ones. Thus paramésricsigful for

proving consequences also for non-well-pointed models.

In subsequent papers we will show how to modify the parametric completion process to produce domain-
theoretic parametric models and how to extend the notion of APL-structure to include models of polymor-
phiclinear lambda calculus [11].

The remainder of the paper is organized as follows. In Seftion 2, we recall Abadi and Plotkin’s logic. The
reader is warned that our version of the logic is slightly different from the one descrided in [12]. In Section
we define the notion of an APL-structure. We prove soundness and completeness with respect to Abadi
and Plotkin’s logic in sections 3.1 afd B.2. Secfi¢pn 4 defines the internal language of an APL-structure
and we define the notion ofgarametricAPL-structure. We also demonstrate in Secfibn 5 how to use the
internal language to show consequences of parametricity in parametric APL-structures. [Section 5 mainly
contain proofs of well-known results in Abadi & Plotkin’s logic. However, since these proofs are by no
means trivial, and to our knowledge do not appear in the literature, and since we think they are of general
interest, we include them here.

Section 6 contains a definition of a concrete parametric APL-structure, and we also mention a non-well-
pointed parametric APL-structure. Sectjdn 7 contains a comparison of our notion of parametricity with the
one defined by Ma & Reynold5|[6]. The parametric completion process is described in $éction 8. Since an
internal model of\, in a quasitopos has ambient logic corresponding to most of the constructions in Abadi
& Plotkin’s logic, there exists a natural APL-structure incorporating it, so we may formulate the question if
this model is parametric. This is done in Secfidn 9.

AppendixA contains definitions and theory concerning composable fibrations, i.e., pairs of fibrations such
that the codomain of the first is the domain of the second. In particular, we study the case of fibrations
F — E — B whereF — E is a logic fibration, and we study what is needed for it to model quantification
along vertical maps ift and quantification along maps ik The definitions of this appendix are used in

the definition of an APL-structure.

Acknowledgments. We would like to acknowledge helpful discussions with Alex Simpson and Martin
Hyland and the constructive comments of the two anonymous referees.

2 Abadi & Plotkin’s logic

We first recall Abadi & Plotkin’s logic for reasoning about parametricity, originally defined in [12]. We will
use a slightly modified version of the logic.

Abadi & Plotkin's logic is basically a second-order logic on the second-okdealculus §.). Thus we
begin by calling to mind the second ordercalculus (a more formal presentation can be found in glg. [5]).
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2.1 Second-orderi-calculus
Well-formed type expressions in second-orderalculus are expressions of the form:
ay: Type,...,ay: Typet o: Type

whereo is built up from thew;’s using productsl o x 7), arrows ¢ — 7) and quantification over types.
The latter means that if we have a type

ay: Type,...,an: Typel o: Type,
then we may form the type
ar: Type, ..., ci—1: Type,aiir1: Type, ..., Typet [[ay: Type.o: Type
We do not allow repetitions in the list of's, and we call this list the kind context. It is often denoted simply

= or &. We user, T, w to range over the set of types.
The terms in\, are of the form:

Elxy:io,.. o Fti T
where ther; andr are well-formed types in the kind context The list ofz’s is called the type context and
is often denoted'. As for kind contexts we do not accept repetition in type contexts.

The grammar for raw terms is:
to=a|Ax:ot|tt)| | ({tt) | nt| 7't | Aa: Type.t | t(o)

corresponding to variablea;abstraction, function applications, an element of unit type, pairing and projec-
tions on product types and second-ordeaibstractions and type applications. We dse u to range over

the set of terms, and as usual we consigderquivalent terms equal. Most of the formation rules are well
known from the simply-typed-calculus; here we just recall the two additional rules for type abstraction
and type application:

Ea:Type|'FHt:o
E|TF Aa: Type.t: [Ja: Type.o

= | T'is well-formed

E|TFt: [[a: Type.o ZEF 7: Type
E|TFtr): o[r/a]
What we have described above is called phue second-orden-calculus. In general we will consider
second-orden-calculi based on polymorphic signaturés [5, 8.1.1]. Informally one may think of such a
calculus as the pure second-ordecalculus with added type-constants and term-constants. For instance
one may have a constant type for integers or a constant type forlistslists(a): Type. We will be

particularly interested in the internal language ofsafibration (see Sectign 3) which in general will be a
non-pure calculus.

2.1.1 Equality

We consider an equality theory on second-orderlculus callegxternalequality. Itis the least equivalence
relation given by the rules in Figuré 1.
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E|Nz:obt:T EllTFu:o
EITE (Az: 0.t)u = tlu/x]
Ea|TkHt: 7 ZF o: Type = | T'well-formed
E|TF (Aa: Type.t)o =t[o/q]
E|lFt:oc—7
E|TFXe:o.(tx) =t
E|THt: [Ja: Type.o
E|TF Aa: Type. (ta) =t
E|TkHt:0o EITFu:r E|TFHt:0 E|TFu:T
E|TFn{t,u)y=t E|ITFA(tu) =u
E|THt:oxT E|TFt:1
E|ITH(rt,n'ty=t Z|Tkt=%
E|THt=t:0 Elz:obFu:
E|TFult/z] = ult' /]
ElNz:obt=s:7 Ea|l'Ft=s Z|T well-formed
EITFAXz:0.t=Az: 0.5 E|TFAat=Aa.s

(B-reduction

(B-reduction

n-reduction

n-reduction

I

replacement

Figure 1: Rules for external equality

2.2 The logic

Abadi & Plotkin’s logic can be built on top of any second-order lambda calculus (based on any polymorphic
signature), so in the following we will assume that we are given one such.

Formulas of Abadi & Plotkin’s logic live in contexts of elements)af and relations on types of;. The
contexts look like
Z| | Ry: Rel(r,7),...,Ry: Rel(ry,, 7)),

where= | ' is a context of second-ordercalculus and the; andr/ are well-formed types in conte®,

for all i. The list of R's is called the relational context and is often dendtedn this context as in the other
contexts we do not accept repetitions of variable names. It is important to notice that the relational and type
contexts are independent of each other in the sense that one does not affect whether the other is well-formed.

Formulas are given by the syntax:

¢u= (t=ou)|plt,u)| 6D |L[T|oANY |V |Va: Type. ¢ |
Vr:o0.¢|VR: Rel(o,7). ¢ | Ja: Type. ¢ | Jz: 0. ¢ | IR: Rel(o, 7). ¢,

wherep is a definable relation (to be discussed below).
In the following we give formation rules for the above. First we have internal equality
E|TkHt:0o ETFu:o
E|IT|O©F (t=5u): Prop
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Notice here the notational difference between v andt =, u. The former denotesxternalequality and
the latter is a formula in the logic. The rules for vV and A are the usual onesl, L are formulas in any
context.

We have the formation rules for universal quantification:
Z|l,z:0,1" | ©F ¢: Prop
E|0T | ©FVr: 0.¢: Prop

E|T'|©,R: Rel(o,7),0" I ¢: Prop
E|T|0,0 +VR: Rel(a,7). ¢: Prop
E,0,Z |T|OF ¢: Prop
2,2 |T'| ©F Va: Type.¢: Prop

[1]

,E'|T'| ©is well-formed
The same formation rules apply to the existential quantifier.

2.3 Definable relations
Definable relations are given by the grammar:
pu=R|(x:0,y:7).0|0p]

A definable relatioy always has a domain and a codomain, and we ritBel(o, 7) to denote thap has
domaincs and codomain. There are 3 rules for this judgement. The first two are

E|T|6,R: Rel(o,7),0" F R: Rel(o,7)

E|T,z:0,y: 7| OF ¢: Prop
EIT|OF (z:0,y: 7).¢: Rel(o, 7).

In the second rule above the variables become bound iw. For example, we have the equality relation
eq, defined agz: 0,y: o).z =, y and the graph relation of a functiqif) = (x: o,y: 7). fr =, y if
fio—T.

The last rule for definable relations is

at,...,an o Type E|T|OF p1:Rel(r1,7]),...,pn: Rel(tn, 7))
E|T|OFolp: Rel(o(7),a(7)).

The notation is a bit ambiguous, since &jp] we mean to substitute eaghfor «; in o, and so the order
of thea’s and thep’s is important. A more precise notation would have beén /a1, . . ., pn/a,], but we
choose to use the more convenief.

Observe that[p] is a syntactic construction and is not obtained by substitution|_In §12] is defined
inductively from the structure of, but in our case this is not enough, since we will need to fafa for

type constants in Sectior] 4. The inductive definition of [12] is reflected in the rufes (L2)-(15) below. We
call o[p] therelational interpretation of the type.
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If p: Rel(o,7) is a definable relation, we may apply it to terms of the right types. This gives the last
formation rule for formulas

E|IT|OFp:Rello,7) Z|TFt:ou:r
E|T|OF p(t,u): Prop.

We will also writetpu for p(t, u).

Lemma 2.1. Supposé& | T' - ©, R: Rel(o,7) F ¢: PropandZ | T' | © - p: Rel(o, 7) are well-formed.
Then
E|T|©F ¢lp/R]: Prop

is well-formed.
Proof. Easy induction on the structure ¢f O

Remark 2.2. Abadi & Plotkin’s logic is designed for reasoning about binary relational parametricity. For
reasoning about other arities of parametricity (such as unary parametricity), one can easily replace binary
relations in the logic by relations of other arities. In the case of unary parametricity, for example, one would
then have an interpretation of types as predicates. Seelal$o [19, 21]

We introduce the short notatign= p’ for definable relationg: Rel(c, 1), p’': Rel(o, 7) as

Vo o,y 7 p(e,y) 3 P, y).

Notice that we usex for biimplication.

We can take exponents, products and universal quantification of relations. These constructions will turn out
to define categorical exponents, products and quantification in a category of relations (se Lgmma 3.7). For
now, the reader should just consider the next three definitions as shorthand notation.

If p: Rel(o,7) andp’: Rel(¢’, 7") we may define a definable relation:
(p—p): Rel((c = o'), (T — 7))

as
p—p=(fro—d,g:7— 1) Voo Vy: 1. (zpy O (fr)p'(9y))
We may also take the product pfandy’:

pxp:Rel((oxa),(rx71))
as
pxp =(x:0xo,y:7x7) (7x)p(my) A ('x)p (7'y)
Za,0|T| ©,R: Rel(a, B) F p: Rel(o, 7)
is well-formed andE | ' | © and=Z, a - o: Type andZ=, 5 - 7: Type we may define:
E|IT|OFY(a,5,R: Rel(a, 8)). p: Rel((J] av: Type. o), ([15: Type. 7))
as

(t: [[a: Type.o,u: [[B: Type. 7).V, 3: Type.VR: Rel(e, 3). (ta)) p(uf).
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=: Ctx EF o: Type =T Cix
=1 0: Ctx E|l'Ft:o EITHt=u
Z|T|OF¢:Prop E|L|OFp:Rel(o,7r) Z|T|O|b1,...,énb 2

Figure 2: Types of judgements

2.4 The axioms

Figure[2 sums up the types of judgements we have in the logic. The last judgement in the figure says that in
the given context, the conjunction of the formulas. . . , ¢,, implies.

Having specified the language of Abadi & Plotkin’s logic, it is time to specify the axioms and the rules of
the logic. We have all the axioms of propositional logic plus the rules specified below.

We have rules fo¥/-quantification:
Ea|l'|O|dFy
EIT|O]®FVa: Type.y

ZIT|OF® 1)

E|Tz:0|O|PF1
EIT|O|®FVr: o0
=T |O,R: Rel(r,7) | & ¢
E|T|O|®+VR: Rel(r, 7).

The double bars mean that these are double rules, i.e., the condition on the bottom implies the one on top
and vice versa.

ZIT|OF® )

Z|Il'|OF® 3)

Rules for3-quantification:
E, |0k
E|IT| 0| 3a: Type.gp 9

Z|T|OFY (4)

E|Tz:0|O©|0F0
EIT|O©|3z:09pk
Z|T|O6,R:Rel(r,7) | p -
E|T|O|3R: Rel(r,7').¢ F v

ZE|IT |0k (5)

Z|T |0k (6)

We have substitution rules
Ea|ll|O|YEe¢ Zko: Type

= (7)
E[L[o/a] | Blo/a] | ¥[o/a] - ¢lo/al
ElNz:o|O|VE¢ =|l'Ft:o @)
E|T[O[V]t/z] - lt/z]
=T |O,R:Rel(o,7) | W ¢ =|T|OFp: Rel(o,7) o

E|T O] Yp/RI+ ¢lp/R]
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The substitutionaxiom:

E|IT|O|TkEVa,[: TypeVr,a': aVy,y': VR: Rel(a, ).

Rz, y) N =a 2 Ny=3y' D R(,y) (10)

External equality implies internal equality:
E|ITFt=u:0o
EIT|O|THt=u

(11)

We omit the obvious rules stating that internal equality is an equivalence relation. The following rules
concern the interpretation of types as relations.

EITO|TkEVYz,y: 1L.aly (12)
at o Z|T|OF5: Rel(?, 7
i [ T'|©F p: Rel(7,7) (13)
EIT|O|TEpl =pi
atk ! =|OF p: Rel(?, 7
_ oc—o0o \/ P (7 7'), (14)
EIT[O[TFE (0 —a)pl = (olp] — o'[A)
atl[p.od,p) E| O+ p: Rel(7,7) (15)
E|IT|O|TkFNB.0(@B3)pl=v05,6,R: Rel(3,3)).0[p, R])
Finally we have
2l z:oy:7|OF¢:Prop Z|TFHt:ou:T
| y:7|OF ¢: Prop E| (16)

EITE(z:o,y: 7). 6)(t,u) 3T P[t,u/x,yl.

Using this rule, we may prove a bijective correspondence between definable relations and propositions with
two free variables considered up to provable equivalence. The bijection maps a definable paiatiba
formula p(z, y) with free variablest, y and a formulap with free variablest, y to the definable relation

(2,y). ¢
Lemma 2.3. Suppos& | T' | O p: Rel(o,7) and= | T',z: o,y: 7 | © - ¢: Prop. Then

El T zioy: 7|0 | TE¢ I ((x: 0,y: 7). 0)(x,y)

and
EIT|O|TEp=(z:0,y: 7). p(x,y).

Proof. The first statement above is just a reformulatior of (16), and for the second we need to prove that

Vae: o,y: 7. ((x: o,y: 7). p(x,y)(x,y) 3C p(x,y)

which is also an easy consequence of (16). O
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We would also like to mention the extensionality schemes:

(Vz:otzx=ruzx) Dt =57 u
(Va: Type.t a =; ua) Dt =[]a: Type.r U-

These are taken as axioms|(in[12], but we shall not take these as axioms as we would like to be able to talk
about models that are not necessarily extensional.

Lemma 2.4. The substitution axiom above implies tieplacementule:
ZIT|O|dFt=,1t | z:obu:r
E|T|O|®F ult/z] = ult'/x]

Proof. Instantiate the substitution axiom with the definable relation

p=(y:0,2:0).uly/z] =r ulz/x].
Clearly® I- p(t,t), so since =, ', we haved |- p(t,t") as desired. O
Lemma 2.5 (Weakening, Exchange)lf = | I' | © | ¥ F ¢ is provable in the logic, and if further
= | I | © is a context obtained frofd | " | © by permuting the order of the variables in the contexts, and

possibly adding variables, then
e |V ¢

is also provable in the logic.

3 APL-structures

In this section we define the notion of an APL-structure, which is basically a category-theoretic formulation
of a model of Abadi & Plotkin’s logic. We also show how to interpret the logic in an APL-structure. We use
the definitions and results of Appendiix A.

But first we recall the notion of a,-fibration, which is basically a model 0.

Definition 3.1. A fibration Type — Kind is a \o-fibrationif it is fibred cartesian closed, has a generic
object € Kind, products inKind, and simpleQ2-products, i.e., right adjoint§ [ to the reindexing
functorsz™ for projectionsr: = x 2 — =.

Remark 3.2. Ina A; fibration, fora mapf: = — Qin Kind, we will use the notatiogf to denote the object
of Typez corresponding tgf, and likewise for € Typez we writeg: = — 2 for the map corresponding
too.

Definition 3.3. A pre-APL-structureconsists of

1. Fibrations:

Prop

,

Type L. cix

|

q

Kind
where
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e pis al2-fibration.
e ¢ is afibration with fibred products

e (7,q) is an indexed first-order logic fibration (Definiti@A) which has products and coproducts
with respect t&€ x 2 — = in Kind (Definition[A.5) where is the generic object qf.

e [ is a faithful product preserving map of fibrations.
2. acontravariant morphism of fibrations:

Type Xkina Type v Ctx

T~

Kind

3. afamily of bijections
U= : Homeexs (§,U(0, 7)) — ODj (Pr0p§><l(o><r))
for o and in Type= and¢ in Ctxz=, which

e is natural intheg, o, 7

e commutes with reindexing functors; that ispif = — = is a morphism irKind andu : £ —
U(o, ) is a morphism irCtxz, then

W= (p*(u) = (p) (P=(u))
whereg is the cartesian lift op.

Notice that¥ is only defined on vertical morphisms.

By a contravariant functor of fibrations, we mean a functor of fibrations, which is contravariant in each fibre.

Remark 3.4. Item[3 implies tha{U (1=, 1=))zckina is an indexed family of generic objects. If, on the
other hand, we have an indexed family of generic objéCts)=ckina and Ctx is cartesian closed, then
we may definé/ to be>~*~ and thereby get iten@ 2 aEt]JI 3 for free. In general, howavex will not be
cartesian closed. In particular, in the syntactic model described below in the proof of complet&ness

not cartesian closed.

Remark 3.5. Below we will describe how th€ (o, 7) is used to model the object of relations frento 7.

To model a version of Abadi & Plotkin’s logic for unary or any other arity of parametricity as in Remdrk 2.2,
the functorU should have corresponding arity and the domain and codomain of the bijektghould be
changed accordingly.

We now explain how to interpret all of Abadi & Plotkin’s logic, except for the relational interpretation of
types, in a pre-APL-structure. First we recall the interpretatioh.dh a A.-fibration.

Atypeos ...a, b oy is interpreted as the object @fype over Q™ corresponding to thé&th projection

Q" — Q. Foratypen ...a, - o, we have][[[ ;. 0] = [[.[@ - o], wherer is the projection forgetting
theid’'th coordinate. Since each fibre of the-fibration is cartesian closed, we may interpret the constructions
of the simply typed\-calculus using fibrewise constructions.
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If =, | 'Ft: Tisatermanc + I'is well-formed, then we may interpretthe teeirj I' - Aa.t: [Ja. 7
as the morphism corresponding[t, « | I" - ¢: 7] under the adjunction* <. .

Tointerpret= | T' F ¢ o, notice thaf= I- o] corresponds to a map

The morphisn= | I" - ¢t: [] . 7] corresponds by the adjunctiari <[] to a morphism in the fibre over
[Z] x Q. We reindex this morphism along

<id[[5]], [EFa]): [E] — [E] x Q
toget[Z | T+ to].
Relational contexts are interpreted@hitx as:

[Z | Ri: Rel(o1,71),...,Rn: Rel(on, )] = U([o1], [11]) x .. x U([on], [m]),

where[o;], [;] are the interpretations of the typesTiype as described above.
We aim to defind= | I" | © |- ¢] as an object oProp over[= | I' | O], which we define to be
I([E[T]) < [E]6].
We proceed by induction on the structurefof\We use the short notatidE | I' | © I ¢: 7] for the compo-
sition
- T - I([ETFt:7]) o
EIT[O] —I[E|T]) ———=I([E+-7]),
and we will in the following leave obvious isomorphisms involving products implicit.
If we defineAx: X — X x X to be the diagonal map, then

[Z|x:0,y:0|—Fax=4y: Prop] = HA]([[U]])(T)

and _
[EIT]©[t=5u] =
(1Tt [E|IT|O0Fu)[E|x: 0,y: 0| —F x=4y: Prop].

Vx: A.¢ andVR: Rel(o, 7).¢ are interpreted using right adjoints to reindexing functors related to the ap-
propriate projections iCtx. Likewisedz: A.¢ and3R: Rel(o, 7).¢ are interpreted using left adjoints to
the same reindexing functors.

Ya.¢ and Ja.¢ are interpreted using respectively right and left adjoint&tovherer is the lift of the
projectionr : [, a: Type] — [Z] in Kind to Ctx. To be more precise, one may easily show that for
= | T | ©wellformed[Z,a |T'| ©] = 7*[Z | I' | ©] using the corresponding result for the interpretation
of A\, and so the cartesian lift af is a map:

7 [E,a|T 0] = [2|T]6O]

and we define
[EIT|OFVa.¢] =[[:[E a|T'|OF ¢],

where] [ is the right adjoint tar™.
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Definable relations are interpreted as map€itx. To be more precise, a definable relation
Z|T|OF p:Rel(o,7)
is interpreted as a morphism frof& | I' | ©] to U([o], [7]). The definable relation
Z|T|6,R: Rel(o,7),0 F R: Rel(o, 7)
is interpreted as the projection. We define

[E|T|OF (z:0,y:7).6: Rel(o,7)] = ¥ HE | T, z: 0,y: 7| O F ¢].

We define the interpretation of application of definable relations to terms as follows:
[Z|T,z:0,y: 7|OF plz,y)] =V([Z|T | OF p: Rel(o,7)]).

Finally

u)] =

[EIT]OF p(t,
™V E|T,z:0,y: 7| O F p(x,y)]
[

(mid, [E|T[OFI[E|T[OFu],

whererr: [E| T |©] — I[= |T]andr’: [E|T | O] —
left out some obvious isomorphisms here.

= | — | ©] are the projections. As usual, we have

To interpret the relational interpretation of types we need a little more structure. First we consider a fibration
Relations — RelCtx,
that can be defined for every pre-APL-structuRelCtx is defined as the pullback
RelCtx Ctx
-

Kind x Kind —— Kind

If © is an object oRelCtx projecting to(Z, Z') € Kind x Kind, we will write itas=, =’ | ©. The fibre
of Relations over=,Z' | O is

objects Triples (o, 7, p), whereo is an object inTypez, 7 is an object inTypez, andp is a map
p: © = U(r*o, (7')*1), wherer, 7’ are the projections out & x ='.

morphisms A morphism from(o, 7, p) to (¢/, 7/, p’) is a pair of morphismss, t), such that: ¢ — ¢’
andt: 7 — 7/, and
U(U(rt, (7')"s) o p') < ¥(p)

where the ordering refers to the fibrewise orderindPatop.
Reindexing(o, T, p) along a vertical ma@’ — O in RelCtx (vertical with respect t&ind x Kind) is

given by composition. Reindexing with respect to lifts of mépsw’): (21,2)) — (E2,Z}) is given by
reindexing inCtx — Kind.

40



Remark 3.6. In the internal language, objects Belations are simply relations
2,2 0F p: Rel(o(2), 7(Z)),

and a morphism from: Rel(c(Z2),7(2')) top': Rel(¢’(Z), 7/(Z)) is simply a pair of morphisms ¢ — ¢
in Typez ands: 7 — 7’ in Typez, such that

Va,y. p(z,y) D p'(tz, s y).

We clearly have two functorRelCtx — Kind defined by mapping=, =’, ©) to = and=’ respectively,
and we also have two functoBRselations — Type defined by mappinge, o, 7) to o andr respectively.

Lemma 3.7. The fibrationRelations — RelCtx is a As-fibration, and the maps mentioned above define
a pair of maps of\,, fibrations
o
Type 2 Relations

01
‘L 9o l
Kind ~ RelCtx.
1

Proof. The categornRelCtx has products:

(El,E/l, ) X (EQ,EIQ, /) = (El X EQ,Ell X E’/27 (7‘(,7‘()*(") X (WI,W,)*@/).

where(m, ) : (21 x 29,2} x E}) — (21, Z)) is the projection, andr’, 7') is the other evident projection.

The fibration has a generic obj€él, 2, U(@, @)), since morphism into this frortg, E’,A(a) in RelCtx
consists of pairs of typelsf : = — Q,¢ : & — Q) and vertical morphisms from® to U(f, ). These are
exactly the objects dRelations.

The constructions for fibred products, fibred exponents and siftypleducts are simply the rules for prod-

ucts, exponents and universal quantification of relations in Abadi & Plotkin’s logic formulated in the internal
language of the model, which we will describe in Secfipn 4. One can either interpret these constructions
in the pre-APL-structure, and prove directly that these constructions have the desired properties, or one can
use the fact that pre-APL-structures interpret these constructions soundly (THeorpm 3.10) and reason in the
internal logic.

Here we give the rest of the proof reasoning in the internal logic. SuppoRel(s, 7) andp’: Rel(o’, ')
andw: Rel(c”, 7") are objects in some fibre #&elations. Then a vertical morphism from to

pxpiRel((oc xd),(rxT)),

defined as
(z,2")p x p'(y,y') = zpy N a'p'y/,
is a pairof maps : ¢’ — o x ¢’ andu : 7" — 7 x 7/ such that

Vz,y. zwy D w(tx)pr(uy) A 7' (tx) '’ (uy),

which is the same as a pair of maps frannto p andp’ respectively.

Likewise maps fronw into
(p— )i Rel((c — o'), (T — 7)),
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defined as

flp—p)g=Va: aVy: T(xpy O (f2)p'(9y)),
are in one-to-one correspondence with maps from p to p’.
Given new relation&,Z’' | © - w: Rel(c,0’) and

E,;Z,810,R: Rel(a, B) F p: Rel(r,7),
we have defined

2,2 | ©OFVY(a,B,R: Rel(a, 8)). p: Rel((J] vz Type. 7), ([]18: Type. 7))
as
(t: TJa.7,[18.7"). Vo, B: Type.VR: Rel(a, B). (ta) p(us3).

We need to show that this defines a right adjoint to weakening. The idea is that the correspondence between
maps will be the same as'iiype — Kind. In this fibration, the correspondence is given as follows, a map
E,a|—Ft:o0— 7withZF o: Type correspondst& | — - t: o — [[a. 7 wheret = \z: 0. Aa. (tz).

We will show, that(t, u) preserves relations ifft, @) does. It is clear that

E,a;E Bl wro,y:0’ | O, R: Rel(a, B) | zwy = (tx)p(uy)
iff
2,2 |x:0,y:0 | O |zwyt Vo, B: Type.VR: Rel(a, B). (tz a)p(ty (),
which establishes the bijective correspondence. O

Definition 3.8. An APL-structureis a pre-APL-structure for which the graph[of B.7 can be extended to a
reflexive graph oA2-fibrations
do
Type ——J> Relations

01 l
J« %
Kind —J RelCtx,
01

i.e., there exists a map of \o-fibrations such thadyJ = id = 01 J.

Remark 3.9. There is a functor fronRelations to Prop mapping an objecto, 7, p) to ¥(p). In the
following we often use that functor implicitly.

We need to show how to interpret the rule

ay,...,an Fo(d): Type E|T|OF p1:Rel(r,7),...,pn: Rel(ty, )
E|T|OF olp: Rel(a(7),a (7))

in an APL-structure.
SinceJ preserves products and generic objegt§a - o(d)]) is a definable relation of the form

-,

[6;5 | — | B: Rel(@, B) - J(0): Rel(0/(),a(5))].
It thus makes sense to define

-, -,

[@ 3| —| R: Rel(@,3) F o[R]: Rel(o(&), 0(5))]
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to beJ([@ F o(a): Type]), so now all we need to do is reindex this object. Given types7, 7': Type,
we define
[Z] - | R: Rel(7,7) F o[R]: Rel(o(7),0(7))]

to be
(EFFLEF 7D [a: 5| - | B: Rel(@, 5) b ol R): Rel(o(d), o(5))]-
Finally, given definable relatiorS | " | © - p: Rel(7, 7') we define

[2]T | O+ olp]: Rel(o(), 0 ()
[£| — | R: Rel(7.7) F o[R]: Rel(0(7),0(7)] o [E| T | © F- 2 Rel(7.7)].

3.1 Soundness

We have now completed showing how to interpret all constructions of the language of Abadi and Plotkin’s
logic in APL-structures. We consider an implicatin I" | © | ¢1, ..., ¢, - ¢ to hold in the model if

/\[[E|F\@I—¢4]F[[E\F]®I—zp}],

%
wheret above refers to the fibrewise orderingitrop.

Theorem 3.10 (Soundness)in any APL-structure the interpretation defined above is sound with respect
to the axioms and rules specified in Secfior] 2.4, i.e., all axioms hold in the model, and for all rules, if the
hypothesis holds in the model, then so does the conclusion. In any pre-APL structure the interpretation of
the part of the logic excluding the relational interpretation of terms is sound.

We will only prove the first part of Theorem 3]10, i.e., soundness for APL-structures. The proof of soundness
for pre-APL structures is basically the same. For the proof we need the following lemmas:

Lemma3.11.If = | ' ¢: o then
[ET[OF¢t/z]] = (I(idzry, [i]) % id[zie)) " [E | T,2: 0 | O F ¢]
Proof. We will prove the statement of the lemma and the statement

[Z|T|OF p[t/z]: Rel(r,7")] =
[E]|T,2: 0|0k p: Rel(r, )] o (I{id[zry, [t]) % id[=zje);

for all definable relationg, by simultaneous induction on the structurepadndp. We only do a few cases
and leave the rest to the reader.

Case p=o[p']:

[EITOFoldit/2)]l = [EIT|OFolf[t/a]ll = [E| - | B+ o[R]] o [lt/]]

Since by inductiorig[t/z]] = [4] o (I{id[zry, [t]) X id[=jey)), we are done.
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Case p=(y: 7,2: 7). ¢

[EIT |0k plt/a]l = ¢ H[E| Ty: 720 7' | © F ¢[t/2]]),
which by induction is equal to
\Il_l(<7r[[l“]]7 [[t]]77T[y: T,2: T’I@]]>*[[E ‘ F,J): 0,y T,z T | O ¢]])
By naturality of ¥ this is equal to

UV-Y[E|T,z:0,y: T,2: T | O F ¢]) 0 (mrps [t mpep) =
[[E ‘ F,Z‘Z o ‘ Chs p]]) o <7T[[F]]7 [[t]]vﬂ-[[@w

as desired.

Case ¢ = p(u,s)
Using naturality ofl as before, one can prove that

[ETy:72: 7 [OF ply, 2)[t/x]] =
(I<id[[E|F,y: Tz: T [[t]]> X ZdﬂE|@ﬂ)*[[E | Ly: 7 2: 7-/733: o | Chn p(ya Z)]]

The general case follows from the fact that inafibration
[E|THuft/z]] =[Z| T Fu]o (id,[E]|T Ft]).
Case ¢ = Va: Type.:
We need to show that

[Z]T]0OFVYa: Type.¢[t/x]] =
((idzry; [t]) x idzep)*[E [T, 2: 0 [ © | Va: Type.¥].

Let 7 denote the cartesian lift of the projectifii, «] — [Z]. Then by induction we have that the left
hand side of the equation is

HF(I<idF7 [[t]]> X 7;d@)*[[5705 | Ia:o | Che ¢]]
Consider the square
[Ea|T|6] ———=[=|T|6]
I<id[‘,[[t]]>><id@i l](id[‘,[t]DXid@
[, |T,2: 0| 0] =—=[2|[,z: 0| O].

This square commutes sin@eis a natural transformation from* to id, and it is a pullback by |5,
Exercise 1.4.4]. The Beck-Chevalley condition relative to this square gives the desired result.

O
Lemma3.12.1f = |I' | © F ¢: Prop, then
[E|T,z:0|0F¢]=7"[Z|T|OF ¢],

whererr: [Z | T,z: 0 | ©] — [Z | T' | ©] is the projection.
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Lemma 3.13.If =+ o: Type then
[2| T[o/a] | Olo/a] - élo/al] = (idpz), [0]) [E, a: Type | T | © 1 ],
where the vertical line ifid =y, [0]) denotes the cartesian lift.

Proof. Notice first that a corresponding reindexing lemma for interpretatiok, oh \--fibrations tells us
that
(idz, [o])*[E, e | T | ©] = [E | To/e] | Olo/a]].

The rest of the proof is by induction over the structur@péind since it resembles the proof of Lenima B.11
closely we leave it to the reader. O

Lemma3.14.1f = | T | © F ¢ then

[EIT[OF¢] =724 z[Ea[T|OF¢]
Proof. The proof is almost the same as for Lenjma B.13. O

Lemma3.15.1f Z | T' | © F p: Rel(r, 7’) is a definable relation, then
[E1T[©F ¢lp/RI] = ((idgrier: [PD)[E T | ©,R: Rel(r,7') - ]
Proof. The lemma should be proved simultaneously with the statement
[EIT[OFp/RI=[E|T]06,R: Rel(r,7) I '] o ((id[zirjey [P]))

for all definable relationg’, by structural induction o andp’. We leave the proof to the reader, as it
closely resembles the proof ¢f (3]11).

O]

Lemma3.16.1f = | ' | © - ¢: Prop, then

[EIT|O,R:Rel(o,7)F o] =n"[E|T|©F ¢],
wherer: [Z|T' | ©,R: Rel(o,7)] — [ | T' | ©] is the projection.
We are now ready to prove soundness.

Proof of Theorerp 3.10The rules for quantificatior [1)F|(6) follow directly from the fact that the interpreta-
tion of V and3 are given by right, respectively left adjoints to weakening functors. The substitution rules

(7) - (9) are sound by Lemmas 3|11, 3.13 and [3.15.

For thesubstitutionaxiom [10) we will only prove

le, B| 2’ a,y: B| R: Rel(er, B) b & =4 2] <
[0, | 7.2": @, y: 5 | B: Rel(a, 6) - Rz, y) > R('y)]

Once this is done, the rest of the proof amounts to doing the same thing in the second variable. We will for
readability write simply[«], [5], [R] for [, 5+ o], [e, BF B], [e, B | — | R: Rel(ex, 5)].
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If we let 7y, w9, w3, 4 denote the projections out of

[ ﬁlwx a,y: B R: Re'( O] =
[or, 1= a]? x [a, B+ 8] x U([ev, B = o], [er, B+ 5])

we can formulate what we aim to prove as
(1, m2)" (L Ay, (T)) < {1, ma)" W (idpgy) O (2, m3)" ¥ (idgy),

whereA denotes the diagonal map.
Using the Beck-Chevalley condition on the square

Apgpxid
MXij MHTMMH
Ust (m1,m2)
[o] Sl [o]?

we get

Now the result follows from using the adjunction and the fact that
<7T1,7T3> o (A[[aﬂ X id[[/BHXHR]]) = <7T2,7T3> o (A[[a]] X id[[ﬁ]]x[[Rﬂ)-

External equality implies internal equalify (11) since the modekdhcluded in the model is sound. Internal
equality is clearly an equivalence relation.

The axioms concerning types as relatigng (1) } (15) follow from the factitisatequired to be a morphism
of \s fibrations and that th&, structure inRRelations — RelCtx is given by the interpretation of products
and quantification of relations. For instance soundness of the (15) is proved as follows:

[@,d" | —| R: Rel(d@, ') - (T 8. 0)[R]] =
J([@+T18.0]) = .
[&,6" | R: Rel( &, d") b (Vy,7/,S: Rel(v,7)). o[R, S]]
where the second equality holds sintepreserves simpl@-products.
Finally, to prove soundness of rufe {16), it suffices to prove soundness of
ElNzoy:7|0|TkF(z:0,y: 7).0)(x,y) 3T ¢,
but
[EIT,z:00y: 7 [OF (2:0,y: 7). 9)(2,y)] =

V([EIT|OF (z: 0,y: 7). 9])
VoUN[Z|T,z:0,y:7|OF¢])=[E]|T,2: 0,y: 7| O F ¢].
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3.2 Completeness

The Soundness Theorein (3.10) allows us to reason about APL-structures using Abadi & Plotkin’s logic.
The Completeness Theorem below states that any formula that holds in all APL-structures, is provable
in the logic. This allows us to reason about the logic using the class of APL-structures. However, since
the APL-structure below is constructed from the logic, this does not say much. Instead, one should view
the Completeness Theorem as stating that the class of APL-structures is not too restrictive; it completely
describes the logic.

Theorem 3.17 (Completeness)There exists an APL-structure with the property that any formula of Abadi
& Plotkin’s logic based on pure that holds in the structure may be proved in the logic.

Proof. We construct the APL-structure syntactically, giving the categories in question the same names as in
the diagram of iterp|1 in Definition 3.3.

e The categorKind has sequences of the foum : Type, ..., a,: Type as objects, where we identify
these contexts up to renaming (in other words, we may think of objects as natural numbers). A
morphism from= into oy : Type, ..., a,: Type is a sequence of typ€s, ..., 0,) such that alb;
are well-formed in contexE.

e Objects in the fibre oType over= are well-formed types in this context, where we identify types
up to renaming of free type variables. Morphisms in this fibre feoto = are equivalence classes of
termst such tha& | — - ¢: ¢ — 7 where we identify terms up to external equality. Reindexing with
respect to morphisms iKind is by substitution.

e The categoryCtx has as objects in the fibre ovemwell-formed contexts of Abadi & Plotkin’s logic:
= | I' | ©, where we again identify such contexts up to renaming of free type-variables. A vertical
morphism fromZ | I' | ©to = | I | Ry: Rel(o1,71), ..., Ryt Rel(on, 7,) is a pair, consisting of a
morphism= | I' — = | I in the sense of morphisms Hype and a sequence of definable relations
(p1,--.,pn) such that= | T' | © + p;: Rel(oy, 7). We identify two such morphisms represented
by the same type morphism and the definable relatipns. . ., p,) and(p}, ..., p,) if, for eachi,
pi = p), is provable in the logic. one. Reindexing is by substitution.

e The fibre of the catego®rop over acontexE | I' | © has as objects formulas in that context, where
we identify two formulas if they are provably equivalent. These are ordered by entailment in the logic.
Reindexing is done by substitution, that is, reindexing with respect to lifts of morphismdKiard
is done by substitution in Kind-variables, whereas reindexing with respect to vertical m@jppx iis
by substitution in type variables and relational variables.

It is straightforward to verify that this structure satisfies ifgm 1 of Definifioh 3.3. The only non-obvious
thing to verify here is existence of products and coproducRriap with respect to vertical maps Gtx.

Supposet, p) represents a morphism frol | #: & | Rto= | g: 7| S. Then we can define the product
functor inProp by:

| j: 7| SEVZ.VR(Z = ¢

We define coproduct as:

(1]



The functorU of item[2 is defined as
U(o,7) = R: Rel(o, )

and
Ult:oc—od,u:7—71)==Z|R:Rel(o/,7") F (x: 0,y: 7). R(tz,uy)

The map¥ maps a definable relatiah | I | © F p: Rel(o, 7) to the proposition
E|lz:oy:7|0OF p(z,y): Prop,

which is a bijection by Lemmfa 2.3.

We have defined a pre-APL-structure. The cated@elCtx obtained from this pre-APL structure has as
objectsa, 3 | T' | ©. The fibre ofRelations over an objecty, 5 | T | © in RelCtx is:

Objects Equivalence classes of definable relations

-,

@G| T | OF p: Rel(o(a), 7(3)).

=, =,

Morphisms A morphism fromp: Rel(o (&), 7(8)) to p’: Rel(o’(&),7'(5)) is a pair of morphisms :
o — o',u: 7 — 7’ such that it is provable that

Vao: o.Vy: 7.p(x,y) D p'(tx,uy).
In the reflexive graph of Lemnja 3.7, the functor fr@Gind to RelCtx acts on objects as

Ay ooy Q= 1y ooy Qs B1y oo, B | Ri: Rel(aq, B1), ..., Ry Rel(an, Br)

and it takes a morphisi : @ — @ to the triple(d(a), #(3), 7[E]). Notice that this defines a morphism
since . . .
a,[ | R: Rel(a, B) F o;[R]: Rel(o;(d), 0:(5))

This really defines the object part of the functor frafiype to Relations since it must preserva2-
structure. So this functor takes a tyge- o to

-,

a; 3 | R: Rel(@, §) b o[R]: Rel(c(&), o (f)).

The functor maps a morphist | z: o  t: 7 to the pair(\z: o.t, \x: o.t). This defines a morphism in
Relations since the Logical Relations Lemmia [12, Lemma 2] implies that

@G| R: Rel(@, B) | w: 0(@),y: o(B) b o[R)(x,y) D 7[E|(t, t[3/a]ly/x]).
One may easily verify that the functors above define a reflexive grapB-fibrations.
Now, by definition, a formula holds in this APL-structure iff it is provable in Abadi & Plotkin’s logic]
Remark 3.18. The Completeness Theorem only states completeness for Abadi & Plotkin’s logic based on
thepures. The reason for this is that the proof uses the Logical Relations Lemma, which is proved in [12]

by structural induction on terms. In the case of general calculi, one must know that the Logical Relations
Lemma holds for term-constants in the language to be able to prove completeness.
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4 Parametric APL-structures

Given an APL-structure, we may consider the internal logic of the model (to be defined precisely below),
and formulate parametricity as a schema in this logic. For technical reasons we will define parametric APL-
structures as APL-structures not only satisfying the parametricity schema, but also extensionality and very
strong equality[(A.J7). For parametric APL-structures, we can derive consequences of parametricity using
Abadi & Plotkin’s logic, as in[[12]. For many of these proofs extensionality is needed, and we need very
strong equality to deduce from theorems in Abadi & Plotkin’s logic to category theoretic theorems, as we
will see in Sectiof p. This is the reason why we propose parametric APL-structures as a category-theoretic
definition of parametricity.

The internal language of an APL-structure is simply Abadi & Plotkin’s logic on the internal language of the
Ao-fibration (seel[5]), with the ordering relation in a fibreBfop defined as + ¢ iff [¢] F [«] holds in

the model. Using the internal language we may express properties of the APL-structure, and ask whether
these properties hold in the logic.

Definition 4.1. The extensionality schemes in the internal language of an APL-structure are the schemes

—| = | = FVa,B: Type.Vt,u: o« — B. (Vo: a.te =g ux) Dt =43 u, a7)
E|—|-FVf,g: Ma: Type.o). (Va: Type.fa =5 g) O f =t1a: Type.s 95 (18)

where in [(18) ranges over all types such thata - o: Type.

Lemma 4.2. For any APL-structure, very strong equality (Definitjon ]A.7) implies extensionality.

Proof. We can formulate extensionality equivalently as the rules

EllNz:o|OFt=ru
EIT|OF Az 0t =57 Ax: 0.1

E,a:Type |[T'|OF f=59

E|T|OF Aa. Type. f =a: Type.o Acv. Type. g

If internal equality is the same as external equality then these rules hold by the rules for external equality in
Figure[]. O

Definition 4.3. The schema
Va: Type.Vu,v: 0. (u(oledy])v 3¢ u =4 v)
is called theldentity Extension Schema&lereo ranges over all types such that- o: Type.

Definition 4.4. A parametric APL-structureis an APL-structure with very strong equality — and hence
extensionality — satisfying the Identity Extension Schema.

Remark 4.5. If we write out the interpretation of the Identity Extension Schema, we get a category-
theoretical formulation of the notion of parametric APL-structure. It is an APL-structure with very strong
equality, extensionality and in which for all typ&s- o : Type,

(idigrop2 X [@ | = | = Feq])*J([aFo]) =[d]z: 0,y: 0| = Fz=5y].
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Definition 4.6. For any types, d - o(3, @) we can form the parametricity schema:
va: Type.Vu: ([[B.0).V8,5": Type.VR: Rel(8,3). (u B)o[R, eqy](u 3)
in the empty context.

Proposition 4.7. The Identity Extension Schema implies the parametricity schema. Thus the parametricity
schema holds in any parametric APL-structure.

Proof. Since
alu: [[B: Type.o(B,d) | —Fu ~I15: Types ©

always holds in the model, by the Identity Extension Schema, we know that
G| u: [18: Type.o(8,d) | — F u([] B Type. o)[egs)u
holds, but by the Axiom (15) this means that
a | u: T18: Type.o(B,&) V3, B'VR: Rel(8, 8). (u 8)(o[R, edg])(u §)

holds as desired. O

Without assuming parametricity we can prove the logical relations lemma:

Lemma 4.8 (Logical Relations Lemma).For any APL-structure the Logical Relations Schema
—| =] —Ftot

holds, where ranges over altlosedterms of closed type, i.es; | — - t: 0.

Proof. The lemma is really just a restatement of the requirement that
J : Type — Relations

is a functor. Let us write out the details.

A closed termt of closed typer corresponds in the model to a mapl — o in Type;, and by definition
of the interpretation
I-|z:0,y:0|—Fzxoy] = J(0).

The fact thatJ is required to be a functor, means exactly that the pait) should define a map in
Relations, i.e., the formula
—| = | —=FVa,y: 1.21ly D tot

should hold in the model. Since the relational interpretatioh isf simply the constantly true relation, we
get the statement of the lemma. O

Remark 4.9. The Logical Relations Lemma suspiciously resembles the Identity Extension Schema. For a
closed term of open typél | — |- t: o, the Logical Relations Lemma implié§a. t) [[ &. o (Aa. ), so that
to[eq;]t. However, since this only holds folosedtermst, we do not have the formula

Vi: o.tolegglt,

which is the formula that we will need to prove consequences of parametricity.
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5 Consequences of parametricity

As mentioned in the introduction to Sectiph 4 we may use Abadi & Plotkin’s logic to derive consequences
of parametricity in parametric APL-structures. In this section we exemplify how to do so. Through our
examples, it should become apparent how extensionality and very strong equality play important roles in the
proofs of the consequences.

The proofs of the consequences are based on theorems about Abadi & Plotkin’s logic statéd in [12]. For
completeness, we have written out proofs of these theorems, often inspited by [3]. What is new here, is just
that we show how to conclude from the logic to the APL-structures.

5.1 Dinaturality

We shall use the following definition very often.

Definition 5.1. We say thati - o: Type is an inductively constructed type, if it can be constructed from
free variablesy and closed types using the type constructorsgf.e., x, — and] ] c..

For example, itr is a closed type thejy| . o x v is an inductively constructed type. However, some models
may contain types that are not inductively constructed! For example, in syntactical models, any basic open
type, such as the typet- lists(«) is not inductively constructed.

We define the notion of positive and negative occurrences of a type vatiablen inductively constructed
type o inductively over the structure af as follows. The type variable occurs positively ino. The
positive occurrences af in o x 7 are the positive occurrences®in o and the positive occurrences®in

7. Likewise for negative occurrences. The positive occurrencesinfr — 7 are the positive occurrences
of a in 7 and the negative occurrences®in o. The negative occurrences are the negative and the
positive ino. The positive and negative occurrenceswaf [ 5. o are the same as far, if o # 5. There
are no positive or negative occurrencesxoin [ [ . o since we only consider free occurrences of a type
variable.

Supposer(«, ) is an inductively constructed type with all free variablesvirg such thatw occurs only
negatively ang? occurs only positively ir. We may then forf : a« — o’ andg: 3 — 3’ define a morphism

o(f.9) o, 8) — o(a, )

inductively over the structure ef as in [12].

It is well-known that Dinaturality is a consequence of parametricity, but we include the proof for complete-
ness.

Lemma 5.2 (Dinaturality). In a parametric APL-structure, the dinaturality schema
Va,B.Vf:a — B.o(ida, f)o ()a :H . (o(a,a))—o(a,B) o(f, idﬁ) © ()ﬂ

holds. Here(-),, denotes the termyu: ([ a. o(a, a)). u(«).

Proof. Supposef: a — (3. By extensionality it suffices to prove that, for aay [ . o(, @),

O—(idaa f)u(a) —o(a,f) o'(f, @dﬂ)u(ﬁ)
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Instantiating the Logical Relations Lemma with the types

a,B,7,6 - (a— B)x (v —9)
05757776'_0-(ﬂ77) —>O'(Oé,(5)

and
t=Aa,3,7,0. \w: (a« — ) x (y = 9).0(rw, 7'w):

[Ta,8,7,0.(a = B) x (y = §) = o(B,7) = o(a,0)
we get
a,B,7,6,0/,0,9,8" | z: (a = B) x (y = 0),y: (&/ = F) x (7 = &) |
Ry: Rel(a, '), Ry: Rel(8, '), Rs: Rel(v,v'), Ry: Rel(4,4") |
z(R1 — R2) X (R3 — R4)y b o(mx, n'z)(0[Ra, R3] — o[R1, R4])o(my, 'y).

Recall the notation(f) for the graph of the functiorf defined as(z: «,y: 3). f(z) =5 y. If we set
a, 3,7,a’ toa and seb, #',+',4' to B and letR; = eq,, Ry = R3 = (f) and R4 = eqy, then we get

z(eq, — (f)) x ({(f) — etg)y - o(mz, 7'z)(0[(f), {f)] — oleq,, eqs))o(my, n'y).
If we setr = (ida, f) andy = (f, idg) then sinceid,(eq, — (f))f andf((f) — eqs)idg we obtain
o(ida, [)(o[(f), (f)] = oleq,,eqp])o(f, ids).
Since the parametricity schema tells us that

u(@)a(f), (f)lu(B),

it follows that
o(ida, f)(u(a))(o[eq,, eq])o(f, idg)u(B),

but by the Identity Extension Schema this is just

0 (ida, [)(u()) =o(a,p) o (f; idg)u().

5.2 Products

Consider the typ& = [[ @. @« — «a. The termA«. Az : «. x inhabitsT. Thus
Proposition 5.3. In any model of\; the typeT” defines a fibred weak terminal object.
Theorem 5.4. In a parametric APL-structure, the proposition
Vu: T. (u=7 Aa. A\z: a.x)

holds in the internal logic.
Proof. By extensionality it suffices to prove that

a: Type | u: T)z: at (ua)x =4 x.
Consider the relation

a:Type |u: T)z:akp=(y: a,z: @).y =4 x : Rel(a, ).
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By parametricity we have
a: Type | u: T)x: ab (va)(p — p)(ua),

but this means that
a: Type|u: T)z: atby=q4 2D (ua)y =4 .

Theorem 5.5. In a parametric APL-structure]” defines a fibred terminal object @fype — Kind.

Proof. Supposeu: ¢ — T is a morphism in the fibre. By the above theorem and extensionalitis
internally equal to\y: 0. Aa. Az: a. z. By very strong equality we have external equality betweeand
Ay: 0. Aa. \x: a.z. SOT is a terminal object. O

For two typess andr in the same fibre, consider
oxt=[]a.((c =7 — a) — a).

We usex to distinguish this definition from the usual fibrewise product denotedVe will show thatx
defines a weak product in the fibre, and that in parametric APL-structures it defines a genuine product.

Let projectionsr : o x7 — o andn’ : ox7 — 7 be defined by

mr=x0 (Ar: 0. \y: T.x)
mr=x71(A\r: o \y: 7.y)

and letpair : 0 — 7 — o x7 be defined by
parzry =Aa.A\f:0—>7—a. fzy
If f:a— ocandg:a— G, wewillwrite (f, g) for \x: «. pair (f z) (g x) . Then
mo(f,g)=Xx:a.(pair(fz)(gz))o(Az: o y: 7.x)=Ax:a. fe=f

and likewise
o (f,9) =g
This proves:
Proposition 5.6. In any model of\, the construction< defines a fibrewise weak product.
Theorem 5.7. For any parametric APL-structure the proposition
Vo, 7. (m, 7'y =5 id

0'>A<T 0'>A<T

holds in the internal logic.

Proof. For anyf: o — 7 — a definef*: oxt — a as

ffr=xzalf.

Suppose: : o x7. By parametricity, for any relatio®: Rel(«, 3),
(za)((eq, — eq. — R) — R)(z ).
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Now, foranyf: o — 7 — «,
f*(pairz y) = pairzya f = f oy,

i.e.,
pair(eq, — eq. — (f*))f,
which means that

(zoxTpair){f*)(za f).

In other words,
f(z oxTpair) =, z a f.

Since the left hand side of this equation simply is
(z oxT pair) a f,
we get by extensionality sinee, f were arbitrary,

zoXTpar=_;_z.

Suppose now that we are givgn o — 7 — «. We construcl: ox7 — «o by
gz=f(rz) ()
Thenpair(eq, — eq, — (g))f since
g(pairzy) = f (roparzy)(r opairry) = fry
Parametricity now states that for any o x
(zox7)((eq, — e — (g)) = (9))(z @)
Thus(z ox7 pair){(g)(z o f) and sincegz o x7 pair) =, ;. =z we have
f(r2)(n'2)=gz=qzaf.

By extensionality
ANeioxT. A ANfro—T—a f(rz)(n'2) =4 -
Aot oXxT. A \fro—T o azaf=id,g,.
But the left hand side of this equation is jyst 7). O

Theorem 5.8. In any parametric APL-structures defines a fibrewise product ffiype — Kind.

Proof. Since clearly(w o f, 7’ o f) = (m, ') o f any map intar x 7 is uniquely determined by its compo-
sition with7 and=’ by Theorenj 57 and very strong equality. O
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5.3 Coproducts

For the empty sum we define
I=]]aa.

Proposition 5.9. In any model of\, I defines a fibred weak initial object.

Proof. Supposer is a type over som&ind object=. The interpretation of the term: I + zo is a
morphism from/ to ¢ in the fibre ovef=. O

Theorem 5.10. In a parametric APL-structure, the proposition
Yu: I. L

holds in the internal logic of the model.

Proof. Parametricity says
Vu: [[o.a.Va,3: Type.VR: Rel(a, 3). u(a) Ru(5)
Instantiate this with the definable relation

(x:1,y:1). L: Rel(1,1)

O
Theorem 5.11.1n a parametric APL-structurel defines a fibred initial object dfype — Kind.
Proof. Given two morphisms, v: I — o we have
(Va: I.L)F (Va: [.ux =5 vz) F (u =14 v),
so, by very strong equality, we haue= v. O

Given two typesr andr we define
c+7=]la.(c—a)—(T—a)—a«a
and introduce combinatorsl, .: ¢ — o + 7,inr, ,: 7 — o + 7 and
cases,: [[a.((c—a) = (T—a) = (0+7T) — a)

by
iNly47(a) = Aa. A\f: 0 = a. Ag: 7 — a. f(a),
iNfy4-(a) =Aa. A\f: 0 — a. \g: 7 — a.g(a),
casesirafgw=wafyg.

Now, suppose we are given two morphisms ¢ — « andu : 7 — «. Then we may defin¢u, t] =
casesr atu: o+ 17— aand we then have

[u,t]oinly (x) =inly; z atu=1t(x)

and likewise
[u,t]oinry (y) =iNfo -z atu = u(y)

so we have proved the following proposition.
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Proposition 5.12. For any model of\y, the operationt+ defines a fibred weak coproduct.
We will prove that in a parametric APL-structure;+ 7 is in fact a coproduct.
Theorem 5.13.In a parametric APL-structure, the proposition

Va,o,7: Type.Vh: 0 + T — a.h =g 474 [hoiNlgyr, hoinry ;]

holds.

Proof. We will first prove that
[inla+77 inra—i—T] o+t ida—&—'r-

Instantiating the parametricity schema for. o + 7 with the relation(f) we get that, for anyf : « — 3
andalla:o0c — aandg: v — a,

flwaab)=gwp(foa)(fob)
Now considerany’ : ¢ — aandb’ : 7 — cand setf : 0 + 7 — a to
flu)=uadl.
If we seta above tanl andb to inr we get
(w(o+7)inlinr)ad V' =gwa (foinl) (foinr). (19)

Since
foinl(z) =inl(x) ad' V' = d (),

forall z: o, and likewisef o inr(y) = ¥'(y), fory : 7, (19) reduces to
(w(o+7)inlinr)ad b =gwadb.

By extensionality this implies
(w(o 4+ n)inlinr) =,4- w,

and using extensionality again we obtain
[iNlg 7, iNMo 7] =047 —otr idoyr (20)
Finally, by the parametricity condition araseswe have for any: : 0 + 7 — « that
h(case$o + 7) inlinr w) =, casesy (hoinl) (hoinr) w,

so by extensionality andl (R0),
h =o4r—q [Roinl, hoinr].

Theorem 5.14.In any parametric APL-structure- defines a fibred coproduct @fype — Kind.

Proof. Using very strong equality, Theorém 5|13 tells us that maps omtiof are uniquely determined by
their compositions witlinl andinr. O
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5.4 Initial algebras

Definition 5.15. Consider a fibred functor

An indexed family of initial algebras for the functor is a family
(inz: T(o=) — 0=)=cobjB

such that each s an initial algebra for the restriction of" to the fibre ove= and the family is closed
under reindexing. If each inis only a weak initial algebra we call it a family of weak initial algebras.

Supposex - o: Type is an inductively constructed type (see Definitjon]5.1) in whictoccurs only
positively. Theno(a) can be considered a functor in each fibre [12]. Actually/in [12] Abadi & Plotkin
construct a term

t:[]a,B: Type. (o — ) — o(a) — o (f),
which internalizes the morphism part of the functor
The typeos induces a fibred functor

Type Type

~ 7

Kind
mapping= - 7 to Z - o (7). In this section we study families of initial algebras for such functors.
First we prove the graph lemma:

Lemma 5.16. If o I o is an inductively constructed type in a parametric APL-structure in whidtcurs
only positively, interpreted as a fibred functor aslinl[12], then the formula

Va,B: Type.Vf: a — B.0[(f)] = (o(f))
holds in the internal language of the model, where, as usual,p’ is short for
Va,y. p(x,y) 3T (2, y).

Proof. Since the polymorphic strengtimentioned above is parametric, we have, for any pair of relations
p: Rel(a, /) andp’: Rel(8,3'),

tapB((p—p')— (olp] = alp)ta 5. (21)
If we instantiate this witlp = eq,, p’ = (f) for some mapf : « — 3, we get
taa((eq, — (f)) — (€4 — a[(f)])ta b,

using the Identity Extension Schema. Sindg(eq, — (f))f, and sinc& a 5 f = o(f) andt a o id, =
o(ida) = idy (o) WE get
Z.da(oz) (e%(a) - O'[<f>])0’(f),
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that is,
Va: o(a). z(o[(f))o(f)z.
Thus we have prove@(f)) implieso[(f)].
To prove the other direction, instantia@(Zl) with the relatiors (f) andp’ = eqg for f: a — (. Since
F({f) — eq)idg,
o (/) el{F)] — €tys))ids(g)-
So for anyz: o(a) andy: o(3) we havex(c[(f)])y implieso(f)z = y. In other wordsg[(f)] implies

(o (f))- =

We shall now define a family of initial algebras for the functor induced bin each fibréI'ype- we may
define the type

po.o(a) =[] ((o(a) — a) — @)
with combinators
fold: [Ja. ((o(a) = ) — pp.o(B) — «)

and
in:o(pa.o(a)) — pa.o(a)
given by
folda fz=zaf
and

inz=Aa.\f: o(a) = a. f(o(folda f)z).
Theorem 5.17.1n any model of second-ordercalculus the family
(EFin: o(pa.o(@)) — pa.o(a))=
is a family of weak initial algebras far.

Proof. Given any algebrg: o(a) — «a in any fibre, the diagram

o(pa.o(a)) n pe. o)

o(foldaf)l lfoldozf

f

ola) ——«a

is commutative since
(folda f)oinz=inzaf = f(o(folda f) 2)

and
foo(folda f) z = f(o(fold « f) z).
O

We will show that in a parametric APL-structur&; I~ in)z actually is a family of initial algebras. First we
prove a lemma.

58



Lemma 5.18. In a parametric APL-structure, the formula

fold pav. o (@) IN =0 0 (a)—pa.o(a) ua.o(a)

holds in the internal logic.
Proof. Consider an arbitrary element pa.o(a) and a mapf: « — (3. The parametricity condition then
gives
(wa)((e[(/)] = (f) = () w B).
Since Lemma 5.36 tells us thaf(f)] = (c(f)), this means that, if: o(a) — a andb: o(3) — 3 have
the property that
Vo:o(a). flax) =5 blo(f) x)
(thatis, if f is a morphism of algebras), then
flwaa) =gwpBb.

Consider now an arbitrary algeb¥a o («) — « and instantiate the above with the algebra morpHadu &
frominto k, to get
fold a k(w pa. o(@) in) =4 w a k.

Since the left hand side of this equatior{dsua. o(«) in) a k, we get by extensionality that
w per o (@) IN =0 0(a) W
and therefore, using extensionality again,
fold pav. o(@) IN =0 0(a)—pa.o(a) ua.o(a);
as required. O

Theorem 5.19. Supposey: na.o(a) — « induces a map between algebras from inftoo(a) — «in a
parametric APL-structure. Then

9 =pa.o(a)—a folda f
holds in the internal logic.

Proof. Sinceg is a map of algebras, the parametricity condition on an arbitrary«. o(«) entails as in
the proof of Lemm@ 5.18 that

gwpa.o(la)in) =qwa f

and therefore the result follows from extensionality since, by Lefjnmg 5.18,
w pa.o(a) in = (fold pa. o(a) in) w =4 6(a) W
and, moreover,
waf=(foda f)w.
Theorem 5.20.In a parametric APL-structurg[= F in)= is a family of initial algebras fow.

Proof. Using very strong equality Thin 5.]19 gives uniqueness of algebra morphismsiout of O
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Remark 5.21. Consider the case of an inductively constructed typé - o(«, 3) in whicha and 3 occur
only positively. For each closed typewve may consider the typel o(«, 7) and the analysis above gives
us a family of initial algebras for this functor. Moreover, for each morphismr — 7’ between closed
types we get a morphism of algebras induced by initiality:

o(pa.o(a,7),7) = = =o(pa.o(a, 1), 7)
s
in, o(pa.o(a,7),7")
in,.
po.o(a,7)———— — > pov. o (o, ')

For example, if we consider the type3 - 1 + « x 3, then for anyr, we get listér) = pa. (1 4+ « x 1)
and, for anyf : = — 7/, the induced morphism is the familiar morphism nfaplists(r) — lists(7’), which
appliesf to each element in a list.

5.5 Final coalgebras

In this section we consider the same setup as in Sectign 5.4, thatisy: Type is an inductively con-
structed type in whichx occurs only positively. As before defines a fibred endofunctor diiype —
Kind.

Definition 5.22. Consider a fibred functor

An indexed family of final coalgebras for the funcioris a family
(outz: o= — T'(0=))zcobjB

such that each ogtis a final coalgebra for the restriction df to the fibre ove= and the family is closed
under reindexing. If each ogtis only a weak final coalgebra we call it a family of weak final coalgebras.

In this section we define a family of weak final coalgebrasfand prove that for parametric APL-structures
itis in fact a family of final coalgebras. First we need to define existential quantification in each fibre as

[[e.o(a) =Ila.(I[B.(¢(B) = a)) — «
and the combinatguack: [] a. (o(a) — [ 5.o(8)) by
packa z = ABAf: [[ e (o(a) — B). f a .
In each fibre we define the type
va.o(a) = [Ja. ((a = (@) x a) =[[a. ([18- (B = 0(B) x B — a) - «
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with combinators
unfold: [Ja. ((a — o(a)) —» a — (va.o(a)))

and

out: va. o(a) — o(va. o(a))
defined as

unfolda f = = packa (f, x)
and

outlz) = zo(ra.o(a)) (AaX(f,z): ((a — o(a)) x a).o(unfolda f)(f x)).

Theorem 5.23. In any model of second-ordercalculus(Z F out)z is a family of weak final coalgebras
foro.

Proof. Consider a coalgebrf: @ — o(«) in any fibre. Then

o ——0(a)

unfolda fl la(unfolda f)

va.o(a) oL o(va.o(a))

commutes since

out(unfolde f z) = out(packa (f, z)) =
(packa (f, z)) (o(va. o(a))) (AaX(f,z): ((« — o(a)) x a).o(unfolda f)(f z)) =
o(unfolda f)(f 2)

Lemma 5.24. In a parametric APL-structure,
unfoldva. o(«) out

is internally equal to the identity oma. o(«).

Proof. Seth = unfoldva. o(«) outin the following.
By parametricity, for any : o — £,

unfolda((k) — o[(k)]) — ((k) — €Q,4.,(4))unfoldg.
Hence, since’[(k)] = (o (k)) by Lemmd 5.1, if
ki(fra—o(@)—(g:6—0(0)
is a morphism of coalgebras, then
unfolda f =, q.0(a) (Unfold3 g) o k.

So sinceh is a morphism of coalgebras froout to outwe haveh = h2. Intuitively, all we need to prove
now is thath is “surjective”.
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Consider any : [T . ((a — o(a)) x a — [3). By parametricity and Lemnja 516, for any coalgebra map
k:(f:a—o0@)—(f:ad — o(a)), we must have

Vo:a.ga(f,x) = g (f k(z)).
Using this on the coalgebra mapfolda f from f to outwe obtain

Vo: o.galf,z) =g gva.o(a)(out unfolda f ).

In other words, if we define
E: [Ja. (0 — o(a)) xa— 1),

wherer = (va.o(a) — o(va.o(a))) X va.o(a), to be
kE=Aa. Xf,z): (o — o(a)) x a. (out unfolda f x),

then
Va. g a =(—o(a))xamp (gra.o(a)) o (k). (22)
Now, suppose we are given o/, R: Rel(a, o) and termsf, f’ such that

f(R—o[R) x R—p)f".

Then, by [22) and parametricity of
gaf=ggd [ =5 (gva.o(a))(ka f),
from which we conclude
9(V(a, B, R: Rel(a, 8)). (R — o[R]) x R — (gva.o(a))))k.

This implies that for any:: va. o(«) by parametricity we have

xfg=pggraoc(a)(zTk).
Thus, sincey was arbitrary, we may apply the abovegte= k£ and get

7k =; kva.o(a) (z 7 k) = (out unfoldva. o(a) m(x 7 k) 7' (x 7 k)).

If we write
I = \z: va.o(a).unfoldva. o(a) n(x 7 k) 7' (z 7 k),

then sincek is a closed term, so is and from the above calculations we conclude that we have
VB.Vg: [[a. (@ = o(a)) xa— B.2 89 =p gra.o(a) (outl x).

Now, finally

h(l ) = unfoldva. o(a) out(l z) =
packva. o(a) (outl z) =
AB.Ag : Ha' ((a - U<a)) X o — B)g l/Oz.O’(Oé) (OULZZE> “ra.o(a)
AB.Ag: J]a.((a = o(a) xa— B).aBg=x

where we have used extensionality. Thisa right inverse td, and we conclude

hx —va.o(a) h2(l (L‘) —rva.o(a) h(l [E) =va.o(a) L
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Theorem 5.25.1n a parametric APL-structurg= - out)z is a family of final coalgebras far.

Proof. Consider a map of coalgebras irdot

By parametricity ofunfoldwe have
unfolda f =, a.0(a) (Unfoldva. o(a) out) o g =4 a.0(a) 9-

Very strong equality then implies uniqueness of coalgebra morphismeunés desired. O

5.6 Generalizing to strong fibred functors

In this section, our aim is to generalize the results of Secfiorjs 5.4 ahd 5.5 to initial algebras and final
coalgebras for a more general class of fibred functors, than the ones defined by inductively constructed
types. These functor are called strong fibred functors.

Definition 5.26. An endofunctofl’ : B — B on a cartesian closed category is callsttongif there exists
a natural transformatiort, . : 7° — T'717 preserving identity and composition:

ido comp

o1 o2 o1
1 > O'o. 0'2 X 0-3 —> 03
A itw ltm lt
10T o
To comp
To TJ2T 9 % Tcrga2 Tagol.

The natural transformation is called thestrengthof the functorT.

One should note thatin the definition above represents the morphism part of the fuficioithe sense that
it makes the diagram

1*>f nd

x ltw
Tf

Tr1le

commute, for any morphisrfi: ¢ — 7. This follows from the commutative diagram

1 -

t
07 —>To'"

N

t
77— 1770,
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Definition 5.27. A strong fibred functoris a fibred endofunctor

T

E———E

NS

B

on a fibred ccc, for which there exists a fibred natural transformatidrom the fibred functor(—))
to T'(—)7(+) satisfying commutativity of the two diagrams of Definition 5.26 in each fibre. The natural
transformatiort is called thestrengthof the functor?'.

In this definition, one should of course check that the two fundterg™) and7'(—)”+) — a priori only
defined on the fibres — in fact define fibred functors

EP xpE ———F
B.

But this is easily seen. Notice also tHatis not required to preserve the fibred ccc-structure and that the
components of are preserved under reindexing sirces a fibred natural transformation.

Example 5.28. An inductively constructed type with one free variable o: Type, wherea occurs only
positively, defines a strong fibred functor: see Segtioh 5.4.

But in many situations one may want to reason about other strong fibred functors. For example\.if the
fibration of the APL-structure models other type constructions than the ones\frdor which there are
natural functorial interpretations, one may want to prove existence of initial algebras for functors induced
by types in this extended language.

All fibred endofunctors on\,-fibrations are in a sense given by types.
Lemma 5.29. For any strong fibred functor

F

Type Type

N

Kind
on a\q-fibration there exists, in the internal languageBype — Kind a typea F ¢ and a term
—Fs: [[a,B.(a— B) = o(a) — o(B)
inducingF'.

Proof. Denote byl € Type(, the generic object of th&,-fibration and for any type € Type= denote
by 7: E — Q the map satisfying = 7*(T"). Seto = F(T'). Then for any type : Typexz,

F(r) = F(#T) = o

which is the interpretation aof (7) in the internal language.

64



Now suppose the fibred natural transformatiesa strength fof”. Consider the compone(ty: )[a, -a],[o, 53]
Thisisamap irCypeq: from[a, 5+ a — G]to[a, B+ o(a) — o(8)], i.e. atermy, B t': (a — ) —
(o(a) — o(p)) in the internal language. Set= Aa. AS.t'.

To check that, s induce the functo” we only need to check that for any pair of types’ € Typex,
E + s7 7' is interpreted astz), . But[EF st 7] = (r,7)*(¢') = (t=),., sincet is preserved by
reindexing. O

Lemmé&[5.2p tells us that we can reason about strong fibred functors in the internal language. For instance,
denoting the strong fibred functor lbywe may write

a,fB|lfra—BFa(f): ola) — a(f)

for s a B f wheres is the polymorphic term inducing’s action on morphisms.

Furthermore, since the morphism part of the functor is representedpmyyenorphicterm, we can use
parametricity to reason about it. For instance, we may prove the following generalization of [Llemna 5.16.

Lemma 5.30 (Graph Lemma). For any parametric APL-structure, i is a strong fibred endofunctor
Type — Type, then the formula

Vo, 3: Type. Vf: o — B.o[(f)] = (o(f))
holds in the internal language of the APL-structure, where p’ is short for
Vo, y. p(z,y) 3 0'(2,y).

The proof of this lemma is the same as the proof of Lefima 5.16.

Corollary 5.31. For any parametric APL-structure, the morphism part of a strong fibred endofuaci®r
uniguely determined by the object part.

Proof. By Lemmd5.3Dy = o(f)(z) iff zo[(f)]y. O

Theorem 5.32.1n a parametric APL-structure, any strong fibred funcior Type — Type has

o A family of initial algebras defined as in Sectfon|5.4
e A family of final coalgebras defined as in Secfior] 5.5

Proof. The proofs work exactly as in Sectigns|5.4 5.5 since we may express the firiottite internal
language, as described above.

The fact that these initial algebras and final coalgebras are preserved by reindexing follows from the fact
that the strengthsare preserved. O

6 Concrete APL-structures

In this section we define a concrete parametric APL-structure based on a well-known variant of the per-
model (see, for instance,![5, Section 8.4]).
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The diagram of Definitioh 3]3 in the concrete model is:
UFam(RegSub(Asm)) (23)
PFam(Per) —— - UFam(Asm)
\ iq
PPer

The fibrationp is the fibration of [[5, Def. 8.4.9]; we repeat the definition here. In the followiRgy
and Asm, will denote the sets of partial equivalence relations and assemblies respectively on the natural
numbers (see [5]).

The categoryPPer is defined as

Objects Natural numbers.

Morphisms A morphismf : n — 1 is a pair(f?, f") wheref? : Per"” — Per is any map and
I € 7 gepern |Ticn PON/Ri X N/Si) = PON/f7(R) x N/ £7(S)]

is a map that satisfighe identity extension conditiorf’"(ﬁ}) = Eq. A morphism fromn
to m is anm-vector of morphism from to 1.

We can now defin®Fam(Per) as the indexed category with fibre ovedefined as

Objects morphismsy — 1 of PPer.

Morphisms a morphism fromyf to g is an indexed family of mapgx ;) » Where

RePer
ag:N/fP(R) — N/g?(R)

are tracked uniformly, i.e., there exists a cadsuch that, for all? and[n] € N/f?(R),
aj([n]) = [e - n]. Further, the morphisna should respect relations, that is, 4; C

—,

N/R; x N/S; and(a,b) € f7(A) then(az(a), ag(h)) € g (A).

Reindexing is by composition.
Next we define the fibratiog. The fibre categorfyFam(Asm),, is defined as

Objects all mapsf : Per” — Asm.

Morphisms a morphism fromy to g is an indexed family of map&y ;) where

RePer™
ag: f(R) — g(R)

are maps between the underlying sets of the assemblies that are tracked uniformly, i.e.
there exists a code such that for allR and alli € f(R) and alla € Ef(ﬁ)(i) we have

e-a€ Eg(ﬁ)(aﬁ(i)).
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Reindexing is again by composition.
Finally we can define the categotyFam(RegSub(Asm)) as

Objects An object overf is any family of subsetgA ; C f(}?))ﬁ, where by subset we mean subset
of the underlying set of the assembly.

Morphisms In each fibre the morphisms are just subset inclusions.

Reindexing is defined as follows: Suppogse f — g is a morphism inUFam(Asm) projecting to
q¢ : n — min PPer. By definition this is a map in the fibre & Fam(Asm) overn from f to (¢¢)*(g).
Such morphisms are given by indexed families of maps

651 [(R) — go(q9)(R)
ranging overR € Per” so we can define
* g -1
¢ (A§ C g(S))gePerm = (¢R' (Ago(q¢)P(ﬁ)))ﬁ€Per"

The inclusion! is obtained by projectingf?, f”) to f? using the inclusion oPer into Asm.

Lemma 6.1. p is a A2-fibration.

Proof. This is [5, Prop. 8.4.10]. The ccc-structure is given by a pointwise construction, snclearly a
generic object. Foratypg: n+ 1 — 1 we define[[ f:n — 1as

ITHP(E) = {(a,a') | VU,V € Per.¥B C N/U x N/V.a € |{7(R,U)| and
a e |fP(R,V)land((a],[@]) € flz ) 51y (Edz B}

and

I1H%, A = {Uag s, [@lggpE) | YUV € Per.VB C N/U x N/V
(

R)’
[a]f P(RU) [a]fpsv)ef )(A,B)}
for ACRxS. O

Theorem 6.2. The diagram[(2B) defines a parametric APL-structure.

We do not prove Lemnia §.2 directly. Instead, we will show in RerparK 8.27[that (23) is a special case of the
parametric completion process of Secfipn 8.

Remark 6.3. In the above model we use nothing special about the RC#% the same construction applies
to pers and assemblies over any PCA. All the lemmas above generalize, so that in the general case we also
obtain a parametric APL-structure.

6.1 A parametric non-well-pointed APL-structure

We may generalize the construction above even further to the case of relative realizability. Suppose we are
given a PCAA and a sub-PCAd;. We can then define the APL-structure as above with pers and assemblies
over A, with the only exception that morphisms BFam(Per) and UFam(Asm) should be uniformly
tracked by codes inl;. All the proofs of sectiof|6 generalize so that we obtain:
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Proposition 6.4. For any PCAA and sub-PCAA; the diagram

UFam(RegSub(Asm(A, Ay)))
PFam(Per(A, A;)) '~ UFam(Asm(A, A;))
e
q
PPer(A, Ay)
defines a parametric APL-structure.

However, one may also prove:

Proposition 6.5. The fibrePFam(Per(A, A;)), is in general not well-pointed.

Proof. Consider a per of the forfi(a, a)}, fora € A\ A;. There may be several maps out of this per, but
it does not have any global points. O

Propositior} 6.)4 tells us that all the theorems of Segtjon 5 apply, such thafiferation
PFam(Per(A,A;)) — PPer(A, Ay)

has all the properties that we consider consequences of parametricity. This should be compared to [1] in
which a family of parametric models is presented (with another definition of “parametric model”) and the
consequences of parametricity are proved only fomibl-pointedparametric models.

7 Comparing with Ma & Reynolds notion of parametricity

In this section we compare the notion of parametricity presented above with Ma & Reynolds’ notion of
parametricity [6] (see alsd [5]). This latter notion was the first proposal for a general category theoretic
formulation of parametricity and is perhaps the most well-known.

To define parametricity in the sense Ma & Reynolds, consider first a situation where we are given a
fibration F —— B and a logic on the types given by an indexed first-order logic fibration

D—F—B.
Consider the category of relations on closed typ&% F ) defined as
LR(E)) —= D, —>D
L]
EixE~—>FE “—>F
where byl we mean the terminal object &f. In this case we have a reflexive graph of categories
E1 P LR(El) 5

where the functor going left to right maps a type to the identity on that type. By reflexive graph we mean
that the two compositions starting and endindiin are identities.
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Definition 7.1. The\,-fibration
E

;

is parametric in the sense of Ma & Reynolds with respedbte~ E if there exists a\,-fibration F* — C'
and a reflexive graph of; fibrations

E F
B C

such that the restriction to the fibres over the terminal objects becomes

E1 P LR(El) .

Given an APL-structure, we have a logic over types given by the pullbaBkop along/. We also have a
reflexive graph giving the relational interpretation of all types. It is natural to ask what kind of parametricity
we obtain by requiring that the reflexive graph giving the relational interpretation of types satisfies the
requirements of Definition 7].1.

First we notice thaRelations; = LR(FE7), and that the two maps going froRelations to £; are in
fact the domain and codomain maps, as required, so the requirements of Definjtion 7.1 only effect the nature
of the mapJ.

The last requirement of Definitign 7.1 says exactly that, for all closed types
J([o]) = [eq,].

Consider now an open type - o: Type and a vector of closed types Then, since/ is a map of
fibrations, we have

J([o(P)]) = J([T*[a+ o]) = J([@ F+ o]) o [eq:] = [o[eq:]].
In other words, the model satisfies a weak form of Identity Extension Schema:

Definition 7.2. The schema
Yu,v: (7). (uo[ed:|v) 3C u =47 v

whered + o ranges over all types and ranges over all closed types is called theak identity extension
schema

We will briefly mention which of the consequences of parametricity mentioned in S¢¢tion 5 that hold under
assumption of the weak Identity Extension Schema.

First we notice that the weak Identity Extension Schema implies the parametricity schema

Vu: ([]3: Type.o(B,72,...,m)). u(V3.0[3,€q,,,...,eq, |Ju

in the case where the are closed types.
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Using only this weak version of the parametricity schema, we can still prove existence of terminal and initial
types, since in these cases we only need to use parametricity on the closefl guks

The proofs of existence of products and coproducts, however, fail whand+ are open types, since we
need to use the parametricity condition on the open typesando + 7.

The case of initial algebras goes through, since the proof only uses parametrigity ®of«), which is a
closed type. The proof of Lemrha 5|24, however, uses parametricity of th§ fypé(a — o(a)) xa — )
where( is a type variable, so this proof does not go through with only the weak parametricity schema. In
other words, in the setting of reflexive graphs as in Definifion 7.1, we do not have a proof of existence of
final coalgebras.

See alsd [15] for a related discussion.

8 A parametric completion process

In this section we give a description of a parametric completion process that given a modehtdrnal

to some category satisfying certain requirements produces a parametric APL-structure. The construction
is related to the parametric completion process of [15] in the sense that the process that constigets the
fibration contained in the APL-structure generated by our completion process is basically the parametric
completion process of [15] (only the setup varies slightly). This means that if the ambient category is a
topos, then the parametric completion process$ of [15] produces models parametric in our new sense which
then satisfies the consequences of parametricity of S¢dtion 5. This fact is no surprise, but, to our knowledge,
it has not been proved in the literature.

The concrete model of Sectiph 6 is a result of the parametric completion process described in this section.
Before describing the completion process we recall the theory of internal models of

8.1 Internal models for A\,

Suppose we are given a locally cartesian closed catdgofyiven a full internal categord of E we may
consider the externalizatidD
Fam(D) .

|

E

We shall denote by, the object of objects, and Y, the object of morphisms dD. The fibre oveE € E
is the internal functor category fro@ considered as a discrete categonipi.e., objects are morphisms
= — Dy and morphism are morphismsBf = — D;.

Proposition 8.1. SupposeaD is a full internally cartesian closed category that has right Kan extensions

for internal functorsF’ : = — D along projections= x Dy — Z. Then the externalization dD is a
Xo-fibration.

Proof. SinceD is internally cartesian closed, its externalization has cartesian closed fibres preserved under
reindexing [5, Corollary 7.3.9]. Clearl, is a generic object for the fibration.

Polymorphism is modeled using the Kan extensions, since for anystypg x Dy — D the right Kan
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extension ot alongr : = x Dy — = is the functor] | a.. o in the diagram

ExDyZ—=D
7

The universality condition for the right Kan extension then gives the bijective correspondence
Nat(7 o m,0) = Nat(7,[[ a. 0)

between the sets of natural transformations. Sititce= 7 o 7, for 7 : £ — D, this states exactly that the
right Kan extension provides the right adjointit, as required.

To show that the Beck-Chevalley condition is satisfied, we need to show that f§r— = we have

u([Ja.o) Z[]a. ((ux id) o),

that is,
([Ja.o)ocu= ] (o0 (ux id)).

By Lemmd 8.2 below, we may write out the values of these two functors on objeet&’ as limits:

(ITe.o)ou)(4) = lim o(A) (24)
w(A)—m(A)
([Ta.(couxid)(4) = lm o(ux id(A")). (25)
A Al

In (24) we take the limit over all maps: u(4) — 7(A’) in the discrete category. But since this is a
discrete category, such maps only exist in the e&s€) = u(A4), so [24) can be rewritten as

HD’GDO o(u(A), D/)~

Likewise [25) can be rewritten as
[Iprep, o(u(A), D),
proving that the Beck-Chevalley condition is satisfied. O

Lemma 8.2. Suppose the Kan extensiBK (') in the diagram

L—2m

F /
RKp (F)

F

exists. IfL, H are discrete, the®RKy (F') is given as a pointwise limit construction (as In [7, Theorem 1,
p.237]).

Propositiorj 8.]1 justifies the following definition.

Definition 8.3. An internal categonD of a locally cartesian closed categofy is called aninternal model
of \y if it satisfies the assumptions of Propositjon]8.1.
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8.2 Input for the parametric completion process
The parametric completion process takes the following ingredients as input:

1. A quasitopo¥

2. Aninternal modeD of Ay in E.

We will further assume that the inclusion

Fam(D) E~
N

E

which we have already assumed is full and faithful, preserves products and is closed under regular subob-
jects. The latter means that for each objéct E, the fibre categorfam(D)g is closed under regular
subobjects as a subcategory®fE.

The logicRegSuby, — E of regular subobjects induces a logicBn by
Q —— RegSubg

]

E~ ——E,

which, by Lemméa A.B, makes the composable fibration

Q E— cod E,
an indexed first-order logic fibration with an indexed family of generic objects, simple products and simple
coproducts.

Let ¥ be the regular subobject classifier Bf We can now form an internal fibratrby using the
Grothendieck construction on the functet € D) — %4, with ¢ ordered pointwise. We think of this
fibration as the internalization dtegSubp — E restricted toD and write it asa: Q — D. Notice
that sinceD is closed under regular subobjedf¥,— D is a subfibration of the subobject fibration Bn
and since its externalization is simply the restrictior{Qof— E, it is closed under the logical operations
T, A, D,V, = from the regular subobject fibration.

Associated to the model given Y there is a canonical pre-APL- structure

Q (26)

To this we can associate, as usual, the fibration of relations denofBélagtionsp — RelCtxp.

2By internal fibration, we mean an internal functor, whose externalization is a fibration. By an internal fibration having structure
such as\, D,V, = we mean that the externalization has the same (indexed) structure
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8.3 The completion process

We define the categolyR (D) to have as objects logical relationsIof in the logic ofQ and as morphisms
pairs of morphisms i that preserve relations.

Lemma 8.4. The categonLR(D) is an internal cartesian closed categorylof

Proof. We set
LR(D)o = {(X,Y,¢) e Dg x Dy x Qo | a(¢) = X x Y}

e LR(D): = [lxve).xy.e)eLrm),{(f;9) € D1 x Dy |
FiX—X'Ng:Y =Y No<(fxg)d}.
For the cartesian closed structure we define:
(X,Y,0) x (X",)Y',¢') = (X x X', Y xY' ¢ x¢),
whereg x ¢/((z,2'), (y,4')) = ¢(z,y) A ¢'(2",3'), and

(X,Y,¢) = (X", Y, ¢) = (X = XY =Y, ¢ —¢),

where
¢ — ¢'(f,g9) =VYreXVyecY(o(x,y) D¢ (f(x),9(y)).
O]
Let
G = E

be the generic reflexive graph category, and consider the functor catBgorgince it is well known that
Cat(E%) = Cat(E)® andCCCat(E%) = CCCat(E)¢ it follows that

Lemma 8.5. D =—= LR(D) is an internal cartesian closed categorylof .

We now aim to prove thatb == LR(D) is an internal model of,. By the lemma, all that remains
is to prove that there are right Kan extensions for internal functors fiom Dy —— =’ x LR(Dy) to
D =—=LR(D) along projections tc= = =’ . This is the same a saying that the fibration

Fam( D® —=LR(D)" ) — E¢

has right adjoints to reindexing functors along projections.

We first consider the simpler case with spans in stead of reflexive graph® (2} denote the internal
category
LR

(D)
a0 o
\
D D

insideE®, whereA is the obvious category.
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An object of Fam(R(D)) is a triple of maps f, g, p) such that

p (27)

I LR (D)o
o \
g Do

Eo =

commutes. Sinc&R(D)y is the object of all relations on objects B, the idea is that we can consider
such a triple as a definable relation

[Z0,Z1 | © F p: Rel(f(Z0), 9(E1))];
i.e., an object oRelationsp. We will make this intuition precise in Lemnpa 8.6.

A vertical morphism in the categoBam(R.(D)) from (f, g, p) to (f', ¢, p’) is by definition a triple consist-

ing of a morphism frony to f/, a morphism frony to ¢’ and a morphism from to p’. But since morphisms

in LR(D) are pairs of morphisms preserving relations, and since the triple of morphisms is required to
make the obvious diagram commute, we can consider such a morphism ag & pai~ f',t: g — ¢')

such that

VA € ©.Vx: f(9(A)),y: 9(01(A)). p(z,y) D p'(585(4) (@), 1oy () (W),
as interpreted in the internal language of the quasi-topos, wheegers to the internal ordering iQ.

Lemma 8.6. There is an isomorphism of fibrations

Fam(R(D)) Relationsp

EA RelCtxp

Proof. Unwinding the definition oRelCtxp, we find that the objects are tripl€S,, =1, =) together with
mapsz — =y x Z; in E. Amap from= — ¢ x £1 toZ' — =), x =) is a triple

—/

.= = .= =/ .= =/
p:E2— =, f:Ey—E&), ¢g:Z21—Z%

making the obvious diagram commute. THRislCtxp = EA.

Objects inRelationsp are given as morphism RelCtxp into the interpretation oft, 5 | R: Rel(a, 3)
in (26). But the interpretation of this is easily seen to be

1o sen, 2% — Dy x Dy,

and sincelLR(D)o = [, gep, Y.ox8 we get a bijective correspondence between objecRalationsp
and objects oFam(R(D)). For morphisms, a vertical morphismiam (R.(D)) from (f, g, p) to (', ¢, p')
is by the above discussion a pair of morphismg — f/,s: ¢ — ¢’ satisfyingp D (t x s)*p/, which is
exactly the same as a vertical morphisnRelationsp. O

Lemma 8.7. All internal functors y \ x R(D)y — R(D) have right Kan extensions along the projection

Zo =1

oy
=0

=1
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Proof. The statement to be proved is equivalent to the statement that the fibration on the left hand side of
the isomorphism of Lemnija 8.6 has simple products. Since we know that the fibration on the right of the
isomorphism has simple products, we are done. O

Let us now consider the case that we are really interested in. We shall assume that we are given a functor

(f', f7) InES:
= x LR(D)g —= 4 (28)

BOJ/%& 8%%81
= x Dy d =
\

and we would like to find a right Kan extension of’, f7) along(w, ) (notice that we have used the
notationdy, 01, I for the structure maps of all objects Bf - this should not cause any confusion, since it
will be clear from the context which map is referred to). Let us call this exter(ﬁmr 1t Hpm, f7). An
obvious idea is to try the paif] /¢, [] f") provided by Lemm 7. Howeveﬂpar f7 should commute
with 7, and we cannot know thf /" will do that. Considef [ f"(I(A)) for someA € =:

[1f7(1(A))

|

[11(A) < TT(A).
If we pull this relation back along the diagonal phf?(A) we get a subobject
TN =TI f(4)
(called thefield of [T f7(I(A))). Logically, | T f7(1(A))|is the se{z € T[] f4(A) | (z,z) € [[f7(I(A)},
so if we restrict[ [ /" (I(A)) to this subobject, we get a relation relation containing the identity relation.
The other inclusion will be easy to prove. Thus the idea is td [gf, f* be the map that mapd to

|T1f"(I(A))|, and let[[,,,, f"(R) be the relation obtained by restrictiig f"(R) to [, f*(o(R)) x
[Tpar ££(01(R)).

Theorem 8.8. For (f*, f"), (w, ) as in [28), the right Kan extension 6f’, f7) along (r, 7) exists.

Proof. We will define[],,, f*(A) as the pullback

(Ipar F1)(A) (1) (A))
- |

[1/1(A) —=—=TI F1(A) x [T f1(A)
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whereA is the diagonal map. We defilﬁlm fT(R) for R € Z/, to be the pullback

(Ipar if Z(R) (I fi")(R)

Hpar ft(aoR) X Hpar ft(alR) e H ft(aoR) X H ft(alR)

First we will show thaf [ .. f"(1(A)) = I(IL,,, f*(A)) for all A. Logically
[Lar fTU(A)) ={(z,y) € [T/"((A) | (,9), (z,2) € [Tf7(I(A))} 2
{(z,2) [z € [TTf"TANI} = I(TTpe f(A))
To prove the other inclusion suppoge y) € [, f"(1(A)) € [ f"(1(A)). Then for anyo,,+1 € Dy,
(z,y) € 7" (I1/")I(A), I(ont1))-
Letea s, , denote the appropriate component of the counitfor! []. Then
(6A70n+1x7 EA,Un+1y> e ([IfM)U(A), I(0ns1)) = I(ft(A, Ont1)),

SO€A 6, T = €A0,,,y- Since[] f1(A) is the product off*(A, oy,11) Overo, 1 in Dy, andea,, ,, is
simply the projection onto the,, , ;-components 4 .., = = €4,y forall 0,1 impliesz = y as desired.

Finally we will show thaf] [ ,,,. provides the desired right adjoint. Recall that a morphism ftofng”) to
' LR(D)
il il

(ht,h"), where
Dy

and likewise(h!, h") is @ morphisms: g — h! preserving relations. In the internal language this means
that for eachA € = we have a map: g‘(4) — h'(A) such that forR with 9y(R) = A,01(R) = B,
(z,y) € ¢"(R) implies(sa(x),sp(y)) € h"(R).

Now, from Lemm we easily derive a one-to-one correspondence betweetymaps— ([T 4 [1/7)

and mapsg‘ o m,g" o) — (f4, f7). Since[],,,, ft{(A) C T] f1(A), for this correspondence to carry
over, we only need to check thatdfdenotes a map frorty! o 7, ¢g" o ) to (f%, f7), and3 the adjoint
correspondent ta, then s preserves relations, andif € g'(4), thens(x) € [Toar ft(A). But since
(z.7) € g"(I(A)) = I(g'(A)), we must have(3(x),5(z)) € [[f7(I(4)), $05(z) € [, f/(A) as

desired. For the preservation of relations, supfesg) € ¢"(R). Then

(3(2),5(1)) € ITf"(R) N TTpar F1(O0R) X [Tyar [/ (D1 R) = [Lpar f7(R).

— 1]

[1]

Corollary 8.9. The fibrationFam( LR(D) =—= D ) — E¢ is a \,-fibration.

Remark 8.10. If E is a topos therQ is the subobject fibration ob, andT — K is in fact the model ok,

that Robinson and Rosolini prove to be parametric in the sense of reflexive graphs (Definition [7.1) in [15].
One interesting difference however, is that/[15] considered only models tifat satisfied a “suitability

for polymorphism” condition stating that the model is closed unl&(D),-products. In our setup, this
condition is replaced by the condition that the regular subobject fibration madedsd that the internal
categoryD is closed under regular subobijects.
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Remark 8.11. Consider a morphismd between typeg andg in the modell' — K. At first sight, such a
morphism is a pair of morphisifty, &) with &; : f; — g¢;. But morphisms ilLR.(D) are given by pairs of
maps inD, and commutativity of

LR(D)? -~ LR(D),
dql l&
Dy 2 D,

tells us thatt; must be given b€y, £y). Thusmorphisms between types are morphisms between the usual
interpretations of types preserving the relational interpretations

8.4 The APL-structure

In this section we embed the fibration of Corollary 8.p into a full parametric APL-structure.
Consider the functof-)o : E¢ — E that maps a diagranky —— X to X, and consider the pullback of

(26) along(-)o

(29)

T

-~ O<— =

O
E
Lemma 8.12. The functor(-), extends to a morphlsm of fibrations:

Q

LR(D) (Do
Fam < VA > —— Fam(D)
D

Proof. The required map maps an object

X LR(D)o
() — ()
Xo Dy
LR(D)o
of Fam( Mv > to the object Xy —— Dy of Fam(D). Likewise for morphisms. O

As a consequence of Lemina 8.12 we can extend (29) to
P (30)

LR(D)o
Fam( w >HT;><C




If we erasel from (30) we obtain the diagram

P (31)

Theorem 8.13. The diagram[(3]1) defines a parametric APL-structure.

We will prove Theorem 8.13 in a series of lemmas.

Corollary 8.14. If D is an internal model ol in a topos, which is closed under subobjects, then the para-
metric completion process df [15] providesha-fibration that satisfies the consequences of parametricity
provable in Abadi & Plotkin’s logic.

Proof. This follows from Remark 8.0. O

LR(D)
Remark 8.15. The types (the objects Bim < VAY >) in the APL- structurl) are morphisms

LR(D)o LR(D)o
( VY ) ( VW )
Do

in E¢. Thus types contain both the usual interpretation (the nfap D — Dy) and a relational
LR(D)
interpretation (the magf; : LR(D)j — LR(D)p). But since the mapam MV " — T forgets the

relational interpretation, the logic on types, givenlByis given only by the logic on the usual interpretation
of the types. To be more precise, a logical relation in the modél ¢f (31) betweenftyaredg is a relation
in the sense of the logi@ betweerﬂdeDn fo(d) — Dg and[[ ;. go(d) — Dg.

0

Notice also that the relational interpretation of a type (given fay is in a sense parametric since the
diagram

LR(D); "~ LR(D),

1

Dg Dy

is required to commute. This is basically the reason why the APL-structure is parametric.

Remark 8.16. One may restrict the APL-structure 31) to the full subcategor©fon powers of the
generic object. This way one obtains.gfibration in whichType is the only kind. To prove that this defines

a parametric APL-structure, one will need to change the proof presented here slightly to obtain the reflexive
graph.

Lemma 8.17.C — K is fibred cartesian closed and is a faithful product-preserving functor.
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Proof. The first statement follows from the fact tHat” — E is a fibred cartesian closed fibration.
I is arestriction of the composition

LR(D)
Fam( YA ) — T~ .

NS

EG

The mapT — C' is the pullback of the inclusion of the externalization of a full internal cartesian closed
category intdE™. This is faithful and product preserving by assumption.

LR(D)
The mapFam ( VA ) — T is the map that maps

LR(D)o LR(D);
E (w) <W)

to fo : D — D; (for i = 0,1 denoting objects and morphisms respectively). Since product structure of
internal categories of graph categories is given pointwise, this map clearly preserves fibred products.

As mentioned in Remafk 8.1, a morphism frghto g with

LR (D)o LR(D)o
fvg:( WW > < w )
is just a map frony, to go preserving relations. Thus the first map is also faithful. O

Lemma 8.18. The composable fibratiofh — C — K is an indexed first-order logic fibration with an in-
dexed family of generic objects. Moreover, the composable fibration has simple products, simple coproducts
and very strong equality.

Proof. The composable fibratioR — C — K is a pullback of@ — E~ — E which has the desired
properties according to Lemrpa A.8. All of this structure is always preserved under pullback, except simple
products and coproducts. These are preserved since th&mafE preserves products. O

As in Remarl3.4 we can now construct the fundtoas needed in Definitidn 3.3. Thus we have:

Proposition 8.19. The diagram[(3]L) defines a pre-APL-structure with very strong equality.
Consider the graph’:

M~
where we assume that the two graphs included are reflexive graphs. ThéWjraph

LR(D) LR(D)
I
D D
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defines an internal category &1V .
An object of Fam(W) can be denoted by a triple, g, p), wheref andg are types in the same fibre (that
LR(D)
is, objects offam < VA ) in the same fibre) angd is a morphismLR (D) — LR(D), such that the
D

diagram

) LR(D)o (32)
LR(D); /7 \
/ fo Do g4 Do

commutes.

Now, as noted in Remafk 8]15 types in the pre-APL strucfure (31) are given by both an ordinary interpreta-
tion of types and a relational interpretation of types, but relations between types are just given by relations
between the ordinary interpretation of types. Thus we may think of such triples as objects of the form

[@, 5| R: Rel(@, B) - ¢(R): Rel(f(a),g(8))]

in the categoryRelations as formed from the pre-APL structufe {31), in the same way as in L§mrpa 8.6.

Note that since we have proved that the diagran (31) defines a pre-APL-structure, we can reason about
it using the parts of Abadi & Plotkin’s logic not involving the relational interpretation of types. In the
following we shall use this to work in the internal language of the pre-APL-structure.

Proposition 8.20. There is an isomorphism of fibrations:

Fam(W) Relations
EW RelCtx
Proof. The argument is essentially the same as the proof of Lemma 8.6. O

Lemma 8.21. The graphW is an internal model of\, in EV.

Proof. This is a consequence of Propositjon .20. O

Proposition 8.22. There is a reflexive graph of;-fibrations

LR(D)
Fam ( v}gv > Fam(W)
E¢ EW

Remark 8.23. The reflexive graph in [15] arises this way, although the setup_of [15] is slightly different.
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Proof. An object of Fam(W) is a map inE"’

= ) h LR(D), LR(D),
M=l =1 1=
=5 Es Dy Dy

=5

= LR(D)o 24 LR(D)o
Let us denote such objects as triplgsg, p) wheref : <¢ V) — ( VDM ),g: (Mv) — < ¢DM ) and
0 =5 0

5]

p: 23 — LR(D)o . The domain and codomain maps of the postulated reflexive graph fmnayp) to f
andg respectively, and the last map mapgo (f, f, f1)-

The domain and codomain map preserve simple products since from the viewpoint of Proposition 8.22 these
are just the domain and codomain map of Lemima 3.7. The middle map component of the simple products in
Fam(W) — E" is computed by computing the simple products as in Le@a 8.7 and then restricting the

the right domain and codomain. Since this is the same as the computation of the relational part of the simple
LR(D)
products offam ( VA > , the last map of the reflexive graph also commutes with simple product$.]
D

Proposition 8.24. The pre-APL-structurg (31) has a full APL-structure.

Proof. This follows from Propositiof 8.22 and Proposit[on §.20. O

Lemma 8.25. The APL-structure (31) satisfies extensionality.

Proof. The model has very strong equality, which implies extensionélity (4.2). O

Lemma 8.26. The APL-structurg (31) satisfies the identity extension axiom.

Proof. Consider a typg with n free variables. We need to show that
(idan,idan)*J(f) o [d | — | — Fegal = [@ F eqya]-

The mapJ is defined as the composition of two maps. The first map nfapg f, f, f1) :

LR(D)j ) LR(D)g LR(D)o LR(D)o
[P N el I e |
D! Dy D Dy

Sincef makes the diagram

LR(D)? '~ LR(D),

o,

Dg Doy

commute we know thaf; (ed;) = edy, (4)- O

Theoreni 8.113 is now the collected statement of|B.198.24] 8.25 and 8.26.
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Remark 8.27. As mentioned in the introduction to this section, the concrete APL-structure of 9gction 6 can
be considered as a result of the parametric completion process. If we consider the internal c&egdry

the categoryAsm of assemblies, then using the parametric completion process on this data we obtain the
APL-structure of Sectidr] 6. To see this, we need to use the fact that there exists an isomorphism of fibrations

UFam(Asm) = Asm™

~

Asm.

This proves Theorem 6.2.

9 Parametric Internal Models

The definition of APL-structure admittedly asks for a substantial amount of structure. In this section we
sketch how much of that structure may be derived in the case of internal models of

Let E be a quasi-topos and lgtbe a local operator (also known as closure operator or Lawvere-Tierney
topology) onE. We writeE; for the full subcategory of-sheavesa for the associated sheaf functérfor
the inclusion ofj-sheaves, ang for the natural transformatiofii — I a.

Let C be an internal model of, E. Thena C is an internal category i; andn : C — aC is an internal
functor.

Consider the following diagram:

T_l T N RegZUbEJ (33)
Fam(C) AN Fam( % EJJ/ E;
\ l o

J

wherel is the functor induced by the composition of the internal fungtolC — a C and the inclusion of
the externalization o€ into E; ™ is faithful.

Suppose that

e the internal functor) : C — a C is faithful,

e the internal category C is a subcategory dE; (i.e., the inclusion of the externalization f into
E;™ is faithful).

Then the functor in the above diagram is faithful and the leftmost part of the diagfain (33) (the part going
down and left fronP) is a pre-APL-structure, and we can thus define thatinternal A, model C in E is
parametric with respect to j if this pre-APL-structure is a parametric APL-structure.

One should, of course, think gfas specifying the logic with respect to which the model is parametric.

The completion process presented in the previous section takes a full ikgnmaldel in a quasi-topoB
and produces an internal modellh= FS with j on E such thatf = E; (the associated sheaf functor
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X1
a takes)+yto X;) and which satisfies the two items above ensuring fhiatfaithful. The results in the
X

previous section then show that the internal modd ia parametric with respect to thjs

This description of parametric internal models allows us to state precisely the (still) open problem of whether
there exists parametric models that are inherently parametric (not constructed though a completion process):

Problem 9.1. Does there exist a full internal, model in a quasi-topoR that is parametric with respect to
the trivial topology; (such thafE; = E) ?

10 Conclusion

We have defined the notion of an APL-structure and proved that it provides sound and complete models for
Abadi and Plotkin’s logic for parametricity, thereby answering a question poséd!in [12, page 5]. We have
also defined a notion of parametric APL-structures, for which we can prove the expected consequences of
parametricity using the internal logic. The consequences proved in this document are existence of inductive
and coinductive datatypes. These consequences have, to our knowledge not been proved in general for
models parametric in the sense of Ma & Reynolds, but only for specific models.

We have presented a family of parametric models, some of which are not well-pointed. This means that our
notion of parametricity is useful also in the absence of well-pointedness.

We have provided an extension of the parametric completion procesd of [15] that produces parametric APL-
structures. This means that for a large class of models, we have proved that the parametric completion of
Robinson and Rosolini produce models that satisfy the consequences of parametricity.

In subsequent papers we will show how to modify the parametric completion process to produce domain-
theoretic parametric models and how to extend the notion of APL-structure to include models of polymor-
phic linear lambda calculus [1L1].

A Composable Fibrations

This appendix is concerned with the theory of composable fibrations, by which we simply mean pairs of
fibrations such that the codomain of the first is the domain of the second fibration. This appendix contains
definitions referred to in the text.

Suppose we are given a composable fibration:

F—L2>E—1-B

We observe that

e The compositep is a fibration. This is easily seen from the definition.

e If p andq are cloven, we may choose a cleavage by liftingvice tow for eachl in ObjF and
u: X — qpl.

ou=71v0

£l

e If p, ¢ are split the composite fibration will be split since =

Thus in the case above we may consider the composable fibration as a doubly indexed category, and rein-
dexing inF with respect ta; in B is given byu*
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The lemmas below refer to the fibrationsg above.

Definition A.1. We say thatQ24) acon;s is an indexed family of generic objects for the composable pair of
fibrations(p, ¢) ifforall A, Q4 € ObjE,4 is a generic object for the restriction pfto E 4 and if the family
is closed under reindexing, ie., for all morphisms A — B in B, u*(Qp) = Q4.

Before we define the concept of an indexed first-order logic fibration, we recall the definition of first-order
logic fibration from [5] .

Definition A.2. A fibrationp : F — E is called afirst-order logic fibrationf

e p is afibred preorder that is fibred bicartesian closed.
¢ [E has products.

e p has simple products and coproducts, i.e., right, respectively left adjoints to reindexing functors
induced by projections, and these satisfy the Beck-Chevalley condition.

¢ p has fibred equality, i.e., left adjoints to reindexing functors inducedibyA : I x J — I x J x J,
satisfying the Beck-Chevalley condition.

Readers worried about the Frobenius condition should note that this comes for free in fibred cartesian closed
categories.

Definition A.3. We say thatp, ¢) has indexed (simple) products/coproducts/equality if each restriction of

p to a fibre ofg has the same satisfying the Beck-Chevalley condition, and these commute with reindexing,
e, ifuisa map inB then there is a natural is_o_morphism* [I; & [l urora*[[; = [1,.,u" (this

can also be viewed as a Beck-Chevalley condition).

Definition A.4. We say tha{p, ¢q) is anindexed first order logic fibratioif p is a fibrewise bicartesian
closed preorder, andp, q) has indexed simple products, indexed simple coproducts and indexed equality.

We can also talk about composable fibratidpsg) simply having products, coproducts, etc. This should
be the case if the composite has (co-)products, but we should also require the right Beck-Chevalley
conditions to hold. Notice that sineg in gp is the same ag* in p we can write the product as eithgf,

ingpor[[,inp.

Definition A.5. We say that the composable fibratin ¢) has products / coproducts if for each map

w: I — J in B, and each objectX € E; the reindexing functo*: Fxy — [F,«x has a right / left
adjoint. Moreover, these (co)-products must satisfy the Beck-Chevalley condition for two sorts of diagram
corresponding to reindexing iB andE respectively. First if

H——~K
7
a b
I——J
is a pullback diagram irB, then by [5, Exercise 1.4.4]

a*u* X BUENS b* X

wX ———= X
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is a pullback diagram ifE, and we require that the Beck-Chevalley condition is satisfied with respect to this
diagram. Second, if : Y — X is a vertical map irE, then the Beck-Chevalley condition should be satisfied
with respect to the diagram

WY =Y (34)

A

u*XL>X

which by the way is a pullback by |5, Exercise 1.4.4].

The composable fibratiofp, ¢) has simple (co-)products if it has (co-)products with respect to projections
as defined above.

In the case of the APL-structures, the logical content of the Beck-Chevalley condition for diagrams of the
form (34) will be that
(Va: Type. ¢)[t/x] = Ya: Type. (¢[t/z]).

Definition A.6. We say that a first-order logic fibration hagry strong equalityf internal equality in the
fibration implies external equality.

Definition A.7. We say that the indexed first order logic fibratign ¢) hasvery strong equalityf each
restriction ofp to a fibre ofg has.

The next lemma gives a way of obtaining indexed first-order logic fibrations.

Lemma A.8. Suppos&)’ — E is a first-order logic fibration with a generic object on a locally cartesian
closed categorE. Suppose further, th&)’ — E has products and coproducts with respect to mdps
A’ — A from pullback diagrams
AxpA ——A
-]
B,

A/

and coproducts with respect to maps
idc XBAA: CXB ><A—>C><BA><BA,

all satisfying the Beck-Chevalley condition. Then the composable fibration

Q E_>c0d E,

whereQQ — E~ is the pullback
Q——0Q

]

E~- ——E,

is an indexed first-order logic fibration with an indexed family of generic objects, simple products and simple
coproducts. Moreover, if)) — E has very strong equality, so does the composable fibration.
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Proof. The fibred bicartesian structure exists since the fibre® ef E— are the fibres of)) — E. This
structure is clearly preserved by reindexing.

The fibrewise product off — B andA’ — BinE~ is A xg A’ — B with projection
AxgA z A.

~

B

The indexed (co-)product along this map@ — E™ is the (co-)product along in E, which exists by
assumption. For the Beck-Chevalley condition for vertical pullbacks, recall that the domain fEncter
E preserves pullbacks, so for a vertical map

ar—t g
B
taking the pullback ofr along f in the categorfe—, and then applying the domain functor gives the pullback
A" XBAIHA XBA/
I,
ar—L 4
in IE, so that the Beck-Chevalley condition in this case reduces to Beck-Chevalley for the filipatiorE.

To prove that these indexed simple (co-)products commute with reindexing, considena map- B in
E. We need to prove that for the diagram

u*(A) X B! u*(A’) = AXp A

A
~ O\

B B,

we have, for products* [[ = []_«* and for coproducts* []_ = [[.«* . But this follows from the
Beck-Chevalley condition i)/ — E.

u*A

Indexed fibred equality is given by coproduct along maps
ido XA : CxgA—CxgAxgA,

which are required to exists. As with indexed (co-)products, the Beck-Chevalley conditions reduce to the
Beck-Chevalley conditions fd@’ — E.

We define the family of generic objects to be the projectidhs B — B)pcg in E~ whereX is the generic
object ofQ — [E. This family is clearly closed under reindexing, and maps

h Y x B
x /

B
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correspond to mapd — X in E, which correspond to objects @f, = Q.
We shall prove that we have simple products; simple coproducts are proved similarly. SupposeD’ —
D is a projection ifE. Forf : A — DinE~, 7 is the map

AxD =—=A
_

indl if

D x D' = D.

Reindexing along this map i corresponds to reindexing @@ alongr : A x D’ — A, so by existence of
simple products i)/ — E we have a right adjoint* < ]._..

We need to prove Beck-Chevalley first for pullback#inin this case a pullback iR

idD XU

DxD'"——Dx D'

Pl

D" u D

lifts to the pullback

Dl/ o D

in E~. The Beck-Chevalley condition for this pullback reduces to the Beck-Chevalley condition for the
upper square i)’ — E which is known to hold.

We should also check that the Beck-Chevalley condition holds in the case of the pullback.

A ' x D'

Any z A/
N\

But again this reduces to the Beck-Chevalley conditior{for— [E becauser is a projection.

A/

™

DxD D

Very strong equality is clearly preserved. O
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