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Abstract

Parametric polymorphism in functional programming languages with explicit polymorphism is the property
that polymorphic programs behave the same way at all type instantiations. This can be formulated more
precisely using Reynold’s notion of relational parametricity, which states that polymorphic functions should
preserve relations. It has been known for a long time that parametric polymorphism can be used to encode
inductive and coinductive data types, and this has been shown in a logic for parametricity suggested by
Abadi and Plotkin.

In this dissertation we propose new category theoretic formulations of parametricity for models of the
second-order lambda-calculus and models of a polymorphic lambda-calculus with linear function types and
fixed points. These parametric models are models of Abadi and Plotkin’s logic for parametricity, called para-
metric APL-structures and LAPL-structures, respectively. We show how that the encodings of inductive and
coinductive types using parametric polymorphism give rise to initial algebras and final coalgebras in APL-
and LAPL-structures and, using Plotkin’s encodings, we show how to solve recursive domain equations in
LAPL-structures.

Moreover, we show that the notions of APL- and LAPL-structures are general by constructing different
examples. We construct a parametric APL-structure based on the per-model and a domain-theoretic para-
metric LAPL-structure. Based on recent work by Simpson and Rosolini we show how to construct paramet-
ric LAPL-structures using synthetic domain theory, and we device general ways of constructing parametric
LAPL- and APL-structures using parametric completion processes.

Using the LAPL-structure constructed using synthetic domain theory we prove consequences of parametric-
ity for a variant of the Lily programming language.
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Introduction

This PhD dissertation is a collection of five papers on models of parametric polymorphism, which we shall
refer to as Paper 1, etc. in this introduction. The introduction at hand is organized as follows: Sections 1, 2
contain background material on parametric polymorphism, Section 3 discusses models of parametric poly-
morphism, Section 4 gives a summary of the results of this dissertation, Section 5 discusses related work,
Section 6 contains an overview of the papers in this dissertation, and Section 7 concludes and discusses
future work.

1 Parametric Polymorphism

Polymorphism in typed programming languages enables the programmer to write functions that can act on
input of many types. Consider for example the functionrev that reverses a list. This function can act on
integer-lists, string-lists or lists of any type. In languages with explicit polymorphism, such as ML and the
second-order lambda calculus, the functionrev will have the type (in the syntax of the second-order lambda
calculus) ∏

α : Type. lists(α) → lists(α),

to be read as “for all typesα, lists(α) to lists(α)”. An element of this type is a family, indexed over types
A, of functions takingA-lists and returningA-lists.

Christopher Strachey [37] identified two types of polymorphism. The first, calledad-hoc polymorphism,
allows the behavior of a polymorphic function to depend on the type of in-data. The second type, called
parametric polymorphism, only includes functions based on a common algorithm for all input types. For
examplerev is parametric, whereas the function that adds one to each element of an integer list, but is the
identity on lists of all other types is ad-hoc.

A programming language is said to haveparametric polymorphism, if it has explicit polymorphism and
all polymorphic programs are parametric. In the following we sketch two reasons why such programming
languages are interesting. We argue informally and use the syntax of the second order lambda calculus, but
the arguments are not limited to the second-order lambda calculus.

1.1 Encoding of inductive and coinductive types

Consider the type ∏
α : Type. (α → α) → (α → α)

in a language with parametric polymorphism. A function of this type takes for any typeA a functionf : A →
A and produces a new functionA → A. For each natural numbern, we can define the function that mapsf
to fn (f0 is the identity onA), and this way we can think of the type

∏
α : Type. (α → α) → (α → α) as

containing a copy of the natural numbers.

Since a parametric function of the type
∏

α : Type. (α → α) → (α → α) is not allowed to use specific
information about the typeA, the only access it has toA is the functionf , and so intuitively all it can do is
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mapf to fn1. Since parametric functions should use the same algorithm for all types of input, thisn should
be the same for all typesA, and all functionsf .

The above establishes the intuition why the type
∏

α : Type. (α → α) → (α → α) in a language with
parametric polymorphism can be used as a reasonable type of natural numbers. Of course we have not given
a formal argument for this, and we have not defined what we mean by a reasonable type of natural numbers.
Notice that the natural numbers were always present in the type, and we used parametricity to argue that no
other elements of the type could exist. In general, encoding of all inductive and coinductive types such as
finite lists, potentially infinite lists, trees etc. exist.

1.2 Data abstraction

In this section we will assume we are working in a language with parametric polymorphism and data types
for natural numbersNat, products and lists. This is not an unreasonable assumption as these data types can
be encoded in languages with parametric polymorphism as described in Section 1.1.

Suppose that a programmer is writing a program for which he needs to use a data type for stacks of natural
numbers, which should be implemented by another programmer. Such a data type would have operations

new: Stack
push: Nat× Stack → Stack

pop: Stack → Stack
top: Stack → Nat

wherenew creates a new stack,push pushes numbers onto the stack,pop pops the number on top of the
stack, andtop returns the number on top of the stack. A concrete implementation of the typeStack could
for example implement it using lists, withnew being the empty list,push adding a new element to the first
position of the list,pop taking the first element out of the list, andtop returning the first number in a list.

Even though the programmer may not have the implementation of the typeStack yet, he can still write his
program as a functionP taking as input a concrete implementation ofStack. If for example the program
should return a natural number,P would have the type∏

Stack: Type.Stack → (Nat× Stack → Stack) → (Stack → Stack) → (Stack → Nat) → Nat.

P then takes as input a concrete type and concrete operations.

Since the programP is parametric, it should only be able to access the typeStack through the operations
new,pop,push, top provided, since this is the only available information about the typeStack, and it should
never be able to use information about a specific implementation of the type it is instantiated with.

We can use this to prove that if two concrete implementations of the typeStack behave the same way with
respect to the interface operationsnew,push,pop, top then the result ofP instantiated with either of the
two concrete implementations will be the same. This is a way of ensuring robust modularized programming.

Existential types present a different approach to data abstraction [20]. Existential types can be encoded
using parametric polymorphism.

Data abstraction can be seen as a sort of information hiding; we hide information about the specific im-
plementation of a data type from the programmer using the data type. Parametricity has also been used
to implement other forms of information hiding such as hiding local variables from called procedures in
imperative languages (see Section 5.4).

1In this example, we have assumed that the polymorphic language does not have fixed points. If the language has fixed points,
the situation is different, as we describe in Section 2.2
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1.3 Relational parametricity

Of course the arguments above are quite informal, since we have not formulated the concept of parametric
polymorphism very precisely. John Reynolds has given a precise formulation of parametricity calledrela-
tional parametricity[30]. The basic idea is that the parametric elements of a polymorphic type are those
that preserve relations. For example, a polymorphic functionf of type

∏
α : Type. α → α is parametric if

for all pairs of typesA,B and all relationsR between them: ifx : A, y : B are related inR, then so aref(x)
andf(y).

Let me sketch how this captures data abstraction. We can express the notion of two implementations of
Stack behaving the same way with respect to the interface operations using relations as follows: There
should be a relation relating elements of the first implementation ofStack to elements of the other, such that
the interface operations preserve the relations. This means that the stacks created by the twonew operations
should be related, pushing the same number onto related stacks should produce related stacks, popping
related stacks should produce related stacks andtop maps related stacks to equal numbers. Relational
parametricity states that the programP of Section 1.2 applied to related implementations ofStack should
produce related results, which, since the type ofStack does not occur in the result type ofP should mean
that the results are equal.

Mart́ın Abadi and Gordon Plotkin have devised a logic for reasoning about parametricity for the second-
order lambda calculus [29]. In this logic one can prove correctness of encoding of inductive and coinductive
types from parametricity.

Of course, to use relational parametricity in practice for a specific programming language, one will have to
specify what is meant by relations.

2 Models of Polymorphism

In this section we sketch the two polymorphic languages we consider in this dissertation, namely the second-
order lambda calculus and PILLY (Polymorphic Intuitionistic / Linear Lambda calculus with fixed point
combinatorY ). We also sketch the categorical notions of models for these languages. The purpose of this
section is not to give precise definitions, but to give an idea of the models used, to prepare for the discussion
of parametric models of these calculi.

2.1 The second-order lambda calculus

The second-order lambda calculus (λ2) is the simply typed lambda calculus (with products) extended with
(impredicative) polymorphism. Types are given by the grammar

σ ::= α | σ → σ | σ × σ | 1 |
∏

α. σ

whereα ranges over an infinite set of type variables. The construction
∏

α. σ binds the type variableα. We
useσ, τ, ω to range over types. Terms are given by the grammar

t ::= x | λx : σ.t | t(t) | 〈t, t〉 | πt | π′t | Λα : Type. t | t(σ) | ?.

Terms exist in contexts of free type variables and ordinary variables written as

α1, . . . , αn | x1 : σ1, . . . , xm : σm ` t : τ
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where the free type variables of theσi andτ are amongα1, . . . , αn. We will often writeΞ for α1, . . . , αn

andΓ for x1 : σ1, . . . , xm : σm, and we shall often omit the: Type in types and terms. Most of the typing
rules are as in the simple typed lambda calculus, so we just mention the two related to polymorphism.

If
α1, . . . , αn, αn+1 | x1 : σ1, . . . , xm : σm ` t : τ

is a term andαn+1 is not free in any of the typesσ1, . . . σm then

α1, . . . , αn | x1 : σ1, . . . , xm : σm ` Λαn+1. t :
∏

αn+1. τ.

If Ξ | Γ ` t :
∏

α. τ , andσ is a type with all free variables inΞ, we may formΞ | Γ ` t(σ) : τ [σ/α], where
τ [σ/α] denotes capture free substitution ofσ for free appearances ofα in τ defined as usual.

We notice two properties ofλ2. First, for every collection of free type variablesΞ we have a simple typed
lambda calculus of terms with free type variables inΞ. Second,λ2 has a very strong notion of polymorphism
called impredicative polymorphism, meaning that terms of polymorphic types may be instantiated at all
types. If for examplet is a term of type

∏
α. α, thent(

∏
α. α) also has type

∏
α. α, and so applying a

polymorphic term to a type need not result in a term with a simpler type. Impredicativity is what has made
models ofλ2 difficult to find.

For a long time it was hoped that one could find set-theoretic models ofλ2. By this we mean models based
on a set or class of setsU such that one can model types withn free variables as mapsUn → U , and model
product types and exponent types pointwise using set theoretic products and exponents. In fact Reynolds
defined parametric polymorphism [30] hoping that such set theoretic models could be constructed using
parametric polymorphism in the interpretation of polymorphic types.

In 1984 Reynolds [31] (see also [32]) showed that set theoretic models ofλ2 can not exist unless they are
trivial. However, if one replaces set theory with other more constructive universes, such as certain toposes,
models as described above may exist [26, 24].

The most famous example of such a model is the per-model, which can be seen as a set-theoretic model
living inside the effective topos, or the quasi-topos of assemblies. The per-model is based on the setPer
of partial equivalence relations on the natural numbers (symmetric, transitive, but not necessarily reflexive
relations). A type withn free variables is modeled by a map

Pern → Per.

Exponents are modeled pointwise by defining for each pair of persR,S a perR → S relatingn, m if

∀x, y : N. R(x, y) ⊃ n · x ↓ ∧m · y ↓ ∧S(n · x,m · y)

wheren ·x denotes Kleene application, i.e., application of then’th partial recursive function tox. Finally, if
f : Pern+1 → Per is a type, we model the polymorphic type obtained by abstracting the last type variable
by intersection, i.e., ifR1, . . . , Rn are pers then(

∏
f)(R1, . . . Rn)(n, m) holds iff

∀Rn+1 ∈ Per. f(R1, . . . , Rn+1)(n, m)

holds.

Terms of the form
α1, . . . , αn | x : σ ` t : τ

are modeled as families of morphisms

([[~α | x : σ ` t : τ ]](~R) : N/[[~α ` σ]](~R) → N/[[~α ` τ ]](~R))~R∈Pern ,
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whereN/[[~α ` σ]](~R) denotes the set of equivalence classes of the partial equivalence relation[[~α ` σ]], such
that [[t]] is uniformly tracked, i.e., there exists a natural numbern such that for all~R, [[~α | x : σ ` t : τ ]](~R)
is given by[m][[~α`σ]](~R) 7→ [n ·m][[~α`τ ]](~R).

In general, second-order lambda calculus is modeled inλ2-fibrations. These are defined to be fibred cartesian
closed fibrations, with cartesian base and a generic object and simple products. We sketch what this means,
but choose for simplicity to describe split fibrations and split generic objects. The reader interested in further
details should consult [15].

Supposep : E → B is a functor. For each objectΞ ∈ B we can consider the fibreEΞ of E overΞ, defined to
be the subcategory ofE on objects mapped toΞ via p and morphisms mapped to the identity onΞ. A (split)
fibration is a functorp : E → B satisfying a technical condition basically ensuring that every morphism
f : Ξ → Ξ′ in B induces a functorf∗ : EΞ′ → EΞ, and further(f ◦ g)∗ = g∗ ◦ f∗ and id∗ = id . The
categoriesE andB are called thetotal categoryandbase categoryrespectively and a functor of the formf∗

is called areindexing functor.

A fibred cartesian closedfibration has cartesian closed fibres, and this structure is preserved by reindexing
functors. Aλ2-fibration further has products in the base category and a (split)generic object, i.e., an object
Ω ∈ B such that for anyΞ ∈ B there exists a bijective correspondence between mapsΞ → Ω in B and
objects ofEΞ. This correspondence should be natural inΞ in the sense that iff : Ξ → Ω corresponds to
X ∈ EΞ andg : Ξ′ → Ξ, thenfg corresponds tog∗X ∈ EΞ′ .

Finally aλ2-fibration is required to havesimple productswith respect to projections of the formπ : Ξ×Ω →
Ξ. This means that for each suchπ, the reindexing functor

π∗ : EΞ → EΞ×Ω

is required to have a right adjoint
∏

π.

We modelλ2 in λ2-fibrations as follows. Types withn free variables are modeled in the fibre categoryEΩn

and terms withn free type variables

α1, . . . , αn | x1 : σ1, . . . , xm : σm ` t : τ

are modeled as maps inEΩn from
∏

i[[~α ` σi]] to [[~α ` τ ]], where
∏

i denotes product in the fibre. Since
the generic object induces a correspondence between mapsΩn → Ω in B and objectsEΩn we can model
α1, . . . αn ` αi as the object corresponding to thei’th projection. The simple type constructions are modeled
using the cartesian closed structure ofEΩn , and polymorphic types~α `

∏
αn+1. σ are modeled as∏

π[[~α, αn+1 ` σ]]

whereπ : Ωn × Ω → Ωn is the projection.

The per-model can be seen as aλ2-fibration as follows. The base category has as objects natural numbers,
and as morphisms fromn to m set theoretic mapsPern → Perm. The total category has as objects maps
f : Pern → Per for somen, and a morphism fromf : Pern → Per to g : Perm → Per is a pair(h, k)
such thath : Pern → Perm is a map, andk is an indexed family of maps

(k(~R) : N/f(~R) → N/g ◦ h(~R))~R∈Pern

with a uniform tracker as defined above. The fibration maps an objectf : Pern → Per to n and a morphism
(h, k) to h.
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Modeling λ2 in this fibration gives the per-model described above. Since types and terms withn free
variables are modeled in the fibre overn, types are modeled as mapsPern → Per and terms~α | x : σ ` t : τ
are modeled as vertical maps, i.e., families of maps of the form

([[~α ` x : σ ` t : τ ]](~R) : N/[[~α ` σ]](~R) → N/[[~α ` τ ]](~R))~R

with a uniform tracker.

2.2 Adding fixed points

The second-order lambda calculus is a strongly normalizing language, and so does not have very strong
computational power. To study a more expressive language we would like to add fixed points to the language,
but since parametricity should give encodings of sum types, one can show, using a general result from [14],
that adding fixed points to parametricλ2 causes inconsistencies.

One way to deal with this problem is to think of the domain theoretic models. The category of cpos with
continuous maps has a fixed point combinator, and is cartesian closed. It does not have coproducts, but
the category of cpos with strict continuous maps does. Based on this observation, Gordon Plotkin [28, 27]
suggested to study a polymorphic calculus in which one could distinguish between strict and non-strict
maps. The encoding of sum types using parametricity would then work in the category of strict maps.

Gordon Plotkin also realized that in this language the encoding of inductive and coinductive types using
parametricity could be generalized to an encoding of recursive types, such as types satisfyingA ∼= [A → A],
where the isomorphism is in the category of strict maps. This means that this language can be considered an
alternative approach to axiomatic domain theory, where the mentioned encoding of recursive types replaces
the well-known limit-colimit construction.

We now sketch the language suggested by Plotkin. The language is called PILLY and is an extension of
DILL [3] with polymorphism and a fixed point combinator.

The grammar for types of PILLY is

σ ::= α | I | σ ⊗ σ | σ ( σ |!σ |
∏

α. σ

whereα ranges over an infinite set of type variables. The type constructor( gives linear function types.
The grammar for terms is

t ::= x | ? | Y | λ◦x : σ.t | t t | t⊗ t |!t | Λα : Type. t | t(σ) |
let x : σ ⊗ y : τ bet in t | let !x : σ bet in t | let ? bet in t.

Terms of PILLY are written as

~α | x1 : σ1, . . . , xn : σn; y1 : τ1, . . . , ym : τm ` t : ω.

Theα’s are type variables as inλ2, thexi’s are intuitionistic variables and theyj ’s are linear variables which
can only occur linearly int. Theλ-abstractionλ◦x : σ. t produces terms of linear function typeσ ( τ , and
since linear variables of type!σ behave as intuitionistic variables of typeσ, we may define a type of ordinary
functionsσ → τ =!σ ( τ . The fixed point combinatorY has type

∏
α : Type. (α → α) → α.

The encoding of inductive and coinductive data types in PILLY is different from that ofλ2. For example
the type of natural numbers can be encoded as∏

α. (α ( α) → (α ( α).
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For further details on PILLY we refer to Paper 2.

We derive the notion of models of PILLY from the models of DILL [3, 17]. A model of DILL is a symmetric
monoidal adjunction

C 33⊥ Dss

such thatC is symmetric monoidal closed,D is cartesian, andD is the category of finite products of coalge-
bras for the comonad onC induced by the adjunction (see Paper 3 for an explanation of these concepts).

A PILLY -model is a fibred symmetric monoidal adjunction

C
G

33

��@
@@

@@
@@

⊥ D

��~~
~~

~~
~

F
ss

B

(basically a family of symmetric monoidal adjunctions between fibre categories, with all structure com-
muting with reindexing) such thatC is fibred symmetric monoidal closed,D is fibred cartesian, andD is
the category of finite products of coalgebras for the comonad onC induced by the adjunction. We further
require thatB is cartesian, and that the fibrationC → B has a generic object, overΩ in B say, and simple
products with respect to projectionsΞ×Ω → Ξ for Ξ ∈ B. Finally, we require that there is a term modeling
the fixed point combinator.

The language PILLY is modeled in the fibrationC → B using the fibred symmetric monoidal structure to
model⊗, (, I. The type constructor! is modeled by the fibred comonadFG onC → B. Polymorphism is
modeled using the simple product as was the case forλ2. A term

Ξ | ~x : ~σ; ~y : ~σ′ ` t : τ

is modeled as a vertical morphism

[[t]] : (
⊗

i

FG[[Ξ ` σi]])⊗ (
⊗

j

[[Ξ ` σ′j ]]) → [[Ξ ` τ ]]

in C.

The reader may be wondering why a PILLY -model is an adjunction and not just a fibred comonad satisfying
certain conditions. Of course we might as well have given the definition this way, but we like to keep the
category of finite products of algebras for the comonad in the picture for the following reason.

Suppose
Ξ | ~x : ~σ;− ` t : τ

is a term. Thent is modeled as a map

[[t]] :
⊗

i

FG[[Ξ ` σi]] → [[Ξ ` τ ]].

One can prove that for any symmetric monoidal adjunction the left adjoint is strong, i.e.,F (A) ⊗ F (B) ∼=
F (A×B), and so using the adjunctionF a G, [[t]] corresponds to a map

[̂[t]] :
∏

i G[[Ξ ` σi]] → G[[Ξ ` τ ]].

in D. Thus, the fibrationD → B models the part of the calculus consisting of terms with purely intuitionistic
variable contexts.

7



3 Models of Parametric Polymorphism

Having seen what models of polymorphism are, a natural question to ask is “What does it mean for aλ2-
fibration or a PILLY -model to modelparametricpolymorphism?”. This dissertation proposes an answer to
this question, but before presenting it we discuss what a good notion of parametric model should be.

General requirement. A good notion of parametricity for models of polymorphism should be such that all
parametric models satisfy the consequences of parametricity described in Sections 1.1,1.2. This means that
we should be able to prove correctness of the encoding of inductive / coinductive types and data abstraction
results.

Recall the example of theλ2-type

Nat =
∏

α : Type. (α → α) → (α → α)

from Section 1.1. The interpretation of this type in aλ2-fibration modeling parametric polymorphism should
be a type of natural numbers, which in the language of category theory means that it should be a natural
numbers object. Since terms are interpreted as maps in the fibre categories of theλ2-fibration, the inter-
pretation ofNat should be a natural numbers object in the fibres. For anyλ2 fibration one can prove that
[[~α ` Nat]] =!∗Ωn [[− ` Nat]] where!Ωn : Ωn → 1 is the unique map into the terminal object of the base cate-
gory. We require that for eachΞ object in the base category,!∗Ξ[[− ` Nat]] is a natural numbers object in the
fibre overΞ. Notice that the family(!∗Ξ[[− ` Nat]])Ξ is closed under reindexing.

In general — since the category theoretic correspondent to inductive types is initial algebras — the inter-
pretations of the encodings of inductive types should induce families of initial algebras in any parametric
λ2-fibration. Likewise the interpretation of coinductive types should induce families of final coalgebras. In
parametric models of PILLY the interpretations of the encodings of recursive types should produce solutions
to recursive domain equations in the model.

To my knowledge no definitive categorical formulation of data abstraction has emerged. One approach is
to ask for the existence of a logic to reason about the internal language of the model, in which one can
formulate data abstraction properties. Another approach is to require existential types to exist in the fibres
of the model, in which case this requirement resembles that of inductive and coinductive data types. In this
dissertation I have focused on the requirements for encoding of data types.

3.1 Models of Abadi & Plotkin’s logic

Our notion of parametricity for models of polymorphism will be based on relational parametricity. As
mentioned, to formulate relational parametricity one must specify what is meant by relations. Some models
may be parametric with respect to one notion of relations but not with respect to other (as is the case for the
domain theoretic model of Paper 2).

Many models considered in the literature (such as the per-model) exist inside an ambient set theory (such
as the internal language of a topos) and thus have a natural notion of relations available. In such cases a
natural definition of parametric model is obtained by formulating the parametricity schema in the set theory
available. Basically, having modeled the parametricity schema in the ambient logic, one should be able to
do the proofs as presented in Abadi & Plotkin’s logic (or variants of it) in the ambient logic and use this to
prove correctness of the encoding of data types of Section 1.1.

Often, however, only a subset of the relations available in the set theory is used in the formulation of
parametricity. Examples include>>- closed relations as in [25, 5] and relations given by subdomains
as in [35].
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Generalizing the cases mentioned above, in this dissertation a parametric model ofλ2 will be a model of
Abadi & Plotkin’s logic for parametricity satisfying the parametricity schema.

The interest in working out the details of such a definition is two-fold. First, we will be able to unify the
proofs of consequences of parametricity worked out in specific models (such as [35, 5]). These consequences
should not be worked out in each specific model, but be consequences of the parametric structure on the
model, proved once and for all. We should also be able to use these results on models obtained from
parametric completion [33]. To my knowledge the proofs of correctness of encoding of data types for these
in general do not exist in the literature.

Second, we should be able to identify what exactly is needed to model the logic for parametricity and
reasoning with it. For example, models of Abadi & Plotkin’s logic often come from some ambient logic of
a model, but exactly how close to set theory does this logic have to be? It has also been unclear whether
parametricity only implied correctness of encoding of data types for well-pointed models [7] (the answer is
negative). Finally, as mentioned, some models use only a subset of the relations available in the logic when
reasoning about parametricity. What exactly is required for such a subset to be usable for reasoning about
parametricity?

4 Contributions of this dissertation

In this section we list the main contributions of this dissertation. The discussion here will be a bit more
precise than the text above, but still the results will not always be described in full detail, and so we refer to
the full papers.

4.1 Abadi & Plotkin’s logic

As said, we define models of parametric polymorphism to be models of Abadi & Plotkin’s logic for para-
metricity. Before discussing the models however, we sketch Abadi & Plotkin’s logic. A full description of
the logic can be found in Paper 1.

Abadi & Plotkin’s logic is a logic for reasoning about parametricity forλ2. We need to be able to formulate
propositions quantifying over types and terms inλ2 and relations on types inλ2. Therefore propositions
of the logic live in contexts of free type variables, free ordinary variables and free relational variables. We
write

~α | x1 : σ1, . . . , xn : σn | R1 : Rel(τ1, τ
′
1), . . . , Rm : Rel(τm, τ ′m) ` φ : Prop.

The vector~α is a vector of type variables and eachσi, τj , τ
′
j is a type ofλ2 with free variables in~α. The

xi’s are the free variables and theRj ’s are the free relational variables. Atomic propositions can be formed
using equality: ift, u are terms ofλ2 of typeω in the context

~α | x1 : σ1, . . . , xn : σn

thent =ω u is a proposition.

In the logic, we also have a notion of definable relations. Any relationRj : Rel(τj , τ
′
j) in the context is a

definable relation. Ifφ is a proposition in the logic with free variablesx : σ, y : τ then we can form the
relation(x : σ, y : τ). φ : Rel(σ, τ). As an example, we mention the equality relationeqσ on a typeσ defined
by

(x : σ, y : σ). x =σ y.

9



If ρ : Rel(σ, τ) is a definable relation andt : σ, u : τ are terms, thenρ(t, u) is a proposition. In particular, if
Rj : Rel(τj , τ

′
j) is a relation in the context, andt, u are terms of typeτj , τ

′
j respectively thenRj(t, u) is a

proposition.

Further constructions in the logic include the constructions of propositional logic and quantification over
type variables, ordinary variables and relational variables.

Finally, there is arelational interpretationof types: If σ(~α) is a type withn free type variables and
ρ1 : Rel(τ1, τ

′
1), . . .ρn : Rel(τn, τ ′n) are definable relations, thenσ[ρ1, . . . ρn] : Rel(σ(~τ), σ(~τ ′)) is a defin-

able relation.

The relational interpretation of types is used to formulate relational parametricity (as Reynolds did) as the
identity extension schemastating thatσ[eq~α] is the equality relation onσ(~α). The intuition is that for any
type of the form

∏
α. σ (let us assume that this type is closed) and any elementx of that type(x, x) is in

the relational interpretation of
∏

α. σ, which by axioms of the logic should be equivalent to requiring that

∀α, β : Type.∀R : Rel(α, β). σ[R](x(α), x(β)).

In words, for all pairs of typesα, β and all relations between themR : Rel(α, β) theα- andβ-components
of x are related in the relational interpretation ofσ.

The definition of the relational interpretation of types differs from the original presentation of the logic [29],
whereσ[~ρ] is defined by induction over the structure ofσ. What we require is basically a relational inter-
pretation of all type constants in the language as well. Suppose for instance that some type construction�
between pairs of types is added toλ2. To talk about parametricity for the new language, we should add a
relational interpretation of�, i.e., for each pair of relationsR : Rel(σ, σ′), S : Rel(τ, τ ′) we must define the
relationR�S : Rel(σ �τ, σ′ �τ ′). This means that we may reason about parametricity at types formed using
also these type constructors.

The inductive definition of the relational interpretation of types of [29] is captured in axioms of the logic.

The correctness of the encodings of data types can be expressed in Abadi & Plotkin’s logic, and can be
proved to follow from parametricity. This was stated in theorems in [29], but the proofs were not included
in the paper. Some arguments of this sort appear in [39] and some proofs are written out for a specific model
in [12]. However, even with these references at hand, the proofs are non-trivial to construct, and so we have
included them in this dissertation.

4.2 APL-structures

An APL-structure, is a model of Abadi & Plotkin’s logic. To define the notion of APL-structure we first
define a notion of pre-APL-structure. Apre-APL-structureis a diagram

Prop

��
Type I //

$$JJJJJJJJJ Ctx

��
Kind

whereType → Kind is a λ2-fibration (the model we reason about) andI is a fibred faithful product-
preserving inclusion ofType into a larger category containing for each pair of objectsσ, τ of the same
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fibre of Type an objectU(σ, τ) of all relations betweenσ, τ . Prop → Ctx is a logic fibration in which
we interpret the formulas of Abadi & Plotkin’s logic. InCtx we can model the full contexts of propositions
as

[[α | x1 : σ1, . . . , xn : σn | R1 : Rel(τ1, τ
′
1), . . . , Rm : Rel(τm, τ ′m)]] =∏

i I([[σi]])×
∏

j U([[τj ]], [[τ ′j ]])

using the inclusionI and modeling Rel(τi, τ
′
i) as the object of all relations fromτi to τ ′i in Ctx. The

products in this definition are the products of the fibre category.

From a pre-APL-structure we can define aλ2-fibration of relations denoted

Relations → RelCtx.

Basically the objects of each fibre are relations, and theλ2 structure is defined using the same constructions
that give the inductive definition of relational interpretation of types in [29]. For example, for relations
ρ : Rel(σ, τ), ρ′ : Rel(σ′, τ ′) the relationρ → ρ′ is defined as the relation

(f : σ → σ′, g : τ → τ ′).∀x : σ, y : τ. ρ(x, y) ⊃ ρ′(f(x), g(y)).

There exists a pair of maps ofλ2-fibrations
Relations

��
RelCtx


∂1

//

∂0 //


Type

��
Kind


mapping a relation to its domain and codomain respectively. An APL-structure is a pre-APL-structure such
that there is a map ofλ2-fibrationsJ going the other way satisfying∂0 ◦ J = ∂1 ◦ J = id . The functorJ
models the relational interpretation of types.

We show that the interpretation of Abadi & Plotkin’s logic in an APL-structure is sound. Moreover, the
class of APL-structures is complete with respect to Abadi & Plotkin’s logic, i.e., any sentence of Abadi &
Plotkin’s logic that holds in all APL-structures is provable in the logic.

We can reason about APL-structures using Abadi & Plotkin’s logic. Thus, if the parametricity schema
holds in the internal logic of the APL-structure, we can prove correctness of the encoding of inductive and
coinductive types in the internal logic. However, to conclude from the statement in the internal logic to the
structure of the fibres ofType, we need to know that morphisms inType that can be proved equal in the
internal logic of the APL-structure in fact are equal in the categoryType. This property is a well-known
property of logic fibrations calledvery strong equality.

A key ingredient in the proofs isextensionalityfor functions and polymorphic elements, i.e. the logical rules

∀x : σ. f(x) =τ g(x) ⊃ f =σ→τ g
∀α : Type. t α =σ u α ⊃ t =∏

α.σ u.

We thus define aparametric APL-structureto be an APL-structure with very strong equality in which para-
metricity and extensionality holds in the internal language.

The main theorem of APL-structures states that they model inductive and coinductive types. Before we state
it, we should be more precise about what we mean by inductive types. First we introduce the distinction
betweenpureλ2 andλ2 calculi in general. Pureλ2 has no extra type or term constants. We may also talk
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aboutλ2-calculi in general. These have added type and term constants, and include for example the internal
language of aλ2-fibration.

A type α ` σ(α) defined in pureλ2 in which α occurs only positively (see for example Paper 1 or [29])
induces a functor in the sense that there exists a term

M :
∏

α, β : Type. (α → β) → (σ(α) → σ(β))

preserving identities and composition. The interpretations ofσ andM induce a fibred functor

Type //

$$JJJJJJJJJ Type

zzttttttttt

Kind

and we shall be interested in initial algebras and final coalgebras for the restrictions of this functor to the
fibres ofType → Kind.

In general we define apolymorphically strongfibred functor to be a functor with a corresponding typeσ and
termM existing in the modelbut not necessarily in pureλ2. This is clearly a generalization of the above
construction.

The main theorem is the following.

Theorem 4.1. Every polymorphically strong fibred functor has families of initial algebras and final coal-
gebras, i.e., there exists a family of initial algebras / final coalgebras for each restriction of the functor to a
fibre overKind and these families are closed under reindexing along maps inKind.

For example, we can show that each fibre has coproducts and the initial algebra corresponding to the type
α ` α+1 is a natural numbers object. This natural numbers object is the interpretation of

∏
α. (α → α) →

α → α.

Thus the notion of parametric APL-structure gives a categorical notion of models of parametric polymor-
phism satisfying our requirements.

As an example of a model we consider a well-known parametric variant of the per-model [2]. This model
has as types pairs(fp, f r) of maps such thatfp : Pern → Per and for each vector

R1 : Rel(A1, B1), . . . , Rn : Rel(An, Bn),

of relations on pers
f r(~R) : Rel(fp( ~A), fp( ~B)),

where by relationsR : Rel(A,B) for persA,B we mean subsets ofN/A×N/B. We require thatf r applied
to a vector of equality relations gives an equality relation. We show that this model can be embedded into
a parametric APL-structure, such that Theorem 4.1 applies. A variant of this construction in relative real-
izability [6] gives usnon-wellpointedparametric APL-structures (the fibres ofType are not well-pointed).
This shows that well-pointedness is not necessary for correctness of the encodings of data types to hold.

It is also worth noticing that the construction of models of Abadi & Plotkin’s logic has proved consistency
of the logic.

I have not studied morphisms between APL-structures, since it is not clear to me why these could be inter-
esting. One weakness of APL-structures as models of Abadi & Plotkins logic, which would probably show
up when giving such a definition of morphisms, is that Abadi & Plotkin’s logic only gives notation for the
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objects inCtx of the formI(σ) or U(σ, τ) for σ, τ objects ofType. Thus, there would not be a bijective
correspondence between maps between APL-structures and translations between the internal languages of
the APL-structures. However, this is of no concern to us as long as we are only interested in using the
APL-structure for reasoning about the includedλ2 fibration.

4.3 LAPL-structures

The language PILLY was first sketched by Plotkin in [28] in which he also sketched a version of the logic
for parametricity for PILLY , and gave a rough sketch of a concrete parametric model of PILLY . In this
dissertation we give a full presentation of the logic and a notion of LAPL-structures (Linear Abadi-Plotkin
Logic) which model the logic. We have also worked out the details of the concrete model.

As mentioned, many of the concrete parametric domain theoretic models we consider have a canonical logic,
but are only parametric with respect to a subset of the relations in the logic. To handle these cases, our logic
for parametricity will have to include a notion of admissible relations. For reasoning about parametricity
one needs a good supply of these relations, in particular graphs of linear functions should be admissible
relations. We state a number of rules that the set of admissible relations should be closed under.

Even though the language PILLY is combined linear and intuitionistic, the logic we present is purely intu-
itionistic, i.e., it only has intuitionistic variables. Expressions in the logic are written as

~α | ~x : ~σ | ~R : Rel(~τ , ~τ ′), ~S : AdmRel(~ω, ~ω′) ` φ : Prop.

The propositionφ can contain termst such that

~α | ~x : ~σ;− ` t : τ

is a term of PILLY . The constructions in the logic are much as in the logic forλ2 except that we also
have admissible relations. We omit the details here, but mention that for typesσ with n free variables, the
relational interpretationσ[~ρ] is only defined for~ρ a vector of admissible relations.

As with the APL-structures, to define the notion of LAPL-structure, we must first define the notion of pre-
LAPL-structure. Roughly, a pre-LAPL-structure is a diagram

Prop

��
LinType

**UUUUUUUUUUUUUUUUUU 22 Type

$$JJJJJJJJJ

pp I // Ctx

��
Kind

The left hand side of the diagram is the model of PILLY that we reason about. The functorI is a fibred
product preserving faithful functor, and as usualProp → Ctx is a logic fibration andCtx contains objects
of relations for all pairs of typesσ, τ in the same fibre ofLinType. A notion of admissible relations for
a pre-LAPL-structure is a family of subobjects of the objects of relations inCtx closed under the rules for
admissible relations in the logic.

From a pre-LAPL-structure with a notion of admissible relations, one can construct a model of PILL (it does
not necessarily model the fixed point combinatorY ). The model is denoted

LinAdmRelations

**TTTTTTTTTTTTTTTT 00⊥ AdmRelations
pp

uukkkkkkkkkkkkkkk

AdmRelCtx.
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The objects ofLinAdmRelations are admissible relations, and the morphisms are pairs of strict mor-
phisms preserving relations.

As for the APL-structures there exists two maps∂0, ∂1 of PILL-models out of the constructed PILL-model
mapping an admissible relation to its domain and codomain respectively. An LAPL-structure is a pre-LAPL-
structure such that there exists a map of PILL-modelsJ going the other way satisfying∂0◦J = ∂1◦J = id .
AgainJ gives a relational interpretation of types.

We show soundness of the interpretation of Abadi & Plotkin’s logic in LAPL-structures and we show a
completeness result as for APL-structures.

As in the case of APL-structures a parametric LAPL-structure should be an LAPL-structure with very strong
equality such that parametricity and extensionality holds in the internal logic.

We can define a notion of polymorphically strong fibred functor and show that these have initial algebras and
final coalgebras as we did with APL-structures, but as mentioned the new setting here should also enable us
to solve recursive domain equations.

Supposeα ` σ is a type inpure PILLY . A solution to the recursive domain equation induced byσ is a
closed typeτ such thatσ(τ) is isomorphic toτ . If σ had all its occurrences ofα as positive, it would define
a functor, and the initial algebra as well as the final coalgebra would be solutions to the domain equation
σ(τ) ∼= τ .

We may split the occurrences ofα in σ into positive and negative obtaining a typeα, β ` σ(α, β) such that
α occurs only negatively andβ only positively. Such a type induces a functor which is contravariant in the
first variable and covariant in the second, in the sense that there exists a term

M :
∏

α, α′, β, β′. (α′ ( α) → (β ( β′) → (σ(α, β) ( σ(α′, β′))

preserving composition and identities. Such a term induces a fibred functor

LinTypeop ×Kind LinType //

**TTTTTTTTTTTTTTTT
LinType

xxqqqqqqqqqq

Kind.

The categoryLinTypeop ×Kind LinType is the fibrewise product of the category obtained by taking
fibrewise opposite category ofLinType andLinType. In general, such fibred functors arepolymorphi-
cally strongif there exists a corresponding typeσ and term as above in the internal language of the model
(i.e. not necessarily in pure PILLY ).

A solution to a domain equation induced by such a functorF is a family (τΞ)Ξ indexed overΞ in Kind
closed under reindexing such thatF (τΞ, τΞ) ∼= τΞ, i.e., a family of fixed points for the functor.

Theorem 4.2. For parametric LAPL-structures

• every polymorphically strong fibred endofunctor onLinType → Kind has a family of initial alge-
bras and a family of final coalgebras.

• every polymorphically strong fibred functor

LinTypeop ×Kind LinType //

))TTTTTTTTTTTTTTTT
LinType

xxrrrrrrrrrr

Kind

has a family of fixed points closed under reindexing.
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The logical part of the proof of Theorem 4.2 was sketched by Plotkin in [28]. Our contribution has been to
write out the details and to show how this could be applied to LAPL-structures.

As mentioned, we also construct a concrete LAPL-structure based on the one sketched by Plotkin. This
model of PILLY involves admissible pers over a reflexive domain, i.e., a domain (a cpo with a least element
⊥) such that[D → D] is a retract ofD. An admissible per is a partial equivalence relation which is closed
under lub’s of chains and which relates⊥ to itself. The concrete model is then constructed as the parametric
variant of the per-model, where we only consider admissible pers.

4.4 Completion Processes

Recall from Section 2 that even though no classical set theoretic models of polymorphism exist, set theoretic
models of polymorphism might still exist in intuitionistic set theories. The examples we have in mind are
internal cartesian closed subcategoriesC in quasi-toposes. IfC is sufficiently complete, we can construct a
model ofλ2 in which types withn free variables are modeled as morphisms

Cn
0 → C0

in the topos, whereC0 is the object of objects forC (i.e. the model is the externalization ofC). We call
such internal categories internalλ2-models.

In this dissertation we show how the ambient set theory of the model gives rise to a canonical pre-APL-
structure corresponding to the interpretation of Abadi & Plotkin’s logic in the internal logic of the quasi-
topos.

For this restricted class of models ofλ2 there exists a parametric completion process constructing parametric
models based on the original model. This process was originally described in [33]. Our contribution has
been to show that this process can be extended to construct parametric APL-structures.

The completion process described in [33] goes as follows: Since the quasi-toposE models an intuitionistic
set theory, we may construct an internal categoryLR(C) whose objects are logical relations on objects ofC
from the quasi-topos, and whose morphisms are pairs of morphisms inC preserving relations (i.e. mapping
related elements to related elements). There exists a diagram of internal functors in the quasi-topos

LR(C)
//
// Coo

mapping a relation to its domain and codomain respectively, and mapping an object ofC to the identity
relation on the same object. This graph is reflexive, meaning that the two compositions starting and ending
in C are the identity.

The diagramLR(C)
//
// Coo makes up an internal category in the quasi-topos of reflexive graphs inE.

We denote this quasi-topos byEG. We can now apply the construction above to this internal category and
obtain aλ2-fibration.

We can describe this model more explicitly. A type in the parametrically completed model withn free
variables is a type in the original modelσ : Cn

0 → C0 plus a mapρ that takesn-vectors of relations
(R1 : Rel(A1, B1), . . . , Rn : Rel(An, Bn)) and produces a new relation

ρ(~R) : Rel(σ( ~A), σ( ~B))

such thatρ(eqA1
, . . . , eqAn

) = eqσ( ~A). Terms are terms in the old model preserving relations.

A type in the parametrically completed model has a built-in relational interpretation (ρ). Since this relational
interpretation satisfies identity extension, the model should be parametric.
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In this dissertation, we show that the parametric completion process produces models that fit into a para-
metric APL-structure. This provides formal proofs of the correctness of the encodings of inductive and
coinductive types in these models. This result is of course expected, but to our knowledge it has not been
formally proved before in this generality. The APL-structure is also interesting, because we clarify with
respect to which logic the completed category is parametric. The parametrically completed model is not
parametric with respect to the internal logic of the quasi-toposEG, but with respect to a related logic corre-
sponding to the internal logic ofE.

The concrete APL-structure mentioned in Section 4.2 arises as the result of a completion process, when
considering the category of pers as an internal category in the category of assemblies. Since the category
of assemblies is a quasi-topos, this provides the motivation for using quasi-toposes instead of toposes. Of
course, the category of pers is also an internal category in the effective topos, but this viewpoint gives a
different logic.

We also construct a parametric completion process for LAPL-structures. First we describe which kind
of data is needed for an internal model of PILLY to give rise to an LAPL-structure as above. Next we
describe the parametric completion process. This is basically the same as for APL-structures, but still some
constructions in this process are new and so the construction is non-trivial.

The parametric LAPL-structure mentioned in Section 4.3 can be seen as a result of the parametric completion
process for LAPL-structures.

4.5 An LAPL-structure from Synthetic Domain Theory

In recent work [35] Alex Simpson and Pino Rosolini have studied a language which we shall call Lilystrict.
This language is basically PILLY with linear functions replaced by strict functions. Lilystrict is equipped with
two operational semantics: a call-by-name semantics and a call-by-value semantics (with these operational
semantics, Lilystrict is simply Lily [5] with linearity replaced by strictness).

Simpson and Rosolini give an interpretation of this language using Synthetic Domain Theory (SDT), and
prove this interpretation to be adequate with respect to the two notions of contextual equivalence obtained
from each of the operational semantics. Using this they show that the two contextual equivalence relations
coincide. Since Lilystrict and Lily are almost the same language, this result was basically proved in [5] using
operational tools.

The interpretation lives inside an intuitionistic set theory. The construction resembles that of the paramet-
ric completion process, and so all types in the interpretation are equipped with a relational interpretation
satisfying an identity extension condition. Thus the interpretation is parametric with respect to the interpre-
tation of parametricity in the ambient set theory and we would expect that the encoding of the inductive and
coinductive data types is correct, but [35] does not formally prove this.

We construct a parametric LAPL-structure based on the interpretation of Lilystrict using SDT. Since linear
functions are strict we may translate PILLY into Lily strict, and up to this translation, the interpretation of
PILLY in the parametric LAPL-structure we construct agrees with the interpretation of Lilystrict given by
Simpson and Rosolini.

The construction of this LAPL-structure serves two purposes: first it helps to show that the notion of LAPL-
structures is general enough to handle different types of models. In this case, it strengthens the idea that
parametric PILLY is a good language for domain theoretic models of parametric polymorphism. Second,
using adequacy of the interpretation of Lilystrict we can use the parametric model to show consequences
of parametricity (i.e. correctness of the encodings of data types) in Lilystrict up to operational equivalence.
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This is very much in the spirit of Simpson and Rosolini’s proof of coincidence of the contextual equivalence
relations using the adequate interpretation [35].

5 Related Work

In this section we focus on three related directions of research, Ma & Reynold’s categorical definition
of parametricity, Dunphy’s parametricity graphs and the work on consequences of parametricity for the
programming language Lily by Bierman Pitts and Russo. Finally, we sketch some of the other directions of
research related to parametricity.

5.1 Ma & Reynolds notion of parametricity

QingMing Ma and John Reynolds [30] have proposed a category-theoretic definition of parametricity for
models ofλ2 [16]. The definition can basically be restated as follows: SupposeE → B is aλ2 fibration, and
suppose we are given a logic fibrationD → E1 on the fibre ofE over the terminal object (this is the category
of closedtypes).

Ma & Reynolds defineE → B to be parametric if there exists a reflexive graph ofλ2-fibrations
E

��
B

 //


F

��
C

oo

oo

(i.e. a graph, where the two compositions starting atE → B are the identity) whose restriction to the fibres
over the terminal objects is isomorphic to

LR(E1)
//
// E1

oo

whereLR(E1) is a category of relations onE1 formed using the logicD → E1 and the morphisms map a
relation to its domain and codomain respectively and a closed type to the equality relation on that type.

An APL-structure is parametric in the sense of Ma & Reynolds, since the fibrationRelations → RelCtx
can play the role ofF → C, and in general the intuition of the reflexive graph ofλ2-fibrations is that the
fibrationF → C is a fibration of relations. But since this is only formulated for the closed types, we cannot
use it to prove consequences of parametricity for open types. See Paper 1 for a further discussion of the
relation to Ma & Reynolds definition.

5.2 Parametricity graphs

In a recent PhD dissertation Brian Dunphy [7, 8] together with his adviser Uday Reddy, has studied a class of
models of polymorphism based on reflexive graphs of categoriesGe

//
// Gv

oo . Under certain conditions
on such a reflexive graph one can build a model of polymorphism where types withn free variables are
modeled as pairs of functors making the diagram

|Ge|n

�� ��

// Ge

�� ��
|Gv|n

OO

// Gv

OO
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commute, where|Gv| denotes the discrete category on the objects ofGv. Dunphy states conditions under
which the categoryGe can be considered a category of relations on|Gv|. Reflexive graphs satisfying these
conditions are calledparametricity graphs, and correctness of the encoding of data types can be shown for
these using a logic resembling a logic called System R [1] for reasoning about parametricity.

One technical issue worth mentioning is that Dunphy can only in general prove correctness of the encoding
of data types forwell-pointedparametricity graphs. Dunphy even gives an example of a non-wellpointed
parametricity graphs in which the encodings are not correct. Since we give an example of a non-wellpointed
parametric APL-structure, we show that parametricity is in fact useful in a setting without well-pointedness.

The main difference between Dunphy’s work and this dissertation is that Dunphy does not give a general
notion of parametricity forλ2-fibrations. He only considers models given by reflexive graphs. So, for
example the question of whether the standard per-model (as described in Section 2.1) is parametric does
not make sense in Dunphy’s setting. In this sense APL-structures may be more general than parametricity
graphs. It should be mentioned that theparametricmodels considered in this dissertation all come from
reflexive graphs and so are probably all parametricity graphs. But, as mentioned, some of these models
are not well-pointed and so cannot be shown to satisfy consequences of parametricity using the tools of
parametricity graphs, but only using the tools of APL-structures.

On the other hand, parametricity graphs model a logic that is different from Abadi & Plotkin’s logic and so
may incorporate some models that cannot fit into an APL-structure.

Finally, we mention that Dunphy also considers models of predicative polymorphism, which is not covered
in this dissertation. It should however be easy to find a variant of the definition of APL-structures that would
handle predicative polymorphism. However, most of our arguments for correctness of encoding of inductive
and coinductive types use impredicativity, and so Dunphy’s proofs would have to be adopted for this to work
out.

In his dissertation Dunphy also considers parametricity graphs modeling PILLY -like languages.

Claudio Hermida and Robert Tennent study a related framework of parametric models in [13].

5.3 Parametricity in operational semantics

Parametric polymorphism has also been used in a more syntactic setting by Andrew Pitts in [25] and by
Gavin Bierman, Andrew Pitts and Claudio Russo in [5] to prove properties of programming languages with
operational semantics up to contextual equivalence. In [5] for example, the language Lily which is basically
PILLY equipped with two operational semantics: a call-by-name and a call-by-value operational semantics
is considered. For each of these operational semantics a notion of contextual equivalence is defined by
observing termination at types of the form!σ. Using operational methods the two notions of equivalence
are shown to coincide.

Because there is a set of closed terms of Lily, one can use set theoretic relations to reason about them. In [5]
a particular subset of these relations called>>-closed relations are used to reason about these terms, and
it is shown that up to contextual equivalence Lily is parametric with respect to>>-closed relations. This
parametricity result is then used to show correctness of an encoding of coproducts for closed types of Lily
up to contextual equivalence.

It would be interesting to see if the language Lily with terms considered up to contextual equivalence gives
rise to a parametric LAPL-structure. To show this, we need to check that>>-relations give a notion of
admissible relations as defined in this dissertation. We do believe this is the case, and it is on the schedule
for future work.
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Showing that Lily gives rise to an LAPL-structure would formally prove that the encodings of inductive,
coinductive and recursive types are correct. In fact we have almost done this already, as we have shown a
similar result for Lilystrict using the LAPL-structure obtained from SDT (see Section 4.5).

5.4 More related research

Ryu Hasegawa has studied a specific family of models for polymorphism and shown that for these para-
metricity of encoding of inductive and coinductive types is equivalent to correctness of these encodings
[12]. The proofs in [12] inspired some of the proofs of the consequences of parametricity used in this
dissertation. Ryu Hasegawa is also working on a model of a polymorphic linear type theory [11].

Parametric polymorphism has also been used to model local variables [22, 21]. The idea is to use para-
metricity to hide local variables from called procedures, the same way parametricity can be used to hide
information about specific implementations of data types. In [22] models of an Algol-like language are
given using reflexive graphs and it is shown how these models model hiding of local variables using para-
metricity. In [21] two versions of Algol are translated into a predicative version of polymorphic linear
lambda-calculus (basically a predicative version of PILLY ). Models of polymorphic linear lambda calculus
can then give models of the Algol-like languages. The idea behind using linearity is that it can be used
to rule out nonimperative behavior in the model such as functions restoring the old state after running an
expression with side effects, since this requires copying the old state before running the expression. Many
of the same ideas are used in [23] to construct fully abstract translations of PCF and an idealized version of
Algol into a language with parametric polymorphism.

Other logics for reasoning about parametricity exist. Before Abadi & Plotkin’s logic appeared a different
logic had been proposed [1]. As mentioned Dunphy and Reddy [7, 8] use a variant of this logic. Izumi
Takeuti has constructed a variant of Abadi & Plotkin’s logic, in which one can also discuss other arities of
parametricity (such as unary parametricity involving predicates instead of relations).

Ivar Rummelhoff [36] has studied the encoding of natural numbers in per-models over different PCA’s, and
showed that in some of these models, the encoding contains more than natural numbers. So these models
cannot be parametric. Even though he does not mention it, this shows that unary parametricity is different
from binary (relational) parametricity, since one can easily show that the encoding of the natural numbers
in any per-model is unary parametric. Other studies of parametric polymorphism for per-models include
[34, 9].

Philip Wadler [40] presents a viewpoint, where the abstraction property of [30] corresponds to the existence
of a map mapping terms of second-order lambda calculus to expressions in a logic. On the other hand, a
representation result of Girard’s corresponds to a map going the other way.

6 Structure of the dissertation

This dissertation consists of five papers. Here follows a description of each paper.

Paper 1: L. Birkedal and R. E. Møgelberg. Categorical models of Abadi-Plotkin’s logic for parametricity.
Mathematical Structures in Computer Science, 2005. To Appear (Accepted for publication).

We give a detailed description of Abadi & Plotkin’s logic for parametricity, the definition of APL-
structures and the interpretation of the logic in these. This is followed by proofs of soundness and
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completeness for the interpretation. We define parametric APL-structures and proceed to show The-
orem 4.1 above. This involves proving the logical versions of these results as stated in [29]. We
compare our notion of parametricity to that of Ma & Reynolds [16]. The parametric completion pro-
cess is described for APL-structures and in connection with this we discuss parametricity for internal
models ofλ2 in quasi-toposes.

Paper 2: L. Birkedal, R. E. Møgelberg, and R. L. Petersen. Parametric domain-theoretic models of linear
Abadi & Plotkin logic. Technical Report TR-2005-57, IT University of Copenhagen, February 2005.

In this article we describe the language PILLY and the variant of Abadi & Plotkin’s logic used for it.
We show how to reason in this logic and in particular we prove correctness of encoding of inductive,
coinductive and recursive data types in the logic. As in the first article, we define LAPL-structures,
show how to interpret the logic in these and show that the interpretation is sound and complete. Para-
metric LAPL-structures are introduced, and we show how to use the logical proofs of the correctness
of the encoding of data types to solve recursive domain equations in parametric LAPL-structures
(Theorem 4.2). Finally we construct the parametric domain theoretic per-model, show that it fits into
a natural parametric LAPL-structure and describe the interpretation of the encoding of the natural
numbers in this.

Paper 3: R. E. Møgelberg, L. Birkedal, and R. L. Petersen. Categorical models of PILL. Technical Report
TR-2005-58, IT University of Copenhagen, February 2005.

This paper contains mostly well-known material on models of PILL, based on in particular [3, 4, 10,
17, 18, 19]. Since none of the above mentioned present all the material needed for this dissertation, we
have included an exposition of the theory. The material covered includes the 2-category of symmetric
monoidal categories, linear categories, models of LNL and DILL, and a fibrational account of these
concepts ending with models of PILL and PILLY .

Paper 4: R. E. Møgelberg, L. Birkedal, and G. Rosolini. Synthetic domain theory and models of linear
Abadi & Plotkin logic. Technical Report TR-2005-59, IT University of Copenhagen, February 2005.

Here we present the LAPL-structure constructed from synthetic domain theory and use it to show con-
sequences of parametricity for the operational semantics on Lilystrict. For readability we have included
a full description of the setup of synthetic domain theory as presented in [35], the language Lilystrict
and a formulation of the adequacy result for the interpretation of Lilystrict as shown by Simpson and
Rosolini. The presentation of the setup of synthetic domain theory follows the presentation in [35]
closely.

Paper 5: R. E. Møgelberg. Parametric completion for models of polymorphic intuitionistic / linear lambda
calculus. Technical Report TR-2005-60, IT University of Copenhagen, February 2005.

The main result of this article is the description of the parametric completion process for LAPL-
structures. Before this however, we review some theory of internal categories including internal fibra-
tions and internal linear categories. We define a notion of internal PILLY -model in a quasi-topos, and
show that the externalization of an internal PILLY -model gives rise to an LAPL-structure.

Dependencies are as follows. It is not necessary to read Paper 1 before Paper 2, except that Paper 2 uses a
few definitions of Appendix A in Paper 1, but, for readers unfamiliar with parametricity, it may be helpful
to start with Paper 1, since the proofs of consequences of parametricity given in Paper 2 are slightly more
sophisticated than the ones in Paper 1 due to the use of linearity.
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The material in Paper 2 depends on Paper 3, but since we think of the latter as a (long) appendix to Paper 2,
we have placed it after Paper 2. Paper 3 can be read independently of all other papers in this dissertation.
Paper 4 and Paper 5 can be read independently of each other, but they both depend on Paper 2.

7 Conclusion

We have introduced a notion of parametric APL structures which can be taken as definition of parametric
models of second-orderλ-calculus. These structures can be shown to have initial algebras and final coalge-
bras for a large class of fibred endofunctors, which means that parametric APL-structures give a good notion
of parametric models as discussed in Section 3.

Likewise we have defined a notion of parametric LAPL-structures. These give a good notion of domain
theoretic models of parametric polymorphism, since we can solve recursive domain equations in LAPL-
structures, as we would expect to be able to in parametric domain theoretic models.

The definition of APL-structure ask for quite a lot of structure — besides theλ2- fibration in question we
ask for another fibration with a fibration on top, etc. But in the concrete case providing such extra structure
to show that aλ2-fibration is parametric just corresponds to answering the question “with respect to which
logic is the model parametric”.

This becomes even more apparent in the case of LAPL-structures. Concrete models considered in the
literature, have often been parametric with respect to some logic, and a relational interpretation of types
defined only on a subset of the relations of the logic: the ones we call admissible. Providing a full parametric
LAPL-structure to a model corresponds to answering the question “with respect to which logic and which
set of admissible relations is the model parametric?”.

In both cases the APL- and LAPL-structures provide a check-list for what kind of structure is needed to
reason about parametricity. In particular, for the LAPL-structures, we have a set of axioms that a notion of
admissible relations should satisfy for it to be strong enough for reasoning about parametricity.

We have shown that parametric APL- and LAPL-structures provide a general and usable framework by
showing that very different parametric models known from the literature are of this form. These involve
parametric versions of per-models, and a family of models constructed using synthetic domain theory. We
even have a very general way of constructing these models, namely using parametric completion processes.

Of the models presented in this dissertation, most were known as models of polymorphism, but for most
of them, the correctness of the encodings of data types had not been shown formally. These proofs are
presented in all details in this dissertation.

Another contribution of this dissertation is to sort out the details of the PILLY - version of Abadi & Plotkin’s
logic. In fact, for both versions of the logic considered here, we have worked out the details of models for
them, thereby showing them to be consistent.

This dissertation has also provided detailed proofs of theorems that have been known to the community for
long, but whose proofs have never appeared in print. These proofs are the proofs of correctness of encoding
of initial algebras, final coalgebras and recursive types. These proofs are non-trivial, and it is my hope that
making the details available will contribute to the accessibility of parametricity as a research area.
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7.1 Future work

As said, we have provided a couple of very different parametric LAPL-structures showing that the notion
is quite general. It would be interesting to see if Lily with terms identified up to contextual equivalence
and>>-closed relations as admissible relations gives rise to a parametric LAPL-structure. This would
imply that the correctness of the encodings of inductive and coinductive data types as sketched in [5] would
be consequences of the same results for parametric LAPL-structures in a more direct way than the results
proved in this dissertation using the SDT-model. This work is already under way.

We have shown how parametric polymorphism allows us to encode certain types with the right category
theoretic properties. Parametricity also gives us reasoning principles for these types, but it is unclear whether
these are the principles one will want to use in practice for reasoning about the language. In particular, for the
LAPL-structures the reasoning principles only apply to admissible relations, which may not be a sufficiently
large class of relations.

This dissertation is an abstract study of parametricity, and it would be interesting to show that these results
can be used in the theory of programming languages in general. In this dissertation we have only once
applied the abstract theory to show results about a programming language with an operational semantics,
namely for the parametricity results for Lilystrict up to operational equivalence. Can we use these models to
show for example data abstraction results for real programming languages? How does our work relate to
that of O’Hearn, Reynolds and Tennent [22, 21, 23] as briefly mentioned in Section 5.4.

The second-order lambda-calculus is a programming language (or an equational theory) suitable for studying
parametricity, since it has few constructions. The language PILLY having fixed points is closer to a “real
life” programming language. To be able to apply the theory of parametric polymorphism to programming
languages used in practice, it needs to be studied in connection with effects.

Finally I do not think that the concept of parametricity is fully understood at this point. Parametric models
contain less “junk” than other models at polymorphic types, so parametricity seems to provide a way of
constructing better models. But how good are these models, and what are the connections to other good
properties of models such as adequacy, universality and full abstraction? Not much work has been done in
that area, [38] is an exception.
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Techniques in Semantics, Montréal, volume 41 ofElectronic Notes in Theoretical Computer Science.
Elsevier, September 2000. 3.1, 4.5, 5.3, 7.1

22



[6] Lars Birkedal and Jaap van Oosten. Relative and modified relative realizability.Ann. Pure Appl. Logic,
118(1-2):115–132, 2002. 4.2

[7] B.P. Dunphy.Parametricity as a notion of uniformity in reflexive graphs. PhD thesis, 2004. 3.1, 5.2,
5.4

[8] Brian Dunphy and Uday S. Reddy. Parametric limits. InProceedings of the 19th IEEE Symposium on
Logic in Computer Science (LICS-04)), pages 242–251, 2004. 5.2, 5.4

[9] P.J. Freyd, E.P. Robinson, and G. Rosolini. Dinaturality for free. In M. P. Fourman, P.T. Johnstone,
and A. M. Pitts, editors,Applications of Categories in Computer Science. Proceedings of the LMS
Symposium, Durham 1991, volume 177 ofLondon Mathematical Society Lecture Note Series, pages
107–118. Cambridge University Press, 1991. 5.4

[10] Masahito Hasegawa. Categorical glueing and logical predicates for models of linear logic. 1999. 6

[11] R. Hasegawa. The theory of twiners and linear parametricity. 5.4

[12] R. Hasegawa. Categorical data types in parametric polymorphism.Mathematical Structures in Com-
puter Science, 4:71–109, 1994. 4.1, 5.4

[13] C. Hermida and R.D. Tennent. A fibrational framework for possible-world semantics of algol-like
languages. 2004. 5.2
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Categorical Models for Abadi-Plotkin’s Logic for Parametricity

Lars Birkedal
Rasmus Ejlers Møgelberg

Abstract

We propose a new category-theoretic formulation of relational parametricity based on a logic for
reasoning about parametricity given by Abadi and Plotkin [12]. The logic can be used to reason about
parametric models, such that we may prove consequences of parametricity that to our knowledge have
not been proved before for existing category-theoretic notions of relational parametricity. We provide
examples of parametric models and we describe a way of constructing parametric models from given
models of the second-order lambda calculus.
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1 Introduction

The notion of parametricity for models of polymorphic type theories intuitively states that a function of
polymorphic type behaves the same way on all type instances. Reynolds [13] discovered that parametricity
is central for modeling data abstraction and proving representation independence results. The idea is that
a client of an abstract data type is modeled as a polymorphic function; parametricity then guarantees that
the client cannot distinguish between different implementations of the abstract data type. Reynolds also
observed that parametricity can be used for encoding (inductive and coinductive) data types. See [20, 8] for
expository introductions.

In 1983 Reynolds gave a precise formulation of parametricity called relational parametricity for set-theoretic
models [13]. It basically states that a term of polymorphic type preserves relations between types: if termu
has type

∏
α : Type. σ andR : Rel(τ, τ ′) is a relation betweenτ andτ ′, then

u(τ)(σ[R])u(τ ′),

whereσ[R] is a relational interpretation of the typeσ defined inductively over the structure ofσ. Equiva-
lently, parametricity could be defined as the identity extension property: for all termsu, v of typeσ(~α),

u(σ[ ~eqα])v ⇐⇒ u = v.

However, Reynolds himself later proved that set-theoretic models do not exist [14] in classical set-theory (it
was later discovered that set theoretic models do exist in some models of intuitionistic set theory [10, 9]). In
1992 Ma and Reynolds [6] then gave a new formulation of parametricity phrased in terms of more general
models (PL-categories of Seely [18]). One may formulate Ma and Reynolds’ notion in the language ofλ2-
fibrations1 as follows. The fibrationE → B is parametric with respect to a given logic onE if there exist a
reflexive graph ofλ2-fibrations, whose restriction to the fibres over the terminal object is the reflexive graph

E1
// LR(E1)oo

oo

of logical relations with domain, codomain maps and the middle map mapping a type to the identity on that
type. (See [6, 5] for more details.)

In recent work by Birkedal and Rosolini on parametric domain-theoretic models it became clear that this
is not the right categorical formulation of parametricity: it appears that the definition does not allow one to
prove the expected consequences of parametricity such as data abstraction and the encoding of data types.
Indeed, these consequences have only been proved for specific models, see, e.g., [20, 3], using specific
properties of the models.

In this article we propose a new category-theoretic formulation of parametricity, called aparametric APL-
structure, whichdoesallow one to prove the expected properties of parametricity in general. We build upon
a logic for reasoning about parametricity given by Abadi and Plotkin [12]. In this logic one can formulate
parametricity as a schema and prove the expected consequences of parametricity. An APL-structure is a
category-theoretic model of Abadi and Plotkin’s logic, for which we prove soundness and completeness,
thereby answering a question posed in [12, Page 5]. Each APL-structure contains a model of the second-
order lambda calculus, which we may reason about using the logic.

We also provide a completion process that given an internal model ofλ2 (see [4, 15]) produces a parametric
APL-structure. In special cases, theλ2-fibration of this APL-structure is the one obtained in [15] and thus

1A λ2-fibration is a fibration with enough properties to model second-order lambda calculus, see, e.g., [5].
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we prove that the models obtained in [15] in fact satisfy the consequences of parametricity (as expected, but
not shown in the literature before).

The consequences of parametricity proved earlier for specific models [3, 20, 1] all seem to use well-
pointedness, i.e., the property, that morphismsf : A→ B are determined by their values on global elements
a : 1 → A. For parametric APL-structures, we do not need to use well-pointedness to prove the expected
consequences of parametricity. Loosely speaking, the point is that our notion of parametric APL-structure
includes an appropriate extensional logic to reason with. Inloc. cit., the ambient world of set theory is
used as the logic and thus extensionality there amounts to asking for well-pointedness. We provide a family
of concrete parametric APL-structures, including non-well pointed ones. Thus parametricityis useful for
proving consequences also for non-well-pointed models.

In subsequent papers we will show how to modify the parametric completion process to produce domain-
theoretic parametric models and how to extend the notion of APL-structure to include models of polymor-
phic linear lambda calculus [11].

The remainder of the paper is organized as follows. In Section 2, we recall Abadi and Plotkin’s logic. The
reader is warned that our version of the logic is slightly different from the one described in [12]. In Section
3 we define the notion of an APL-structure. We prove soundness and completeness with respect to Abadi
and Plotkin’s logic in sections 3.1 and 3.2. Section 4 defines the internal language of an APL-structure
and we define the notion of aparametricAPL-structure. We also demonstrate in Section 5 how to use the
internal language to show consequences of parametricity in parametric APL-structures. Section 5 mainly
contain proofs of well-known results in Abadi & Plotkin’s logic. However, since these proofs are by no
means trivial, and to our knowledge do not appear in the literature, and since we think they are of general
interest, we include them here.

Section 6 contains a definition of a concrete parametric APL-structure, and we also mention a non-well-
pointed parametric APL-structure. Section 7 contains a comparison of our notion of parametricity with the
one defined by Ma & Reynolds [6]. The parametric completion process is described in Section 8. Since an
internal model ofλ2 in a quasitopos has ambient logic corresponding to most of the constructions in Abadi
& Plotkin’s logic, there exists a natural APL-structure incorporating it, so we may formulate the question if
this model is parametric. This is done in Section 9.

Appendix A contains definitions and theory concerning composable fibrations, i.e., pairs of fibrations such
that the codomain of the first is the domain of the second. In particular, we study the case of fibrations
F → E → B whereF → E is a logic fibration, and we study what is needed for it to model quantification
along vertical maps inE and quantification along maps inB. The definitions of this appendix are used in
the definition of an APL-structure.

Acknowledgments. We would like to acknowledge helpful discussions with Alex Simpson and Martin
Hyland and the constructive comments of the two anonymous referees.

2 Abadi & Plotkin’s logic

We first recall Abadi & Plotkin’s logic for reasoning about parametricity, originally defined in [12]. We will
use a slightly modified version of the logic.

Abadi & Plotkin’s logic is basically a second-order logic on the second-orderλ-calculus (λ2). Thus we
begin by calling to mind the second orderλ-calculus (a more formal presentation can be found in e.g. [5]).
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2.1 Second-orderλ-calculus

Well-formed type expressions in second-orderλ-calculus are expressions of the form:

α1 : Type, . . . , αn : Type ` σ : Type

whereσ is built up from theαi’s using products (1, σ × τ ), arrows (σ → τ ) and quantification over types.
The latter means that if we have a type

α1 : Type, . . . , αn : Type ` σ : Type,

then we may form the type

α1 : Type, . . . , αi−1 : Type, αi+1 : Type, . . . , αn : Type `
∏
αi : Type. σ : Type

We do not allow repetitions in the list ofα’s, and we call this list the kind context. It is often denoted simply
Ξ or ~α. We useσ, τ, ω to range over the set of types.

The terms inλ2 are of the form:
Ξ | x1 : σ1, . . . , xn : σn ` t : τ

where theσi andτ are well-formed types in the kind contextΞ. The list ofx’s is called the type context and
is often denotedΓ. As for kind contexts we do not accept repetition in type contexts.

The grammar for raw terms is:

t ::= x | λx : σ.t | t(t) | ? | 〈t, t〉 | πt | π′t | Λα : Type. t | t(σ)

corresponding to variables,λ-abstraction, function applications, an element of unit type, pairing and projec-
tions on product types and second-orderλ-abstractions and type applications. We uses, t, u to range over
the set of terms, and as usual we considerα-equivalent terms equal. Most of the formation rules are well
known from the simply-typedλ-calculus; here we just recall the two additional rules for type abstraction
and type application:

Ξ, α : Type | Γ ` t : σ
Ξ | Γ is well-formed

Ξ | Γ ` Λα : Type. t :
∏
α : Type. σ

Ξ | Γ ` t :
∏
α : Type. σ Ξ ` τ : Type

Ξ | Γ ` t(τ) : σ[τ/α]

What we have described above is called thepure second-orderλ-calculus. In general we will consider
second-orderλ-calculi based on polymorphic signatures [5, 8.1.1]. Informally one may think of such a
calculus as the pure second-orderλ-calculus with added type-constants and term-constants. For instance
one may have a constant type for integers or a constant type for listsα ` lists(α) : Type. We will be
particularly interested in the internal language of aλ2-fibration (see Section 3) which in general will be a
non-pure calculus.

2.1.1 Equality

We consider an equality theory on second-orderλ-calculus calledexternalequality. It is the least equivalence
relation given by the rules in Figure 1.
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Ξ | Γ, x : σ ` t : τ Ξ | Γ ` u : σ
β-reduction

Ξ | Γ ` (λx : σ. t)u = t[u/x]

Ξ, α | Γ ` t : τ Ξ ` σ : Type Ξ | Γwell-formed
β-reduction

Ξ | Γ ` (Λα : Type. t)σ = t[σ/α]

Ξ | Γ ` t : σ → τ
η-reduction

Ξ | Γ ` λx : σ. (tx) = t

Ξ | Γ ` t :
∏
α : Type. σ

η-reduction
Ξ | Γ ` Λα : Type. (tα) = t

Ξ | Γ ` t : σ Ξ | Γ ` u : τ

Ξ | Γ ` π〈t, u〉 = t

Ξ | Γ ` t : σ Ξ | Γ ` u : τ

Ξ | Γ ` π′〈t, u〉 = u

Ξ | Γ ` t : σ × τ

Ξ | Γ ` 〈πt, π′t〉 = t

Ξ | Γ ` t : 1

Ξ | Γ ` t = ?

Ξ | Γ ` t = t′ : σ Ξ | Γ, x : σ ` u : τ
replacement

Ξ | Γ ` u[t/x] = u[t′/x]

Ξ | Γ, x : σ ` t = s : τ

Ξ | Γ ` λx : σ. t = λx : σ. s

Ξ, α | Γ ` t = s Ξ | Γ well-formed

Ξ | Γ ` Λα. t = Λα. s

Figure 1: Rules for external equality

2.2 The logic

Abadi & Plotkin’s logic can be built on top of any second-order lambda calculus (based on any polymorphic
signature), so in the following we will assume that we are given one such.

Formulas of Abadi & Plotkin’s logic live in contexts of elements ofλ2 and relations on types ofλ2. The
contexts look like

Ξ | Γ | R1 : Rel(τ1, τ ′1), . . . , Rn : Rel(τn, τ ′n),

whereΞ | Γ is a context of second-orderλ-calculus and theτi andτ ′i are well-formed types in contextΞ,
for all i. The list ofR’s is called the relational context and is often denotedΘ. In this context as in the other
contexts we do not accept repetitions of variable names. It is important to notice that the relational and type
contexts are independent of each other in the sense that one does not affect whether the other is well-formed.

Formulas are given by the syntax:

φ ::= (t =σ u) | ρ(t, u) | φ ⊃ ψ | ⊥ | > | φ ∧ ψ | φ ∨ ψ | ∀α : Type. φ |
∀x : σ. φ | ∀R : Rel(σ, τ). φ | ∃α : Type. φ | ∃x : σ. φ | ∃R : Rel(σ, τ). φ,

whereρ is a definable relation (to be discussed below).

In the following we give formation rules for the above. First we have internal equality

Ξ | Γ ` t : σ Ξ | Γ ` u : σ

Ξ | Γ | Θ ` (t =σ u) : Prop
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Notice here the notational difference betweent = u andt =σ u. The former denotesexternalequality and
the latter is a formula in the logic. The rules for⊃, ∨ and∧ are the usual ones.>, ⊥ are formulas in any
context.

We have the formation rules for universal quantification:

Ξ | Γ, x : σ,Γ′ | Θ ` φ : Prop

Ξ | Γ,Γ′ | Θ ` ∀x : σ. φ : Prop

Ξ | Γ | Θ, R : Rel(σ, τ),Θ′ ` φ : Prop

Ξ | Γ | Θ,Θ′ ` ∀R : Rel(σ, τ). φ : Prop

Ξ, α,Ξ′ | Γ | Θ ` φ : Prop
Ξ,Ξ′ | Γ | Θ is well-formed

Ξ,Ξ′ | Γ | Θ ` ∀α : Type. φ : Prop

The same formation rules apply to the existential quantifier.

2.3 Definable relations

Definable relations are given by the grammar:

ρ ::= R | (x : σ, y : τ).φ | σ[~ρ].

A definable relationρ always has a domain and a codomain, and we writeρ : Rel(σ, τ) to denote thatρ has
domainσ and codomainτ . There are 3 rules for this judgement. The first two are

Ξ | Γ | Θ, R : Rel(σ, τ),Θ′ ` R : Rel(σ, τ)

Ξ | Γ, x : σ, y : τ | Θ ` φ : Prop

Ξ | Γ | Θ ` (x : σ, y : τ). φ : Rel(σ, τ).

In the second rule above the variablesx, y become bound inφ. For example, we have the equality relation
eqσ defined as(x : σ, y : σ). x =σ y and the graph relation of a function〈f〉 = (x : σ, y : τ). fx =τ y if
f : σ → τ .

The last rule for definable relations is

α1, . . . , αn ` σ : Type Ξ | Γ | Θ ` ρ1 : Rel(τ1, τ ′1), . . . , ρn : Rel(τn, τ ′n)

Ξ | Γ | Θ ` σ[~ρ] : Rel(σ(~τ), σ(~τ ′)).

The notation is a bit ambiguous, since byσ[~ρ] we mean to substitute eachρi for αi in σ, and so the order
of theα’s and theρ’s is important. A more precise notation would have beenσ[ρ1/α1, . . . , ρn/αn], but we
choose to use the more convenientσ[~ρ].

Observe thatσ[~ρ] is a syntactic construction and is not obtained by substitution. In [12]σ[~ρ] is defined
inductively from the structure ofσ, but in our case this is not enough, since we will need to formσ[~ρ] for
type constantsσ in Section 4. The inductive definition of [12] is reflected in the rules (12)-(15) below. We
call σ[~ρ] therelational interpretation of the typeσ.
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If ρ : Rel(σ, τ) is a definable relation, we may apply it to terms of the right types. This gives the last
formation rule for formulas

Ξ | Γ | Θ ` ρ : Rel(σ, τ) Ξ | Γ ` t : σ, u : τ

Ξ | Γ | Θ ` ρ(t, u) : Prop.

We will also writetρu for ρ(t, u).

Lemma 2.1. SupposeΞ | Γ ` Θ, R : Rel(σ, τ) ` φ : Prop andΞ | Γ | Θ ` ρ : Rel(σ, τ) are well-formed.
Then

Ξ | Γ | Θ ` φ[ρ/R] : Prop

is well-formed.

Proof. Easy induction on the structure ofφ.

Remark 2.2. Abadi & Plotkin’s logic is designed for reasoning about binary relational parametricity. For
reasoning about other arities of parametricity (such as unary parametricity), one can easily replace binary
relations in the logic by relations of other arities. In the case of unary parametricity, for example, one would
then have an interpretation of types as predicates. See also [19, 21]

We introduce the short notationρ ≡ ρ′ for definable relationsρ : Rel(σ, τ), ρ′ : Rel(σ, τ) as

∀x : σ, y : τ. ρ(x, y) ⊃⊂ ρ′(x, y).

Notice that we use⊃⊂ for biimplication.

We can take exponents, products and universal quantification of relations. These constructions will turn out
to define categorical exponents, products and quantification in a category of relations (see Lemma 3.7). For
now, the reader should just consider the next three definitions as shorthand notation.

If ρ : Rel(σ, τ) andρ′ : Rel(σ′, τ ′) we may define a definable relation:

(ρ→ ρ′) : Rel((σ → σ′), (τ → τ ′))

as
ρ→ ρ′ = (f : σ → σ′, g : τ → τ ′).∀x : σ.∀y : τ. (xρy ⊃ (fx)ρ′(gy))

We may also take the product ofρ andρ′:

ρ× ρ′ : Rel((σ × σ′), (τ × τ ′))

as
ρ× ρ′ = (x : σ × σ′, y : τ × τ ′). (πx)ρ(πy) ∧ (π′x)ρ′(π′y)

If
Ξ, α, β | Γ | Θ, R : Rel(α, β) ` ρ : Rel(σ, τ)

is well-formed andΞ | Γ | Θ andΞ, α ` σ : Type andΞ, β ` τ : Type we may define:

Ξ | Γ | Θ ` ∀(α, β,R : Rel(α, β)). ρ : Rel((
∏
α : Type. σ), (

∏
β : Type. τ))

as
(t :

∏
α : Type. σ, u :

∏
β : Type. τ).∀α, β : Type.∀R : Rel(α, β). (tα)ρ(uβ).
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Ξ: Ctx Ξ ` σ : Type Ξ | Γ: Ctx

Ξ | Θ: Ctx Ξ | Γ ` t : σ Ξ | Γ ` t = u

Ξ | Γ | Θ ` φ : Prop Ξ | Γ | Θ ` ρ : Rel(σ, τ) Ξ | Γ | Θ | φ1, . . . , φn ` ψ

Figure 2: Types of judgements

2.4 The axioms

Figure 2 sums up the types of judgements we have in the logic. The last judgement in the figure says that in
the given context, the conjunction of the formulasφ1, . . . , φn impliesψ.

Having specified the language of Abadi & Plotkin’s logic, it is time to specify the axioms and the rules of
the logic. We have all the axioms of propositional logic plus the rules specified below.

We have rules for∀-quantification:

Ξ, α | Γ | Θ | Φ ` ψ
==================== Ξ | Γ | Θ ` Φ
Ξ | Γ | Θ | Φ ` ∀α : Type.ψ

(1)

Ξ | Γ, x : σ | Θ | Φ ` ψ
================== Ξ | Γ | Θ ` Φ
Ξ | Γ | Θ | Φ ` ∀x : σ.ψ

(2)

Ξ | Γ | Θ, R : Rel(τ, τ ′) | Φ ` ψ
======================== Ξ | Γ | Θ ` Φ
Ξ | Γ | Θ | Φ ` ∀R : Rel(τ, τ ′).ψ

(3)

The double bars mean that these are double rules, i.e., the condition on the bottom implies the one on top
and vice versa.

Rules for∃-quantification:

Ξ, α | Γ | Θ | φ ` ψ
==================== Ξ | Γ | Θ ` ψ
Ξ | Γ | Θ | ∃α : Type.φ ` ψ

(4)

Ξ | Γ, x : σ | Θ | φ ` ψ
================= Ξ | Γ | Θ ` ψ
Ξ | Γ | Θ | ∃x : σ.φ ` ψ

(5)

Ξ | Γ | Θ, R : Rel(τ, τ ′) | φ ` ψ
======================== Ξ | Γ | Θ ` ψ
Ξ | Γ | Θ | ∃R : Rel(τ, τ ′).φ ` ψ

(6)

We have substitution rules
Ξ, α | Γ | Θ | Ψ ` φ Ξ ` σ : Type

Ξ | Γ[σ/α] | Θ[σ/α] | Ψ[σ/α] ` φ[σ/α]
(7)

Ξ | Γ, x : σ | Θ | Ψ ` φ Ξ | Γ ` t : σ

Ξ | Γ | Θ | Ψ[t/x] ` φ[t/x]
(8)

Ξ | Γ | Θ, R : Rel(σ, τ) | Ψ ` φ Ξ | Γ | Θ ` ρ : Rel(σ, τ)

Ξ | Γ | Θ | Ψ[ρ/R] ` φ[ρ/R]
(9)
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Thesubstitutionaxiom:

Ξ | Γ | Θ | > ` ∀α, β : Type.∀x, x′ : α.∀y, y′ : β.∀R : Rel(α, β).
R(x, y) ∧ x =α x

′ ∧ y =β y
′ ⊃ R(x′, y′)

(10)

External equality implies internal equality:

Ξ | Γ ` t = u : σ

Ξ | Γ | Θ | > ` t =σ u
(11)

We omit the obvious rules stating that internal equality is an equivalence relation. The following rules
concern the interpretation of types as relations.

Ξ | Γ | Θ | > ` ∀x, y : 1. x1y (12)

~α ` αi Ξ | Γ | Θ ` ~ρ : Rel(~τ , ~τ ′)

Ξ | Γ | Θ | > ` αi[~ρ] ≡ ρi

(13)

~α ` σ → σ′ Ξ | Θ ` ~ρ : Rel(~τ , ~τ ′)

Ξ | Γ | Θ | > ` (σ → σ′)[~ρ] ≡ (σ[~ρ]→ σ′[~ρ])
(14)

~α `
∏
β. σ(~α, β) Ξ | Θ ` ~ρ : Rel(~τ , ~τ ′)

Ξ | Γ | Θ | > ` (∀β. σ(~α, β))[~ρ] ≡ ∀(β, β′, R : Rel(β, β′)). σ[~ρ,R])
(15)

Finally we have
Ξ | Γ, x : σ, y : τ | Θ ` φ : Prop Ξ | Γ ` t : σ, u : τ

Ξ | Γ ` ((x : σ, y : τ). φ)(t, u) ⊃⊂ φ[t, u/x, y].
(16)

Using this rule, we may prove a bijective correspondence between definable relations and propositions with
two free variables considered up to provable equivalence. The bijection maps a definable relationρ to the
formula ρ(x, y) with free variablesx, y and a formulaφ with free variablesx, y to the definable relation
(x, y). φ.

Lemma 2.3. SupposeΞ | Γ | Θ ` ρ : Rel(σ, τ) andΞ | Γ, x : σ, y : τ | Θ ` φ : Prop. Then

Ξ | Γ, x : σ, y : τ | Θ | > ` φ ⊃⊂ ((x : σ, y : τ). φ)(x, y)

and
Ξ | Γ | Θ | > ` ρ ≡ (x : σ, y : τ). ρ(x, y).

Proof. The first statement above is just a reformulation of (16), and for the second we need to prove that

∀x : σ, y : τ. ((x : σ, y : τ). ρ(x, y))(x, y) ⊃⊂ ρ(x, y)

which is also an easy consequence of (16).
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We would also like to mention the extensionality schemes:

(∀x : σ. t x =τ u x) ⊃ t =σ→τ u
(∀α : Type. t α =τ u α) ⊃ t =∏

α : Type.τ u.

These are taken as axioms in [12], but we shall not take these as axioms as we would like to be able to talk
about models that are not necessarily extensional.

Lemma 2.4. The substitution axiom above implies thereplacementrule:

Ξ | Γ | Θ | Φ ` t =σ t
′ Ξ | Γ, x : σ ` u : τ

Ξ | Γ | Θ | Φ ` u[t/x] =τ u[t′/x]

Proof. Instantiate the substitution axiom with the definable relation

ρ = (y : σ, z : σ). u[y/x] =τ u[z/x].

ClearlyΦ ` ρ(t, t), so sincet =σ t
′, we haveΦ ` ρ(t, t′) as desired.

Lemma 2.5 (Weakening, Exchange).If Ξ | Γ | Θ | Ψ ` φ is provable in the logic, and if further
Ξ′ | Γ′ | Θ′ is a context obtained fromΞ | Γ | Θ by permuting the order of the variables in the contexts, and
possibly adding variables, then

Ξ′ | Γ′ | Θ′ | Ψ ` φ
is also provable in the logic.

3 APL-structures

In this section we define the notion of an APL-structure, which is basically a category-theoretic formulation
of a model of Abadi & Plotkin’s logic. We also show how to interpret the logic in an APL-structure. We use
the definitions and results of Appendix A.

But first we recall the notion of aλ2-fibration, which is basically a model ofλ2.

Definition 3.1. A fibrationType → Kind is a λ2-fibration if it is fibred cartesian closed, has a generic
objectΩ ∈ Kind, products inKind, and simpleΩ-products, i.e., right adjoints

∏
π to the reindexing

functorsπ∗ for projectionsπ : Ξ× Ω→ Ξ.

Remark 3.2. In aλ2 fibration, for a mapf : Ξ→ Ω in Kind, we will use the notation̂f to denote the object
of TypeΞ corresponding tof , and likewise forσ ∈ TypeΞ we writeσ̂ : Ξ→ Ω for the map corresponding
to σ.

Definition 3.3. A pre-APL-structureconsists of

1. Fibrations:
Prop

r

��
Type

p

$$J
JJJJJJJJ

� � I // Ctx

q

��
Kind

where
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• p is aλ2-fibration.

• q is a fibration with fibred products

• (r, q) is an indexed first-order logic fibration (Definition A.4) which has products and coproducts
with respect toΞ× Ω→ Ξ in Kind (Definition A.5) whereΩ is the generic object ofp.

• I is a faithful product preserving map of fibrations.

2. a contravariant morphism of fibrations:

Type×Kind Type U //

((QQQQQQQQQQQQQ Ctx

zzvvvvvvvvv

Kind

3. a family of bijections

ΨΞ : HomCtxΞ
(ξ, U(σ, τ))→ Obj (Propξ×I(σ×τ))

for σ andτ in TypeΞ andξ in CtxΞ, which

• is natural in theξ, σ, τ

• commutes with reindexing functors; that is, ifρ : Ξ′ → Ξ is a morphism inKind andu : ξ →
U(σ, τ) is a morphism inCtxΞ, then

ΨΞ′(ρ∗(u)) = (ρ̄)∗(ΨΞ(u))

whereρ̄ is the cartesian lift ofρ.

Notice thatΨ is only defined on vertical morphisms.

By a contravariant functor of fibrations, we mean a functor of fibrations, which is contravariant in each fibre.

Remark 3.4. Item 3 implies that(U(1Ξ, 1Ξ))Ξ∈Kind is an indexed family of generic objects. If, on the
other hand, we have an indexed family of generic objects(ΣΞ)Ξ∈Kind andCtx is cartesian closed, then
we may defineU to beΣ−×− and thereby get items 2 and 3 for free. In general, however,Ctx will not be
cartesian closed. In particular, in the syntactic model described below in the proof of completenessCtx is
not cartesian closed.

Remark 3.5. Below we will describe how theU(σ, τ) is used to model the object of relations fromσ to τ .
To model a version of Abadi & Plotkin’s logic for unary or any other arity of parametricity as in Remark 2.2,
the functorU should have corresponding arity and the domain and codomain of the bijectionΨ should be
changed accordingly.

We now explain how to interpret all of Abadi & Plotkin’s logic, except for the relational interpretation of
types, in a pre-APL-structure. First we recall the interpretation ofλ2 in aλ2-fibration.

A type α1 . . . αn ` αi is interpreted as the object ofType over Ωn corresponding to thei’th projection
Ωn → Ω. For a typeα1 . . . αn ` σ, we have[[

∏
αi. σ]] =

∏
π[[~α ` σ]], whereπ is the projection forgetting

thei’th coordinate. Since each fibre of theλ2-fibration is cartesian closed, we may interpret the constructions
of the simply typedλ-calculus using fibrewise constructions.
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If Ξ, α | Γ ` t : τ is a term andΞ ` Γ is well-formed, then we may interpret the termΞ | Γ ` Λα. t :
∏
α. τ

as the morphism corresponding to[[Ξ, α | Γ ` t : τ ]] under the adjunctionπ∗ a
∏

π.

To interpretΞ | Γ ` t σ, notice that[[Ξ ` σ]] corresponds to a map

̂[[Ξ ` σ]] : [[Ξ]]→ Ω.

The morphism[[Ξ | Γ ` t :
∏
α. τ ]] corresponds by the adjunctionπ∗ a

∏
π to a morphism in the fibre over

[[Ξ]]× Ω. We reindex this morphism along

〈id [[Ξ]], ̂[[Ξ ` σ]]〉 : [[Ξ]]→ [[Ξ]]× Ω

to get[[Ξ | Γ ` t σ]].

Relational contexts are interpreted inCtx as:

[[Ξ | R1 : Rel(σ1, τ1), . . . , Rn : Rel(σn, τn)]] = U([[σ1]], [[τ1]])× . . .× U([[σn]], [[τn]]),

where[[σi]], [[τi]] are the interpretations of the types inType as described above.

We aim to define[[Ξ | Γ | Θ ` φ]] as an object ofProp over[[Ξ | Γ | Θ]], which we define to be

I([[Ξ | Γ]])× [[Ξ | Θ]].

We proceed by induction on the structure ofφ. We use the short notation[[Ξ | Γ | Θ ` t : τ ]] for the compo-
sition

[[Ξ | Γ | Θ]] π // I([[Ξ | Γ]])
I([[Ξ|Γ`t : τ ]]) // I([[Ξ ` τ ]]) ,

and we will in the following leave obvious isomorphisms involving products implicit.

If we define∆X : X → X ×X to be the diagonal map, then

[[Ξ | x : σ, y : σ | − ` x =σ y : Prop]] =
∐

∆I([[σ]])
(>)

and
[[Ξ | Γ | Θ | t =σ u]] =

〈[[Ξ | Γ | Θ ` t]], [[Ξ | Γ | Θ ` u]]〉∗[[Ξ | x : σ, y : σ | − ` x =σ y : Prop]].

∀x : A.φ and∀R : Rel(σ, τ).φ are interpreted using right adjoints to reindexing functors related to the ap-
propriate projections inCtx. Likewise∃x : A.φ and∃R : Rel(σ, τ).φ are interpreted using left adjoints to
the same reindexing functors.

∀α.φ and∃α.φ are interpreted using respectively right and left adjoints toπ̄∗ where π̄ is the lift of the
projectionπ : [[Ξ, α : Type]] → [[Ξ]] in Kind to Ctx. To be more precise, one may easily show that for
Ξ | Γ | Θ wellformed[[Ξ, α | Γ | Θ]] = π∗[[Ξ | Γ | Θ]] using the corresponding result for the interpretation
of λ2, and so the cartesian lift ofπ is a map:

π̄ : [[Ξ, α | Γ | Θ]] → [[Ξ | Γ | Θ]]

and we define
[[Ξ | Γ | Θ ` ∀α. φ]] =

∏
π̄[[Ξ, α | Γ | Θ ` φ]],

where
∏

π̄ is the right adjoint tōπ∗.

39



Definable relations are interpreted as maps inCtx. To be more precise, a definable relation

Ξ | Γ | Θ ` ρ : Rel(σ, τ)

is interpreted as a morphism from[[Ξ | Γ | Θ]] toU([[σ]], [[τ ]]). The definable relation

Ξ | Γ | Θ, R : Rel(σ, τ),Θ′ ` R : Rel(σ, τ)

is interpreted as the projection. We define

[[Ξ | Γ | Θ ` (x : σ, y : τ). φ : Rel(σ, τ)]] = Ψ−1[[Ξ | Γ, x : σ, y : τ | Θ ` φ]].

We define the interpretation of application of definable relations to terms as follows:

[[Ξ | Γ, x : σ, y : τ | Θ ` ρ(x, y)]] = Ψ([[Ξ | Γ | Θ ` ρ : Rel(σ, τ)]]).

Finally
[[Ξ | Γ | Θ ` ρ(t, u)]] =

〈π, id , [[Ξ | Γ | Θ ` t]], [[Ξ | Γ | Θ ` u]], π′〉∗[[Ξ | Γ, x : σ, y : τ | Θ ` ρ(x, y)]]

whereπ : [[Ξ | Γ | Θ]]→ I[[Ξ | Γ]] andπ′ : [[Ξ | Γ | Θ]]→ [[Ξ | − | Θ]] are the projections. As usual, we have
left out some obvious isomorphisms here.

To interpret the relational interpretation of types we need a little more structure. First we consider a fibration

Relations→ RelCtx,

that can be defined for every pre-APL-structure.RelCtx is defined as the pullback

RelCtx //

��

Ctx

��
Kind×Kind

× // Kind

If Θ is an object ofRelCtx projecting to(Ξ,Ξ′) ∈ Kind×Kind, we will write it asΞ,Ξ′ | Θ. The fibre
of Relations overΞ,Ξ′ | Θ is

objects Triples(σ, τ, ρ), whereσ is an object inTypeΞ, τ is an object inTypeΞ′ andρ is a map
ρ : Θ→ U(π∗σ, (π′)∗τ), whereπ, π′ are the projections out ofΞ× Ξ′.

morphisms A morphism from(σ, τ, ρ) to (σ′, τ ′, ρ′) is a pair of morphisms(s, t), such thats : σ → σ′

andt : τ → τ ′, and
Ψ(U(π∗t, (π′)∗s) ◦ ρ′) ≤ Ψ(ρ)

where the ordering refers to the fibrewise ordering onProp.

Reindexing(σ, τ, ρ) along a vertical mapΘ′ → Θ in RelCtx (vertical with respect toKind ×Kind) is
given by composition. Reindexing with respect to lifts of maps(ω, ω′) : (Ξ1,Ξ′

1) → (Ξ2,Ξ′
2) is given by

reindexing inCtx→ Kind.
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Remark 3.6. In the internal language, objects ofRelations are simply relations

Ξ,Ξ′ | Θ ` ρ : Rel(σ(Ξ), τ(Ξ′)),

and a morphism fromρ : Rel(σ(Ξ), τ(Ξ′)) toρ′ : Rel(σ′(Ξ), τ ′(Ξ′)) is simply a pair of morphismst : σ → σ′

in TypeΞ ands : τ → τ ′ in TypeΞ′ such that

∀x, y. ρ(x, y) ⊃ ρ′(t x, s y).

We clearly have two functorsRelCtx → Kind defined by mapping(Ξ,Ξ′,Θ) to Ξ andΞ′ respectively,
and we also have two functorsRelations→ Type defined by mapping(φ, σ, τ) to σ andτ respectively.

Lemma 3.7. The fibrationRelations→ RelCtx is aλ2-fibration, and the maps mentioned above define
a pair of maps ofλ2 fibrations

Type

��

Relations
∂1

oo
∂0oo

��
Kind RelCtx.

∂1

oo
∂0oo

Proof. The categoryRelCtx has products:

(Ξ1,Ξ′
1,Θ)× (Ξ2,Ξ′

2,Θ
′) = (Ξ1 × Ξ2,Ξ′

1 × Ξ′
2, (π, π)∗Θ× (π′, π′)∗Θ′).

where(π, π) : (Ξ1×Ξ2,Ξ′
1×Ξ′

2)→ (Ξ1,Ξ′
1) is the projection, and(π′, π′) is the other evident projection.

The fibration has a generic object(Ω,Ω, U(îdΩ, îdΩ)), since morphism into this from(Ξ,Ξ′,Θ) in RelCtx
consists of pairs of types(f : Ξ → Ω, g : Ξ′ → Ω) and vertical morphisms fromΘ to U(f̂ , ĝ). These are
exactly the objects ofRelations.

The constructions for fibred products, fibred exponents and simpleΩ-products are simply the rules for prod-
ucts, exponents and universal quantification of relations in Abadi & Plotkin’s logic formulated in the internal
language of the model, which we will describe in Section 4. One can either interpret these constructions
in the pre-APL-structure, and prove directly that these constructions have the desired properties, or one can
use the fact that pre-APL-structures interpret these constructions soundly (Theorem 3.10) and reason in the
internal logic.

Here we give the rest of the proof reasoning in the internal logic. Supposeρ : Rel(σ, τ) andρ′ : Rel(σ′, τ ′)
andω : Rel(σ′′, τ ′′) are objects in some fibre ofRelations. Then a vertical morphism fromω to

ρ× ρ′ : Rel((σ × σ′), (τ × τ ′)),

defined as
(x, x′)ρ× ρ′(y, y′) = xρy ∧ x′ρ′y′,

is a pair of mapst : σ′′ → σ × σ′ andu : τ ′′ → τ × τ ′ such that

∀x, y. xωy ⊃ π(tx)ρπ(uy) ∧ π′(tx)ρ′π′(uy),

which is the same as a pair of maps fromω into ρ andρ′ respectively.

Likewise maps fromω into
(ρ→ ρ′) : Rel((σ → σ′), (τ → τ ′)),
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defined as
f(ρ→ ρ′)g = ∀x : σ∀y : τ(xρy ⊃ (fx)ρ′(gy)),

are in one-to-one correspondence with maps fromω × ρ to ρ′.

Given new relationsΞ,Ξ′ | Θ ` ω : Rel(σ, σ′) and

Ξ, α; Ξ′, β | Θ, R : Rel(α, β) ` ρ : Rel(τ, τ ′),

we have defined

Ξ,Ξ′ | Θ ` ∀(α, β,R : Rel(α, β)). ρ : Rel((
∏
α : Type. τ), (

∏
β : Type. τ ′))

as
(t :

∏
α. τ,

∏
β. τ ′).∀α, β : Type.∀R : Rel(α, β). (tα)ρ(uβ).

We need to show that this defines a right adjoint to weakening. The idea is that the correspondence between
maps will be the same as inType→ Kind. In this fibration, the correspondence is given as follows, a map
Ξ, α | − ` t : σ → τ with Ξ ` σ : Type corresponds toΞ | − ` t̂ : σ →

∏
α. τ wheret̂ = λx : σ.Λα. (t x).

We will show, that(t, u) preserves relations iff(t̂, û) does. It is clear that

Ξ, α; Ξ′, β | x : σ, y : σ′ | Θ, R : Rel(α, β) | xωy ` (tx)ρ(uy)

iff
Ξ,Ξ′ | x : σ, y : σ′ | Θ | xωy ` ∀α, β : Type.∀R : Rel(α, β). (t̂ x α)ρ(û y β),

which establishes the bijective correspondence.

Definition 3.8. An APL-structure is a pre-APL-structure for which the graph of 3.7 can be extended to a
reflexive graph ofλ2-fibrations

Type

��

J // Relations
∂1

oo

∂0oo

��
Kind J // RelCtx,

∂1

oo

∂0oo

i.e., there exists a mapJ of λ2-fibrations such that∂0J = id = ∂1J .

Remark 3.9. There is a functor fromRelations to Prop mapping an object(σ, τ, ρ) to Ψ(ρ). In the
following we often use that functor implicitly.

We need to show how to interpret the rule

α1, . . . , αn ` σ(~α) : Type Ξ | Γ | Θ ` ρ1 : Rel(τ1, τ ′1), . . . , ρn : Rel(τn, τ ′n)

Ξ | Γ | Θ ` σ[~ρ] : Rel(σ(~τ), σ(~τ ′))

in an APL-structure.

SinceJ preserves products and generic objects,J([[~α ` σ(~α)]]) is a definable relation of the form

[[~α; ~β | − | ~R : Rel(~α, ~β) ` J(σ) : Rel(σ(~α), σ(~β))]].

It thus makes sense to define

[[~α, ~β | − | ~R : Rel(~α, ~β) ` σ[~R] : Rel(σ(~α), σ(~β))]]
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to beJ([[~α ` σ(~α) : Type]]), so now all we need to do is reindex this object. Given typesΞ ` ~τ ,~τ ′ : Type,
we define

[[Ξ | − | ~R : Rel(~τ , ~τ ′) ` σ[~R] : Rel(σ(~τ), σ(~τ ′))]]

to be
〈 ̂[[Ξ ` ~τ ]], ̂[[Ξ ` ~τ ′]]〉∗[[~α; ~β | − | ~R : Rel(~α, ~β) ` σ[~R] : Rel(σ(~α), σ(~β))]].

Finally, given definable relationsΞ | Γ | Θ `~ρ : Rel(~τ , ~τ ′) we define

[[Ξ | Γ | Θ ` σ[~ρ] : Rel(σ(~τ), σ(~τ ′))]] =
[[Ξ | − | ~R : Rel(~τ , ~τ ′) ` σ[~R] : Rel(σ(~τ), σ(~τ ′))]] ◦ [[Ξ | Γ | Θ ` ~ρ : Rel(~τ , ~τ ′)]].

3.1 Soundness

We have now completed showing how to interpret all constructions of the language of Abadi and Plotkin’s
logic in APL-structures. We consider an implicationΞ | Γ | Θ | φ1, . . . , φn ` ψ to hold in the model if∧

i

[[Ξ | Γ | Θ ` φi]] ` [[Ξ | Γ | Θ ` ψ]],

where` above refers to the fibrewise ordering inProp.

Theorem 3.10 (Soundness).In any APL-structure the interpretation defined above is sound with respect
to the axioms and rules specified in Section 2.4, i.e., all axioms hold in the model, and for all rules, if the
hypothesis holds in the model, then so does the conclusion. In any pre-APL structure the interpretation of
the part of the logic excluding the relational interpretation of terms is sound.

We will only prove the first part of Theorem 3.10, i.e., soundness for APL-structures. The proof of soundness
for pre-APL structures is basically the same. For the proof we need the following lemmas:

Lemma 3.11. If Ξ | Γ ` t : σ then

[[Ξ | Γ | Θ ` φ[t/x]]] = (I〈id [[Ξ|Γ]], [[t]]〉 × id [[Ξ|Θ]])
∗[[Ξ | Γ, x : σ | Θ ` φ]]

Proof. We will prove the statement of the lemma and the statement

[[Ξ | Γ | Θ ` ρ[t/x] : Rel(τ, τ ′)]] =
[[Ξ | Γ, x : σ | Θ ` ρ : Rel(τ, τ ′)]] ◦ (I〈id [[Ξ|Γ]], [[t]]〉 × id [[Ξ|Θ]]),

for all definable relationsρ, by simultaneous induction on the structure ofφ andρ. We only do a few cases
and leave the rest to the reader.

Case ρ = σ[~ρ′]:

[[Ξ | Γ | Θ ` σ[~ρ′][t/x]]] = [[Ξ | Γ | Θ ` σ[~ρ′[t/x]]]] = [[Ξ | − | ~R ` σ[~R]]] ◦ [[~ρ[t/x]]]

Since by induction[[~ρ[t/x]]] = [[~ρ]] ◦ (I〈id [[Ξ|Γ]], [[t]]〉 × id [[Ξ|Θ]])), we are done.
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Case ρ = (y : τ, z : τ ′). φ:

[[Ξ | Γ | Θ ` ρ[t/x]]] = Ψ−1([[Ξ | Γ, y : τ, z : τ ′ | Θ ` φ[t/x]]]),

which by induction is equal to

Ψ−1(〈π[[Γ]], [[t]], π[[y : τ,z : τ ′|Θ]]〉∗[[Ξ | Γ, x : σ, y : τ, z : τ ′ | Θ ` φ]]).

By naturality ofΨ this is equal to

Ψ−1([[Ξ | Γ, x : σ, y : τ, z : τ ′ | Θ ` φ]]) ◦ 〈π[[Γ]], [[t]], π[[Θ]]〉 =
[[Ξ | Γ, x : σ | Θ ` ρ]]) ◦ 〈π[[Γ]], [[t]], π[[Θ]]〉

as desired.

Case φ = ρ(u, s)

Using naturality ofΨ as before, one can prove that

[[Ξ | Γ, y : τ, z : τ ′ | Θ ` ρ(y, z)[t/x]]] =
(I〈id [[Ξ|Γ,y : τ,z : τ ′]], [[t]]〉 × id [[Ξ|Θ]])∗[[Ξ | Γ, y : τ, z : τ ′, x : σ | Θ ` ρ(y, z)]].

The general case follows from the fact that in aλ2-fibration

[[Ξ | Γ ` u[t/x]]] = [[Ξ | Γ ` u]] ◦ 〈id , [[Ξ | Γ ` t]]〉.

Case φ = ∀α : Type. ψ:

We need to show that

[[Ξ | Γ | Θ ` ∀α : Type. ψ[t/x]]] =
(I〈id [[Ξ|Γ]], [[t]]〉 × id [[Ξ|Θ]])∗[[Ξ | Γ, x : σ | Θ | ∀α : Type. ψ]].

Let π denote the cartesian lift of the projection[[Ξ, α]]→ [[Ξ]]. Then by induction we have that the left
hand side of the equation is∏

π(I〈idΓ, [[t]]〉 × idΘ)∗[[Ξ, α | Γ, x : σ | Θ ` ψ]].

Consider the square

[[Ξ, α | Γ | Θ]] π //

I〈idΓ,[[t]]〉×idΘ

��

[[Ξ | Γ | Θ]]

I〈idΓ,[[t]]〉×idΘ

��
[[Ξ, α | Γ, x : σ | Θ]] π // [[Ξ | Γ, x : σ | Θ]].

This square commutes sinceπ is a natural transformation fromπ∗ to id , and it is a pullback by [5,
Exercise 1.4.4]. The Beck-Chevalley condition relative to this square gives the desired result.

Lemma 3.12. If Ξ | Γ | Θ ` φ : Prop, then

[[Ξ | Γ, x : σ | Θ ` φ]] = π∗[[Ξ | Γ | Θ ` φ]],

whereπ : [[Ξ | Γ, x : σ | Θ]]→ [[Ξ | Γ | Θ]] is the projection.
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Lemma 3.13. If Ξ ` σ : Type then

[[Ξ | Γ[σ/α] | Θ[σ/α] ` φ[σ/α]]] = 〈id [[Ξ]], [[σ]]〉∗[[Ξ, α : Type | Γ | Θ ` φ]],

where the vertical line in〈id [[Ξ]], [[σ]]〉 denotes the cartesian lift.

Proof. Notice first that a corresponding reindexing lemma for interpretation ofλ2 in λ2-fibrations tells us
that

〈id [[Ξ]], [[σ]]〉∗[[Ξ, α | Γ | Θ]] = [[Ξ | Γ[σ/α] | Θ[σ/α]]].

The rest of the proof is by induction over the structure ofφ, and since it resembles the proof of Lemma 3.11
closely we leave it to the reader.

Lemma 3.14. If Ξ | Γ | Θ ` φ then

[[Ξ | Γ | Θ ` φ]] = π∗Ξ,α→Ξ[[Ξ, α | Γ | Θ ` φ]]

Proof. The proof is almost the same as for Lemma 3.13.

Lemma 3.15. If Ξ | Γ | Θ ` ρ : Rel(τ, τ ′) is a definable relation, then

[[Ξ | Γ | Θ ` φ[ρ/R]]] = (〈id [[Ξ|Γ|Θ]], [[ρ]]〉)∗[[Ξ | Γ | Θ, R : Rel(τ, τ ′) ` φ]]

Proof. The lemma should be proved simultaneously with the statement

[[Ξ | Γ | Θ ` ρ′[ρ/R]]] = [[Ξ | Γ | Θ, R : Rel(τ, τ ′) ` ρ′]] ◦ (〈id [[Ξ|Γ|Θ]], [[ρ]]〉)

for all definable relationsρ′, by structural induction onφ andρ′. We leave the proof to the reader, as it
closely resembles the proof of (3.11).

Lemma 3.16. If Ξ | Γ | Θ ` φ : Prop, then

[[Ξ | Γ | Θ, R : Rel(σ, τ) ` φ]] = π∗[[Ξ | Γ | Θ ` φ]],

whereπ : [[Ξ | Γ | Θ, R : Rel(σ, τ)]]→ [[Ξ | Γ | Θ]] is the projection.

We are now ready to prove soundness.

Proof of Theorem 3.10.The rules for quantification (1)- (6) follow directly from the fact that the interpreta-
tion of ∀ and∃ are given by right, respectively left adjoints to weakening functors. The substitution rules
(7) - (9) are sound by Lemmas 3.11, 3.13 and 3.15.

For thesubstitutionaxiom (10) we will only prove

[[α, β | x, x′ : α, y : β | R : Rel(α, β) ` x =α x
′]] ≤

[[α, β | x, x′ : α, y : β | R : Rel(α, β) ` R(x, y) ⊃ R(x′, y)]].

Once this is done, the rest of the proof amounts to doing the same thing in the second variable. We will for
readability write simply[[α]], [[β]], [[R]] for [[α, β ` α]], [[α, β ` β]], [[α, β | − | R : Rel(α, β)]].
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If we let π1, π2, π3, π4 denote the projections out of

[[α, β | x, x′ : α, y : β | R : Rel(α, β)]] =
[[α, β ` α]]2 × [[α, β ` β]]× U([[α, β ` α]], [[α, β ` β]])

we can formulate what we aim to prove as

〈π1, π2〉∗(
∐

∆[[α]]
(>)) ≤ 〈π1, π3〉∗Ψ(id [[R]]) ⊃ 〈π2, π3〉∗Ψ(id [[R]]),

where∆ denotes the diagonal map.

Using the Beck-Chevalley condition on the square

[[α]]× [[β]]× [[R]]
∆[[α]]×id

//

π1

��

[[α]]2 × [[β]]× [[R]]

〈π1,π2〉
��

[[α]]
∆[[α]] // [[α]]2

we get
〈π1, π2〉∗(

∐
∆[[α]]

(>)) =
∐

∆[[α]]×id [[β]]×[[R]]
(>).

Now the result follows from using the adjunction and the fact that

〈π1, π3〉 ◦ (∆[[α]] × id [[β]]×[[R]]) = 〈π2, π3〉 ◦ (∆[[α]] × id [[β]]×[[R]]).

External equality implies internal equality (11) since the model ofλ2 included in the model is sound. Internal
equality is clearly an equivalence relation.

The axioms concerning types as relations (12) - (15) follow from the fact thatJ is required to be a morphism
of λ2 fibrations and that theλ2 structure inRelations→ RelCtx is given by the interpretation of products
and quantification of relations. For instance soundness of the (15) is proved as follows:

[[~α, ~α′ | − | ~R : Rel(~α,~α′) ` (
∏
β. σ)[~R]]] =

J([[~α `
∏
β. σ]]) =

[[~α, ~α′ | ~R : Rel( ~α, ~α′) ` (∀γ, γ′, S : Rel(γ, γ′)). σ[~R, S]]]

where the second equality holds sinceJ preserves simpleΩ-products.

Finally, to prove soundness of rule (16), it suffices to prove soundness of

Ξ | Γ, x : σ, y : τ | Θ | > ` ((x : σ, y : τ). φ)(x, y) ⊃⊂ φ,

but
[[Ξ | Γ, x : σ, y : τ | Θ ` ((x : σ, y : τ). φ)(x, y)]] =

Ψ([[Ξ | Γ | Θ ` (x : σ, y : τ). φ]]) =
Ψ ◦Ψ−1([[Ξ | Γ, x : σ, y : τ | Θ ` φ]]) = [[Ξ | Γ, x : σ, y : τ | Θ ` φ]].
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3.2 Completeness

The Soundness Theorem (3.10) allows us to reason about APL-structures using Abadi & Plotkin’s logic.
The Completeness Theorem below states that any formula that holds in all APL-structures, is provable
in the logic. This allows us to reason about the logic using the class of APL-structures. However, since
the APL-structure below is constructed from the logic, this does not say much. Instead, one should view
the Completeness Theorem as stating that the class of APL-structures is not too restrictive; it completely
describes the logic.

Theorem 3.17 (Completeness).There exists an APL-structure with the property that any formula of Abadi
& Plotkin’s logic based on pureλ2 that holds in the structure may be proved in the logic.

Proof. We construct the APL-structure syntactically, giving the categories in question the same names as in
the diagram of item 1 in Definition 3.3.

• The categoryKind has sequences of the formα1 : Type, . . . , αn : Type as objects, where we identify
these contexts up to renaming (in other words, we may think of objects as natural numbers). A
morphism fromΞ into α1 : Type, . . . , αn : Type is a sequence of types(σ1, . . . , σn) such that allσi

are well-formed in contextΞ.

• Objects in the fibre ofType overΞ are well-formed types in this context, where we identify types
up to renaming of free type variables. Morphisms in this fibre fromσ to τ are equivalence classes of
termst such thatΞ | − ` t : σ → τ where we identify terms up to external equality. Reindexing with
respect to morphisms inKind is by substitution.

• The categoryCtx has as objects in the fibre overΞ well-formed contexts of Abadi & Plotkin’s logic:
Ξ | Γ | Θ, where we again identify such contexts up to renaming of free type-variables. A vertical
morphism fromΞ | Γ | Θ to Ξ | Γ′ | R1 : Rel(σ1, τ1), . . . , Rn : Rel(σn, τn) is a pair, consisting of a
morphismΞ | Γ → Ξ | Γ′ in the sense of morphisms inType and a sequence of definable relations
(ρ1, . . . , ρn) such thatΞ | Γ | Θ ` ρi : Rel(σi, τi). We identify two such morphisms represented
by the same type morphism and the definable relations(ρ1, . . . , ρn) and(ρ′1, . . . , ρ

′
n) if, for eachi,

ρi ≡ ρ′i is provable in the logic. one. Reindexing is by substitution.

• The fibre of the categoryProp over a contextΞ | Γ | Θ has as objects formulas in that context, where
we identify two formulas if they are provably equivalent. These are ordered by entailment in the logic.
Reindexing is done by substitution, that is, reindexing with respect to lifts of morphisms fromKind
is done by substitution in Kind-variables, whereas reindexing with respect to vertical maps inCtx is
by substitution in type variables and relational variables.

It is straightforward to verify that this structure satisfies item 1 of Definition 3.3. The only non-obvious
thing to verify here is existence of products and coproducts inProp with respect to vertical maps inCtx.

Suppose(~t, ~ρ) represents a morphism fromΞ | ~x : ~σ | ~R to Ξ | ~y : ~τ | ~S. Then we can define the product
functor inProp by: ∏

(~t,~ρ)(Ξ | ~x : ~σ | ~R ` φ(~x, ~R)) =
Ξ | ~y : ~τ | ~S ` ∀~x.∀~R(~t~x = ~y ∧ (~ρ(~x, ~R) ≡ ~S) ⊃ φ(~x, ~R)).

We define coproduct as: ∐
(~t,~ρ)(Ξ | ~x : ~σ | ~R ` φ(~x, ~R)) =

Ξ | ~y : ~τ | ~S ` ∃~x.∃~R.~t~x = ~y ∧ ~ρ(~x, ~R) ≡ ~S ∧ φ(~x, ~R).
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The functorU of item 2 is defined as

U(σ, τ) = R : Rel(σ, τ)

and
U(t : σ → σ′, u : τ → τ ′) = Ξ | R : Rel(σ′, τ ′) ` (x : σ, y : τ). R(tx, uy)

The mapΨ maps a definable relationΞ | Γ | Θ ` ρ : Rel(σ, τ) to the proposition

Ξ | Γ, x : σ, y : τ | Θ ` ρ(x, y) : Prop,

which is a bijection by Lemma 2.3.

We have defined a pre-APL-structure. The categoryRelCtx obtained from this pre-APL structure has as
objects~α, ~β | Γ | Θ. The fibre ofRelations over an object~α, ~β | Γ | Θ in RelCtx is:

Objects Equivalence classes of definable relations

~α, ~β | Γ | Θ ` ρ : Rel(σ(~α), τ(~β)).

Morphisms A morphism fromρ : Rel(σ(~α), τ(~β)) to ρ′ : Rel(σ′(~α), τ ′(~β)) is a pair of morphismst :
σ → σ′, u : τ → τ ′ such that it is provable that

∀x : σ.∀y : τ. ρ(x, y) ⊃ ρ′(tx, uy).

In the reflexive graph of Lemma 3.7, the functor fromKind to RelCtx acts on objects as

α1, . . . , αn 7→ α1, . . . , αn;β1, . . . , βn | R1 : Rel(α1, β1), . . . , Rn : Rel(αn, βn)

and it takes a morphism~σ : ~α → ~α′ to the triple(~σ(α), ~σ(β), ~σ[~R]). Notice that this defines a morphism
since

~α, ~β | ~R : Rel(~α, ~β) ` σi[~R] : Rel(σi(~α), σi(~β))

This really defines the object part of the functor fromType to Relations since it must preserveλ2-
structure. So this functor takes a type~α ` σ to

~α; ~β | ~R : Rel(~α, ~β) ` σ[~R] : Rel(σ(~α), σ(~β)).

The functor maps a morphism~α | x : σ ` t : τ to the pair(λx : σ. t, λx : σ. t). This defines a morphism in
Relations since the Logical Relations Lemma [12, Lemma 2] implies that

~α; ~β | ~R : Rel(~α, ~β) | x : σ(~α), y : σ(~β) ` σ[~R](x, y) ⊃ τ [~R](t, t[β/α][y/x]).

One may easily verify that the functors above define a reflexive graph ofλ2-fibrations.

Now, by definition, a formula holds in this APL-structure iff it is provable in Abadi & Plotkin’s logic.

Remark 3.18. The Completeness Theorem only states completeness for Abadi & Plotkin’s logic based on
thepureλ2. The reason for this is that the proof uses the Logical Relations Lemma, which is proved in [12]
by structural induction on terms. In the case of general calculi, one must know that the Logical Relations
Lemma holds for term-constants in the language to be able to prove completeness.
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4 Parametric APL-structures

Given an APL-structure, we may consider the internal logic of the model (to be defined precisely below),
and formulate parametricity as a schema in this logic. For technical reasons we will define parametric APL-
structures as APL-structures not only satisfying the parametricity schema, but also extensionality and very
strong equality (A.7). For parametric APL-structures, we can derive consequences of parametricity using
Abadi & Plotkin’s logic, as in [12]. For many of these proofs extensionality is needed, and we need very
strong equality to deduce from theorems in Abadi & Plotkin’s logic to category theoretic theorems, as we
will see in Section 5. This is the reason why we propose parametric APL-structures as a category-theoretic
definition of parametricity.

The internal language of an APL-structure is simply Abadi & Plotkin’s logic on the internal language of the
λ2-fibration (see [5]), with the ordering relation in a fibre ofProp defined asφ ` ψ iff [[φ]] ` [[ψ]] holds in
the model. Using the internal language we may express properties of the APL-structure, and ask whether
these properties hold in the logic.

Definition 4.1. The extensionality schemes in the internal language of an APL-structure are the schemes

− | − | − ` ∀α, β : Type.∀t, u : α→ β. (∀x : α.tx =β ux) ⊃ t =α→β u, (17)

Ξ | − | − ` ∀f, g : (Πα : Type. σ). (∀α : Type.fα =σ gα) ⊃ f =Πα : Type.σ g, (18)

where in (18)σ ranges over all types such thatΞ, α ` σ : Type.

Lemma 4.2. For any APL-structure, very strong equality (Definition A.7) implies extensionality.

Proof. We can formulate extensionality equivalently as the rules

Ξ | Γ, x : σ | Θ ` t =τ u

Ξ | Γ | Θ ` λx : σ. t =σ→τ λx : σ. u

Ξ, α : Type | Γ | Θ ` f =σ g

Ξ | Γ | Θ ` Λα.Type. f =Πα : Type.σ Λα.Type. g

If internal equality is the same as external equality then these rules hold by the rules for external equality in
Figure 1.

Definition 4.3. The schema

∀~α : Type.∀u, v : σ. (u(σ[eq~α])v ⊃⊂ u =σ v)

is called theIdentity Extension Schema. Hereσ ranges over all types such that~α ` σ : Type.

Definition 4.4. A parametric APL-structureis an APL-structure with very strong equality – and hence
extensionality – satisfying the Identity Extension Schema.

Remark 4.5. If we write out the interpretation of the Identity Extension Schema, we get a category-
theoretical formulation of the notion of parametric APL-structure. It is an APL-structure with very strong
equality, extensionality and in which for all types~α ` σ : Type,

(id [[~α`σ]]2 × [[~α | − | − ` ~eqα]])∗J([[~α ` σ]]) = [[~α | x : σ, y : σ | − ` x =σ y]].
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Definition 4.6. For any typeβ, ~α ` σ(β, ~α) we can form the parametricity schema:

∀~α : Type.∀u : (
∏
β. σ).∀β, β′ : Type.∀R : Rel(β, β′). (u β)σ[R,eq~α](u β′)

in the empty context.

Proposition 4.7. The Identity Extension Schema implies the parametricity schema. Thus the parametricity
schema holds in any parametric APL-structure.

Proof. Since
~α | u :

∏
β : Type. σ(β, ~α) | − ` u =∏

β : Type.σ
u

always holds in the model, by the Identity Extension Schema, we know that

~α | u :
∏
β : Type. σ(β, ~α) | − ` u(

∏
β : Type. σ)[eq~α]u

holds, but by the Axiom (15) this means that

~α | u :
∏
β : Type. σ(β, ~α) ` ∀β, β′∀R : Rel(β, β′). (u β)(σ[R,eq~α])(u β′)

holds as desired.

Without assuming parametricity we can prove the logical relations lemma:

Lemma 4.8 (Logical Relations Lemma).For any APL-structure the Logical Relations Schema

− | − | − ` tσt

holds, wheret ranges over allclosedterms of closed type, i.e.,− | − ` t : σ.

Proof. The lemma is really just a restatement of the requirement that

J : Type→ Relations

is a functor. Let us write out the details.

A closed termt of closed typeσ corresponds in the model to a mapt : 1 → σ in Type1, and by definition
of the interpretation

[[− | x : σ, y : σ | − ` xσy]] = J(σ).

The fact thatJ is required to be a functor, means exactly that the pair(t, t) should define a map in
Relations, i.e., the formula

− | − | − ` ∀x, y : 1. x1y ⊃ tσt

should hold in the model. Since the relational interpretation of1 is simply the constantly true relation, we
get the statement of the lemma.

Remark 4.9. The Logical Relations Lemma suspiciously resembles the Identity Extension Schema. For a
closed term of open type:~α | − ` t : σ, the Logical Relations Lemma implies(Λα. t)

∏
~α. σ(Λα. t), so that

tσ[eq~α]t. However, since this only holds forclosedtermst, we do not have the formula

∀t : σ. tσ[eq~α]t,

which is the formula that we will need to prove consequences of parametricity.
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5 Consequences of parametricity

As mentioned in the introduction to Section 4 we may use Abadi & Plotkin’s logic to derive consequences
of parametricity in parametric APL-structures. In this section we exemplify how to do so. Through our
examples, it should become apparent how extensionality and very strong equality play important roles in the
proofs of the consequences.

The proofs of the consequences are based on theorems about Abadi & Plotkin’s logic stated in [12]. For
completeness, we have written out proofs of these theorems, often inspired by [3]. What is new here, is just
that we show how to conclude from the logic to the APL-structures.

5.1 Dinaturality

We shall use the following definition very often.

Definition 5.1. We say that~α ` σ : Type is an inductively constructed type, if it can be constructed from
free variables~α and closed types using the type constructors ofλ2, i.e.,×,→ and

∏
α..

For example, ifσ is a closed type then
∏
α. σ×α is an inductively constructed type. However, some models

may contain types that are not inductively constructed! For example, in syntactical models, any basic open
type, such as the typeα ` lists(α) is not inductively constructed.

We define the notion of positive and negative occurrences of a type variableα in an inductively constructed
type σ inductively over the structure ofσ as follows. The type variableα occurs positively inα. The
positive occurrences ofα in σ× τ are the positive occurrences ofα in σ and the positive occurrences ofα in
τ . Likewise for negative occurrences. The positive occurrences ofα in σ → τ are the positive occurrences
of α in τ and the negative occurrences ofα in σ. The negative occurrences are the negative inτ and the
positive inσ. The positive and negative occurrences ofα in

∏
β. σ are the same as forσ, if α 6= β. There

are no positive or negative occurrences ofα in
∏
α. σ since we only consider free occurrences of a type

variable.

Supposeσ(α, β) is an inductively constructed type with all free variables inα, β such thatα occurs only
negatively andβ occurs only positively inσ. We may then forf : α→ α′ andg : β → β′ define a morphism

σ(f, g) : σ(α′, β)→ σ(α, β′)

inductively over the structure ofσ as in [12].

It is well-known that Dinaturality is a consequence of parametricity, but we include the proof for complete-
ness.

Lemma 5.2 (Dinaturality). In a parametric APL-structure, the dinaturality schema

∀α, β.∀f : α→ β. σ(idα, f) ◦ (·)α =∏
α.(σ(α,α))→σ(α,β)

σ(f, idβ) ◦ (·)β

holds. Here(·)α denotes the termλu : (
∏
α. σ(α, α)). u(α).

Proof. Supposef : α→ β. By extensionality it suffices to prove that, for anyu :
∏
α. σ(α, α),

σ(idα, f)u(α) =σ(α,β) σ(f, idβ)u(β).
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Instantiating the Logical Relations Lemma with the types

α, β, γ, δ ` (α→ β)× (γ → δ)
α, β, γ, δ ` σ(β, γ)→ σ(α, δ)

and
t = Λα, β, γ, δ. λω : (α→ β)× (γ → δ). σ(πω, π′ω) :∏
α, β, γ, δ. (α→ β)× (γ → δ)→ σ(β, γ)→ σ(α, δ)

we get
α, β, γ, δ, α′, β′, γ′, δ′ | x : (α→ β)× (γ → δ), y : (α′ → β′)× (γ′ → δ′) |

R1 : Rel(α, α′), R2 : Rel(β, β′), R3 : Rel(γ, γ′), R4 : Rel(δ, δ′) |
x(R1 → R2)× (R3 → R4)y ` σ(πx, π′x)(σ[R2, R3]→ σ[R1, R4])σ(πy, π′y).

Recall the notation〈f〉 for the graph of the functionf defined as(x : α, y : β). f(x) =β y. If we set
α, β, γ, α′ to α and setδ, β′, γ′, δ′ to β and letR1 = eqα,R2 = R3 = 〈f〉 andR4 = eqβ , then we get

x(eqα → 〈f〉)× (〈f〉 → eqβ)y ` σ(πx, π′x)(σ[〈f〉, 〈f〉]→ σ[eqα,eqβ])σ(πy, π′y).

If we setx = 〈idα, f〉 andy = 〈f, idβ〉 then sinceidα(eqα → 〈f〉)f andf(〈f〉 → eqβ)idβ we obtain

σ(idα, f)(σ[〈f〉, 〈f〉]→ σ[eqα,eqβ])σ(f, idβ).

Since the parametricity schema tells us that

u(α)σ[〈f〉, 〈f〉]u(β),

it follows that
σ(idα, f)(u(α))(σ[eqα,eqβ])σ(f, idβ)u(β),

but by the Identity Extension Schema this is just

σ(idα, f)(u(α)) =σ(α,β) σ(f, idβ)u(β).

5.2 Products

Consider the typeT =
∏
α. α→ α. The termΛα. λx : α. x inhabitsT . Thus

Proposition 5.3. In any model ofλ2 the typeT defines a fibred weak terminal object.

Theorem 5.4. In a parametric APL-structure, the proposition

∀u : T. (u =T Λα. λx : α. x)

holds in the internal logic.

Proof. By extensionality it suffices to prove that

α : Type | u : T, x : α ` (uα)x =α x.

Consider the relation

α : Type | u : T, x : α ` ρ = (y : α, z : α). y =α x : Rel(α, α).
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By parametricity we have

α : Type | u : T, x : α ` (u α)(ρ→ ρ)(u α),

but this means that
α : Type | u : T, x : α ` y =α x ⊃ (u α)y =α x.

Theorem 5.5. In a parametric APL-structure,T defines a fibred terminal object ofType→ Kind.

Proof. Supposeu : σ → T is a morphism in the fibre. By the above theorem and extensionality,u is
internally equal toλy : σ.Λα. λx : α. x. By very strong equality we have external equality betweenu and
λy : σ.Λα. λx : α. x. SoT is a terminal object.

For two typesσ andτ in the same fibre, consider

σ×̂τ =
∏
α. ((σ → τ → α)→ α).

We use×̂ to distinguish this definition from the usual fibrewise product denoted×. We will show that×̂
defines a weak product in the fibre, and that in parametric APL-structures it defines a genuine product.

Let projectionsπ : σ×̂τ → σ andπ′ : σ×̂τ → τ be defined by

πx = x σ (λx : σ. λy : τ. x)
π′x = x τ (λx : σ. λy : τ. y)

and letpair : σ → τ → σ×̂τ be defined by

pair x y = Λα. λf : σ → τ → α. f x y

If f : α→ σ andg : α→ β, we will write 〈f, g〉 for λx : α. pair (f x) (g x) . Then

π ◦ 〈f, g〉 = λx : α. (pair (f x) (g x)) σ (λx : σ. λy : τ. x) = λx : α. f x = f

and likewise
π′ ◦ 〈f, g〉 = g

This proves:

Proposition 5.6. In any model ofλ2 the construction̂× defines a fibrewise weak product.

Theorem 5.7. For any parametric APL-structure the proposition

∀σ, τ. 〈π, π′〉 =σ×̂τ idσ×̂τ

holds in the internal logic.

Proof. For anyf : σ → τ → α definef∗ : σ×̂τ → α as

f∗ x = x α f.

Supposez : σ×̂τ . By parametricity, for any relationR : Rel(α, β),

(z α)((eqσ → eqτ → R)→ R)(z β).
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Now, for anyf : σ → τ → α,
f∗(pair x y) = pair x y α f = f x y,

i.e.,
pair(eqσ → eqτ → 〈f∗〉)f,

which means that
(z σ×̂τ pair)〈f∗〉(z α f).

In other words,
f∗(z σ×̂τ pair) =α z α f.

Since the left hand side of this equation simply is

(z σ×̂τ pair) α f,

we get by extensionality sinceα, f were arbitrary,

z σ×̂τ pair =σ×̂τ z.

Suppose now that we are givenf : σ → τ → α. We constructg : σ×̂τ → α by

g z = f (π z) (π′ z)

Thenpair(eqσ → eqτ → 〈g〉)f since

g (pair x y) = f (π ◦ pair x y)(π′ ◦ pair x y) = f x y

Parametricity now states that for anyz : σ×̂τ

(z σ×̂τ)((eqσ → eqτ → 〈g〉)→ 〈g〉)(z α).

Thus(z σ×̂τ pair)〈g〉(z α f) and since(z σ×̂τ pair) =σ×̂τ z we have

f (π z) (π′ z) = g z =α z α f.

By extensionality
λz : σ×̂τ.Λα. λf : σ → τ → α. f (π z) (π′ z) =σ×̂τ→σ×̂τ

λz : σ×̂τ.Λα. λf : σ → τ → α. z α f = idσ×̂τ .

But the left hand side of this equation is just〈π, π′〉.

Theorem 5.8. In any parametric APL-structure,̂× defines a fibrewise product inType→ Kind.

Proof. Since clearly〈π ◦ f, π′ ◦ f〉 = 〈π, π′〉 ◦ f any map intoσ×̂τ is uniquely determined by its compo-
sition withπ andπ′ by Theorem 5.7 and very strong equality.
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5.3 Coproducts

For the empty sum we define
I =

∏
α. α.

Proposition 5.9. In any model ofλ2, I defines a fibred weak initial object.

Proof. Supposeσ is a type over someKind object Ξ. The interpretation of the termx : I ` xσ is a
morphism fromI to σ in the fibre overΞ.

Theorem 5.10. In a parametric APL-structure, the proposition

∀u : I.⊥

holds in the internal logic of the model.

Proof. Parametricity says

∀u :
∏
α. α.∀α, β : Type.∀R : Rel(α, β). u(α)Ru(β)

Instantiate this with the definable relation

(x : 1, y : 1).⊥ : Rel(1, 1)

Theorem 5.11. In a parametric APL-structure,I defines a fibred initial object ofType→ Kind.

Proof. Given two morphismsu, v : I → σ we have

(∀x : I.⊥) ` (∀x : I. ux =σ vx) ` (u =I→σ v),

so, by very strong equality, we haveu = v.

Given two typesσ andτ we define

σ + τ =
∏
α. (σ → α)→ (τ → α)→ α

and introduce combinatorsinlσ,τ : σ → σ + τ , inrσ,τ : τ → σ + τ and

casesσ,τ :
∏
α. ((σ → α)→ (τ → α)→ (σ + τ)→ α)

by
inlσ+τ (a) = Λα. λf : σ → α. λg : τ → α. f(a),
inrσ+τ (a) = Λα. λf : σ → α. λg : τ → α. g(a),

casesσ+τ α f g ω = ω α f g.

Now, suppose we are given two morphismst : σ → α andu : τ → α. Then we may define[u, t] =
casesσ,τ α t u : σ + τ → α and we then have

[u, t] ◦ inlσ,τ (x) = inlσ,τ x α t u = t(x)

and likewise
[u, t] ◦ inrσ,τ (y) = inrσ,τ x α t u = u(y)

so we have proved the following proposition.

55



Proposition 5.12. For any model ofλ2, the operation+ defines a fibred weak coproduct.

We will prove that in a parametric APL-structure,σ + τ is in fact a coproduct.

Theorem 5.13. In a parametric APL-structure, the proposition

∀α, σ, τ : Type.∀h : σ + τ → α. h =σ+τ→α [h ◦ inlσ+τ , h ◦ inrσ+τ ]

holds.

Proof. We will first prove that
[inlσ+τ , inrσ+τ ] =σ+τ idσ+τ .

Instantiating the parametricity schema forω : σ + τ with the relation〈f〉 we get that, for anyf : α → β
and alla : σ → α andβ : τ → α,

f(ω α a b) =β ω β (f ◦ a) (f ◦ b).

Now consider anya′ : σ → α andb′ : τ → α and setf : σ + τ → α to

f(u) = u α a′ b′.

If we seta above toinl andb to inr we get

(ω (σ + τ) inl inr) α a′ b′ =β ω α (f ◦ inl) (f ◦ inr). (19)

Since
f ◦ inl(x) = inl(x) α a′ b′ = a′(x),

for all x : σ, and likewisef ◦ inr(y) = b′(y), for y : τ , (19) reduces to

(ω(σ + τ) inl inr) α a′ b′ =β ω α a
′ b′.

By extensionality this implies
(ω(σ + τ)inl inr) =σ+τ ω,

and using extensionality again we obtain

[inlσ+τ , inrσ+τ ] =σ+τ→σ+τ idσ+τ . (20)

Finally, by the parametricity condition oncases, we have for anyh : σ + τ → α that

h(cases(σ + τ) inl inr ω) =α casesα (h ◦ inl) (h ◦ inr) ω,

so by extensionality and (20),
h =σ+τ→α [h ◦ inl, h ◦ inr].

Theorem 5.14. In any parametric APL-structure,+ defines a fibred coproduct ofType→ Kind.

Proof. Using very strong equality, Theorem 5.13 tells us that maps out ofσ+ τ are uniquely determined by
their compositions withinl andinr.
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5.4 Initial algebras

Definition 5.15. Consider a fibred functor

E

  @
@@

@@
@@

@
T // E

~~}}
}}

}}
}}

B.

An indexed family of initial algebras for the functorT is a family

(inΞ : T (σΞ)→ σΞ)Ξ∈Obj B

such that each inΞ is an initial algebra for the restriction ofT to the fibre overΞ and the family is closed
under reindexing. If each inΞ is only a weak initial algebra we call it a family of weak initial algebras.

Supposeα ` σ : Type is an inductively constructed type (see Definition 5.1) in whichα occurs only
positively. Thenσ(α) can be considered a functor in each fibre [12]. Actually, in [12] Abadi & Plotkin
construct a term

t :
∏
α, β : Type. (α→ β)→ σ(α)→ σ(β),

which internalizes the morphism part of the functorσ.

The typeσ induces a fibred functor

Type //

$$J
JJJJJJJJ Type

zzttttttttt

Kind

mappingΞ ` τ to Ξ ` σ(τ). In this section we study families of initial algebras for such functors.

First we prove the graph lemma:

Lemma 5.16. If α ` σ is an inductively constructed type in a parametric APL-structure in whichα occurs
only positively, interpreted as a fibred functor as in [12], then the formula

∀α, β : Type.∀f : α→ β. σ[〈f〉] ≡ 〈σ(f)〉

holds in the internal language of the model, where, as usual,ρ ≡ ρ′ is short for

∀x, y. ρ(x, y) ⊃⊂ ρ′(x, y).

Proof. Since the polymorphic strengtht mentioned above is parametric, we have, for any pair of relations
ρ : Rel(α, α′) andρ′ : Rel(β, β′),

t α β((ρ→ ρ′)→ (σ[ρ]→ σ[ρ′]))t α′ β′. (21)

If we instantiate this withρ = eqα, ρ′ = 〈f〉 for some mapf : α→ β, we get

t α α((eqα → 〈f〉)→ (eqσ(α) → σ[〈f〉]))t α β,

using the Identity Extension Schema. Sinceidα(eqα → 〈f〉)f , and sincet α β f = σ(f) andt α α idα =
σ(idα) = idσ(α) we get

idσ(α)(eqσ(α) → σ[〈f〉])σ(f),
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that is,
∀x : σ(α). x(σ[〈f〉])σ(f)x.

Thus we have proved〈σ(f)〉 impliesσ[〈f〉].
To prove the other direction, instantiate (21) with the relationsρ = 〈f〉 andρ′ = eqβ for f : α → β. Since
f(〈f〉 → eqβ)idβ ,

σ(f)(σ[〈f〉]→ eqσ(β))idσ(β).

So for anyx : σ(α) andy : σ(β) we havex(σ[〈f〉])y impliesσ(f)x = y. In other words,σ[〈f〉] implies
〈σ(f)〉.

We shall now define a family of initial algebras for the functor induced byσ. In each fibreTypeΞ we may
define the type

µα. σ(α) =
∏
α. ((σ(α)→ α)→ α)

with combinators
fold:

∏
α. ((σ(α)→ α)→ µβ. σ(β)→ α)

and
in : σ(µα. σ(α))→ µα. σ(α)

given by
foldα f z = z α f

and
in z = Λα. λf : σ(α)→ α. f(σ(foldα f)z).

Theorem 5.17. In any model of second-orderλ-calculus the family

(Ξ ` in : σ(µα. σ(α))→ µα. σ(α))Ξ

is a family of weak initial algebras forσ.

Proof. Given any algebraf : σ(α)→ α in any fibre, the diagram

σ(µα. σ(α)) in //

σ(fold α f)

��

µα. σ(α)

fold α f

��
σ(α)

f // α

is commutative since
(foldα f) ◦ in z = in z αf = f(σ(foldα f) z)

and
f ◦ σ(foldα f) z = f(σ(foldα f) z).

We will show that in a parametric APL-structure,(Ξ ` in)Ξ actually is a family of initial algebras. First we
prove a lemma.
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Lemma 5.18. In a parametric APL-structure, the formula

foldµα. σ(α) in =µα.σ(α)→µα.σ(α) idµα.σ(α)

holds in the internal logic.

Proof. Consider an arbitrary elementω : µα. σ(α) and a mapf : α → β. The parametricity condition then
gives

(ω α)((σ[〈f〉]→ 〈f〉)→ 〈f〉)(ω β).

Since Lemma 5.16 tells us thatσ[〈f〉] ≡ 〈σ(f)〉, this means that, ifa : σ(α) → α andb : σ(β) → β have
the property that

∀x : σ(α). f(a x) =β b(σ(f) x)

(that is, iff is a morphism of algebras), then

f(ω α a) =β ω β b.

Consider now an arbitrary algebrak : σ(α)→ α and instantiate the above with the algebra morphismfoldαk
from in to k, to get

foldα k(ω µα. σ(α) in) =α ω α k.

Since the left hand side of this equation is(ω µα. σ(α) in) α k, we get by extensionality that

ω µα. σ(α) in =µα.σ(α) ω

and therefore, using extensionality again,

foldµα. σ(α) in =µα.σ(α)→µα.σ(α) idµα.σ(α),

as required.

Theorem 5.19.Supposeg : µα. σ(α) → α induces a map between algebras from in tof : σ(α) → α in a
parametric APL-structure. Then

g =µα.σ(α)→α foldα f

holds in the internal logic.

Proof. Sinceg is a map of algebras, the parametricity condition on an arbitraryω : µα. σ(α) entails as in
the proof of Lemma 5.18 that

g(ω µα. σ(α) in) =α ω α f

and therefore the result follows from extensionality since, by Lemma 5.18,

ω µα. σ(α) in = (foldµα. σ(α) in) ω =µα.σ(α) ω

and, moreover,
ω α f = (foldα f) ω.

Theorem 5.20. In a parametric APL-structure,(Ξ ` in)Ξ is a family of initial algebras forσ.

Proof. Using very strong equality Thm 5.19 gives uniqueness of algebra morphisms out ofin.
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Remark 5.21. Consider the case of an inductively constructed typeα, β ` σ(α, β) in whichα andβ occur
only positively. For each closed typeτ we may consider the typeα ` σ(α, τ) and the analysis above gives
us a family of initial algebras for this functor. Moreover, for each morphismf : τ → τ ′ between closed
types we get a morphism of algebras induced by initiality:

σ(µα. σ(α, τ), τ)

inτ

��

//___ σ(µα. σ(α, τ ′), τ)

σ(id ,f)

��
σ(µα. σ(α, τ ′), τ ′)

inτ ′
��

µα. σ(α, τ) //______ µα. σ(α, τ ′).

For example, if we consider the typeα, β ` 1 + α × β, then for anyτ , we get lists(τ) = µα. (1 + α × τ)
and, for anyf : τ → τ ′, the induced morphism is the familiar morphism mapf : lists(τ)→ lists(τ ′), which
appliesf to each element in a list.

5.5 Final coalgebras

In this section we consider the same setup as in Section 5.4, that is,α ` σ : Type is an inductively con-
structed type in whichα occurs only positively. As beforeσ defines a fibred endofunctor onType →
Kind.

Definition 5.22. Consider a fibred functor

E

  @
@@

@@
@@

@
T // E

~~}}
}}

}}
}}

B.

An indexed family of final coalgebras for the functorT is a family

(outΞ : σΞ → T (σΞ))Ξ∈Obj B

such that each outΞ is a final coalgebra for the restriction ofT to the fibre overΞ and the family is closed
under reindexing. If each outΞ is only a weak final coalgebra we call it a family of weak final coalgebras.

In this section we define a family of weak final coalgebras forσ and prove that for parametric APL-structures
it is in fact a family of final coalgebras. First we need to define existential quantification in each fibre as∐

α. σ(α) =
∏
α. (

∏
β. (σ(β)→ α))→ α

and the combinatorpack:
∏
α. (σ(α)→

∐
β. σ(β)) by

packα x = Λβλf :
∏
α. (σ(α)→ β). f α x.

In each fibre we define the type

να. σ(α) =
∐
α. ((α→ σ(α))× α) =

∏
α. (

∏
β. (β → σ(β))× β → α)→ α
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with combinators
unfold:

∏
α. ((α→ σ(α))→ α→ (να. σ(α)))

and
out: να. σ(α)→ σ(να. σ(α))

defined as
unfoldα f x = packα 〈f, x〉

and
out(x) = x σ(να. σ(α)) (Λαλ〈f, x〉 : ((α→ σ(α))× α). σ(unfoldα f)(f x)).

Theorem 5.23. In any model of second-orderλ-calculus(Ξ ` out)Ξ is a family of weak final coalgebras
for σ.

Proof. Consider a coalgebraf : α→ σ(α) in any fibre. Then

α
f //

unfoldα f

��

σ(α)

σ(unfoldα f)
��

να. σ(α) out // σ(να. σ(α))

commutes since

out(unfoldα f z) = out(packα 〈f, z〉) =
(packα 〈f, z〉) (σ(να. σ(α))) (Λαλ〈f, x〉 : ((α→ σ(α))× α). σ(unfoldα f)(f x)) =

σ(unfoldα f)(f z)

Lemma 5.24. In a parametric APL-structure,

unfoldνα. σ(α) out

is internally equal to the identity onνα. σ(α).

Proof. Seth = unfoldνα. σ(α) out in the following.

By parametricity, for anyk : α→ β,

unfoldα(〈k〉 → σ[〈k〉])→ (〈k〉 → eqνα.σ(α))unfoldβ.

Hence, sinceσ[〈k〉] ≡ 〈σ(k)〉 by Lemma 5.16, if

k : (f : α→ σ(α))→ (g : β → σ(β))

is a morphism of coalgebras, then

unfoldα f =α→να.σ(α) (unfoldβ g) ◦ k.

So sinceh is a morphism of coalgebras fromout to out we haveh = h2. Intuitively, all we need to prove
now is thath is “surjective”.
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Consider anyg :
∏
α. ((α→ σ(α))× α→ β). By parametricity and Lemma 5.16, for any coalgebra map

k : (f : α→ σ(α))→ (f ′ : α′ → σ(α′)), we must have

∀x : α. g α 〈f, x〉 =β g α
′ 〈f ′, k(x)〉.

Using this on the coalgebra mapunfoldα f from f to outwe obtain

∀x : α. g α〈f, x〉 =β g να. σ(α)〈out,unfoldα f x〉.

In other words, if we define
k :

∏
α. ((α→ σ(α))× α→ τ),

whereτ = (να. σ(α)→ σ(να. σ(α)))× να. σ(α), to be

k = Λα. λ〈f, x〉 : (α→ σ(α))× α. 〈out,unfoldα f x〉,

then
∀α. g α =(α→σ(α))×α→β (g να. σ(α)) ◦ (k α). (22)

Now, suppose we are givenα, α′, R : Rel(α, α′) and termsf, f ′ such that

f((R→ σ[R])×R→ β)f ′.

Then, by (22) and parametricity ofg

g α f =β g α
′ f ′ =β (g να. σ(α))(k α′ f ′),

from which we conclude

g(∀(α, β,R : Rel(α, β)). ((R→ σ[R])×R→ 〈g να. σ(α)〉))k.

This implies that for anyx : να. σ(α) by parametricity we have

x β g =β g να. σ(α) (x τ k).

Thus, sinceg was arbitrary, we may apply the above tog = k and get

x τ k =τ k να. σ(α) (x τ k) = 〈out,unfoldνα. σ(α) π(x τ k) π′(x τ k)〉.

If we write
l = λx : να. σ(α).unfoldνα. σ(α) π(x τ k) π′(x τ k),

then sincek is a closed term, so isl, and from the above calculations we conclude that we have

∀β. ∀g :
∏
α. (α→ σ(α))× α→ β. x β g =β g να. σ(α) 〈out, l x〉.

Now, finally

h(l x) = unfoldνα. σ(α) out(l x) =
packνα. σ(α) 〈out, l x〉 =

Λβ. λg :
∏
α. ((α→ σ(α))× α→ β). g να. σ(α) 〈out, l x〉 =να.σ(α)

Λβ. λg :
∏
α. ((α→ σ(α))× α→ β). x β g = x

where we have used extensionality. Thusl is a right inverse toh, and we conclude

h x =να.σ(α) h
2(l x) =να.σ(α) h(l x) =να.σ(α) x.

62



Theorem 5.25. In a parametric APL-structure,(Ξ ` out)Ξ is a family of final coalgebras forσ.

Proof. Consider a map of coalgebras intoout:

α
f //

g

��

σ(α)

σ(g)
��

να. σ(α) out // σ(να. σ(α)).

By parametricity ofunfoldwe have

unfoldα f =α→να.σ(α) (unfoldνα. σ(α) out) ◦ g =α→να.σ(α) g.

Very strong equality then implies uniqueness of coalgebra morphisms intooutas desired.

5.6 Generalizing to strong fibred functors

In this section, our aim is to generalize the results of Sections 5.4 and 5.5 to initial algebras and final
coalgebras for a more general class of fibred functors, than the ones defined by inductively constructed
types. These functor are called strong fibred functors.

Definition 5.26. An endofunctorT : B → B on a cartesian closed category is calledstrong if there exists
a natural transformationtσ,τ : τσ → TτTσ preserving identity and composition:

1
îdσ //

̂idTσ ""D
DD

DD
DD

DD σσ

tσ,σ

��
TσTσ

σσ1
2 × σ

σ2
3

comp //

t×t
��

σσ1
3

t
��

TσTσ1
2 × TσTσ2

3

comp // TσTσ1
3 .

The natural transformationt is called thestrengthof the functorT .

One should note thatt in the definition above represents the morphism part of the functorT in the sense that
it makes the diagram

1
f̂ //

T̂ f ""D
DD

DD
DD

DD τσ

tσ,τ

��
TτTσ

commute, for any morphismf : σ → τ . This follows from the commutative diagram

1
îd

$$
îd

@@
@

��@
@@

f̂

��

σσ t //

fσ

��

TσTσ

TfTσ

��
τσ t // TτTσ.
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Definition 5.27. A strong fibred functoris a fibred endofunctor

E

��?
??

??
??

T // E

��~~
~~

~~
~

B

on a fibred ccc, for which there exists a fibred natural transformationt from the fibred functor(−)(+)

to T (−)T (+) satisfying commutativity of the two diagrams of Definition 5.26 in each fibre. The natural
transformationt is called thestrengthof the functorT .

In this definition, one should of course check that the two functors(−)(+) andT (−)T (+) — a priori only
defined on the fibres — in fact define fibred functors

Eop ×B E //

$$II
III

III
II

E

����
��

��
��

B.

But this is easily seen. Notice also thatT is not required to preserve the fibred ccc-structure and that the
components oft are preserved under reindexing sincet is a fibred natural transformation.

Example 5.28. An inductively constructed type with one free variableα ` σ : Type, whereα occurs only
positively, defines a strong fibred functor: see Section 5.4.

But in many situations one may want to reason about other strong fibred functors. For example, if theλ2-
fibration of the APL-structure models other type constructions than the ones fromλ2 for which there are
natural functorial interpretations, one may want to prove existence of initial algebras for functors induced
by types in this extended language.

All fibred endofunctors onλ2-fibrations are in a sense given by types.

Lemma 5.29. For any strong fibred functor

Type

$$J
JJJJJJJJ

F // Type

yyttttttttt

Kind

on aλ2-fibration there exists, in the internal language ofType→ Kind a typeα ` σ and a term

− ` s :
∏
α, β. (α→ β)→ σ(α)→ σ(β)

inducingF .

Proof. Denote byT ∈ TypeΩ the generic object of theλ2-fibration and for any typeτ ∈ TypeΞ denote
by τ̂ : Ξ→ Ω the map satisfyingτ = τ̂∗(T ). Setσ = F (T ). Then for any typeτ : TypeΞ,

F (τ) = F (τ̂∗T ) = τ̂∗σ

which is the interpretation ofσ(τ) in the internal language.
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Now suppose the fibred natural transformationt is a strength forF . Consider the component(tΩ2)[[α,β`α]],[[α,β`β]].
This is a map inTypeΩ2 from [[α, β ` α→ β]] to [[α, β ` σ(α)→ σ(β)]], i.e. a termα, β ` t′ : (α→ β)→
(σ(α)→ σ(β)) in the internal language. Sets = Λα.Λβ. t′.

To check thatσ, s induce the functorF we only need to check that for any pair of typesτ, τ ′ ∈ TypeΞ,
Ξ ` s τ τ ′ is interpreted as(tΞ)τ,τ ′ . But [[Ξ ` s τ τ ′]] = 〈τ, τ ′〉∗(t′) = (tΞ)τ,τ ′ , sincet is preserved by
reindexing.

Lemma 5.29 tells us that we can reason about strong fibred functors in the internal language. For instance,
denoting the strong fibred functor byσ we may write

α, β | f : α→ β ` σ(f) : σ(α)→ σ(β)

for s α β f wheres is the polymorphic term inducingσ’s action on morphisms.

Furthermore, since the morphism part of the functor is represented by apolymorphicterm, we can use
parametricity to reason about it. For instance, we may prove the following generalization of Lemma 5.16.

Lemma 5.30 (Graph Lemma). For any parametric APL-structure, ifσ is a strong fibred endofunctor
Type→ Type, then the formula

∀α, β : Type.∀f : α→ β. σ[〈f〉] ≡ 〈σ(f)〉

holds in the internal language of the APL-structure, whereρ ≡ ρ′ is short for

∀x, y. ρ(x, y) ⊃⊂ ρ′(x, y).

The proof of this lemma is the same as the proof of Lemma 5.16.

Corollary 5.31. For any parametric APL-structure, the morphism part of a strong fibred endofunctorσ is
uniquely determined by the object part.

Proof. By Lemma 5.30,y = σ(f)(x) iff xσ[〈f〉]y.

Theorem 5.32. In a parametric APL-structure, any strong fibred functorF : Type→ Type has

• A family of initial algebras defined as in Section 5.4

• A family of final coalgebras defined as in Section 5.5

Proof. The proofs work exactly as in Sections 5.4 and 5.5 since we may express the functorF in the internal
language, as described above.

The fact that these initial algebras and final coalgebras are preserved by reindexing follows from the fact
that the strengthst are preserved.

6 Concrete APL-structures

In this section we define a concrete parametric APL-structure based on a well-known variant of the per-
model (see, for instance, [5, Section 8.4]).
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The diagram of Definition 3.3 in the concrete model is:

UFam(RegSub(Asm))

r

��
PFam(Per)

p

**TTTTTTTTTTTTTTTTT
� � I // UFam(Asm)

q

��
PPer

(23)

The fibrationp is the fibration of [5, Def. 8.4.9]; we repeat the definition here. In the following,Per
andAsm, will denote the sets of partial equivalence relations and assemblies respectively on the natural
numbers (see [5]).

The categoryPPer is defined as

Objects Natural numbers.

Morphisms A morphismf : n→ 1 is a pair(fp, f r) wherefp : Pern → Per is any map and

f r ∈
∏

~R,~S∈Pern

[∏
i≤n P (N/Ri × N/Si)→ P (N/fp(~R)× N/fp(~S)

]
is a map that satisfiesthe identity extension condition: f r(

−→
Eq) = Eq. A morphism fromn

tom is anm-vector of morphism fromn to 1.

We can now definePFam(Per) as the indexed category with fibre overn defined as

Objects morphisms,n→ 1 of PPer.

Morphisms a morphism fromf to g is an indexed family of maps(α~R)~R∈Pern where

α~R : N/fp(~R)→ N/gp(~R)

are tracked uniformly, i.e., there exists a codee such that, for all~R and [n] ∈ N/fp(~R),
α~R([n]) = [e · n]. Further, the morphismα should respect relations, that is, ifAi ⊂
N/Ri × N/Si and(a, b) ∈ f r( ~A) then(α~R(a), α~S(b)) ∈ gr( ~A).

Reindexing is by composition.

Next we define the fibrationq. The fibre categoryUFam(Asm)n is defined as

Objects all mapsf : Pern → Asm.

Morphisms a morphism fromf to g is an indexed family of maps(α~R)~R∈Pern where

α~R : f(~R)→ g(~R)

are maps between the underlying sets of the assemblies that are tracked uniformly, i.e.
there exists a codee such that for all~R and alli ∈ f(~R) and alla ∈ Ef(~R)(i) we have
e · a ∈ Eg(~R)(α~R(i)).
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Reindexing is again by composition.

Finally we can define the categoryUFam(RegSub(Asm)) as

Objects An object overf is any family of subsets(A~R ⊆ f(~R))~R, where by subset we mean subset
of the underlying set of the assembly.

Morphisms In each fibre the morphisms are just subset inclusions.

Reindexing is defined as follows: Supposeφ : f → g is a morphism inUFam(Asm) projecting to
qφ : n→ m in PPer. By definition this is a map in the fibre ofUFam(Asm) overn from f to (qφ)∗(g).
Such morphisms are given by indexed families of maps

φ~R : f(~R)→ g ◦ (qφ)p(~R)

ranging over~R ∈ Pern so we can define

φ∗(A~S ⊂ g(~S))~S∈Perm = (φ−1
~R

(Ag◦(qφ)p(~R)))~R∈Pern

The inclusionI is obtained by projecting(fp, f r) to fp using the inclusion ofPer into Asm.

Lemma 6.1. p is aλ2-fibration.

Proof. This is [5, Prop. 8.4.10]. The ccc-structure is given by a pointwise construction, and1 is clearly a
generic object. For a typef : n+ 1→ 1 we define

∏
f : n→ 1 as

(
∏
f)p(~R) = {(a, a′) | ∀U, V ∈ Per.∀B ⊆ N/U × N/V. a ∈ |fp(~R,U)| and

a′ ∈ |fp(~R, V )| and([a], [a′]) ∈ f r
(~R,U),(~R,V )

( ~Eq~R, B)}

and
(
∏
f)r

~R×~S
( ~A) = {([a]∏(f)p(~R), [a

′]∏(f)p(~S)) | ∀U, V ∈ Per.∀B ⊆ N/U × N/V
([a]fp(~R,U), [a

′]fp(~S,V )) ∈ f
r
(~R,U),(~S,V )

( ~A,B)}

for ~A ⊆ ~R× ~S.

Theorem 6.2. The diagram (23) defines a parametric APL-structure.

We do not prove Lemma 6.2 directly. Instead, we will show in Remark 8.27 that (23) is a special case of the
parametric completion process of Section 8.

Remark 6.3. In the above model we use nothing special about the PCAN so the same construction applies
to pers and assemblies over any PCA. All the lemmas above generalize, so that in the general case we also
obtain a parametric APL-structure.

6.1 A parametric non-well-pointed APL-structure

We may generalize the construction above even further to the case of relative realizability. Suppose we are
given a PCAA and a sub-PCAA]. We can then define the APL-structure as above with pers and assemblies
overA, with the only exception that morphisms inPFam(Per) andUFam(Asm) should be uniformly
tracked by codes inA]. All the proofs of section 6 generalize so that we obtain:
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Proposition 6.4. For any PCAA and sub-PCAA] the diagram

UFam(RegSub(Asm(A,A])))

r

��
PFam(Per(A,A]))

p

++VVVVVVVVVVVVVVVVVVV
� � I // UFam(Asm(A,A]))

q

��
PPer(A,A])

defines a parametric APL-structure.

However, one may also prove:

Proposition 6.5. The fibrePFam(Per(A,A]))0 is in general not well-pointed.

Proof. Consider a per of the form{(a, a)}, for a ∈ A \ A]. There may be several maps out of this per, but
it does not have any global points.

Proposition 6.4 tells us that all the theorems of Section 5 apply, such that theλ2-fibration

PFam(Per(A,A]))→ PPer(A,A])

has all the properties that we consider consequences of parametricity. This should be compared to [1] in
which a family of parametric models is presented (with another definition of “parametric model”) and the
consequences of parametricity are proved only for thewell-pointedparametric models.

7 Comparing with Ma & Reynolds notion of parametricity

In this section we compare the notion of parametricity presented above with Ma & Reynolds’ notion of
parametricity [6] (see also [5]). This latter notion was the first proposal for a general category theoretic
formulation of parametricity and is perhaps the most well-known.

To define parametricity in the sense Ma & Reynolds, consider first a situation where we are given aλ2-
fibration E // B and a logic on the types given by an indexed first-order logic fibration

D // E // B .

Consider the category of relations on closed typesLR(E1) defined as

LR(E1) //

��

D1

��

// D

��
E1 × E1

× // E1
� � // E

where by1 we mean the terminal object ofB. In this case we have a reflexive graph of categories

E1
// LR(E1)oo

oo
,

where the functor going left to right maps a type to the identity on that type. By reflexive graph we mean
that the two compositions starting and ending inE1 are identities.
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Definition 7.1. Theλ2-fibration
E

��
B

is parametric in the sense of Ma & Reynolds with respect toD → E if there exists aλ2-fibrationF → C
and a reflexive graph ofλ2 fibrations 

E

��
B

 //


F

��
C

oo

oo

such that the restriction to the fibres over the terminal objects becomes

E1
// LR(E1)oo

oo
.

Given an APL-structure, we have a logic over types given by the pullback ofProp alongI. We also have a
reflexive graph giving the relational interpretation of all types. It is natural to ask what kind of parametricity
we obtain by requiring that the reflexive graph giving the relational interpretation of types satisfies the
requirements of Definition 7.1.

First we notice thatRelations1 = LR(E1), and that the two maps going fromRelations to E1 are in
fact the domain and codomain maps, as required, so the requirements of Definition 7.1 only effect the nature
of the mapJ .

The last requirement of Definition 7.1 says exactly that, for all closed typesσ,

J([[σ]]) = [[eqσ]].

Consider now an open type~α ` σ : Type and a vector of closed types~τ . Then, sinceJ is a map of
fibrations, we have

J([[σ(~τ)]]) = J([[~τ ]]∗[[~α ` σ]]) = J([[~α ` σ]]) ◦ [[eq~τ ]] = [[σ[eq~τ ]]].

In other words, the model satisfies a weak form of Identity Extension Schema:

Definition 7.2. The schema
∀u, v : σ(~τ). (uσ[eq~τ ]v) ⊃⊂ u =σ(~τ) v

where~α ` σ ranges over all types and~τ ranges over all closed types is called theweak identity extension
schema.

We will briefly mention which of the consequences of parametricity mentioned in Section 5 that hold under
assumption of the weak Identity Extension Schema.

First we notice that the weak Identity Extension Schema implies the parametricity schema

∀u : (
∏
β : Type. σ(β, τ2, . . . , τn)). u(∀β. σ[β,eqτ2 , . . . ,eqτn

])u

in the case where theτi are closed types.
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Using only this weak version of the parametricity schema, we can still prove existence of terminal and initial
types, since in these cases we only need to use parametricity on the closed typesT andI.

The proofs of existence of products and coproducts, however, fail whenσ andτ are open types, since we
need to use the parametricity condition on the open typesσ×̂τ andσ + τ .

The case of initial algebras goes through, since the proof only uses parametricity ofµα. σ(α), which is a
closed type. The proof of Lemma 5.24, however, uses parametricity of the type

∏
α. ((α→ σ(α))×α→ β)

whereβ is a type variable, so this proof does not go through with only the weak parametricity schema. In
other words, in the setting of reflexive graphs as in Definition 7.1, we do not have a proof of existence of
final coalgebras.

See also [15] for a related discussion.

8 A parametric completion process

In this section we give a description of a parametric completion process that given a model ofλ2 internal
to some category satisfying certain requirements produces a parametric APL-structure. The construction
is related to the parametric completion process of [15] in the sense that the process that constructs theλ2-
fibration contained in the APL-structure generated by our completion process is basically the parametric
completion process of [15] (only the setup varies slightly). This means that if the ambient category is a
topos, then the parametric completion process of [15] produces models parametric in our new sense which
then satisfies the consequences of parametricity of Section 5. This fact is no surprise, but, to our knowledge,
it has not been proved in the literature.

The concrete model of Section 6 is a result of the parametric completion process described in this section.
Before describing the completion process we recall the theory of internal models ofλ2.

8.1 Internal models for λ2

Suppose we are given a locally cartesian closed categoryE. Given a full internal categoryD of E we may
consider the externalizationD

Fam(D)

��
E

.

We shall denote byD0 the object of objects, and byD1 the object of morphisms ofD. The fibre overΞ ∈ E
is the internal functor category fromΞ considered as a discrete category toD, i.e., objects are morphisms
Ξ→ D0 and morphism are morphisms ofE: Ξ→ D1.

Proposition 8.1. SupposeD is a full internally cartesian closed category that has right Kan extensions
for internal functorsF : Ξ → D along projectionsΞ × D0 → Ξ. Then the externalization ofD is a
λ2-fibration.

Proof. SinceD is internally cartesian closed, its externalization has cartesian closed fibres preserved under
reindexing [5, Corollary 7.3.9]. ClearlyD0 is a generic object for the fibration.

Polymorphism is modeled using the Kan extensions, since for any typeσ : Ξ × D0 → D the right Kan
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extension ofσ alongπ : Ξ×D0 → Ξ is the functor
∏
α. σ in the diagram

Ξ×D0
σ //

π

��

D

Ξ.

∏
α.σ

;;v
v

v
v

v

The universality condition for the right Kan extension then gives the bijective correspondence

Nat(τ ◦ π, σ) ∼= Nat(τ,
∏
α. σ)

between the sets of natural transformations. Sinceπ∗τ = τ ◦ π, for τ : Ξ → D, this states exactly that the
right Kan extension provides the right adjoint toπ∗, as required.

To show that the Beck-Chevalley condition is satisfied, we need to show that foru : Ξ′ → Ξ we have

u∗(
∏
α. σ) ∼=

∏
α. ((u× id)∗σ),

that is,
(
∏
α. σ) ◦ u ∼=

∏
α. (σ ◦ (u× id)).

By Lemma 8.2 below, we may write out the values of these two functors on objectsA ∈ Ξ′ as limits:

((
∏
α. σ) ◦ u)(A) = lim←−

u(A)→π(A′)

σ(A′) (24)

(
∏
α. (σ ◦ u× id))(A) = lim←−

A→πA′′
σ(u× id(A′′)). (25)

In (24) we take the limit over all mapsf : u(A) → π(A′) in the discrete categoryΞ. But since this is a
discrete category, such maps only exist in the caseπ(A′) = u(A), so (24) can be rewritten as∏

D′∈D0
σ(u(A), D′).

Likewise (25) can be rewritten as ∏
D′′∈D0

σ(u(A), D′′),

proving that the Beck-Chevalley condition is satisfied.

Lemma 8.2. Suppose the Kan extensionRKH(F ) in the diagram

L H //

F
��

H

RKH(F )����
��

��
�

F

exists. IfL, H are discrete, thenRKH(F ) is given as a pointwise limit construction (as in [7, Theorem 1,
p.237]).

Proposition 8.1 justifies the following definition.

Definition 8.3. An internal categoryD of a locally cartesian closed categoryE is called aninternal model
of λ2 if it satisfies the assumptions of Proposition 8.1.
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8.2 Input for the parametric completion process

The parametric completion process takes the following ingredients as input:

1. A quasitoposE

2. An internal modelD of λ2 in E.

We will further assume that the inclusion

Fam(D) //

##G
GGGGGGGG E→

cod~~}}
}}

}}
}}

E

which we have already assumed is full and faithful, preserves products and is closed under regular subob-
jects. The latter means that for each objectE ∈ E, the fibre categoryFam(D)E is closed under regular
subobjects as a subcategory ofE/E.

The logicRegSubE → E of regular subobjects induces a logic onE→ by

Q //

��

RegSubE

��
E→ dom // E,

which, by Lemma A.8, makes the composable fibration

Q // E→ cod // E ,

an indexed first-order logic fibration with an indexed family of generic objects, simple products and simple
coproducts.

Let Σ be the regular subobject classifier ofE. We can now form an internal fibration2 by using the
Grothendieck construction on the functor(d ∈ D) 7→ Σd, with Σd ordered pointwise. We think of this
fibration as the internalization ofRegSubE → E restricted toD and write it asa : Q → D. Notice
that sinceD is closed under regular subobjects,Q → D is a subfibration of the subobject fibration onD,
and since its externalization is simply the restriction ofQ → E→, it is closed under the logical operations
>,∧,⊃,∀,= from the regular subobject fibration.

Associated to the model given byD there is a canonical pre-APL- structure

Q

��
Fam(D)

$$JJJJJJJJJJ
// E→

��
E

(26)

To this we can associate, as usual, the fibration of relations denoted byRelationsD → RelCtxD.

2By internal fibration, we mean an internal functor, whose externalization is a fibration. By an internal fibration having structure
such as∧,⊃,∀, = we mean that the externalization has the same (indexed) structure
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8.3 The completion process

We define the categoryLR(D) to have as objects logical relations ofD in the logic ofQ and as morphisms
pairs of morphisms inD that preserve relations.

Lemma 8.4. The categoryLR(D) is an internal cartesian closed category ofE.

Proof. We set
LR(D)0 = {(X,Y, φ) ∈ D0 ×D0 ×Q0 | a(φ) = X × Y }

and
LR(D)1 =

∐
(X,Y,φ),(X′,Y ′,φ′)∈LR(D)0

{(f, g) ∈ D1 ×D1 |
f : X → X ′ ∧ g : Y → Y ′ ∧ φ ≤ (f × g)∗φ′}.

For the cartesian closed structure we define:

(X,Y, φ)× (X ′, Y ′, φ′) = (X ×X ′, Y × Y ′, φ× φ′),

whereφ× φ′((x, x′), (y, y′)) = φ(x, y) ∧ φ′(x′, y′), and

(X,Y, φ)→ (X ′, Y ′, φ′) = (X → X ′, Y → Y ′, φ→ φ′),

where
φ→ φ′(f, g) = ∀x ∈ X∀y ∈ Y (φ(x, y) ⊃ φ′(f(x), g(y))).

Let
G = · // ·oo

oo

be the generic reflexive graph category, and consider the functor categoryEG. Since it is well known that
Cat(EG) ∼= Cat(E)G andCCCat(EG) ∼= CCCat(E)G it follows that

Lemma 8.5. D // LR(D)oo
oo

is an internal cartesian closed category ofEG.

We now aim to prove thatD // LR(D)oo
oo

is an internal model ofλ2. By the lemma, all that remains

is to prove that there are right Kan extensions for internal functors fromΞ×D0
// Ξ′ × LR(D0)oo

oo
to

D // LR(D)oo
oo

along projections toΞ // Ξ′oo
oo

. This is the same a saying that the fibration

Fam( Dn // LR(D)n
oo
oo

)→ EG

has right adjoints to reindexing functors along projections.

We first consider the simpler case with spans in stead of reflexive graphs. LetR(D) denote the internal
category

LR(D)
∂0

����
��

��
�

∂1

��9
99

99
99

D D

insideEΛ, whereΛ is the obvious category.
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An object ofFam(R(D)) is a triple of maps(f, g, ρ) such that

LR(D)0

����
��

��
�

��:
::

::
::

Θ

��4
44

44
44

��












ρ 22fffffffffff

D0 D0

Ξ0

f 33ffffffffffff Ξ1

g 22eeeeeeeeeeeeeee

(27)

commutes. SinceLR(D)0 is the object of all relations on objects ofD, the idea is that we can consider
such a triple as a definable relation

[[Ξ0,Ξ1 | Θ ` ρ : Rel(f(Ξ0), g(Ξ1))]],

i.e., an object ofRelationsD. We will make this intuition precise in Lemma 8.6.

A vertical morphism in the categoryFam(R(D)) from (f, g, ρ) to (f ′, g′, ρ′) is by definition a triple consist-
ing of a morphism fromf to f ′, a morphism fromg to g′ and a morphism fromρ to ρ′. But since morphisms
in LR(D) are pairs of morphisms preserving relations, and since the triple of morphisms is required to
make the obvious diagram commute, we can consider such a morphism as a pair(s : f → f ′, t : g → g′)
such that

∀A ∈ Θ.∀x : f(∂0(A)), y : g(∂1(A)). ρ(x, y) ⊃ ρ′(s∂0(A)(x), t∂1(A)(y)),

as interpreted in the internal language of the quasi-topos, where⊃ refers to the internal ordering inQ.

Lemma 8.6. There is an isomorphism of fibrations
Fam(R(D))

��
EΛ

 ∼= //


RelationsD

��
RelCtxD


Proof. Unwinding the definition ofRelCtxD, we find that the objects are triples(Ξ0,Ξ1,Ξ) together with
mapsΞ→ Ξ0 × Ξ1 in E. A map fromΞ→ Ξ0 × Ξ1 to Ξ′ → Ξ′

0 × Ξ′
1 is a triple

ρ : Ξ→ Ξ′, f : Ξ0 → Ξ′
0, g : Ξ1 → Ξ′

1

making the obvious diagram commute. ThusRelCtxD
∼= EΛ.

Objects inRelationsD are given as morphism inRelCtxD into the interpretation ofα, β | R : Rel(α, β)
in (26). But the interpretation of this is easily seen to be∐

α,β∈D0
Σα×β → D0 ×D0,

and sinceLR(D)0 =
∐

α,β∈D0
Σα×β we get a bijective correspondence between objects ofRelationsD

and objects ofFam(R(D)). For morphisms, a vertical morphism inFam(R(D)) from (f, g, ρ) to (f ′, g′, ρ′)
is by the above discussion a pair of morphismst : f → f ′, s : g → g′ satisfyingρ ⊃ (t × s)∗ρ′, which is
exactly the same as a vertical morphism inRelationsD.

Lemma 8.7. All internal functors
Ξ

444 ��


��
Ξ0 Ξ1

×R(D)0 → R(D) have right Kan extensions along the projection

to
Ξ

444 ��


��
Ξ0 Ξ1
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Proof. The statement to be proved is equivalent to the statement that the fibration on the left hand side of
the isomorphism of Lemma 8.6 has simple products. Since we know that the fibration on the right of the
isomorphism has simple products, we are done.

Let us now consider the case that we are really interested in. We shall assume that we are given a functor
(f t, f r) in EG:

Ξ′ × LR(D)0
π //

∂1

��
∂0

��

fr

##H
HHHHHHHHHHHHHHHHHHHHH Ξ′

∂1

��
∂0

��
Ξ×D0

f t

##G
GGGGGGGGGGGGGGGGGGGGGG

I

OO

π // Ξ

I

OO

LR(D)

∂1

��
∂0

��
D,

I

OO

(28)

and we would like to find a right Kan extension of(f t, f r) along (π, π) (notice that we have used the
notation∂0, ∂1, I for the structure maps of all objects ofEG - this should not cause any confusion, since it
will be clear from the context which map is referred to). Let us call this extension(

∏
par f

t,
∏

par f
r). An

obvious idea is to try the pair(
∏
f t,

∏
f r) provided by Lemma 8.7. However,

∏
par f

r should commute
with I, and we cannot know that

∏
f r will do that. Consider

∏
f r(I(A)) for someA ∈ Ξ:∏̄

f r(I(A))
��

��∏
f t(A)×

∏
f t(A).

If we pull this relation back along the diagonal on
∏
f t(A) we get a subobject

|
∏
f r(I(A))| // //∏ f t(A)

(called thefield of
∏
f r(I(A))). Logically, |

∏
f r(I(A))| is the set{x ∈

∏
f t(A) | (x, x) ∈

∏̄
f r(I(A))},

so if we restrict
∏
f r(I(A)) to this subobject, we get a relation relation containing the identity relation.

The other inclusion will be easy to prove. Thus the idea is to let
∏

par f
t be the map that mapsA to

|
∏
f r(I(A))|, and let

∏
par f

r(R) be the relation obtained by restricting
∏
f r(R) to

∏
par f

t(∂0(R)) ×∏
par f

t(∂1(R)).

Theorem 8.8. For (f t, f r), (π, π) as in (28), the right Kan extension of(f t, f r) along(π, π) exists.

Proof. We will define
∏

par f
t(A) as the pullback

(
∏

par f
t)(A)
��

��

// (
∏
f r)(I(A))
��

��∏
f t(A) ∆ //∏ f t(A)×

∏
f t(A)
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where∆ is the diagonal map. We define
∏

par f
r(R) for R ∈ Ξ′, to be the pullback

(
∏

par f
r)(R)
��

��

// (
∏
f r)(R)
��

��∏
par f

t(∂0R)×
∏

par f
t(∂1R) // //∏ f t(∂0R)×

∏
f t(∂1R).

First we will show that
∏

par f
r(I(A)) = I(

∏
par f

t(A)) for all A. Logically∏
par f

r(I(A)) = {(x, y) ∈
∏
f r(I(A)) | (y, y), (x, x) ∈

∏
f r(I(A))} ⊇

{(x, x) | x ∈ |
∏
f r(I(A))|} = I(

∏
par f

t(A))

To prove the other inclusion suppose(x, y) ∈
∏

par f
r(I(A)) ⊆

∏
f r(I(A)). Then for anyσn+1 ∈ D0,

(x, y) ∈ π∗(
∏
f r)(I(A), I(σn+1)).

Let εA,σn+1 denote the appropriate component of the counit forπ∗ a
∏

. Then

(εA,σn+1x, εA,σn+1y) ∈ π∗(
∏
f r)(I(A), I(σn+1)) = I(f t(A, σn+1)),

so εA,σn+1x = εA,σn+1y. Since
∏
f t(A) is the product off t(A, σn+1) overσn+1 in D0, andεA,σn+1 is

simply the projection onto theσn+1-component,εA,σn+1x = εA,σn+1y for all σn+1 impliesx = y as desired.

Finally we will show that
∏

par provides the desired right adjoint. Recall that a morphism from(gt, gr) to
(ht, hr), where

Ξ′ gr
//

∂1

��
∂0

��

LR(D)0

∂1

��
∂0

��
Ξ

I

OO

gt
// D0

I

OO

and likewise(ht, hr) is a morphisms : gt → ht preserving relations. In the internal language this means
that for eachA ∈ Ξ we have a mapsA : gt(A) → ht(A) such that forR with ∂0(R) = A, ∂1(R) = B,
(x, y) ∈ gr(R) implies(sA(x), sB(y)) ∈ hr(R).

Now, from Lemma 8.7 we easily derive a one-to-one correspondence between maps(gt, gr)→ (
∏
f t,

∏
f r)

and maps(gt ◦ π, gr ◦ π) → (f t, f r). Since
∏

par f
t(A) ⊆

∏
f t(A), for this correspondence to carry

over, we only need to check that ifs denotes a map from(gt ◦ π, gr ◦ π) to (f t, f r), and s̃ the adjoint
correspondent tos, then s̃ preserves relations, and ifx ∈ gt(A), then s̃(x) ∈

∏
par f

t(A). But since
(x, x) ∈ gr(I(A)) = I(gt(A)), we must have(s̃(x), s̃(x)) ∈

∏
f r(I(A)), so s̃(x) ∈

∏
par f

t(A) as
desired. For the preservation of relations, suppose(x, y) ∈ gr(R). Then

(s̃(x), s̃(y)) ∈
∏
f r(R) ∩

∏
par f

t(∂0R)×
∏

par f
t(∂1R) =

∏
par f

r(R).

Corollary 8.9. The fibrationFam( LR(D) // Doo
oo

)→ EG is aλ2-fibration.

Remark 8.10. If E is a topos thenQ is the subobject fibration onD, andT→ K is in fact the model ofλ2

that Robinson and Rosolini prove to be parametric in the sense of reflexive graphs (Definition 7.1) in [15].
One interesting difference however, is that [15] considered only models ofλ2 that satisfied a “suitability
for polymorphism” condition stating that the model is closed underLR(D)0-products. In our setup, this
condition is replaced by the condition that the regular subobject fibration models∀, and that the internal
categoryD is closed under regular subobjects.
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Remark 8.11. Consider a morphismξ between typesf andg in the modelT → K. At first sight, such a
morphism is a pair of morphism(ξ0, ξ1) with ξi : fi → gi. But morphisms inLR(D) are given by pairs of
maps inD, and commutativity of

LR(D)n
0

ξ1 //

∂i

��

LR(D)1

∂i

��
Dn

0
ξ0 // D1

tells us thatξ1 must be given by(ξ0, ξ0). Thusmorphisms between types are morphisms between the usual
interpretations of types preserving the relational interpretations.

8.4 The APL-structure

In this section we embed theλ2 fibration of Corollary 8.9 into a full parametric APL-structure.

Consider the functor(·)0 : EG → E that maps a diagramX0
// X1oo

oo
toX0, and consider the pullback of

(26) along(·)0:
P

��
T � � //

  B
BB

BB
BB

B C

��
EG.

(29)

Lemma 8.12. The functor(·)0 extends to a morphism of fibrations:

Fam
(

LR(D)OO
����

D

)
(·)0 //

��

Fam(D)

��
EG

(·)0 // E.

Proof. The required map maps an object(
X1OO
����

X0

)
//
(

LR(D)0OO
����

D0

)

of Fam
(

LR(D)0OO
����

D0

)
to the objectX0

// D0 of Fam(D). Likewise for morphisms.

As a consequence of Lemma 8.12 we can extend (29) to

P

��
Fam

(
LR(D)0OO

����
D0

)
//

((QQQQQQQQQQQQQQ
T � � //

��;
;;

;;
;;

;;
C

��
EG.

(30)
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If we eraseT from (30) we obtain the diagram

P

��
Fam

(
LR(D)OO
����

D

)
� � I //

$$J
JJJJJJJJ

C

��
EG.

(31)

Theorem 8.13.The diagram (31) defines a parametric APL-structure.

We will prove Theorem 8.13 in a series of lemmas.

Corollary 8.14. If D is an internal model ofλ2 in a topos, which is closed under subobjects, then the para-
metric completion process of [15] provides aλ2-fibration that satisfies the consequences of parametricity
provable in Abadi & Plotkin’s logic.

Proof. This follows from Remark 8.10.

Remark 8.15. The types (the objects ofFam
(

LR(D)OO
����

D

)
) in the APL-structure (31) are morphisms

(
LR(D)0OO

����
D0

)n

→
(

LR(D)0OO
����

D0

)
in EG. Thus types contain both the usual interpretation (the mapf0 : Dn

0 → D0) and a relational

interpretation (the mapf1 : LR(D)n
0 → LR(D)0). But since the mapFam

(
LR(D)0OO

����
D0

)
→ T forgets the

relational interpretation, the logic on types, given byP, is given only by the logic on the usual interpretation
of the types. To be more precise, a logical relation in the model of (31) between typesf andg is a relation
in the sense of the logicQ between

∐
~d∈Dn

0
f0(~d)→ Dn

0 and
∐

~d∈Dn
0
g0(~d)→ Dn

0 .

Notice also that the relational interpretation of a type (given byf1) is in a sense parametric since the
diagram

LR(D)n
0

f1 // LR(D)0

Dn
0

f0 //

i

OO

D0

i

OO

is required to commute. This is basically the reason why the APL-structure is parametric.

Remark 8.16. One may restrict the APL-structure of (31) to the full subcategory ofEG on powers of the
generic object. This way one obtains aλ2-fibration in whichType is the only kind. To prove that this defines
a parametric APL-structure, one will need to change the proof presented here slightly to obtain the reflexive
graph.

Lemma 8.17. C→ K is fibred cartesian closed andI is a faithful product-preserving functor.
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Proof. The first statement follows from the fact thatE→ → E is a fibred cartesian closed fibration.

I is a restriction of the composition

Fam
(

LR(D)OO
����

D

)

((QQQQQQQQQQQQQQ

// T

��:
::

::
::

::
� � // C′

��
EG

.

The mapT → C′ is the pullback of the inclusion of the externalization of a full internal cartesian closed
category intoE→. This is faithful and product preserving by assumption.

The mapFam
(

LR(D)OO
����

D

)
→ T is the map that maps

f :
(

LR(D)0OO
����

D0

)n

→
(

LR(D)iOO
����

Di

)
to f0 : Dn

0 → Di (for i = 0, 1 denoting objects and morphisms respectively). Since product structure of
internal categories of graph categories is given pointwise, this map clearly preserves fibred products.

As mentioned in Remark 8.11, a morphism fromf to g with

f, g :
(

LR(D)0OO
����

D0

)n

→
(

LR(D)0OO
����

D0

)
is just a map fromf0 to g0 preserving relations. Thus the first map is also faithful.

Lemma 8.18. The composable fibrationP → C → K is an indexed first-order logic fibration with an in-
dexed family of generic objects. Moreover, the composable fibration has simple products, simple coproducts
and very strong equality.

Proof. The composable fibrationP → C → K is a pullback ofQ → E→ → E which has the desired
properties according to Lemma A.8. All of this structure is always preserved under pullback, except simple
products and coproducts. These are preserved since the mapK→ E preserves products.

As in Remark 3.4 we can now construct the functorU as needed in Definition 3.3. Thus we have:

Proposition 8.19. The diagram (31) defines a pre-APL-structure with very strong equality.

Consider the graphW :
·
OO

����
·

·
OO

����
·

·
mmmmm
vv QQQQQ

((

where we assume that the two graphs included are reflexive graphs. The graphW:

LR(D)
OO

����
D

LR(D)
OO

����
D

LR(D)
mmmmm
vv QQQQQ

((
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defines an internal category inEW .

An object ofFam(W) can be denoted by a triple(f, g, ρ), wheref andg are types in the same fibre (that

is, objects ofFam
(

LR(D)OO
����

D

)
in the same fibre) andρ is a morphismLR(D)n

0 → LR(D)0 such that the

diagram
LR(D)0

����
��

��
��

��8
88

88
88

8

LR(D)n
0

��:
::

::
::

:

����
��

��
��

ρ 22eeeeeeeeee

D0 D0

Dn
0

f0
22eeeeeeeeeeeeeeee Dn

0

g0
22eeeeeeeeeeeeeee

(32)

commutes.

Now, as noted in Remark 8.15 types in the pre-APL structure (31) are given by both an ordinary interpreta-
tion of types and a relational interpretation of types, but relations between types are just given by relations
between the ordinary interpretation of types. Thus we may think of such triples as objects of the form

[[~α, ~β | ~R : Rel(~α, ~β) ` φ(R) : Rel(f(~α), g(~β))]]

in the categoryRelations as formed from the pre-APL structure (31), in the same way as in Lemma 8.6.

Note that since we have proved that the diagram (31) defines a pre-APL-structure, we can reason about
it using the parts of Abadi & Plotkin’s logic not involving the relational interpretation of types. In the
following we shall use this to work in the internal language of the pre-APL-structure.

Proposition 8.20. There is an isomorphism of fibrations:
Fam(W)

��
EW

 ∼= //


Relations

��
RelCtx


Proof. The argument is essentially the same as the proof of Lemma 8.6.

Lemma 8.21. The graphW is an internal model ofλ2 in EW .

Proof. This is a consequence of Proposition 8.20.

Proposition 8.22. There is a reflexive graph ofλ2-fibrations
Fam

(
LR(D)OO
����

D

)
��

EG

 //


Fam(W)

��
EW

oo

oo

Remark 8.23. The reflexive graph in [15] arises this way, although the setup of [15] is slightly different.
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Proof. An object ofFam(W) is a map inEW


Ξ1OO

����
Ξ2

Ξ4OO

����
Ξ5

Ξ3

mmmmm
vv QQQQQ

((

→


LR(D)0OO

����
D0

LR(D)0OO

����
D0

LR(D)0
mmmmm
vv QQQQQ

((

 .

Let us denote such objects as triples(f, g, ρ) wheref :
(

Ξ1OO
����

Ξ2

)
→

(
LR(D)0OO

����
D0

)
, g :

(
Ξ4OO
����

Ξ5

)
→

(
LR(D)0OO

����
D0

)
and

ρ : Ξ3 → LR(D)0 . The domain and codomain maps of the postulated reflexive graph map(f, g, ρ) to f
andg respectively, and the last map mapsf to (f, f, f1).

The domain and codomain map preserve simple products since from the viewpoint of Proposition 8.22 these
are just the domain and codomain map of Lemma 3.7. The middle map component of the simple products in
Fam(W) → EW is computed by computing the simple products as in Lemma 8.7 and then restricting the
the right domain and codomain. Since this is the same as the computation of the relational part of the simple

products ofFam
(

LR(D)OO
����

D

)
, the last map of the reflexive graph also commutes with simple products.

Proposition 8.24. The pre-APL-structure (31) has a full APL-structure.

Proof. This follows from Proposition 8.22 and Proposition 8.20.

Lemma 8.25. The APL-structure (31) satisfies extensionality.

Proof. The model has very strong equality, which implies extensionality (4.2).

Lemma 8.26. The APL-structure (31) satisfies the identity extension axiom.

Proof. Consider a typef with n free variables. We need to show that

〈idΩn , idΩn〉∗J(f) ◦ [[~α | − | − ` eq~α]] = [[~α ` eqf(~α)]].

The mapJ is defined as the composition of two maps. The first map mapsf to (f, f, f1) :
LR(D)n

0OO

����
Dn

0

LR(D)n
0OO

����
Dn

0

LR(D)n
0

mmmmm
vv QQQQQ

((

→


LR(D)0OO

����
D0

LR(D)0OO

����
D0

LR(D)0
mmmmm
vv QQQQQ

((

 .

Sincef makes the diagram

LR(D)n
0

����

f1 // LR(D)0

����
Dn

0

OO

f0 // D0

OO

commute we know thatf1(eq~α) = eqf0(~α).

Theorem 8.13 is now the collected statement of 8.19 8.24, 8.25 and 8.26.
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Remark 8.27. As mentioned in the introduction to this section, the concrete APL-structure of Section 6 can
be considered as a result of the parametric completion process. If we consider the internal categoryPer in
the categoryAsm of assemblies, then using the parametric completion process on this data we obtain the
APL-structure of Section 6. To see this, we need to use the fact that there exists an isomorphism of fibrations

UFam(Asm)

''OOOOOOOOOOO

∼= // Asm→

yytttttttttt

Asm.

This proves Theorem 6.2.

9 Parametric Internal Models

The definition of APL-structure admittedly asks for a substantial amount of structure. In this section we
sketch how much of that structure may be derived in the case of internal models ofλ2.

Let E be a quasi-topos and letj be a local operator (also known as closure operator or Lawvere-Tierney
topology) onE. We writeEj for the full subcategory ofj-sheaves,a for the associated sheaf functor,I for
the inclusion ofj-sheaves, andη for the natural transformationId → I a.

Let C be an internal model ofλ2 E. ThenaC is an internal category inEj andη : C→ aC is an internal
functor.

Consider the following diagram:

P

��

// S

��

// RegSubEj

��
Fam(C)

&&MMMMMMMMMMMM
I // Fam(Ej)

��

// Ej
→

��

dom // Ej

E a
// Ej

(33)

whereI is the functor induced by the composition of the internal functorη : C→ aC and the inclusion of
the externalization ofC into Ej

→ is faithful.

Suppose that

• the internal functorη : C→ aC is faithful,

• the internal categoryaC is a subcategory ofEj (i.e., the inclusion of the externalization ofC into
Ej

→ is faithful).

Then the functorI in the above diagram is faithful and the leftmost part of the diagram (33) (the part going
down and left fromP) is a pre-APL-structure, and we can thus define thatthe internal λ2 modelC in E is
parametric with respect to j if this pre-APL-structure is a parametric APL-structure.

One should, of course, think ofj as specifying the logic with respect to which the model is parametric.

The completion process presented in the previous section takes a full internalλ2 model in a quasi-toposF
and produces an internal model inE = FG with j on E such thatF = Ej (the associated sheaf functor
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a takes
X1OO
����

X0

to X0) and which satisfies the two items above ensuring thatI is faithful. The results in the

previous section then show that the internal model inF is parametric with respect to thisj.

This description of parametric internal models allows us to state precisely the (still) open problem of whether
there exists parametric models that are inherently parametric (not constructed though a completion process):

Problem 9.1. Does there exist a full internalλ2 model in a quasi-toposE that is parametric with respect to
the trivial topologyj (such thatEj = E) ?

10 Conclusion

We have defined the notion of an APL-structure and proved that it provides sound and complete models for
Abadi and Plotkin’s logic for parametricity, thereby answering a question posed in [12, page 5]. We have
also defined a notion of parametric APL-structures, for which we can prove the expected consequences of
parametricity using the internal logic. The consequences proved in this document are existence of inductive
and coinductive datatypes. These consequences have, to our knowledge not been proved in general for
models parametric in the sense of Ma & Reynolds, but only for specific models.

We have presented a family of parametric models, some of which are not well-pointed. This means that our
notion of parametricity is useful also in the absence of well-pointedness.

We have provided an extension of the parametric completion process of [15] that produces parametric APL-
structures. This means that for a large class of models, we have proved that the parametric completion of
Robinson and Rosolini produce models that satisfy the consequences of parametricity.

In subsequent papers we will show how to modify the parametric completion process to produce domain-
theoretic parametric models and how to extend the notion of APL-structure to include models of polymor-
phic linear lambda calculus [11].

A Composable Fibrations

This appendix is concerned with the theory of composable fibrations, by which we simply mean pairs of
fibrations such that the codomain of the first is the domain of the second fibration. This appendix contains
definitions referred to in the text.

Suppose we are given a composable fibration:

F
p // E

q // B

We observe that

• The compositeqp is a fibration. This is easily seen from the definition.

• If p andq are cloven, we may choose a cleavage by liftingu twice tou for eachI in Obj F and
u : X → qpI.

• If p, q are split the composite fibration will be split sincevu = v ◦ u = v ◦ u.

Thus in the case above we may consider the composable fibration as a doubly indexed category, and rein-
dexing inF with respect tou in B is given byu∗
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The lemmas below refer to the fibrationsp, q above.

Definition A.1. We say that(ΩA)A∈Obj B is an indexed family of generic objects for the composable pair of
fibrations(p, q) if for all A, ΩA ∈ Obj EA is a generic object for the restriction ofp to EA and if the family
is closed under reindexing, ie., for all morphismsu : A→ B in B, u∗(ΩB) ∼= ΩA.

Before we define the concept of an indexed first-order logic fibration, we recall the definition of first-order
logic fibration from [5] .

Definition A.2. A fibrationp : F→ E is called afirst-order logic fibrationif

• p is a fibred preorder that is fibred bicartesian closed.

• E has products.

• p has simple products and coproducts, i.e., right, respectively left adjoints to reindexing functors
induced by projections, and these satisfy the Beck-Chevalley condition.

• p has fibred equality, i.e., left adjoints to reindexing functors induced byid ×∆ : I×J → I×J ×J ,
satisfying the Beck-Chevalley condition.

Readers worried about the Frobenius condition should note that this comes for free in fibred cartesian closed
categories.

Definition A.3. We say that(p, q) has indexed (simple) products/coproducts/equality if each restriction of
p to a fibre ofq has the same satisfying the Beck-Chevalley condition, and these commute with reindexing,
i.e., if u is a map inB then there is a natural isomorphism̄u∗

∏
f
∼=

∏
u∗f ū

∗ or ū∗
∐

f
∼=

∐
u∗f ū

∗ (this
can also be viewed as a Beck-Chevalley condition).

Definition A.4. We say that(p, q) is an indexed first order logic fibrationif p is a fibrewise bicartesian
closed preorder, and(p, q) has indexed simple products, indexed simple coproducts and indexed equality.

We can also talk about composable fibrations(p, q) simply having products, coproducts, etc. This should
be the case if the compositeqp has (co-)products, but we should also require the right Beck-Chevalley
conditions to hold. Notice that sinceu∗ in qp is the same as̄u∗ in p we can write the product as either

∏
u

in qp or
∏

ū in p.

Definition A.5. We say that the composable fibration(p, q) has products / coproducts if for each map
u : I → J in B, and each objectX ∈ EJ the reindexing functor̄u∗ : FX → Fu∗X has a right / left
adjoint. Moreover, these (co)-products must satisfy the Beck-Chevalley condition for two sorts of diagram
corresponding to reindexing inB andE respectively. First if

H
v //

a

��

K

b
��

I
u // J

is a pullback diagram inB, then by [5, Exercise 1.4.4]

a∗u∗X
v̄ //

ā
��

b∗X

b̄
��

u∗X
ū // X
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is a pullback diagram inE, and we require that the Beck-Chevalley condition is satisfied with respect to this
diagram. Second, iff : Y → X is a vertical map inE, then the Beck-Chevalley condition should be satisfied
with respect to the diagram

u∗Y
ū //

u∗f
��

Y

f

��
u∗X

ū // X

(34)

which by the way is a pullback by [5, Exercise 1.4.4].

The composable fibration(p, q) has simple (co-)products if it has (co-)products with respect to projections
as defined above.

In the case of the APL-structures, the logical content of the Beck-Chevalley condition for diagrams of the
form (34) will be that

(∀α : Type. φ)[t/x] = ∀α : Type. (φ[t/x]).

Definition A.6. We say that a first-order logic fibration hasvery strong equalityif internal equality in the
fibration implies external equality.

Definition A.7. We say that the indexed first order logic fibration(p, q) hasvery strong equalityif each
restriction ofp to a fibre ofq has.

The next lemma gives a way of obtaining indexed first-order logic fibrations.

Lemma A.8. SupposeQ′ → E is a first-order logic fibration with a generic object on a locally cartesian
closed categoryE. Suppose further, thatQ′ → E has products and coproducts with respect to mapsA ×B

A′ → A from pullback diagrams
A×B A′ //

��

A

��
A′ // B,

and coproducts with respect to maps

idC ×B ∆A : C ×B ×A→ C ×B A×B A,

all satisfying the Beck-Chevalley condition. Then the composable fibration

Q // E→ cod // E ,

whereQ→ E→ is the pullback
Q //

��

Q′

��
E→ dom // E,

is an indexed first-order logic fibration with an indexed family of generic objects, simple products and simple
coproducts. Moreover, ifQ′ → E has very strong equality, so does the composable fibration.
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Proof. The fibred bicartesian structure exists since the fibres ofQ → E→ are the fibres ofQ′ → E. This
structure is clearly preserved by reindexing.

The fibrewise product ofA→ B andA′ → B in E→ isA×B A′ → B with projection

A×B A′ π //

$$H
HHHHHHHH A

����
��

��
��

B

.

The indexed (co-)product along this map inQ → E→ is the (co-)product alongπ in E, which exists by
assumption. For the Beck-Chevalley condition for vertical pullbacks, recall that the domain functorE→ →
E preserves pullbacks, so for a vertical map

A′′ f //

  A
AA

AA
AA

A A

����
��

��
��

B

taking the pullback ofπ alongf in the categoryE→, and then applying the domain functor gives the pullback

A′′ ×B A′

��

// A×B A′

��
A′′ f // A

in E, so that the Beck-Chevalley condition in this case reduces to Beck-Chevalley for the fibrationQ′ → E.

To prove that these indexed simple (co-)products commute with reindexing, consider a mapu : B′ → B in
E. We need to prove that for the diagram

u∗(A)×B′ u∗(A′)

π
wwnnnnnnnnnnnn

ū //

��

A×B A′

π
{{vvvvvvvvv

��

u∗A
ū //

''PPPPPPPPPPPPPP A

$$H
HHHHHHHHH

B′ u // B,

we have, for products̄u∗
∏

π
∼=

∏
π ū

∗ and for coproducts̄u∗
∐

π
∼=

∐
π ū

∗ . But this follows from the
Beck-Chevalley condition inQ′ → E.

Indexed fibred equality is given by coproduct along maps

idC ×B ∆A : C ×B A→ C ×B A×B A,

which are required to exists. As with indexed (co-)products, the Beck-Chevalley conditions reduce to the
Beck-Chevalley conditions forQ′ → E.

We define the family of generic objects to be the projections(Σ×B → B)B∈E in E→ whereΣ is the generic
object ofQ→ E. This family is clearly closed under reindexing, and maps

A
h //

f ��@
@@

@@
@@

Σ×B

π
{{xx

xx
xx

xx
x

B

86



correspond to mapsA→ Σ in E, which correspond to objects ofQ′
A
∼= Qf .

We shall prove that we have simple products; simple coproducts are proved similarly. Supposeπ : D×D′ →
D is a projection inE. Forf : A→ D in E→, π̄ is the map

A×D′

f×id
��

π // A

f

��
D ×D′ π // D.

Reindexing along this map inQ corresponds to reindexing inQ′ alongπ : A×D′ → A, so by existence of
simple products inQ′ → E we have a right adjointπ∗ a

∏
π.

We need to prove Beck-Chevalley first for pullbacks inE. In this case a pullback inE

D ×D′′ idD×u//

π′

��

D ×D′

π′

��
D′′ u // D′

lifts to the pullback

D × u∗A

��

id×ū //
π′

wwoooo
D ×A

id×f

��

π′xxrrr
rr

u∗A
ū //

��

A
f

��
D ×D′′

π′

wwooo
oo id×u

// D ×D′

π′yyssss

D′′
u

// D′

in E→. The Beck-Chevalley condition for this pullback reduces to the Beck-Chevalley condition for the
upper square inQ′ → E which is known to hold.

We should also check that the Beck-Chevalley condition holds in the case of the pullback.

A′ ×D′

h×id

xxrrrrrrrrrr

π̄ //

��

A′

h

����
��

��
��

��

A×D′ π̄ //

&&LLLLLLLLLL A

��?
??

??
??

?

D ×D′ π // D

But again this reduces to the Beck-Chevalley condition forQ′ → E becausēπ is a projection.

Very strong equality is clearly preserved.
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heard, editors,Category Theory and Computer Science, Proc. Edinburgh 1987, volume 283 ofLecture
Notes in Computer Science, pages 12–39. Springer-Verlag, 1987. 1

[11] G.D. Plotkin. Second order type theory and recursion. Notes for a talk at the Scott Fest, February
1993. 1, 10

[12] Gordon Plotkin and Martı́n Abadi. A logic for parametric polymorphism. InTyped lambda calculi and
applications (Utrecht, 1993), volume 664 ofLecture Notes in Comput. Sci., pages 361–375. Springer,
Berlin, 1993. (document), 1, 2, 2.3, 2.4, 3.2, 3.18, 4, 5, 5.1, 5.4, 5.16, 10

[13] J.C. Reynolds. Types, abstraction, and parametric polymorphism.Information Processing, 83:513–
523, 1983. 1

[14] J.C. Reynolds. Polymorphism is not set-theoretic. In G. Kahn, D. B. MacQueen, and G. D. Plotkin,
editors,Semantics of Data Types, volume 173 ofLecture Notes in Computer Science, pages 145–156.
Springer-Verlag, 1984. 1

[15] E.P. Robinson and G. Rosolini. Reflexive graphs and parametric polymorphism. In S. Abramsky,
editor,Proc. 9th Symposium in Logic in Computer Science, pages 364–371, Paris, 1994. I.E.E.E. Com-
puter Society. 1, 7, 8, 8.10, 8.14, 8.23, 10

[16] G. Rosolini. Notes on synthetic domain theory. Draft, 1995.

[17] I. Rummelhoff. Polynat in PER-models.Theoretical Computer Science, 316(1–3):215–224, May
2004.

[18] R.A.G. Seely. Categorical semantics of higher-order polymorphic lambda calculus.The Journal of
Symbolic Logic, 52(4):969–989, December 1987. 1

[19] Izumi Takeuti. An axiomatic system of parametricity.Fund. Inform., 33(4):397–432, 1998. Typed
lambda-calculi and applications (Nancy, 1997). 2.2

88



[20] P. Wadler. Theorems for free! In4’th Symposium on Functional Programming Languages and Com-
puter Architecture, ACM, London, September 1989. 1, 1

[21] P. Wadler. The Girard-Reynolds isomorphism (second edition). Manuscript, March 2004. 2.2

89


	intro.pdf
	Parametric Polymorphism
	Encoding of inductive and coinductive types
	Data abstraction
	Relational parametricity

	Models of Polymorphism
	The second-order lambda calculus
	Adding fixed points

	Models of Parametric Polymorphism
	Models of Abadi & Plotkin's logic

	Contributions of this dissertation
	Abadi & Plotkin's logic
	APL-structures
	LAPL-structures
	Completion Processes
	An LAPL-structure from Synthetic Domain Theory

	Related Work
	Ma & Reynolds notion of parametricity
	Parametricity graphs
	Parametricity in operational semantics
	More related research

	Structure of the dissertation
	Conclusion
	Future work


	abadiplotkin.pdf
	Introduction
	Abadi & Plotkin's logic
	Second-order -calculus
	Equality

	The logic
	Definable relations
	The axioms

	APL-structures
	Soundness
	Completeness

	Parametric APL-structures
	Consequences of parametricity
	Dinaturality
	Products
	Coproducts
	Initial algebras
	Final coalgebras
	Generalizing to strong fibred functors

	Concrete APL-structures
	A parametric non-well-pointed APL-structure

	Comparing with Ma & Reynolds notion of parametricity
	A parametric completion process
	Internal models for 2
	Input for the parametric completion process
	The completion process
	The APL-structure

	Parametric Internal Models
	Conclusion
	Composable Fibrations




