
Categorical and domain theoretic models of
parametric polymorphism

Rasmus Ejlers Møgelberg

PhD Dissertation

Abstract

Parametric polymorphism in functional programming languages with explicit polymorphism is the property
that polymorphic programs behave the same way at all type instantiations. This can be formulated more
precisely using Reynold’s notion of relational parametricity, which states that polymorphic functions should
preserve relations. It has been known for a long time that parametric polymorphism can be used to encode
inductive and coinductive data types, and this has been shown in a logic for parametricity suggested by
Abadi and Plotkin.

In this dissertation we propose new category theoretic formulations of parametricity for models of the
second-order lambda-calculus and models of a polymorphic lambda-calculus with linear function types and
fixed points. These parametric models are models of Abadi and Plotkin’s logic for parametricity, called para-
metric APL-structures and LAPL-structures, respectively. We show how that the encodings of inductive and
coinductive types using parametric polymorphism give rise to initial algebras and final coalgebras in APL-
and LAPL-structures and, using Plotkin’s encodings, we show how to solve recursive domain equations in
LAPL-structures.

Moreover, we show that the notions of APL- and LAPL-structures are general by constructing different
examples. We construct a parametric APL-structure based on the per-model and a domain-theoretic para-
metric LAPL-structure. Based on recent work by Simpson and Rosolini we show how to construct paramet-
ric LAPL-structures using synthetic domain theory, and we device general ways of constructing parametric
LAPL- and APL-structures using parametric completion processes.

Using the LAPL-structure constructed using synthetic domain theory we prove consequences of parametric-
ity for a variant of the Lily programming language.

Acknowledgments

I would like to thank my supervisor Lars Birkedal for participating actively in my research over the past
three years, and in particular for (almost) always finding time to see me even though he is a busy man.
Also thanks to Alex Simpson, whom I visited in Edinburgh for the spring of 2004, for his help with both
practical and mathematical matters and for many interesting discussions, and to Pino Rosolini for many
helpful discussions and for inviting me to come to Genoa for a short visit.

I would also like to thank the following people for helpful discussions: Carsten Butz, Martin Hyland, Milly
Maietti, Andy Pitts, John Reynolds, Ivar Rummelhoff, Thomas Streicher and Phil Wadler.

Finally thanks to everyone at the Department of Theoretical Computer Science at ITU, in particular Rasmus
Lerchedahl Petersen for valuable collaboration. Also thanks to Noah Torp-Smith and Bodil Biering for
proof-reading, and to everyone who participated in the topos theory seminar.

Contents

Introduction 1

Paper 1: L. Birkedal and R. E. Møgelberg. 27
Categorical models of Abadi-Plotkin’s logic for parametricity.

Paper 2: L. Birkedal, R. E. Møgelberg, and R. L. Petersen. 91
Parametric domain-theoretic models of linear Abadi & Plotkin logic.

Paper 3: R. E. Møgelberg, L. Birkedal, and R. L. Petersen. 175
Categorical models of PILL.

Paper 4: R. E. Møgelberg, L. Birkedal, and G. Rosolini. 191
Synthetic domain theory and models of linear Abadi & Plotkin logic.

Paper 5: R. E. Møgelberg. 245
Parametric completion for models of polymorphic intuitionistic / linear lambda calculus.

Introduction

This PhD dissertation is a collection of five papers on models of parametric polymorphism, which we shall
refer to as Paper 1, etc. in this introduction. The introduction at hand is organized as follows: Sections 1, 2
contain background material on parametric polymorphism, Section 3 discusses models of parametric poly-
morphism, Section 4 gives a summary of the results of this dissertation, Section 5 discusses related work,
Section 6 contains an overview of the papers in this dissertation, and Section 7 concludes and discusses
future work.

1 Parametric Polymorphism

Polymorphism in typed programming languages enables the programmer to write functions that can act on
input of many types. Consider for example the functionrev that reverses a list. This function can act on
integer-lists, string-lists or lists of any type. In languages with explicit polymorphism, such as ML and the
second-order lambda calculus, the functionrev will have the type (in the syntax of the second-order lambda
calculus) ∏

α : Type. lists(α) → lists(α),

to be read as “for all typesα, lists(α) to lists(α)”. An element of this type is a family, indexed over types
A, of functions takingA-lists and returningA-lists.

Christopher Strachey [37] identified two types of polymorphism. The first, calledad-hoc polymorphism,
allows the behavior of a polymorphic function to depend on the type of in-data. The second type, called
parametric polymorphism, only includes functions based on a common algorithm for all input types. For
examplerev is parametric, whereas the function that adds one to each element of an integer list, but is the
identity on lists of all other types is ad-hoc.

A programming language is said to haveparametric polymorphism, if it has explicit polymorphism and
all polymorphic programs are parametric. In the following we sketch two reasons why such programming
languages are interesting. We argue informally and use the syntax of the second order lambda calculus, but
the arguments are not limited to the second-order lambda calculus.

1.1 Encoding of inductive and coinductive types

Consider the type ∏
α : Type. (α → α) → (α → α)

in a language with parametric polymorphism. A function of this type takes for any typeA a functionf : A →
A and produces a new functionA → A. For each natural numbern, we can define the function that mapsf
to fn (f0 is the identity onA), and this way we can think of the type

∏
α : Type. (α → α) → (α → α) as

containing a copy of the natural numbers.

Since a parametric function of the type
∏

α : Type. (α → α) → (α → α) is not allowed to use specific
information about the typeA, the only access it has toA is the functionf , and so intuitively all it can do is

1

mapf to fn1. Since parametric functions should use the same algorithm for all types of input, thisn should
be the same for all typesA, and all functionsf .

The above establishes the intuition why the type
∏

α : Type. (α → α) → (α → α) in a language with
parametric polymorphism can be used as a reasonable type of natural numbers. Of course we have not given
a formal argument for this, and we have not defined what we mean by a reasonable type of natural numbers.
Notice that the natural numbers were always present in the type, and we used parametricity to argue that no
other elements of the type could exist. In general, encoding of all inductive and coinductive types such as
finite lists, potentially infinite lists, trees etc. exist.

1.2 Data abstraction

In this section we will assume we are working in a language with parametric polymorphism and data types
for natural numbersNat, products and lists. This is not an unreasonable assumption as these data types can
be encoded in languages with parametric polymorphism as described in Section 1.1.

Suppose that a programmer is writing a program for which he needs to use a data type for stacks of natural
numbers, which should be implemented by another programmer. Such a data type would have operations

new: Stack
push: Nat× Stack → Stack

pop: Stack → Stack
top: Stack → Nat

wherenew creates a new stack,push pushes numbers onto the stack,pop pops the number on top of the
stack, andtop returns the number on top of the stack. A concrete implementation of the typeStack could
for example implement it using lists, withnew being the empty list,push adding a new element to the first
position of the list,pop taking the first element out of the list, andtop returning the first number in a list.

Even though the programmer may not have the implementation of the typeStack yet, he can still write his
program as a functionP taking as input a concrete implementation ofStack. If for example the program
should return a natural number,P would have the type∏

Stack: Type.Stack → (Nat× Stack → Stack) → (Stack → Stack) → (Stack → Nat) → Nat.

P then takes as input a concrete type and concrete operations.

Since the programP is parametric, it should only be able to access the typeStack through the operations
new,pop,push, top provided, since this is the only available information about the typeStack, and it should
never be able to use information about a specific implementation of the type it is instantiated with.

We can use this to prove that if two concrete implementations of the typeStack behave the same way with
respect to the interface operationsnew,push,pop, top then the result ofP instantiated with either of the
two concrete implementations will be the same. This is a way of ensuring robust modularized programming.

Existential types present a different approach to data abstraction [20]. Existential types can be encoded
using parametric polymorphism.

Data abstraction can be seen as a sort of information hiding; we hide information about the specific im-
plementation of a data type from the programmer using the data type. Parametricity has also been used
to implement other forms of information hiding such as hiding local variables from called procedures in
imperative languages (see Section 5.4).

1In this example, we have assumed that the polymorphic language does not have fixed points. If the language has fixed points,
the situation is different, as we describe in Section 2.2

2

1.3 Relational parametricity

Of course the arguments above are quite informal, since we have not formulated the concept of parametric
polymorphism very precisely. John Reynolds has given a precise formulation of parametricity calledrela-
tional parametricity[30]. The basic idea is that the parametric elements of a polymorphic type are those
that preserve relations. For example, a polymorphic functionf of type

∏
α : Type. α → α is parametric if

for all pairs of typesA,B and all relationsR between them: ifx : A, y : B are related inR, then so aref(x)
andf(y).

Let me sketch how this captures data abstraction. We can express the notion of two implementations of
Stack behaving the same way with respect to the interface operations using relations as follows: There
should be a relation relating elements of the first implementation ofStack to elements of the other, such that
the interface operations preserve the relations. This means that the stacks created by the twonew operations
should be related, pushing the same number onto related stacks should produce related stacks, popping
related stacks should produce related stacks andtop maps related stacks to equal numbers. Relational
parametricity states that the programP of Section 1.2 applied to related implementations ofStack should
produce related results, which, since the type ofStack does not occur in the result type ofP should mean
that the results are equal.

Mart́ın Abadi and Gordon Plotkin have devised a logic for reasoning about parametricity for the second-
order lambda calculus [29]. In this logic one can prove correctness of encoding of inductive and coinductive
types from parametricity.

Of course, to use relational parametricity in practice for a specific programming language, one will have to
specify what is meant by relations.

2 Models of Polymorphism

In this section we sketch the two polymorphic languages we consider in this dissertation, namely the second-
order lambda calculus and PILLY (Polymorphic Intuitionistic / Linear Lambda calculus with fixed point
combinatorY). We also sketch the categorical notions of models for these languages. The purpose of this
section is not to give precise definitions, but to give an idea of the models used, to prepare for the discussion
of parametric models of these calculi.

2.1 The second-order lambda calculus

The second-order lambda calculus (λ2) is the simply typed lambda calculus (with products) extended with
(impredicative) polymorphism. Types are given by the grammar

σ ::= α | σ → σ | σ × σ | 1 |
∏

α. σ

whereα ranges over an infinite set of type variables. The construction
∏

α. σ binds the type variableα. We
useσ, τ, ω to range over types. Terms are given by the grammar

t ::= x | λx : σ.t | t(t) | 〈t, t〉 | πt | π′t | Λα : Type. t | t(σ) | ?.

Terms exist in contexts of free type variables and ordinary variables written as

α1, . . . , αn | x1 : σ1, . . . , xm : σm ` t : τ

3

where the free type variables of theσi andτ are amongα1, . . . , αn. We will often writeΞ for α1, . . . , αn

andΓ for x1 : σ1, . . . , xm : σm, and we shall often omit the: Type in types and terms. Most of the typing
rules are as in the simple typed lambda calculus, so we just mention the two related to polymorphism.

If
α1, . . . , αn, αn+1 | x1 : σ1, . . . , xm : σm ` t : τ

is a term andαn+1 is not free in any of the typesσ1, . . . σm then

α1, . . . , αn | x1 : σ1, . . . , xm : σm ` Λαn+1. t :
∏

αn+1. τ.

If Ξ | Γ ` t :
∏

α. τ , andσ is a type with all free variables inΞ, we may formΞ | Γ ` t(σ) : τ [σ/α], where
τ [σ/α] denotes capture free substitution ofσ for free appearances ofα in τ defined as usual.

We notice two properties ofλ2. First, for every collection of free type variablesΞ we have a simple typed
lambda calculus of terms with free type variables inΞ. Second,λ2 has a very strong notion of polymorphism
called impredicative polymorphism, meaning that terms of polymorphic types may be instantiated at all
types. If for examplet is a term of type

∏
α. α, thent(

∏
α. α) also has type

∏
α. α, and so applying a

polymorphic term to a type need not result in a term with a simpler type. Impredicativity is what has made
models ofλ2 difficult to find.

For a long time it was hoped that one could find set-theoretic models ofλ2. By this we mean models based
on a set or class of setsU such that one can model types withn free variables as mapsUn → U , and model
product types and exponent types pointwise using set theoretic products and exponents. In fact Reynolds
defined parametric polymorphism [30] hoping that such set theoretic models could be constructed using
parametric polymorphism in the interpretation of polymorphic types.

In 1984 Reynolds [31] (see also [32]) showed that set theoretic models ofλ2 can not exist unless they are
trivial. However, if one replaces set theory with other more constructive universes, such as certain toposes,
models as described above may exist [26, 24].

The most famous example of such a model is the per-model, which can be seen as a set-theoretic model
living inside the effective topos, or the quasi-topos of assemblies. The per-model is based on the setPer
of partial equivalence relations on the natural numbers (symmetric, transitive, but not necessarily reflexive
relations). A type withn free variables is modeled by a map

Pern → Per.

Exponents are modeled pointwise by defining for each pair of persR,S a perR → S relatingn, m if

∀x, y : N. R(x, y) ⊃ n · x ↓ ∧m · y ↓ ∧S(n · x,m · y)

wheren ·x denotes Kleene application, i.e., application of then’th partial recursive function tox. Finally, if
f : Pern+1 → Per is a type, we model the polymorphic type obtained by abstracting the last type variable
by intersection, i.e., ifR1, . . . , Rn are pers then(

∏
f)(R1, . . . Rn)(n, m) holds iff

∀Rn+1 ∈ Per. f(R1, . . . , Rn+1)(n, m)

holds.

Terms of the form
α1, . . . , αn | x : σ ` t : τ

are modeled as families of morphisms

([[~α | x : σ ` t : τ]](~R) : N/[[~α ` σ]](~R) → N/[[~α ` τ]](~R))~R∈Pern ,

4

whereN/[[~α ` σ]](~R) denotes the set of equivalence classes of the partial equivalence relation[[~α ` σ]], such
that [[t]] is uniformly tracked, i.e., there exists a natural numbern such that for all~R, [[~α | x : σ ` t : τ]](~R)
is given by[m][[~α`σ]](~R) 7→ [n ·m][[~α`τ]](~R).

In general, second-order lambda calculus is modeled inλ2-fibrations. These are defined to be fibred cartesian
closed fibrations, with cartesian base and a generic object and simple products. We sketch what this means,
but choose for simplicity to describe split fibrations and split generic objects. The reader interested in further
details should consult [15].

Supposep : E → B is a functor. For each objectΞ ∈ B we can consider the fibreEΞ of E overΞ, defined to
be the subcategory ofE on objects mapped toΞ via p and morphisms mapped to the identity onΞ. A (split)
fibration is a functorp : E → B satisfying a technical condition basically ensuring that every morphism
f : Ξ → Ξ′ in B induces a functorf∗ : EΞ′ → EΞ, and further(f ◦ g)∗ = g∗ ◦ f∗ and id∗ = id . The
categoriesE andB are called thetotal categoryandbase categoryrespectively and a functor of the formf∗

is called areindexing functor.

A fibred cartesian closedfibration has cartesian closed fibres, and this structure is preserved by reindexing
functors. Aλ2-fibration further has products in the base category and a (split)generic object, i.e., an object
Ω ∈ B such that for anyΞ ∈ B there exists a bijective correspondence between mapsΞ → Ω in B and
objects ofEΞ. This correspondence should be natural inΞ in the sense that iff : Ξ → Ω corresponds to
X ∈ EΞ andg : Ξ′ → Ξ, thenfg corresponds tog∗X ∈ EΞ′ .

Finally aλ2-fibration is required to havesimple productswith respect to projections of the formπ : Ξ×Ω →
Ξ. This means that for each suchπ, the reindexing functor

π∗ : EΞ → EΞ×Ω

is required to have a right adjoint
∏

π.

We modelλ2 in λ2-fibrations as follows. Types withn free variables are modeled in the fibre categoryEΩn

and terms withn free type variables

α1, . . . , αn | x1 : σ1, . . . , xm : σm ` t : τ

are modeled as maps inEΩn from
∏

i[[~α ` σi]] to [[~α ` τ]], where
∏

i denotes product in the fibre. Since
the generic object induces a correspondence between mapsΩn → Ω in B and objectsEΩn we can model
α1, . . . αn ` αi as the object corresponding to thei’th projection. The simple type constructions are modeled
using the cartesian closed structure ofEΩn , and polymorphic types~α `

∏
αn+1. σ are modeled as∏

π[[~α, αn+1 ` σ]]

whereπ : Ωn × Ω → Ωn is the projection.

The per-model can be seen as aλ2-fibration as follows. The base category has as objects natural numbers,
and as morphisms fromn to m set theoretic mapsPern → Perm. The total category has as objects maps
f : Pern → Per for somen, and a morphism fromf : Pern → Per to g : Perm → Per is a pair(h, k)
such thath : Pern → Perm is a map, andk is an indexed family of maps

(k(~R) : N/f(~R) → N/g ◦ h(~R))~R∈Pern

with a uniform tracker as defined above. The fibration maps an objectf : Pern → Per to n and a morphism
(h, k) to h.

5

Modeling λ2 in this fibration gives the per-model described above. Since types and terms withn free
variables are modeled in the fibre overn, types are modeled as mapsPern → Per and terms~α | x : σ ` t : τ
are modeled as vertical maps, i.e., families of maps of the form

([[~α ` x : σ ` t : τ]](~R) : N/[[~α ` σ]](~R) → N/[[~α ` τ]](~R))~R

with a uniform tracker.

2.2 Adding fixed points

The second-order lambda calculus is a strongly normalizing language, and so does not have very strong
computational power. To study a more expressive language we would like to add fixed points to the language,
but since parametricity should give encodings of sum types, one can show, using a general result from [14],
that adding fixed points to parametricλ2 causes inconsistencies.

One way to deal with this problem is to think of the domain theoretic models. The category of cpos with
continuous maps has a fixed point combinator, and is cartesian closed. It does not have coproducts, but
the category of cpos with strict continuous maps does. Based on this observation, Gordon Plotkin [28, 27]
suggested to study a polymorphic calculus in which one could distinguish between strict and non-strict
maps. The encoding of sum types using parametricity would then work in the category of strict maps.

Gordon Plotkin also realized that in this language the encoding of inductive and coinductive types using
parametricity could be generalized to an encoding of recursive types, such as types satisfyingA ∼= [A → A],
where the isomorphism is in the category of strict maps. This means that this language can be considered an
alternative approach to axiomatic domain theory, where the mentioned encoding of recursive types replaces
the well-known limit-colimit construction.

We now sketch the language suggested by Plotkin. The language is called PILLY and is an extension of
DILL [3] with polymorphism and a fixed point combinator.

The grammar for types of PILLY is

σ ::= α | I | σ ⊗ σ | σ (σ |!σ |
∏

α. σ

whereα ranges over an infinite set of type variables. The type constructor(gives linear function types.
The grammar for terms is

t ::= x | ? | Y | λ◦x : σ.t | t t | t⊗ t |!t | Λα : Type. t | t(σ) |
let x : σ ⊗ y : τ bet in t | let !x : σ bet in t | let ? bet in t.

Terms of PILLY are written as

~α | x1 : σ1, . . . , xn : σn; y1 : τ1, . . . , ym : τm ` t : ω.

Theα’s are type variables as inλ2, thexi’s are intuitionistic variables and theyj ’s are linear variables which
can only occur linearly int. Theλ-abstractionλ◦x : σ. t produces terms of linear function typeσ (τ , and
since linear variables of type!σ behave as intuitionistic variables of typeσ, we may define a type of ordinary
functionsσ → τ =!σ (τ . The fixed point combinatorY has type

∏
α : Type. (α → α) → α.

The encoding of inductive and coinductive data types in PILLY is different from that ofλ2. For example
the type of natural numbers can be encoded as∏

α. (α (α) → (α (α).

6

For further details on PILLY we refer to Paper 2.

We derive the notion of models of PILLY from the models of DILL [3, 17]. A model of DILL is a symmetric
monoidal adjunction

C 33⊥ Dss

such thatC is symmetric monoidal closed,D is cartesian, andD is the category of finite products of coalge-
bras for the comonad onC induced by the adjunction (see Paper 3 for an explanation of these concepts).

A PILLY -model is a fibred symmetric monoidal adjunction

C
G

33

��@
@@

@@
@@

⊥ D

��~~
~~

~~
~

F
ss

B

(basically a family of symmetric monoidal adjunctions between fibre categories, with all structure com-
muting with reindexing) such thatC is fibred symmetric monoidal closed,D is fibred cartesian, andD is
the category of finite products of coalgebras for the comonad onC induced by the adjunction. We further
require thatB is cartesian, and that the fibrationC → B has a generic object, overΩ in B say, and simple
products with respect to projectionsΞ×Ω → Ξ for Ξ ∈ B. Finally, we require that there is a term modeling
the fixed point combinator.

The language PILLY is modeled in the fibrationC → B using the fibred symmetric monoidal structure to
model⊗, (, I. The type constructor! is modeled by the fibred comonadFG onC → B. Polymorphism is
modeled using the simple product as was the case forλ2. A term

Ξ | ~x : ~σ; ~y : ~σ′ ` t : τ

is modeled as a vertical morphism

[[t]] : (
⊗

i

FG[[Ξ ` σi]])⊗ (
⊗

j

[[Ξ ` σ′j]]) → [[Ξ ` τ]]

in C.

The reader may be wondering why a PILLY -model is an adjunction and not just a fibred comonad satisfying
certain conditions. Of course we might as well have given the definition this way, but we like to keep the
category of finite products of algebras for the comonad in the picture for the following reason.

Suppose
Ξ | ~x : ~σ;− ` t : τ

is a term. Thent is modeled as a map

[[t]] :
⊗

i

FG[[Ξ ` σi]] → [[Ξ ` τ]].

One can prove that for any symmetric monoidal adjunction the left adjoint is strong, i.e.,F (A) ⊗ F (B) ∼=
F (A×B), and so using the adjunctionF a G, [[t]] corresponds to a map

[̂[t]] :
∏

i G[[Ξ ` σi]] → G[[Ξ ` τ]].

in D. Thus, the fibrationD → B models the part of the calculus consisting of terms with purely intuitionistic
variable contexts.

7

3 Models of Parametric Polymorphism

Having seen what models of polymorphism are, a natural question to ask is “What does it mean for aλ2-
fibration or a PILLY -model to modelparametricpolymorphism?”. This dissertation proposes an answer to
this question, but before presenting it we discuss what a good notion of parametric model should be.

General requirement. A good notion of parametricity for models of polymorphism should be such that all
parametric models satisfy the consequences of parametricity described in Sections 1.1,1.2. This means that
we should be able to prove correctness of the encoding of inductive / coinductive types and data abstraction
results.

Recall the example of theλ2-type

Nat =
∏

α : Type. (α → α) → (α → α)

from Section 1.1. The interpretation of this type in aλ2-fibration modeling parametric polymorphism should
be a type of natural numbers, which in the language of category theory means that it should be a natural
numbers object. Since terms are interpreted as maps in the fibre categories of theλ2-fibration, the inter-
pretation ofNat should be a natural numbers object in the fibres. For anyλ2 fibration one can prove that
[[~α ` Nat]] =!∗Ωn [[− ` Nat]] where!Ωn : Ωn → 1 is the unique map into the terminal object of the base cate-
gory. We require that for eachΞ object in the base category,!∗Ξ[[− ` Nat]] is a natural numbers object in the
fibre overΞ. Notice that the family(!∗Ξ[[− ` Nat]])Ξ is closed under reindexing.

In general — since the category theoretic correspondent to inductive types is initial algebras — the inter-
pretations of the encodings of inductive types should induce families of initial algebras in any parametric
λ2-fibration. Likewise the interpretation of coinductive types should induce families of final coalgebras. In
parametric models of PILLY the interpretations of the encodings of recursive types should produce solutions
to recursive domain equations in the model.

To my knowledge no definitive categorical formulation of data abstraction has emerged. One approach is
to ask for the existence of a logic to reason about the internal language of the model, in which one can
formulate data abstraction properties. Another approach is to require existential types to exist in the fibres
of the model, in which case this requirement resembles that of inductive and coinductive data types. In this
dissertation I have focused on the requirements for encoding of data types.

3.1 Models of Abadi & Plotkin’s logic

Our notion of parametricity for models of polymorphism will be based on relational parametricity. As
mentioned, to formulate relational parametricity one must specify what is meant by relations. Some models
may be parametric with respect to one notion of relations but not with respect to other (as is the case for the
domain theoretic model of Paper 2).

Many models considered in the literature (such as the per-model) exist inside an ambient set theory (such
as the internal language of a topos) and thus have a natural notion of relations available. In such cases a
natural definition of parametric model is obtained by formulating the parametricity schema in the set theory
available. Basically, having modeled the parametricity schema in the ambient logic, one should be able to
do the proofs as presented in Abadi & Plotkin’s logic (or variants of it) in the ambient logic and use this to
prove correctness of the encoding of data types of Section 1.1.

Often, however, only a subset of the relations available in the set theory is used in the formulation of
parametricity. Examples include>>- closed relations as in [25, 5] and relations given by subdomains
as in [35].

8

Generalizing the cases mentioned above, in this dissertation a parametric model ofλ2 will be a model of
Abadi & Plotkin’s logic for parametricity satisfying the parametricity schema.

The interest in working out the details of such a definition is two-fold. First, we will be able to unify the
proofs of consequences of parametricity worked out in specific models (such as [35, 5]). These consequences
should not be worked out in each specific model, but be consequences of the parametric structure on the
model, proved once and for all. We should also be able to use these results on models obtained from
parametric completion [33]. To my knowledge the proofs of correctness of encoding of data types for these
in general do not exist in the literature.

Second, we should be able to identify what exactly is needed to model the logic for parametricity and
reasoning with it. For example, models of Abadi & Plotkin’s logic often come from some ambient logic of
a model, but exactly how close to set theory does this logic have to be? It has also been unclear whether
parametricity only implied correctness of encoding of data types for well-pointed models [7] (the answer is
negative). Finally, as mentioned, some models use only a subset of the relations available in the logic when
reasoning about parametricity. What exactly is required for such a subset to be usable for reasoning about
parametricity?

4 Contributions of this dissertation

In this section we list the main contributions of this dissertation. The discussion here will be a bit more
precise than the text above, but still the results will not always be described in full detail, and so we refer to
the full papers.

4.1 Abadi & Plotkin’s logic

As said, we define models of parametric polymorphism to be models of Abadi & Plotkin’s logic for para-
metricity. Before discussing the models however, we sketch Abadi & Plotkin’s logic. A full description of
the logic can be found in Paper 1.

Abadi & Plotkin’s logic is a logic for reasoning about parametricity forλ2. We need to be able to formulate
propositions quantifying over types and terms inλ2 and relations on types inλ2. Therefore propositions
of the logic live in contexts of free type variables, free ordinary variables and free relational variables. We
write

~α | x1 : σ1, . . . , xn : σn | R1 : Rel(τ1, τ
′
1), . . . , Rm : Rel(τm, τ ′m) ` φ : Prop.

The vector~α is a vector of type variables and eachσi, τj , τ
′
j is a type ofλ2 with free variables in~α. The

xi’s are the free variables and theRj ’s are the free relational variables. Atomic propositions can be formed
using equality: ift, u are terms ofλ2 of typeω in the context

~α | x1 : σ1, . . . , xn : σn

thent =ω u is a proposition.

In the logic, we also have a notion of definable relations. Any relationRj : Rel(τj , τ
′
j) in the context is a

definable relation. Ifφ is a proposition in the logic with free variablesx : σ, y : τ then we can form the
relation(x : σ, y : τ). φ : Rel(σ, τ). As an example, we mention the equality relationeqσ on a typeσ defined
by

(x : σ, y : σ). x =σ y.

9

If ρ : Rel(σ, τ) is a definable relation andt : σ, u : τ are terms, thenρ(t, u) is a proposition. In particular, if
Rj : Rel(τj , τ

′
j) is a relation in the context, andt, u are terms of typeτj , τ

′
j respectively thenRj(t, u) is a

proposition.

Further constructions in the logic include the constructions of propositional logic and quantification over
type variables, ordinary variables and relational variables.

Finally, there is arelational interpretationof types: If σ(~α) is a type withn free type variables and
ρ1 : Rel(τ1, τ

′
1), . . .ρn : Rel(τn, τ ′n) are definable relations, thenσ[ρ1, . . . ρn] : Rel(σ(~τ), σ(~τ ′)) is a defin-

able relation.

The relational interpretation of types is used to formulate relational parametricity (as Reynolds did) as the
identity extension schemastating thatσ[eq~α] is the equality relation onσ(~α). The intuition is that for any
type of the form

∏
α. σ (let us assume that this type is closed) and any elementx of that type(x, x) is in

the relational interpretation of
∏

α. σ, which by axioms of the logic should be equivalent to requiring that

∀α, β : Type.∀R : Rel(α, β). σ[R](x(α), x(β)).

In words, for all pairs of typesα, β and all relations between themR : Rel(α, β) theα- andβ-components
of x are related in the relational interpretation ofσ.

The definition of the relational interpretation of types differs from the original presentation of the logic [29],
whereσ[~ρ] is defined by induction over the structure ofσ. What we require is basically a relational inter-
pretation of all type constants in the language as well. Suppose for instance that some type construction�
between pairs of types is added toλ2. To talk about parametricity for the new language, we should add a
relational interpretation of�, i.e., for each pair of relationsR : Rel(σ, σ′), S : Rel(τ, τ ′) we must define the
relationR�S : Rel(σ �τ, σ′ �τ ′). This means that we may reason about parametricity at types formed using
also these type constructors.

The inductive definition of the relational interpretation of types of [29] is captured in axioms of the logic.

The correctness of the encodings of data types can be expressed in Abadi & Plotkin’s logic, and can be
proved to follow from parametricity. This was stated in theorems in [29], but the proofs were not included
in the paper. Some arguments of this sort appear in [39] and some proofs are written out for a specific model
in [12]. However, even with these references at hand, the proofs are non-trivial to construct, and so we have
included them in this dissertation.

4.2 APL-structures

An APL-structure, is a model of Abadi & Plotkin’s logic. To define the notion of APL-structure we first
define a notion of pre-APL-structure. Apre-APL-structureis a diagram

Prop

��
Type I //

$$JJJJJJJJJ Ctx

��
Kind

whereType → Kind is a λ2-fibration (the model we reason about) andI is a fibred faithful product-
preserving inclusion ofType into a larger category containing for each pair of objectsσ, τ of the same

10

fibre of Type an objectU(σ, τ) of all relations betweenσ, τ . Prop → Ctx is a logic fibration in which
we interpret the formulas of Abadi & Plotkin’s logic. InCtx we can model the full contexts of propositions
as

[[α | x1 : σ1, . . . , xn : σn | R1 : Rel(τ1, τ
′
1), . . . , Rm : Rel(τm, τ ′m)]] =∏

i I([[σi]])×
∏

j U([[τj]], [[τ ′j]])

using the inclusionI and modeling Rel(τi, τ
′
i) as the object of all relations fromτi to τ ′i in Ctx. The

products in this definition are the products of the fibre category.

From a pre-APL-structure we can define aλ2-fibration of relations denoted

Relations → RelCtx.

Basically the objects of each fibre are relations, and theλ2 structure is defined using the same constructions
that give the inductive definition of relational interpretation of types in [29]. For example, for relations
ρ : Rel(σ, τ), ρ′ : Rel(σ′, τ ′) the relationρ → ρ′ is defined as the relation

(f : σ → σ′, g : τ → τ ′).∀x : σ, y : τ. ρ(x, y) ⊃ ρ′(f(x), g(y)).

There exists a pair of maps ofλ2-fibrations
Relations

��
RelCtx


∂1

//

∂0 //


Type

��
Kind


mapping a relation to its domain and codomain respectively. An APL-structure is a pre-APL-structure such
that there is a map ofλ2-fibrationsJ going the other way satisfying∂0 ◦ J = ∂1 ◦ J = id . The functorJ
models the relational interpretation of types.

We show that the interpretation of Abadi & Plotkin’s logic in an APL-structure is sound. Moreover, the
class of APL-structures is complete with respect to Abadi & Plotkin’s logic, i.e., any sentence of Abadi &
Plotkin’s logic that holds in all APL-structures is provable in the logic.

We can reason about APL-structures using Abadi & Plotkin’s logic. Thus, if the parametricity schema
holds in the internal logic of the APL-structure, we can prove correctness of the encoding of inductive and
coinductive types in the internal logic. However, to conclude from the statement in the internal logic to the
structure of the fibres ofType, we need to know that morphisms inType that can be proved equal in the
internal logic of the APL-structure in fact are equal in the categoryType. This property is a well-known
property of logic fibrations calledvery strong equality.

A key ingredient in the proofs isextensionalityfor functions and polymorphic elements, i.e. the logical rules

∀x : σ. f(x) =τ g(x) ⊃ f =σ→τ g
∀α : Type. t α =σ u α ⊃ t =∏

α.σ u.

We thus define aparametric APL-structureto be an APL-structure with very strong equality in which para-
metricity and extensionality holds in the internal language.

The main theorem of APL-structures states that they model inductive and coinductive types. Before we state
it, we should be more precise about what we mean by inductive types. First we introduce the distinction
betweenpureλ2 andλ2 calculi in general. Pureλ2 has no extra type or term constants. We may also talk

11

aboutλ2-calculi in general. These have added type and term constants, and include for example the internal
language of aλ2-fibration.

A type α ` σ(α) defined in pureλ2 in which α occurs only positively (see for example Paper 1 or [29])
induces a functor in the sense that there exists a term

M :
∏

α, β : Type. (α → β) → (σ(α) → σ(β))

preserving identities and composition. The interpretations ofσ andM induce a fibred functor

Type //

$$JJJJJJJJJ Type

zzttttttttt

Kind

and we shall be interested in initial algebras and final coalgebras for the restrictions of this functor to the
fibres ofType → Kind.

In general we define apolymorphically strongfibred functor to be a functor with a corresponding typeσ and
termM existing in the modelbut not necessarily in pureλ2. This is clearly a generalization of the above
construction.

The main theorem is the following.

Theorem 4.1. Every polymorphically strong fibred functor has families of initial algebras and final coal-
gebras, i.e., there exists a family of initial algebras / final coalgebras for each restriction of the functor to a
fibre overKind and these families are closed under reindexing along maps inKind.

For example, we can show that each fibre has coproducts and the initial algebra corresponding to the type
α ` α+1 is a natural numbers object. This natural numbers object is the interpretation of

∏
α. (α → α) →

α → α.

Thus the notion of parametric APL-structure gives a categorical notion of models of parametric polymor-
phism satisfying our requirements.

As an example of a model we consider a well-known parametric variant of the per-model [2]. This model
has as types pairs(fp, f r) of maps such thatfp : Pern → Per and for each vector

R1 : Rel(A1, B1), . . . , Rn : Rel(An, Bn),

of relations on pers
f r(~R) : Rel(fp(~A), fp(~B)),

where by relationsR : Rel(A,B) for persA,B we mean subsets ofN/A×N/B. We require thatf r applied
to a vector of equality relations gives an equality relation. We show that this model can be embedded into
a parametric APL-structure, such that Theorem 4.1 applies. A variant of this construction in relative real-
izability [6] gives usnon-wellpointedparametric APL-structures (the fibres ofType are not well-pointed).
This shows that well-pointedness is not necessary for correctness of the encodings of data types to hold.

It is also worth noticing that the construction of models of Abadi & Plotkin’s logic has proved consistency
of the logic.

I have not studied morphisms between APL-structures, since it is not clear to me why these could be inter-
esting. One weakness of APL-structures as models of Abadi & Plotkins logic, which would probably show
up when giving such a definition of morphisms, is that Abadi & Plotkin’s logic only gives notation for the

12

objects inCtx of the formI(σ) or U(σ, τ) for σ, τ objects ofType. Thus, there would not be a bijective
correspondence between maps between APL-structures and translations between the internal languages of
the APL-structures. However, this is of no concern to us as long as we are only interested in using the
APL-structure for reasoning about the includedλ2 fibration.

4.3 LAPL-structures

The language PILLY was first sketched by Plotkin in [28] in which he also sketched a version of the logic
for parametricity for PILLY , and gave a rough sketch of a concrete parametric model of PILLY . In this
dissertation we give a full presentation of the logic and a notion of LAPL-structures (Linear Abadi-Plotkin
Logic) which model the logic. We have also worked out the details of the concrete model.

As mentioned, many of the concrete parametric domain theoretic models we consider have a canonical logic,
but are only parametric with respect to a subset of the relations in the logic. To handle these cases, our logic
for parametricity will have to include a notion of admissible relations. For reasoning about parametricity
one needs a good supply of these relations, in particular graphs of linear functions should be admissible
relations. We state a number of rules that the set of admissible relations should be closed under.

Even though the language PILLY is combined linear and intuitionistic, the logic we present is purely intu-
itionistic, i.e., it only has intuitionistic variables. Expressions in the logic are written as

~α | ~x : ~σ | ~R : Rel(~τ , ~τ ′), ~S : AdmRel(~ω, ~ω′) ` φ : Prop.

The propositionφ can contain termst such that

~α | ~x : ~σ;− ` t : τ

is a term of PILLY . The constructions in the logic are much as in the logic forλ2 except that we also
have admissible relations. We omit the details here, but mention that for typesσ with n free variables, the
relational interpretationσ[~ρ] is only defined for~ρ a vector of admissible relations.

As with the APL-structures, to define the notion of LAPL-structure, we must first define the notion of pre-
LAPL-structure. Roughly, a pre-LAPL-structure is a diagram

Prop

��
LinType

**UUUUUUUUUUUUUUUUUU 22 Type

$$JJJJJJJJJ

pp I // Ctx

��
Kind

The left hand side of the diagram is the model of PILLY that we reason about. The functorI is a fibred
product preserving faithful functor, and as usualProp → Ctx is a logic fibration andCtx contains objects
of relations for all pairs of typesσ, τ in the same fibre ofLinType. A notion of admissible relations for
a pre-LAPL-structure is a family of subobjects of the objects of relations inCtx closed under the rules for
admissible relations in the logic.

From a pre-LAPL-structure with a notion of admissible relations, one can construct a model of PILL (it does
not necessarily model the fixed point combinatorY). The model is denoted

LinAdmRelations

**TTTTTTTTTTTTTTTT 00⊥ AdmRelations
pp

uukkkkkkkkkkkkkkk

AdmRelCtx.

13

The objects ofLinAdmRelations are admissible relations, and the morphisms are pairs of strict mor-
phisms preserving relations.

As for the APL-structures there exists two maps∂0, ∂1 of PILL-models out of the constructed PILL-model
mapping an admissible relation to its domain and codomain respectively. An LAPL-structure is a pre-LAPL-
structure such that there exists a map of PILL-modelsJ going the other way satisfying∂0◦J = ∂1◦J = id .
AgainJ gives a relational interpretation of types.

We show soundness of the interpretation of Abadi & Plotkin’s logic in LAPL-structures and we show a
completeness result as for APL-structures.

As in the case of APL-structures a parametric LAPL-structure should be an LAPL-structure with very strong
equality such that parametricity and extensionality holds in the internal logic.

We can define a notion of polymorphically strong fibred functor and show that these have initial algebras and
final coalgebras as we did with APL-structures, but as mentioned the new setting here should also enable us
to solve recursive domain equations.

Supposeα ` σ is a type inpure PILLY . A solution to the recursive domain equation induced byσ is a
closed typeτ such thatσ(τ) is isomorphic toτ . If σ had all its occurrences ofα as positive, it would define
a functor, and the initial algebra as well as the final coalgebra would be solutions to the domain equation
σ(τ) ∼= τ .

We may split the occurrences ofα in σ into positive and negative obtaining a typeα, β ` σ(α, β) such that
α occurs only negatively andβ only positively. Such a type induces a functor which is contravariant in the
first variable and covariant in the second, in the sense that there exists a term

M :
∏

α, α′, β, β′. (α′ (α) → (β (β′) → (σ(α, β) (σ(α′, β′))

preserving composition and identities. Such a term induces a fibred functor

LinTypeop ×Kind LinType //

**TTTTTTTTTTTTTTTT
LinType

xxqqqqqqqqqq

Kind.

The categoryLinTypeop ×Kind LinType is the fibrewise product of the category obtained by taking
fibrewise opposite category ofLinType andLinType. In general, such fibred functors arepolymorphi-
cally strongif there exists a corresponding typeσ and term as above in the internal language of the model
(i.e. not necessarily in pure PILLY).

A solution to a domain equation induced by such a functorF is a family (τΞ)Ξ indexed overΞ in Kind
closed under reindexing such thatF (τΞ, τΞ) ∼= τΞ, i.e., a family of fixed points for the functor.

Theorem 4.2. For parametric LAPL-structures

• every polymorphically strong fibred endofunctor onLinType → Kind has a family of initial alge-
bras and a family of final coalgebras.

• every polymorphically strong fibred functor

LinTypeop ×Kind LinType //

))TTTTTTTTTTTTTTTT
LinType

xxrrrrrrrrrr

Kind

has a family of fixed points closed under reindexing.

14

The logical part of the proof of Theorem 4.2 was sketched by Plotkin in [28]. Our contribution has been to
write out the details and to show how this could be applied to LAPL-structures.

As mentioned, we also construct a concrete LAPL-structure based on the one sketched by Plotkin. This
model of PILLY involves admissible pers over a reflexive domain, i.e., a domain (a cpo with a least element
⊥) such that[D → D] is a retract ofD. An admissible per is a partial equivalence relation which is closed
under lub’s of chains and which relates⊥ to itself. The concrete model is then constructed as the parametric
variant of the per-model, where we only consider admissible pers.

4.4 Completion Processes

Recall from Section 2 that even though no classical set theoretic models of polymorphism exist, set theoretic
models of polymorphism might still exist in intuitionistic set theories. The examples we have in mind are
internal cartesian closed subcategoriesC in quasi-toposes. IfC is sufficiently complete, we can construct a
model ofλ2 in which types withn free variables are modeled as morphisms

Cn
0 → C0

in the topos, whereC0 is the object of objects forC (i.e. the model is the externalization ofC). We call
such internal categories internalλ2-models.

In this dissertation we show how the ambient set theory of the model gives rise to a canonical pre-APL-
structure corresponding to the interpretation of Abadi & Plotkin’s logic in the internal logic of the quasi-
topos.

For this restricted class of models ofλ2 there exists a parametric completion process constructing parametric
models based on the original model. This process was originally described in [33]. Our contribution has
been to show that this process can be extended to construct parametric APL-structures.

The completion process described in [33] goes as follows: Since the quasi-toposE models an intuitionistic
set theory, we may construct an internal categoryLR(C) whose objects are logical relations on objects ofC
from the quasi-topos, and whose morphisms are pairs of morphisms inC preserving relations (i.e. mapping
related elements to related elements). There exists a diagram of internal functors in the quasi-topos

LR(C)
//
// Coo

mapping a relation to its domain and codomain respectively, and mapping an object ofC to the identity
relation on the same object. This graph is reflexive, meaning that the two compositions starting and ending
in C are the identity.

The diagramLR(C)
//
// Coo makes up an internal category in the quasi-topos of reflexive graphs inE.

We denote this quasi-topos byEG. We can now apply the construction above to this internal category and
obtain aλ2-fibration.

We can describe this model more explicitly. A type in the parametrically completed model withn free
variables is a type in the original modelσ : Cn

0 → C0 plus a mapρ that takesn-vectors of relations
(R1 : Rel(A1, B1), . . . , Rn : Rel(An, Bn)) and produces a new relation

ρ(~R) : Rel(σ(~A), σ(~B))

such thatρ(eqA1
, . . . , eqAn

) = eqσ(~A). Terms are terms in the old model preserving relations.

A type in the parametrically completed model has a built-in relational interpretation (ρ). Since this relational
interpretation satisfies identity extension, the model should be parametric.

15

In this dissertation, we show that the parametric completion process produces models that fit into a para-
metric APL-structure. This provides formal proofs of the correctness of the encodings of inductive and
coinductive types in these models. This result is of course expected, but to our knowledge it has not been
formally proved before in this generality. The APL-structure is also interesting, because we clarify with
respect to which logic the completed category is parametric. The parametrically completed model is not
parametric with respect to the internal logic of the quasi-toposEG, but with respect to a related logic corre-
sponding to the internal logic ofE.

The concrete APL-structure mentioned in Section 4.2 arises as the result of a completion process, when
considering the category of pers as an internal category in the category of assemblies. Since the category
of assemblies is a quasi-topos, this provides the motivation for using quasi-toposes instead of toposes. Of
course, the category of pers is also an internal category in the effective topos, but this viewpoint gives a
different logic.

We also construct a parametric completion process for LAPL-structures. First we describe which kind
of data is needed for an internal model of PILLY to give rise to an LAPL-structure as above. Next we
describe the parametric completion process. This is basically the same as for APL-structures, but still some
constructions in this process are new and so the construction is non-trivial.

The parametric LAPL-structure mentioned in Section 4.3 can be seen as a result of the parametric completion
process for LAPL-structures.

4.5 An LAPL-structure from Synthetic Domain Theory

In recent work [35] Alex Simpson and Pino Rosolini have studied a language which we shall call Lilystrict.
This language is basically PILLY with linear functions replaced by strict functions. Lilystrict is equipped with
two operational semantics: a call-by-name semantics and a call-by-value semantics (with these operational
semantics, Lilystrict is simply Lily [5] with linearity replaced by strictness).

Simpson and Rosolini give an interpretation of this language using Synthetic Domain Theory (SDT), and
prove this interpretation to be adequate with respect to the two notions of contextual equivalence obtained
from each of the operational semantics. Using this they show that the two contextual equivalence relations
coincide. Since Lilystrict and Lily are almost the same language, this result was basically proved in [5] using
operational tools.

The interpretation lives inside an intuitionistic set theory. The construction resembles that of the paramet-
ric completion process, and so all types in the interpretation are equipped with a relational interpretation
satisfying an identity extension condition. Thus the interpretation is parametric with respect to the interpre-
tation of parametricity in the ambient set theory and we would expect that the encoding of the inductive and
coinductive data types is correct, but [35] does not formally prove this.

We construct a parametric LAPL-structure based on the interpretation of Lilystrict using SDT. Since linear
functions are strict we may translate PILLY into Lily strict, and up to this translation, the interpretation of
PILLY in the parametric LAPL-structure we construct agrees with the interpretation of Lilystrict given by
Simpson and Rosolini.

The construction of this LAPL-structure serves two purposes: first it helps to show that the notion of LAPL-
structures is general enough to handle different types of models. In this case, it strengthens the idea that
parametric PILLY is a good language for domain theoretic models of parametric polymorphism. Second,
using adequacy of the interpretation of Lilystrict we can use the parametric model to show consequences
of parametricity (i.e. correctness of the encodings of data types) in Lilystrict up to operational equivalence.

16

This is very much in the spirit of Simpson and Rosolini’s proof of coincidence of the contextual equivalence
relations using the adequate interpretation [35].

5 Related Work

In this section we focus on three related directions of research, Ma & Reynold’s categorical definition
of parametricity, Dunphy’s parametricity graphs and the work on consequences of parametricity for the
programming language Lily by Bierman Pitts and Russo. Finally, we sketch some of the other directions of
research related to parametricity.

5.1 Ma & Reynolds notion of parametricity

QingMing Ma and John Reynolds [30] have proposed a category-theoretic definition of parametricity for
models ofλ2 [16]. The definition can basically be restated as follows: SupposeE → B is aλ2 fibration, and
suppose we are given a logic fibrationD → E1 on the fibre ofE over the terminal object (this is the category
of closedtypes).

Ma & Reynolds defineE → B to be parametric if there exists a reflexive graph ofλ2-fibrations
E

��
B

 //


F

��
C

oo

oo

(i.e. a graph, where the two compositions starting atE → B are the identity) whose restriction to the fibres
over the terminal objects is isomorphic to

LR(E1)
//
// E1

oo

whereLR(E1) is a category of relations onE1 formed using the logicD → E1 and the morphisms map a
relation to its domain and codomain respectively and a closed type to the equality relation on that type.

An APL-structure is parametric in the sense of Ma & Reynolds, since the fibrationRelations → RelCtx
can play the role ofF → C, and in general the intuition of the reflexive graph ofλ2-fibrations is that the
fibrationF → C is a fibration of relations. But since this is only formulated for the closed types, we cannot
use it to prove consequences of parametricity for open types. See Paper 1 for a further discussion of the
relation to Ma & Reynolds definition.

5.2 Parametricity graphs

In a recent PhD dissertation Brian Dunphy [7, 8] together with his adviser Uday Reddy, has studied a class of
models of polymorphism based on reflexive graphs of categoriesGe

//
// Gv

oo . Under certain conditions
on such a reflexive graph one can build a model of polymorphism where types withn free variables are
modeled as pairs of functors making the diagram

|Ge|n

�� ��

// Ge

�� ��
|Gv|n

OO

// Gv

OO

17

commute, where|Gv| denotes the discrete category on the objects ofGv. Dunphy states conditions under
which the categoryGe can be considered a category of relations on|Gv|. Reflexive graphs satisfying these
conditions are calledparametricity graphs, and correctness of the encoding of data types can be shown for
these using a logic resembling a logic called System R [1] for reasoning about parametricity.

One technical issue worth mentioning is that Dunphy can only in general prove correctness of the encoding
of data types forwell-pointedparametricity graphs. Dunphy even gives an example of a non-wellpointed
parametricity graphs in which the encodings are not correct. Since we give an example of a non-wellpointed
parametric APL-structure, we show that parametricity is in fact useful in a setting without well-pointedness.

The main difference between Dunphy’s work and this dissertation is that Dunphy does not give a general
notion of parametricity forλ2-fibrations. He only considers models given by reflexive graphs. So, for
example the question of whether the standard per-model (as described in Section 2.1) is parametric does
not make sense in Dunphy’s setting. In this sense APL-structures may be more general than parametricity
graphs. It should be mentioned that theparametricmodels considered in this dissertation all come from
reflexive graphs and so are probably all parametricity graphs. But, as mentioned, some of these models
are not well-pointed and so cannot be shown to satisfy consequences of parametricity using the tools of
parametricity graphs, but only using the tools of APL-structures.

On the other hand, parametricity graphs model a logic that is different from Abadi & Plotkin’s logic and so
may incorporate some models that cannot fit into an APL-structure.

Finally, we mention that Dunphy also considers models of predicative polymorphism, which is not covered
in this dissertation. It should however be easy to find a variant of the definition of APL-structures that would
handle predicative polymorphism. However, most of our arguments for correctness of encoding of inductive
and coinductive types use impredicativity, and so Dunphy’s proofs would have to be adopted for this to work
out.

In his dissertation Dunphy also considers parametricity graphs modeling PILLY -like languages.

Claudio Hermida and Robert Tennent study a related framework of parametric models in [13].

5.3 Parametricity in operational semantics

Parametric polymorphism has also been used in a more syntactic setting by Andrew Pitts in [25] and by
Gavin Bierman, Andrew Pitts and Claudio Russo in [5] to prove properties of programming languages with
operational semantics up to contextual equivalence. In [5] for example, the language Lily which is basically
PILLY equipped with two operational semantics: a call-by-name and a call-by-value operational semantics
is considered. For each of these operational semantics a notion of contextual equivalence is defined by
observing termination at types of the form!σ. Using operational methods the two notions of equivalence
are shown to coincide.

Because there is a set of closed terms of Lily, one can use set theoretic relations to reason about them. In [5]
a particular subset of these relations called>>-closed relations are used to reason about these terms, and
it is shown that up to contextual equivalence Lily is parametric with respect to>>-closed relations. This
parametricity result is then used to show correctness of an encoding of coproducts for closed types of Lily
up to contextual equivalence.

It would be interesting to see if the language Lily with terms considered up to contextual equivalence gives
rise to a parametric LAPL-structure. To show this, we need to check that>>-relations give a notion of
admissible relations as defined in this dissertation. We do believe this is the case, and it is on the schedule
for future work.

18

Showing that Lily gives rise to an LAPL-structure would formally prove that the encodings of inductive,
coinductive and recursive types are correct. In fact we have almost done this already, as we have shown a
similar result for Lilystrict using the LAPL-structure obtained from SDT (see Section 4.5).

5.4 More related research

Ryu Hasegawa has studied a specific family of models for polymorphism and shown that for these para-
metricity of encoding of inductive and coinductive types is equivalent to correctness of these encodings
[12]. The proofs in [12] inspired some of the proofs of the consequences of parametricity used in this
dissertation. Ryu Hasegawa is also working on a model of a polymorphic linear type theory [11].

Parametric polymorphism has also been used to model local variables [22, 21]. The idea is to use para-
metricity to hide local variables from called procedures, the same way parametricity can be used to hide
information about specific implementations of data types. In [22] models of an Algol-like language are
given using reflexive graphs and it is shown how these models model hiding of local variables using para-
metricity. In [21] two versions of Algol are translated into a predicative version of polymorphic linear
lambda-calculus (basically a predicative version of PILLY). Models of polymorphic linear lambda calculus
can then give models of the Algol-like languages. The idea behind using linearity is that it can be used
to rule out nonimperative behavior in the model such as functions restoring the old state after running an
expression with side effects, since this requires copying the old state before running the expression. Many
of the same ideas are used in [23] to construct fully abstract translations of PCF and an idealized version of
Algol into a language with parametric polymorphism.

Other logics for reasoning about parametricity exist. Before Abadi & Plotkin’s logic appeared a different
logic had been proposed [1]. As mentioned Dunphy and Reddy [7, 8] use a variant of this logic. Izumi
Takeuti has constructed a variant of Abadi & Plotkin’s logic, in which one can also discuss other arities of
parametricity (such as unary parametricity involving predicates instead of relations).

Ivar Rummelhoff [36] has studied the encoding of natural numbers in per-models over different PCA’s, and
showed that in some of these models, the encoding contains more than natural numbers. So these models
cannot be parametric. Even though he does not mention it, this shows that unary parametricity is different
from binary (relational) parametricity, since one can easily show that the encoding of the natural numbers
in any per-model is unary parametric. Other studies of parametric polymorphism for per-models include
[34, 9].

Philip Wadler [40] presents a viewpoint, where the abstraction property of [30] corresponds to the existence
of a map mapping terms of second-order lambda calculus to expressions in a logic. On the other hand, a
representation result of Girard’s corresponds to a map going the other way.

6 Structure of the dissertation

This dissertation consists of five papers. Here follows a description of each paper.

Paper 1: L. Birkedal and R. E. Møgelberg. Categorical models of Abadi-Plotkin’s logic for parametricity.
Mathematical Structures in Computer Science, 2005. To Appear (Accepted for publication).

We give a detailed description of Abadi & Plotkin’s logic for parametricity, the definition of APL-
structures and the interpretation of the logic in these. This is followed by proofs of soundness and

19

completeness for the interpretation. We define parametric APL-structures and proceed to show The-
orem 4.1 above. This involves proving the logical versions of these results as stated in [29]. We
compare our notion of parametricity to that of Ma & Reynolds [16]. The parametric completion pro-
cess is described for APL-structures and in connection with this we discuss parametricity for internal
models ofλ2 in quasi-toposes.

Paper 2: L. Birkedal, R. E. Møgelberg, and R. L. Petersen. Parametric domain-theoretic models of linear
Abadi & Plotkin logic. Technical Report TR-2005-57, IT University of Copenhagen, February 2005.

In this article we describe the language PILLY and the variant of Abadi & Plotkin’s logic used for it.
We show how to reason in this logic and in particular we prove correctness of encoding of inductive,
coinductive and recursive data types in the logic. As in the first article, we define LAPL-structures,
show how to interpret the logic in these and show that the interpretation is sound and complete. Para-
metric LAPL-structures are introduced, and we show how to use the logical proofs of the correctness
of the encoding of data types to solve recursive domain equations in parametric LAPL-structures
(Theorem 4.2). Finally we construct the parametric domain theoretic per-model, show that it fits into
a natural parametric LAPL-structure and describe the interpretation of the encoding of the natural
numbers in this.

Paper 3: R. E. Møgelberg, L. Birkedal, and R. L. Petersen. Categorical models of PILL. Technical Report
TR-2005-58, IT University of Copenhagen, February 2005.

This paper contains mostly well-known material on models of PILL, based on in particular [3, 4, 10,
17, 18, 19]. Since none of the above mentioned present all the material needed for this dissertation, we
have included an exposition of the theory. The material covered includes the 2-category of symmetric
monoidal categories, linear categories, models of LNL and DILL, and a fibrational account of these
concepts ending with models of PILL and PILLY .

Paper 4: R. E. Møgelberg, L. Birkedal, and G. Rosolini. Synthetic domain theory and models of linear
Abadi & Plotkin logic. Technical Report TR-2005-59, IT University of Copenhagen, February 2005.

Here we present the LAPL-structure constructed from synthetic domain theory and use it to show con-
sequences of parametricity for the operational semantics on Lilystrict. For readability we have included
a full description of the setup of synthetic domain theory as presented in [35], the language Lilystrict
and a formulation of the adequacy result for the interpretation of Lilystrict as shown by Simpson and
Rosolini. The presentation of the setup of synthetic domain theory follows the presentation in [35]
closely.

Paper 5: R. E. Møgelberg. Parametric completion for models of polymorphic intuitionistic / linear lambda
calculus. Technical Report TR-2005-60, IT University of Copenhagen, February 2005.

The main result of this article is the description of the parametric completion process for LAPL-
structures. Before this however, we review some theory of internal categories including internal fibra-
tions and internal linear categories. We define a notion of internal PILLY -model in a quasi-topos, and
show that the externalization of an internal PILLY -model gives rise to an LAPL-structure.

Dependencies are as follows. It is not necessary to read Paper 1 before Paper 2, except that Paper 2 uses a
few definitions of Appendix A in Paper 1, but, for readers unfamiliar with parametricity, it may be helpful
to start with Paper 1, since the proofs of consequences of parametricity given in Paper 2 are slightly more
sophisticated than the ones in Paper 1 due to the use of linearity.

20

The material in Paper 2 depends on Paper 3, but since we think of the latter as a (long) appendix to Paper 2,
we have placed it after Paper 2. Paper 3 can be read independently of all other papers in this dissertation.
Paper 4 and Paper 5 can be read independently of each other, but they both depend on Paper 2.

7 Conclusion

We have introduced a notion of parametric APL structures which can be taken as definition of parametric
models of second-orderλ-calculus. These structures can be shown to have initial algebras and final coalge-
bras for a large class of fibred endofunctors, which means that parametric APL-structures give a good notion
of parametric models as discussed in Section 3.

Likewise we have defined a notion of parametric LAPL-structures. These give a good notion of domain
theoretic models of parametric polymorphism, since we can solve recursive domain equations in LAPL-
structures, as we would expect to be able to in parametric domain theoretic models.

The definition of APL-structure ask for quite a lot of structure — besides theλ2- fibration in question we
ask for another fibration with a fibration on top, etc. But in the concrete case providing such extra structure
to show that aλ2-fibration is parametric just corresponds to answering the question “with respect to which
logic is the model parametric”.

This becomes even more apparent in the case of LAPL-structures. Concrete models considered in the
literature, have often been parametric with respect to some logic, and a relational interpretation of types
defined only on a subset of the relations of the logic: the ones we call admissible. Providing a full parametric
LAPL-structure to a model corresponds to answering the question “with respect to which logic and which
set of admissible relations is the model parametric?”.

In both cases the APL- and LAPL-structures provide a check-list for what kind of structure is needed to
reason about parametricity. In particular, for the LAPL-structures, we have a set of axioms that a notion of
admissible relations should satisfy for it to be strong enough for reasoning about parametricity.

We have shown that parametric APL- and LAPL-structures provide a general and usable framework by
showing that very different parametric models known from the literature are of this form. These involve
parametric versions of per-models, and a family of models constructed using synthetic domain theory. We
even have a very general way of constructing these models, namely using parametric completion processes.

Of the models presented in this dissertation, most were known as models of polymorphism, but for most
of them, the correctness of the encodings of data types had not been shown formally. These proofs are
presented in all details in this dissertation.

Another contribution of this dissertation is to sort out the details of the PILLY - version of Abadi & Plotkin’s
logic. In fact, for both versions of the logic considered here, we have worked out the details of models for
them, thereby showing them to be consistent.

This dissertation has also provided detailed proofs of theorems that have been known to the community for
long, but whose proofs have never appeared in print. These proofs are the proofs of correctness of encoding
of initial algebras, final coalgebras and recursive types. These proofs are non-trivial, and it is my hope that
making the details available will contribute to the accessibility of parametricity as a research area.

21

7.1 Future work

As said, we have provided a couple of very different parametric LAPL-structures showing that the notion
is quite general. It would be interesting to see if Lily with terms identified up to contextual equivalence
and>>-closed relations as admissible relations gives rise to a parametric LAPL-structure. This would
imply that the correctness of the encodings of inductive and coinductive data types as sketched in [5] would
be consequences of the same results for parametric LAPL-structures in a more direct way than the results
proved in this dissertation using the SDT-model. This work is already under way.

We have shown how parametric polymorphism allows us to encode certain types with the right category
theoretic properties. Parametricity also gives us reasoning principles for these types, but it is unclear whether
these are the principles one will want to use in practice for reasoning about the language. In particular, for the
LAPL-structures the reasoning principles only apply to admissible relations, which may not be a sufficiently
large class of relations.

This dissertation is an abstract study of parametricity, and it would be interesting to show that these results
can be used in the theory of programming languages in general. In this dissertation we have only once
applied the abstract theory to show results about a programming language with an operational semantics,
namely for the parametricity results for Lilystrict up to operational equivalence. Can we use these models to
show for example data abstraction results for real programming languages? How does our work relate to
that of O’Hearn, Reynolds and Tennent [22, 21, 23] as briefly mentioned in Section 5.4.

The second-order lambda-calculus is a programming language (or an equational theory) suitable for studying
parametricity, since it has few constructions. The language PILLY having fixed points is closer to a “real
life” programming language. To be able to apply the theory of parametric polymorphism to programming
languages used in practice, it needs to be studied in connection with effects.

Finally I do not think that the concept of parametricity is fully understood at this point. Parametric models
contain less “junk” than other models at polymorphic types, so parametricity seems to provide a way of
constructing better models. But how good are these models, and what are the connections to other good
properties of models such as adequacy, universality and full abstraction? Not much work has been done in
that area, [38] is an exception.

References

[1] Martı́n Abadi, Luca Cardelli, and Pierre-Louis Curien. Formal parametric polymorphism.Theoretical
Computer Science, 121(1–2):9–58, December 1993. 5.2, 5.4

[2] E.S. Bainbridge, P.J. Freyd, A. Scedrov, and P.J. Scott. Functorial polymorphism.Theoretical Com-
puter Science, 70:35–64, 1990. 4.2

[3] A. Barber. Linear Type Theories, Semantics and Action Calculi. PhD thesis, Edinburgh University,
1997. 2.2, 6

[4] P.N. Benton. A mixed linear and non-linear logic: Proofs, terms and models (preliminary report).
Technical report, University of Cambridge, 1995. 6

[5] G. M. Bierman, A. M. Pitts, and C. V. Russo. Operational properties of Lily, a polymorphic lin-
ear lambda calculus with recursion. InFourth International Workshop on Higher Order Operational
Techniques in Semantics, Montréal, volume 41 ofElectronic Notes in Theoretical Computer Science.
Elsevier, September 2000. 3.1, 4.5, 5.3, 7.1

22

[6] Lars Birkedal and Jaap van Oosten. Relative and modified relative realizability.Ann. Pure Appl. Logic,
118(1-2):115–132, 2002. 4.2

[7] B.P. Dunphy.Parametricity as a notion of uniformity in reflexive graphs. PhD thesis, 2004. 3.1, 5.2,
5.4

[8] Brian Dunphy and Uday S. Reddy. Parametric limits. InProceedings of the 19th IEEE Symposium on
Logic in Computer Science (LICS-04)), pages 242–251, 2004. 5.2, 5.4

[9] P.J. Freyd, E.P. Robinson, and G. Rosolini. Dinaturality for free. In M. P. Fourman, P.T. Johnstone,
and A. M. Pitts, editors,Applications of Categories in Computer Science. Proceedings of the LMS
Symposium, Durham 1991, volume 177 ofLondon Mathematical Society Lecture Note Series, pages
107–118. Cambridge University Press, 1991. 5.4

[10] Masahito Hasegawa. Categorical glueing and logical predicates for models of linear logic. 1999. 6

[11] R. Hasegawa. The theory of twiners and linear parametricity. 5.4

[12] R. Hasegawa. Categorical data types in parametric polymorphism.Mathematical Structures in Com-
puter Science, 4:71–109, 1994. 4.1, 5.4

[13] C. Hermida and R.D. Tennent. A fibrational framework for possible-world semantics of algol-like
languages. 2004. 5.2

[14] H. Huwig and A. Poigńe. A note on inconsistencies caused by fixpoints in a cartesian closed category.
Theoretical Computer Science, 73:101–112, 1990. 2.2

[15] B. Jacobs.Categorical Logic and Type Theory, volume 141 ofStudies in Logic and the Foundations
of Mathematics. Elsevier Science Publishers B.V., 1999. 2.1

[16] Q. Ma and J.C. Reynolds. Types, abstraction, and parametric polymorphism, part 2. In S. Brookes,
M. Main, A. Melton, M. Mislove, and D. Schmidt, editors,Mathematical Foundations of Programming
Semantics, volume 598 ofLecture Notes in Computer Science, pages 1–40. Springer-Verlag, 1992. 5.1,
6

[17] Maria E Maietti, Paola Maneggia, Valeria de Paiva, and Eike Ritter. Relating categorical semantics for
intuitionistic linear logic. Technical Report CSR-01-7, University of Birmingham, School of Computer
Science, August 2001. 2.2, 6

[18] Paola Maneggia.Models of Linear Polymorphism. PhD thesis, University of Birmingham, Feb. 2004.
6

[19] Paul-Andŕe Melliès. Categorical models of linear logic revisited.Theoretical Computer Science. To
appear. 6

[20] J.C. Mitchell and G.D. Plotkin. Abstract types have existential types.ACM Transactions on Program-
ming Languages and Systems, 10(3):470–502, July 1988. 1.2

[21] P. W. O’Hearn and J. C. Reynolds. From algol to polymorphic linear lambda-calculus.Jrnl. A.C.M.,
47(1):167–223, January 2000. 5.4, 7.1

[22] P. W. O’Hearn and R. D. Tennent. Parametricity and local variables.Journal of the ACM, 42(3):658–
709, May 1995. 5.4, 7.1

23

[23] P.W. O’Hearn and J.G. Riecke. Fully abstract translations and parametric polymorphism. In D. Sanella,
editor, Programming Languages and Systems, ESOP’94, volume 788 ofLecture Notes in Computer
Science, pages 454–468. Springer, 1994. 5.4, 7.1

[24] A. M. Pitts. Non-trivial power types can’t be subtypes of polymorphic types. In4th Annual Symposium
on Logic in Computer Science, pages 6–13. IEEE Computer Society Press, Washington, 1989. 2.1

[25] A. M. Pitts. Parametric polymorphism and operational equivalence.Mathematical Structures in com-
puter Science, 10:321–359, 2000. 3.1, 5.3

[26] A.M. Pitts. Polymorphism is set theoretic, constructively. In D. H. Pitt, A. Poigné, and D. E. Ryde-
heard, editors,Category Theory and Computer Science, Proc. Edinburgh 1987, volume 283 ofLecture
Notes in Computer Science, pages 12–39. Springer-Verlag, 1987. 2.1

[27] G. D. Plotkin. Type theory and recursion (extended abstract). InProceedings, Eighth Annual IEEE
Symposium on Logic in Computer Science, page 374, Montreal, Canada, 19–23 June 1993. IEEE
Computer Society Press. 2.2

[28] G.D. Plotkin. Second order type theory and recursion. Notes for a talk at the Scott Fest, February
1993. 2.2, 4.3, 4.3

[29] Gordon Plotkin and Martı́n Abadi. A logic for parametric polymorphism. InTyped lambda calculi and
applications (Utrecht, 1993), volume 664 ofLecture Notes in Comput. Sci., pages 361–375. Springer,
Berlin, 1993. 1.3, 4.1, 4.2, 6

[30] J.C. Reynolds. Types, abstraction, and parametric polymorphism.Information Processing, 83:513–
523, 1983. 1.3, 2.1, 5.1, 5.4

[31] J.C. Reynolds. Polymorphism is not set-theoretic. In G. Kahn, D. B. MacQueen, and G. D. Plotkin,
editors,Semantics of Data Types, volume 173 ofLecture Notes in Computer Science, pages 145–156.
Springer-Verlag, 1984. 2.1

[32] J.C. Reynolds and G.D. Plotkin. On functors expressible in the polymorphic typed lambda calculus.
In Gérard Huet, editor,Logical Foundations of Functional Programming, chapter 7, pages 127–151.
Addison-Wesley, 1990. 2.1

[33] E.P. Robinson and G. Rosolini. Reflexive graphs and parametric polymorphism. In S. Abramsky,
editor,Proc. 9th Symposium in Logic in Computer Science, pages 364–371, Paris, 1994. I.E.E.E. Com-
puter Society. 3.1, 4.4

[34] J.M.E. Hyland E.M. Robinson and G. Rosolini. Algebraic types in PER models. In M. Main,
A. Melton, M. Mislove, and D. Schmidt, editors,Mathematical Foundations of Programming Seman-
tics. 5th Interational Conference, volume 442 ofLecture Notes in Computer Science, pages 333–350,
Tulane University, New Orleans, Louisiana, USA, March/April 1989. Spinger-Verlag. 5.4

[35] G. Rosolini and A. Simpson. Using synthetic domain theory to prove operational properties of a
polymorphic programming language based on strictness. Manuscript, 2004. 3.1, 4.5, 6

[36] I. Rummelhoff. Polynat in PER-models.Theoretical Computer Science, 316(1–3):215–224, May
2004. 5.4

[37] C. Strachey. Fundamental concepts in programming languages. Lecture Notes, International Summer
School in Computer Programming, Copenhagen, August 1967. 1

24

[38] T. Streicher. A relational characterisation of syntactic definability in models of system f. Unpublished
Manuscript, 1998. 7.1

[39] P. Wadler. Theorems for free! In4’th Symposium on Functional Programming Languages and Com-
puter Architecture, ACM, London, September 1989. 4.1

[40] P. Wadler. The Girard-Reynolds isomorphism (second edition). Manuscript, March 2004. 5.4

25

Categorical Models for Abadi-Plotkin’s Logic for Parametricity

Lars Birkedal
Rasmus Ejlers Møgelberg

Abstract

We propose a new category-theoretic formulation of relational parametricity based on a logic for
reasoning about parametricity given by Abadi and Plotkin [12]. The logic can be used to reason about
parametric models, such that we may prove consequences of parametricity that to our knowledge have
not been proved before for existing category-theoretic notions of relational parametricity. We provide
examples of parametric models and we describe a way of constructing parametric models from given
models of the second-order lambda calculus.

Contents

1 Introduction 29

2 Abadi & Plotkin’s logic 30

2.1 Second-orderλ-calculus . 31

2.1.1 Equality . 31

2.2 The logic . 32

2.3 Definable relations . 33

2.4 The axioms . 35

3 APL-structures 37

3.1 Soundness . 43

3.2 Completeness . 47

4 Parametric APL-structures 49

5 Consequences of parametricity 51

5.1 Dinaturality . 51

5.2 Products . 52

5.3 Coproducts . 55

5.4 Initial algebras . 57

5.5 Final coalgebras . 60

5.6 Generalizing to strong fibred functors . 63

27

6 Concrete APL-structures 65

6.1 A parametric non-well-pointed APL-structure . 67

7 Comparing with Ma & Reynolds notion of parametricity 68

8 A parametric completion process 70

8.1 Internal models forλ2 . 70

8.2 Input for the parametric completion process . 72

8.3 The completion process . 73

8.4 The APL-structure . 77

9 Parametric Internal Models 82

10 Conclusion 83

A Composable Fibrations 83

28

1 Introduction

The notion of parametricity for models of polymorphic type theories intuitively states that a function of
polymorphic type behaves the same way on all type instances. Reynolds [13] discovered that parametricity
is central for modeling data abstraction and proving representation independence results. The idea is that
a client of an abstract data type is modeled as a polymorphic function; parametricity then guarantees that
the client cannot distinguish between different implementations of the abstract data type. Reynolds also
observed that parametricity can be used for encoding (inductive and coinductive) data types. See [20, 8] for
expository introductions.

In 1983 Reynolds gave a precise formulation of parametricity called relational parametricity for set-theoretic
models [13]. It basically states that a term of polymorphic type preserves relations between types: if termu
has type

∏
α : Type. σ andR : Rel(τ, τ ′) is a relation betweenτ andτ ′, then

u(τ)(σ[R])u(τ ′),

whereσ[R] is a relational interpretation of the typeσ defined inductively over the structure ofσ. Equiva-
lently, parametricity could be defined as the identity extension property: for all termsu, v of typeσ(~α),

u(σ[~eqα])v ⇐⇒ u = v.

However, Reynolds himself later proved that set-theoretic models do not exist [14] in classical set-theory (it
was later discovered that set theoretic models do exist in some models of intuitionistic set theory [10, 9]). In
1992 Ma and Reynolds [6] then gave a new formulation of parametricity phrased in terms of more general
models (PL-categories of Seely [18]). One may formulate Ma and Reynolds’ notion in the language ofλ2-
fibrations1 as follows. The fibrationE → B is parametric with respect to a given logic onE if there exist a
reflexive graph ofλ2-fibrations, whose restriction to the fibres over the terminal object is the reflexive graph

E1
// LR(E1)oo

oo

of logical relations with domain, codomain maps and the middle map mapping a type to the identity on that
type. (See [6, 5] for more details.)

In recent work by Birkedal and Rosolini on parametric domain-theoretic models it became clear that this
is not the right categorical formulation of parametricity: it appears that the definition does not allow one to
prove the expected consequences of parametricity such as data abstraction and the encoding of data types.
Indeed, these consequences have only been proved for specific models, see, e.g., [20, 3], using specific
properties of the models.

In this article we propose a new category-theoretic formulation of parametricity, called aparametric APL-
structure, whichdoesallow one to prove the expected properties of parametricity in general. We build upon
a logic for reasoning about parametricity given by Abadi and Plotkin [12]. In this logic one can formulate
parametricity as a schema and prove the expected consequences of parametricity. An APL-structure is a
category-theoretic model of Abadi and Plotkin’s logic, for which we prove soundness and completeness,
thereby answering a question posed in [12, Page 5]. Each APL-structure contains a model of the second-
order lambda calculus, which we may reason about using the logic.

We also provide a completion process that given an internal model ofλ2 (see [4, 15]) produces a parametric
APL-structure. In special cases, theλ2-fibration of this APL-structure is the one obtained in [15] and thus

1A λ2-fibration is a fibration with enough properties to model second-order lambda calculus, see, e.g., [5].

29

we prove that the models obtained in [15] in fact satisfy the consequences of parametricity (as expected, but
not shown in the literature before).

The consequences of parametricity proved earlier for specific models [3, 20, 1] all seem to use well-
pointedness, i.e., the property, that morphismsf : A→ B are determined by their values on global elements
a : 1 → A. For parametric APL-structures, we do not need to use well-pointedness to prove the expected
consequences of parametricity. Loosely speaking, the point is that our notion of parametric APL-structure
includes an appropriate extensional logic to reason with. Inloc. cit., the ambient world of set theory is
used as the logic and thus extensionality there amounts to asking for well-pointedness. We provide a family
of concrete parametric APL-structures, including non-well pointed ones. Thus parametricityis useful for
proving consequences also for non-well-pointed models.

In subsequent papers we will show how to modify the parametric completion process to produce domain-
theoretic parametric models and how to extend the notion of APL-structure to include models of polymor-
phic linear lambda calculus [11].

The remainder of the paper is organized as follows. In Section 2, we recall Abadi and Plotkin’s logic. The
reader is warned that our version of the logic is slightly different from the one described in [12]. In Section
3 we define the notion of an APL-structure. We prove soundness and completeness with respect to Abadi
and Plotkin’s logic in sections 3.1 and 3.2. Section 4 defines the internal language of an APL-structure
and we define the notion of aparametricAPL-structure. We also demonstrate in Section 5 how to use the
internal language to show consequences of parametricity in parametric APL-structures. Section 5 mainly
contain proofs of well-known results in Abadi & Plotkin’s logic. However, since these proofs are by no
means trivial, and to our knowledge do not appear in the literature, and since we think they are of general
interest, we include them here.

Section 6 contains a definition of a concrete parametric APL-structure, and we also mention a non-well-
pointed parametric APL-structure. Section 7 contains a comparison of our notion of parametricity with the
one defined by Ma & Reynolds [6]. The parametric completion process is described in Section 8. Since an
internal model ofλ2 in a quasitopos has ambient logic corresponding to most of the constructions in Abadi
& Plotkin’s logic, there exists a natural APL-structure incorporating it, so we may formulate the question if
this model is parametric. This is done in Section 9.

Appendix A contains definitions and theory concerning composable fibrations, i.e., pairs of fibrations such
that the codomain of the first is the domain of the second. In particular, we study the case of fibrations
F → E → B whereF → E is a logic fibration, and we study what is needed for it to model quantification
along vertical maps inE and quantification along maps inB. The definitions of this appendix are used in
the definition of an APL-structure.

Acknowledgments. We would like to acknowledge helpful discussions with Alex Simpson and Martin
Hyland and the constructive comments of the two anonymous referees.

2 Abadi & Plotkin’s logic

We first recall Abadi & Plotkin’s logic for reasoning about parametricity, originally defined in [12]. We will
use a slightly modified version of the logic.

Abadi & Plotkin’s logic is basically a second-order logic on the second-orderλ-calculus (λ2). Thus we
begin by calling to mind the second orderλ-calculus (a more formal presentation can be found in e.g. [5]).

30

2.1 Second-orderλ-calculus

Well-formed type expressions in second-orderλ-calculus are expressions of the form:

α1 : Type, . . . , αn : Type ` σ : Type

whereσ is built up from theαi’s using products (1, σ × τ), arrows (σ → τ) and quantification over types.
The latter means that if we have a type

α1 : Type, . . . , αn : Type ` σ : Type,

then we may form the type

α1 : Type, . . . , αi−1 : Type, αi+1 : Type, . . . , αn : Type `
∏
αi : Type. σ : Type

We do not allow repetitions in the list ofα’s, and we call this list the kind context. It is often denoted simply
Ξ or ~α. We useσ, τ, ω to range over the set of types.

The terms inλ2 are of the form:
Ξ | x1 : σ1, . . . , xn : σn ` t : τ

where theσi andτ are well-formed types in the kind contextΞ. The list ofx’s is called the type context and
is often denotedΓ. As for kind contexts we do not accept repetition in type contexts.

The grammar for raw terms is:

t ::= x | λx : σ.t | t(t) | ? | 〈t, t〉 | πt | π′t | Λα : Type. t | t(σ)

corresponding to variables,λ-abstraction, function applications, an element of unit type, pairing and projec-
tions on product types and second-orderλ-abstractions and type applications. We uses, t, u to range over
the set of terms, and as usual we considerα-equivalent terms equal. Most of the formation rules are well
known from the simply-typedλ-calculus; here we just recall the two additional rules for type abstraction
and type application:

Ξ, α : Type | Γ ` t : σ
Ξ | Γ is well-formed

Ξ | Γ ` Λα : Type. t :
∏
α : Type. σ

Ξ | Γ ` t :
∏
α : Type. σ Ξ ` τ : Type

Ξ | Γ ` t(τ) : σ[τ/α]

What we have described above is called thepure second-orderλ-calculus. In general we will consider
second-orderλ-calculi based on polymorphic signatures [5, 8.1.1]. Informally one may think of such a
calculus as the pure second-orderλ-calculus with added type-constants and term-constants. For instance
one may have a constant type for integers or a constant type for listsα ` lists(α) : Type. We will be
particularly interested in the internal language of aλ2-fibration (see Section 3) which in general will be a
non-pure calculus.

2.1.1 Equality

We consider an equality theory on second-orderλ-calculus calledexternalequality. It is the least equivalence
relation given by the rules in Figure 1.

31

Ξ | Γ, x : σ ` t : τ Ξ | Γ ` u : σ
β-reduction

Ξ | Γ ` (λx : σ. t)u = t[u/x]

Ξ, α | Γ ` t : τ Ξ ` σ : Type Ξ | Γwell-formed
β-reduction

Ξ | Γ ` (Λα : Type. t)σ = t[σ/α]

Ξ | Γ ` t : σ → τ
η-reduction

Ξ | Γ ` λx : σ. (tx) = t

Ξ | Γ ` t :
∏
α : Type. σ

η-reduction
Ξ | Γ ` Λα : Type. (tα) = t

Ξ | Γ ` t : σ Ξ | Γ ` u : τ

Ξ | Γ ` π〈t, u〉 = t

Ξ | Γ ` t : σ Ξ | Γ ` u : τ

Ξ | Γ ` π′〈t, u〉 = u

Ξ | Γ ` t : σ × τ

Ξ | Γ ` 〈πt, π′t〉 = t

Ξ | Γ ` t : 1

Ξ | Γ ` t = ?

Ξ | Γ ` t = t′ : σ Ξ | Γ, x : σ ` u : τ
replacement

Ξ | Γ ` u[t/x] = u[t′/x]

Ξ | Γ, x : σ ` t = s : τ

Ξ | Γ ` λx : σ. t = λx : σ. s

Ξ, α | Γ ` t = s Ξ | Γ well-formed

Ξ | Γ ` Λα. t = Λα. s

Figure 1: Rules for external equality

2.2 The logic

Abadi & Plotkin’s logic can be built on top of any second-order lambda calculus (based on any polymorphic
signature), so in the following we will assume that we are given one such.

Formulas of Abadi & Plotkin’s logic live in contexts of elements ofλ2 and relations on types ofλ2. The
contexts look like

Ξ | Γ | R1 : Rel(τ1, τ ′1), . . . , Rn : Rel(τn, τ ′n),

whereΞ | Γ is a context of second-orderλ-calculus and theτi andτ ′i are well-formed types in contextΞ,
for all i. The list ofR’s is called the relational context and is often denotedΘ. In this context as in the other
contexts we do not accept repetitions of variable names. It is important to notice that the relational and type
contexts are independent of each other in the sense that one does not affect whether the other is well-formed.

Formulas are given by the syntax:

φ ::= (t =σ u) | ρ(t, u) | φ ⊃ ψ | ⊥ | > | φ ∧ ψ | φ ∨ ψ | ∀α : Type. φ |
∀x : σ. φ | ∀R : Rel(σ, τ). φ | ∃α : Type. φ | ∃x : σ. φ | ∃R : Rel(σ, τ). φ,

whereρ is a definable relation (to be discussed below).

In the following we give formation rules for the above. First we have internal equality

Ξ | Γ ` t : σ Ξ | Γ ` u : σ

Ξ | Γ | Θ ` (t =σ u) : Prop

32

Notice here the notational difference betweent = u andt =σ u. The former denotesexternalequality and
the latter is a formula in the logic. The rules for⊃, ∨ and∧ are the usual ones.>, ⊥ are formulas in any
context.

We have the formation rules for universal quantification:

Ξ | Γ, x : σ,Γ′ | Θ ` φ : Prop

Ξ | Γ,Γ′ | Θ ` ∀x : σ. φ : Prop

Ξ | Γ | Θ, R : Rel(σ, τ),Θ′ ` φ : Prop

Ξ | Γ | Θ,Θ′ ` ∀R : Rel(σ, τ). φ : Prop

Ξ, α,Ξ′ | Γ | Θ ` φ : Prop
Ξ,Ξ′ | Γ | Θ is well-formed

Ξ,Ξ′ | Γ | Θ ` ∀α : Type. φ : Prop

The same formation rules apply to the existential quantifier.

2.3 Definable relations

Definable relations are given by the grammar:

ρ ::= R | (x : σ, y : τ).φ | σ[~ρ].

A definable relationρ always has a domain and a codomain, and we writeρ : Rel(σ, τ) to denote thatρ has
domainσ and codomainτ . There are 3 rules for this judgement. The first two are

Ξ | Γ | Θ, R : Rel(σ, τ),Θ′ ` R : Rel(σ, τ)

Ξ | Γ, x : σ, y : τ | Θ ` φ : Prop

Ξ | Γ | Θ ` (x : σ, y : τ). φ : Rel(σ, τ).

In the second rule above the variablesx, y become bound inφ. For example, we have the equality relation
eqσ defined as(x : σ, y : σ). x =σ y and the graph relation of a function〈f〉 = (x : σ, y : τ). fx =τ y if
f : σ → τ .

The last rule for definable relations is

α1, . . . , αn ` σ : Type Ξ | Γ | Θ ` ρ1 : Rel(τ1, τ ′1), . . . , ρn : Rel(τn, τ ′n)

Ξ | Γ | Θ ` σ[~ρ] : Rel(σ(~τ), σ(~τ ′)).

The notation is a bit ambiguous, since byσ[~ρ] we mean to substitute eachρi for αi in σ, and so the order
of theα’s and theρ’s is important. A more precise notation would have beenσ[ρ1/α1, . . . , ρn/αn], but we
choose to use the more convenientσ[~ρ].

Observe thatσ[~ρ] is a syntactic construction and is not obtained by substitution. In [12]σ[~ρ] is defined
inductively from the structure ofσ, but in our case this is not enough, since we will need to formσ[~ρ] for
type constantsσ in Section 4. The inductive definition of [12] is reflected in the rules (12)-(15) below. We
call σ[~ρ] therelational interpretation of the typeσ.

33

If ρ : Rel(σ, τ) is a definable relation, we may apply it to terms of the right types. This gives the last
formation rule for formulas

Ξ | Γ | Θ ` ρ : Rel(σ, τ) Ξ | Γ ` t : σ, u : τ

Ξ | Γ | Θ ` ρ(t, u) : Prop.

We will also writetρu for ρ(t, u).

Lemma 2.1. SupposeΞ | Γ ` Θ, R : Rel(σ, τ) ` φ : Prop andΞ | Γ | Θ ` ρ : Rel(σ, τ) are well-formed.
Then

Ξ | Γ | Θ ` φ[ρ/R] : Prop

is well-formed.

Proof. Easy induction on the structure ofφ.

Remark 2.2. Abadi & Plotkin’s logic is designed for reasoning about binary relational parametricity. For
reasoning about other arities of parametricity (such as unary parametricity), one can easily replace binary
relations in the logic by relations of other arities. In the case of unary parametricity, for example, one would
then have an interpretation of types as predicates. See also [19, 21]

We introduce the short notationρ ≡ ρ′ for definable relationsρ : Rel(σ, τ), ρ′ : Rel(σ, τ) as

∀x : σ, y : τ. ρ(x, y) ⊃⊂ ρ′(x, y).

Notice that we use⊃⊂ for biimplication.

We can take exponents, products and universal quantification of relations. These constructions will turn out
to define categorical exponents, products and quantification in a category of relations (see Lemma 3.7). For
now, the reader should just consider the next three definitions as shorthand notation.

If ρ : Rel(σ, τ) andρ′ : Rel(σ′, τ ′) we may define a definable relation:

(ρ→ ρ′) : Rel((σ → σ′), (τ → τ ′))

as
ρ→ ρ′ = (f : σ → σ′, g : τ → τ ′).∀x : σ.∀y : τ. (xρy ⊃ (fx)ρ′(gy))

We may also take the product ofρ andρ′:

ρ× ρ′ : Rel((σ × σ′), (τ × τ ′))

as
ρ× ρ′ = (x : σ × σ′, y : τ × τ ′). (πx)ρ(πy) ∧ (π′x)ρ′(π′y)

If
Ξ, α, β | Γ | Θ, R : Rel(α, β) ` ρ : Rel(σ, τ)

is well-formed andΞ | Γ | Θ andΞ, α ` σ : Type andΞ, β ` τ : Type we may define:

Ξ | Γ | Θ ` ∀(α, β,R : Rel(α, β)). ρ : Rel((
∏
α : Type. σ), (

∏
β : Type. τ))

as
(t :

∏
α : Type. σ, u :

∏
β : Type. τ).∀α, β : Type.∀R : Rel(α, β). (tα)ρ(uβ).

34

Ξ: Ctx Ξ ` σ : Type Ξ | Γ: Ctx

Ξ | Θ: Ctx Ξ | Γ ` t : σ Ξ | Γ ` t = u

Ξ | Γ | Θ ` φ : Prop Ξ | Γ | Θ ` ρ : Rel(σ, τ) Ξ | Γ | Θ | φ1, . . . , φn ` ψ

Figure 2: Types of judgements

2.4 The axioms

Figure 2 sums up the types of judgements we have in the logic. The last judgement in the figure says that in
the given context, the conjunction of the formulasφ1, . . . , φn impliesψ.

Having specified the language of Abadi & Plotkin’s logic, it is time to specify the axioms and the rules of
the logic. We have all the axioms of propositional logic plus the rules specified below.

We have rules for∀-quantification:

Ξ, α | Γ | Θ | Φ ` ψ
==================== Ξ | Γ | Θ ` Φ
Ξ | Γ | Θ | Φ ` ∀α : Type.ψ

(1)

Ξ | Γ, x : σ | Θ | Φ ` ψ
================== Ξ | Γ | Θ ` Φ
Ξ | Γ | Θ | Φ ` ∀x : σ.ψ

(2)

Ξ | Γ | Θ, R : Rel(τ, τ ′) | Φ ` ψ
======================== Ξ | Γ | Θ ` Φ
Ξ | Γ | Θ | Φ ` ∀R : Rel(τ, τ ′).ψ

(3)

The double bars mean that these are double rules, i.e., the condition on the bottom implies the one on top
and vice versa.

Rules for∃-quantification:

Ξ, α | Γ | Θ | φ ` ψ
==================== Ξ | Γ | Θ ` ψ
Ξ | Γ | Θ | ∃α : Type.φ ` ψ

(4)

Ξ | Γ, x : σ | Θ | φ ` ψ
================= Ξ | Γ | Θ ` ψ
Ξ | Γ | Θ | ∃x : σ.φ ` ψ

(5)

Ξ | Γ | Θ, R : Rel(τ, τ ′) | φ ` ψ
======================== Ξ | Γ | Θ ` ψ
Ξ | Γ | Θ | ∃R : Rel(τ, τ ′).φ ` ψ

(6)

We have substitution rules
Ξ, α | Γ | Θ | Ψ ` φ Ξ ` σ : Type

Ξ | Γ[σ/α] | Θ[σ/α] | Ψ[σ/α] ` φ[σ/α]
(7)

Ξ | Γ, x : σ | Θ | Ψ ` φ Ξ | Γ ` t : σ

Ξ | Γ | Θ | Ψ[t/x] ` φ[t/x]
(8)

Ξ | Γ | Θ, R : Rel(σ, τ) | Ψ ` φ Ξ | Γ | Θ ` ρ : Rel(σ, τ)

Ξ | Γ | Θ | Ψ[ρ/R] ` φ[ρ/R]
(9)

35

Thesubstitutionaxiom:

Ξ | Γ | Θ | > ` ∀α, β : Type.∀x, x′ : α.∀y, y′ : β.∀R : Rel(α, β).
R(x, y) ∧ x =α x

′ ∧ y =β y
′ ⊃ R(x′, y′)

(10)

External equality implies internal equality:

Ξ | Γ ` t = u : σ

Ξ | Γ | Θ | > ` t =σ u
(11)

We omit the obvious rules stating that internal equality is an equivalence relation. The following rules
concern the interpretation of types as relations.

Ξ | Γ | Θ | > ` ∀x, y : 1. x1y (12)

~α ` αi Ξ | Γ | Θ ` ~ρ : Rel(~τ , ~τ ′)

Ξ | Γ | Θ | > ` αi[~ρ] ≡ ρi

(13)

~α ` σ → σ′ Ξ | Θ ` ~ρ : Rel(~τ , ~τ ′)

Ξ | Γ | Θ | > ` (σ → σ′)[~ρ] ≡ (σ[~ρ]→ σ′[~ρ])
(14)

~α `
∏
β. σ(~α, β) Ξ | Θ ` ~ρ : Rel(~τ , ~τ ′)

Ξ | Γ | Θ | > ` (∀β. σ(~α, β))[~ρ] ≡ ∀(β, β′, R : Rel(β, β′)). σ[~ρ,R])
(15)

Finally we have
Ξ | Γ, x : σ, y : τ | Θ ` φ : Prop Ξ | Γ ` t : σ, u : τ

Ξ | Γ ` ((x : σ, y : τ). φ)(t, u) ⊃⊂ φ[t, u/x, y].
(16)

Using this rule, we may prove a bijective correspondence between definable relations and propositions with
two free variables considered up to provable equivalence. The bijection maps a definable relationρ to the
formula ρ(x, y) with free variablesx, y and a formulaφ with free variablesx, y to the definable relation
(x, y). φ.

Lemma 2.3. SupposeΞ | Γ | Θ ` ρ : Rel(σ, τ) andΞ | Γ, x : σ, y : τ | Θ ` φ : Prop. Then

Ξ | Γ, x : σ, y : τ | Θ | > ` φ ⊃⊂ ((x : σ, y : τ). φ)(x, y)

and
Ξ | Γ | Θ | > ` ρ ≡ (x : σ, y : τ). ρ(x, y).

Proof. The first statement above is just a reformulation of (16), and for the second we need to prove that

∀x : σ, y : τ. ((x : σ, y : τ). ρ(x, y))(x, y) ⊃⊂ ρ(x, y)

which is also an easy consequence of (16).

36

We would also like to mention the extensionality schemes:

(∀x : σ. t x =τ u x) ⊃ t =σ→τ u
(∀α : Type. t α =τ u α) ⊃ t =∏

α : Type.τ u.

These are taken as axioms in [12], but we shall not take these as axioms as we would like to be able to talk
about models that are not necessarily extensional.

Lemma 2.4. The substitution axiom above implies thereplacementrule:

Ξ | Γ | Θ | Φ ` t =σ t
′ Ξ | Γ, x : σ ` u : τ

Ξ | Γ | Θ | Φ ` u[t/x] =τ u[t′/x]

Proof. Instantiate the substitution axiom with the definable relation

ρ = (y : σ, z : σ). u[y/x] =τ u[z/x].

ClearlyΦ ` ρ(t, t), so sincet =σ t
′, we haveΦ ` ρ(t, t′) as desired.

Lemma 2.5 (Weakening, Exchange).If Ξ | Γ | Θ | Ψ ` φ is provable in the logic, and if further
Ξ′ | Γ′ | Θ′ is a context obtained fromΞ | Γ | Θ by permuting the order of the variables in the contexts, and
possibly adding variables, then

Ξ′ | Γ′ | Θ′ | Ψ ` φ
is also provable in the logic.

3 APL-structures

In this section we define the notion of an APL-structure, which is basically a category-theoretic formulation
of a model of Abadi & Plotkin’s logic. We also show how to interpret the logic in an APL-structure. We use
the definitions and results of Appendix A.

But first we recall the notion of aλ2-fibration, which is basically a model ofλ2.

Definition 3.1. A fibrationType → Kind is a λ2-fibration if it is fibred cartesian closed, has a generic
objectΩ ∈ Kind, products inKind, and simpleΩ-products, i.e., right adjoints

∏
π to the reindexing

functorsπ∗ for projectionsπ : Ξ× Ω→ Ξ.

Remark 3.2. In aλ2 fibration, for a mapf : Ξ→ Ω in Kind, we will use the notation̂f to denote the object
of TypeΞ corresponding tof , and likewise forσ ∈ TypeΞ we writeσ̂ : Ξ→ Ω for the map corresponding
to σ.

Definition 3.3. A pre-APL-structureconsists of

1. Fibrations:
Prop

r

��
Type

p

$$J
JJJJJJJJ

� � I // Ctx

q

��
Kind

where

37

• p is aλ2-fibration.

• q is a fibration with fibred products

• (r, q) is an indexed first-order logic fibration (Definition A.4) which has products and coproducts
with respect toΞ× Ω→ Ξ in Kind (Definition A.5) whereΩ is the generic object ofp.

• I is a faithful product preserving map of fibrations.

2. a contravariant morphism of fibrations:

Type×Kind Type U //

((QQQQQQQQQQQQQ Ctx

zzvvvvvvvvv

Kind

3. a family of bijections

ΨΞ : HomCtxΞ
(ξ, U(σ, τ))→ Obj (Propξ×I(σ×τ))

for σ andτ in TypeΞ andξ in CtxΞ, which

• is natural in theξ, σ, τ

• commutes with reindexing functors; that is, ifρ : Ξ′ → Ξ is a morphism inKind andu : ξ →
U(σ, τ) is a morphism inCtxΞ, then

ΨΞ′(ρ∗(u)) = (ρ̄)∗(ΨΞ(u))

whereρ̄ is the cartesian lift ofρ.

Notice thatΨ is only defined on vertical morphisms.

By a contravariant functor of fibrations, we mean a functor of fibrations, which is contravariant in each fibre.

Remark 3.4. Item 3 implies that(U(1Ξ, 1Ξ))Ξ∈Kind is an indexed family of generic objects. If, on the
other hand, we have an indexed family of generic objects(ΣΞ)Ξ∈Kind andCtx is cartesian closed, then
we may defineU to beΣ−×− and thereby get items 2 and 3 for free. In general, however,Ctx will not be
cartesian closed. In particular, in the syntactic model described below in the proof of completenessCtx is
not cartesian closed.

Remark 3.5. Below we will describe how theU(σ, τ) is used to model the object of relations fromσ to τ .
To model a version of Abadi & Plotkin’s logic for unary or any other arity of parametricity as in Remark 2.2,
the functorU should have corresponding arity and the domain and codomain of the bijectionΨ should be
changed accordingly.

We now explain how to interpret all of Abadi & Plotkin’s logic, except for the relational interpretation of
types, in a pre-APL-structure. First we recall the interpretation ofλ2 in aλ2-fibration.

A type α1 . . . αn ` αi is interpreted as the object ofType over Ωn corresponding to thei’th projection
Ωn → Ω. For a typeα1 . . . αn ` σ, we have[[

∏
αi. σ]] =

∏
π[[~α ` σ]], whereπ is the projection forgetting

thei’th coordinate. Since each fibre of theλ2-fibration is cartesian closed, we may interpret the constructions
of the simply typedλ-calculus using fibrewise constructions.

38

If Ξ, α | Γ ` t : τ is a term andΞ ` Γ is well-formed, then we may interpret the termΞ | Γ ` Λα. t :
∏
α. τ

as the morphism corresponding to[[Ξ, α | Γ ` t : τ]] under the adjunctionπ∗ a
∏

π.

To interpretΞ | Γ ` t σ, notice that[[Ξ ` σ]] corresponds to a map

̂[[Ξ ` σ]] : [[Ξ]]→ Ω.

The morphism[[Ξ | Γ ` t :
∏
α. τ]] corresponds by the adjunctionπ∗ a

∏
π to a morphism in the fibre over

[[Ξ]]× Ω. We reindex this morphism along

〈id [[Ξ]], ̂[[Ξ ` σ]]〉 : [[Ξ]]→ [[Ξ]]× Ω

to get[[Ξ | Γ ` t σ]].

Relational contexts are interpreted inCtx as:

[[Ξ | R1 : Rel(σ1, τ1), . . . , Rn : Rel(σn, τn)]] = U([[σ1]], [[τ1]])× . . .× U([[σn]], [[τn]]),

where[[σi]], [[τi]] are the interpretations of the types inType as described above.

We aim to define[[Ξ | Γ | Θ ` φ]] as an object ofProp over[[Ξ | Γ | Θ]], which we define to be

I([[Ξ | Γ]])× [[Ξ | Θ]].

We proceed by induction on the structure ofφ. We use the short notation[[Ξ | Γ | Θ ` t : τ]] for the compo-
sition

[[Ξ | Γ | Θ]] π // I([[Ξ | Γ]])
I([[Ξ|Γ`t : τ]]) // I([[Ξ ` τ]]) ,

and we will in the following leave obvious isomorphisms involving products implicit.

If we define∆X : X → X ×X to be the diagonal map, then

[[Ξ | x : σ, y : σ | − ` x =σ y : Prop]] =
∐

∆I([[σ]])
(>)

and
[[Ξ | Γ | Θ | t =σ u]] =

〈[[Ξ | Γ | Θ ` t]], [[Ξ | Γ | Θ ` u]]〉∗[[Ξ | x : σ, y : σ | − ` x =σ y : Prop]].

∀x : A.φ and∀R : Rel(σ, τ).φ are interpreted using right adjoints to reindexing functors related to the ap-
propriate projections inCtx. Likewise∃x : A.φ and∃R : Rel(σ, τ).φ are interpreted using left adjoints to
the same reindexing functors.

∀α.φ and∃α.φ are interpreted using respectively right and left adjoints toπ̄∗ where π̄ is the lift of the
projectionπ : [[Ξ, α : Type]] → [[Ξ]] in Kind to Ctx. To be more precise, one may easily show that for
Ξ | Γ | Θ wellformed[[Ξ, α | Γ | Θ]] = π∗[[Ξ | Γ | Θ]] using the corresponding result for the interpretation
of λ2, and so the cartesian lift ofπ is a map:

π̄ : [[Ξ, α | Γ | Θ]] → [[Ξ | Γ | Θ]]

and we define
[[Ξ | Γ | Θ ` ∀α. φ]] =

∏
π̄[[Ξ, α | Γ | Θ ` φ]],

where
∏

π̄ is the right adjoint tōπ∗.

39

Definable relations are interpreted as maps inCtx. To be more precise, a definable relation

Ξ | Γ | Θ ` ρ : Rel(σ, τ)

is interpreted as a morphism from[[Ξ | Γ | Θ]] toU([[σ]], [[τ]]). The definable relation

Ξ | Γ | Θ, R : Rel(σ, τ),Θ′ ` R : Rel(σ, τ)

is interpreted as the projection. We define

[[Ξ | Γ | Θ ` (x : σ, y : τ). φ : Rel(σ, τ)]] = Ψ−1[[Ξ | Γ, x : σ, y : τ | Θ ` φ]].

We define the interpretation of application of definable relations to terms as follows:

[[Ξ | Γ, x : σ, y : τ | Θ ` ρ(x, y)]] = Ψ([[Ξ | Γ | Θ ` ρ : Rel(σ, τ)]]).

Finally
[[Ξ | Γ | Θ ` ρ(t, u)]] =

〈π, id , [[Ξ | Γ | Θ ` t]], [[Ξ | Γ | Θ ` u]], π′〉∗[[Ξ | Γ, x : σ, y : τ | Θ ` ρ(x, y)]]

whereπ : [[Ξ | Γ | Θ]]→ I[[Ξ | Γ]] andπ′ : [[Ξ | Γ | Θ]]→ [[Ξ | − | Θ]] are the projections. As usual, we have
left out some obvious isomorphisms here.

To interpret the relational interpretation of types we need a little more structure. First we consider a fibration

Relations→ RelCtx,

that can be defined for every pre-APL-structure.RelCtx is defined as the pullback

RelCtx //

��

Ctx

��
Kind×Kind

× // Kind

If Θ is an object ofRelCtx projecting to(Ξ,Ξ′) ∈ Kind×Kind, we will write it asΞ,Ξ′ | Θ. The fibre
of Relations overΞ,Ξ′ | Θ is

objects Triples(σ, τ, ρ), whereσ is an object inTypeΞ, τ is an object inTypeΞ′ andρ is a map
ρ : Θ→ U(π∗σ, (π′)∗τ), whereπ, π′ are the projections out ofΞ× Ξ′.

morphisms A morphism from(σ, τ, ρ) to (σ′, τ ′, ρ′) is a pair of morphisms(s, t), such thats : σ → σ′

andt : τ → τ ′, and
Ψ(U(π∗t, (π′)∗s) ◦ ρ′) ≤ Ψ(ρ)

where the ordering refers to the fibrewise ordering onProp.

Reindexing(σ, τ, ρ) along a vertical mapΘ′ → Θ in RelCtx (vertical with respect toKind ×Kind) is
given by composition. Reindexing with respect to lifts of maps(ω, ω′) : (Ξ1,Ξ′

1) → (Ξ2,Ξ′
2) is given by

reindexing inCtx→ Kind.

40

Remark 3.6. In the internal language, objects ofRelations are simply relations

Ξ,Ξ′ | Θ ` ρ : Rel(σ(Ξ), τ(Ξ′)),

and a morphism fromρ : Rel(σ(Ξ), τ(Ξ′)) toρ′ : Rel(σ′(Ξ), τ ′(Ξ′)) is simply a pair of morphismst : σ → σ′

in TypeΞ ands : τ → τ ′ in TypeΞ′ such that

∀x, y. ρ(x, y) ⊃ ρ′(t x, s y).

We clearly have two functorsRelCtx → Kind defined by mapping(Ξ,Ξ′,Θ) to Ξ andΞ′ respectively,
and we also have two functorsRelations→ Type defined by mapping(φ, σ, τ) to σ andτ respectively.

Lemma 3.7. The fibrationRelations→ RelCtx is aλ2-fibration, and the maps mentioned above define
a pair of maps ofλ2 fibrations

Type

��

Relations
∂1

oo
∂0oo

��
Kind RelCtx.

∂1

oo
∂0oo

Proof. The categoryRelCtx has products:

(Ξ1,Ξ′
1,Θ)× (Ξ2,Ξ′

2,Θ
′) = (Ξ1 × Ξ2,Ξ′

1 × Ξ′
2, (π, π)∗Θ× (π′, π′)∗Θ′).

where(π, π) : (Ξ1×Ξ2,Ξ′
1×Ξ′

2)→ (Ξ1,Ξ′
1) is the projection, and(π′, π′) is the other evident projection.

The fibration has a generic object(Ω,Ω, U(îdΩ, îdΩ)), since morphism into this from(Ξ,Ξ′,Θ) in RelCtx
consists of pairs of types(f : Ξ → Ω, g : Ξ′ → Ω) and vertical morphisms fromΘ to U(f̂ , ĝ). These are
exactly the objects ofRelations.

The constructions for fibred products, fibred exponents and simpleΩ-products are simply the rules for prod-
ucts, exponents and universal quantification of relations in Abadi & Plotkin’s logic formulated in the internal
language of the model, which we will describe in Section 4. One can either interpret these constructions
in the pre-APL-structure, and prove directly that these constructions have the desired properties, or one can
use the fact that pre-APL-structures interpret these constructions soundly (Theorem 3.10) and reason in the
internal logic.

Here we give the rest of the proof reasoning in the internal logic. Supposeρ : Rel(σ, τ) andρ′ : Rel(σ′, τ ′)
andω : Rel(σ′′, τ ′′) are objects in some fibre ofRelations. Then a vertical morphism fromω to

ρ× ρ′ : Rel((σ × σ′), (τ × τ ′)),

defined as
(x, x′)ρ× ρ′(y, y′) = xρy ∧ x′ρ′y′,

is a pair of mapst : σ′′ → σ × σ′ andu : τ ′′ → τ × τ ′ such that

∀x, y. xωy ⊃ π(tx)ρπ(uy) ∧ π′(tx)ρ′π′(uy),

which is the same as a pair of maps fromω into ρ andρ′ respectively.

Likewise maps fromω into
(ρ→ ρ′) : Rel((σ → σ′), (τ → τ ′)),

41

defined as
f(ρ→ ρ′)g = ∀x : σ∀y : τ(xρy ⊃ (fx)ρ′(gy)),

are in one-to-one correspondence with maps fromω × ρ to ρ′.

Given new relationsΞ,Ξ′ | Θ ` ω : Rel(σ, σ′) and

Ξ, α; Ξ′, β | Θ, R : Rel(α, β) ` ρ : Rel(τ, τ ′),

we have defined

Ξ,Ξ′ | Θ ` ∀(α, β,R : Rel(α, β)). ρ : Rel((
∏
α : Type. τ), (

∏
β : Type. τ ′))

as
(t :

∏
α. τ,

∏
β. τ ′).∀α, β : Type.∀R : Rel(α, β). (tα)ρ(uβ).

We need to show that this defines a right adjoint to weakening. The idea is that the correspondence between
maps will be the same as inType→ Kind. In this fibration, the correspondence is given as follows, a map
Ξ, α | − ` t : σ → τ with Ξ ` σ : Type corresponds toΞ | − ` t̂ : σ →

∏
α. τ wheret̂ = λx : σ.Λα. (t x).

We will show, that(t, u) preserves relations iff(t̂, û) does. It is clear that

Ξ, α; Ξ′, β | x : σ, y : σ′ | Θ, R : Rel(α, β) | xωy ` (tx)ρ(uy)

iff
Ξ,Ξ′ | x : σ, y : σ′ | Θ | xωy ` ∀α, β : Type.∀R : Rel(α, β). (t̂ x α)ρ(û y β),

which establishes the bijective correspondence.

Definition 3.8. An APL-structure is a pre-APL-structure for which the graph of 3.7 can be extended to a
reflexive graph ofλ2-fibrations

Type

��

J // Relations
∂1

oo

∂0oo

��
Kind J // RelCtx,

∂1

oo

∂0oo

i.e., there exists a mapJ of λ2-fibrations such that∂0J = id = ∂1J .

Remark 3.9. There is a functor fromRelations to Prop mapping an object(σ, τ, ρ) to Ψ(ρ). In the
following we often use that functor implicitly.

We need to show how to interpret the rule

α1, . . . , αn ` σ(~α) : Type Ξ | Γ | Θ ` ρ1 : Rel(τ1, τ ′1), . . . , ρn : Rel(τn, τ ′n)

Ξ | Γ | Θ ` σ[~ρ] : Rel(σ(~τ), σ(~τ ′))

in an APL-structure.

SinceJ preserves products and generic objects,J([[~α ` σ(~α)]]) is a definable relation of the form

[[~α; ~β | − | ~R : Rel(~α, ~β) ` J(σ) : Rel(σ(~α), σ(~β))]].

It thus makes sense to define

[[~α, ~β | − | ~R : Rel(~α, ~β) ` σ[~R] : Rel(σ(~α), σ(~β))]]

42

to beJ([[~α ` σ(~α) : Type]]), so now all we need to do is reindex this object. Given typesΞ ` ~τ ,~τ ′ : Type,
we define

[[Ξ | − | ~R : Rel(~τ , ~τ ′) ` σ[~R] : Rel(σ(~τ), σ(~τ ′))]]

to be
〈 ̂[[Ξ ` ~τ]], ̂[[Ξ ` ~τ ′]]〉∗[[~α; ~β | − | ~R : Rel(~α, ~β) ` σ[~R] : Rel(σ(~α), σ(~β))]].

Finally, given definable relationsΞ | Γ | Θ `~ρ : Rel(~τ , ~τ ′) we define

[[Ξ | Γ | Θ ` σ[~ρ] : Rel(σ(~τ), σ(~τ ′))]] =
[[Ξ | − | ~R : Rel(~τ , ~τ ′) ` σ[~R] : Rel(σ(~τ), σ(~τ ′))]] ◦ [[Ξ | Γ | Θ ` ~ρ : Rel(~τ , ~τ ′)]].

3.1 Soundness

We have now completed showing how to interpret all constructions of the language of Abadi and Plotkin’s
logic in APL-structures. We consider an implicationΞ | Γ | Θ | φ1, . . . , φn ` ψ to hold in the model if∧

i

[[Ξ | Γ | Θ ` φi]] ` [[Ξ | Γ | Θ ` ψ]],

where` above refers to the fibrewise ordering inProp.

Theorem 3.10 (Soundness).In any APL-structure the interpretation defined above is sound with respect
to the axioms and rules specified in Section 2.4, i.e., all axioms hold in the model, and for all rules, if the
hypothesis holds in the model, then so does the conclusion. In any pre-APL structure the interpretation of
the part of the logic excluding the relational interpretation of terms is sound.

We will only prove the first part of Theorem 3.10, i.e., soundness for APL-structures. The proof of soundness
for pre-APL structures is basically the same. For the proof we need the following lemmas:

Lemma 3.11. If Ξ | Γ ` t : σ then

[[Ξ | Γ | Θ ` φ[t/x]]] = (I〈id [[Ξ|Γ]], [[t]]〉 × id [[Ξ|Θ]])
∗[[Ξ | Γ, x : σ | Θ ` φ]]

Proof. We will prove the statement of the lemma and the statement

[[Ξ | Γ | Θ ` ρ[t/x] : Rel(τ, τ ′)]] =
[[Ξ | Γ, x : σ | Θ ` ρ : Rel(τ, τ ′)]] ◦ (I〈id [[Ξ|Γ]], [[t]]〉 × id [[Ξ|Θ]]),

for all definable relationsρ, by simultaneous induction on the structure ofφ andρ. We only do a few cases
and leave the rest to the reader.

Case ρ = σ[~ρ′]:

[[Ξ | Γ | Θ ` σ[~ρ′][t/x]]] = [[Ξ | Γ | Θ ` σ[~ρ′[t/x]]]] = [[Ξ | − | ~R ` σ[~R]]] ◦ [[~ρ[t/x]]]

Since by induction[[~ρ[t/x]]] = [[~ρ]] ◦ (I〈id [[Ξ|Γ]], [[t]]〉 × id [[Ξ|Θ]])), we are done.

43

Case ρ = (y : τ, z : τ ′). φ:

[[Ξ | Γ | Θ ` ρ[t/x]]] = Ψ−1([[Ξ | Γ, y : τ, z : τ ′ | Θ ` φ[t/x]]]),

which by induction is equal to

Ψ−1(〈π[[Γ]], [[t]], π[[y : τ,z : τ ′|Θ]]〉∗[[Ξ | Γ, x : σ, y : τ, z : τ ′ | Θ ` φ]]).

By naturality ofΨ this is equal to

Ψ−1([[Ξ | Γ, x : σ, y : τ, z : τ ′ | Θ ` φ]]) ◦ 〈π[[Γ]], [[t]], π[[Θ]]〉 =
[[Ξ | Γ, x : σ | Θ ` ρ]]) ◦ 〈π[[Γ]], [[t]], π[[Θ]]〉

as desired.

Case φ = ρ(u, s)

Using naturality ofΨ as before, one can prove that

[[Ξ | Γ, y : τ, z : τ ′ | Θ ` ρ(y, z)[t/x]]] =
(I〈id [[Ξ|Γ,y : τ,z : τ ′]], [[t]]〉 × id [[Ξ|Θ]])∗[[Ξ | Γ, y : τ, z : τ ′, x : σ | Θ ` ρ(y, z)]].

The general case follows from the fact that in aλ2-fibration

[[Ξ | Γ ` u[t/x]]] = [[Ξ | Γ ` u]] ◦ 〈id , [[Ξ | Γ ` t]]〉.

Case φ = ∀α : Type. ψ:

We need to show that

[[Ξ | Γ | Θ ` ∀α : Type. ψ[t/x]]] =
(I〈id [[Ξ|Γ]], [[t]]〉 × id [[Ξ|Θ]])∗[[Ξ | Γ, x : σ | Θ | ∀α : Type. ψ]].

Let π denote the cartesian lift of the projection[[Ξ, α]]→ [[Ξ]]. Then by induction we have that the left
hand side of the equation is∏

π(I〈idΓ, [[t]]〉 × idΘ)∗[[Ξ, α | Γ, x : σ | Θ ` ψ]].

Consider the square

[[Ξ, α | Γ | Θ]] π //

I〈idΓ,[[t]]〉×idΘ

��

[[Ξ | Γ | Θ]]

I〈idΓ,[[t]]〉×idΘ

��
[[Ξ, α | Γ, x : σ | Θ]] π // [[Ξ | Γ, x : σ | Θ]].

This square commutes sinceπ is a natural transformation fromπ∗ to id , and it is a pullback by [5,
Exercise 1.4.4]. The Beck-Chevalley condition relative to this square gives the desired result.

Lemma 3.12. If Ξ | Γ | Θ ` φ : Prop, then

[[Ξ | Γ, x : σ | Θ ` φ]] = π∗[[Ξ | Γ | Θ ` φ]],

whereπ : [[Ξ | Γ, x : σ | Θ]]→ [[Ξ | Γ | Θ]] is the projection.

44

Lemma 3.13. If Ξ ` σ : Type then

[[Ξ | Γ[σ/α] | Θ[σ/α] ` φ[σ/α]]] = 〈id [[Ξ]], [[σ]]〉∗[[Ξ, α : Type | Γ | Θ ` φ]],

where the vertical line in〈id [[Ξ]], [[σ]]〉 denotes the cartesian lift.

Proof. Notice first that a corresponding reindexing lemma for interpretation ofλ2 in λ2-fibrations tells us
that

〈id [[Ξ]], [[σ]]〉∗[[Ξ, α | Γ | Θ]] = [[Ξ | Γ[σ/α] | Θ[σ/α]]].

The rest of the proof is by induction over the structure ofφ, and since it resembles the proof of Lemma 3.11
closely we leave it to the reader.

Lemma 3.14. If Ξ | Γ | Θ ` φ then

[[Ξ | Γ | Θ ` φ]] = π∗Ξ,α→Ξ[[Ξ, α | Γ | Θ ` φ]]

Proof. The proof is almost the same as for Lemma 3.13.

Lemma 3.15. If Ξ | Γ | Θ ` ρ : Rel(τ, τ ′) is a definable relation, then

[[Ξ | Γ | Θ ` φ[ρ/R]]] = (〈id [[Ξ|Γ|Θ]], [[ρ]]〉)∗[[Ξ | Γ | Θ, R : Rel(τ, τ ′) ` φ]]

Proof. The lemma should be proved simultaneously with the statement

[[Ξ | Γ | Θ ` ρ′[ρ/R]]] = [[Ξ | Γ | Θ, R : Rel(τ, τ ′) ` ρ′]] ◦ (〈id [[Ξ|Γ|Θ]], [[ρ]]〉)

for all definable relationsρ′, by structural induction onφ andρ′. We leave the proof to the reader, as it
closely resembles the proof of (3.11).

Lemma 3.16. If Ξ | Γ | Θ ` φ : Prop, then

[[Ξ | Γ | Θ, R : Rel(σ, τ) ` φ]] = π∗[[Ξ | Γ | Θ ` φ]],

whereπ : [[Ξ | Γ | Θ, R : Rel(σ, τ)]]→ [[Ξ | Γ | Θ]] is the projection.

We are now ready to prove soundness.

Proof of Theorem 3.10.The rules for quantification (1)- (6) follow directly from the fact that the interpreta-
tion of ∀ and∃ are given by right, respectively left adjoints to weakening functors. The substitution rules
(7) - (9) are sound by Lemmas 3.11, 3.13 and 3.15.

For thesubstitutionaxiom (10) we will only prove

[[α, β | x, x′ : α, y : β | R : Rel(α, β) ` x =α x
′]] ≤

[[α, β | x, x′ : α, y : β | R : Rel(α, β) ` R(x, y) ⊃ R(x′, y)]].

Once this is done, the rest of the proof amounts to doing the same thing in the second variable. We will for
readability write simply[[α]], [[β]], [[R]] for [[α, β ` α]], [[α, β ` β]], [[α, β | − | R : Rel(α, β)]].

45

If we let π1, π2, π3, π4 denote the projections out of

[[α, β | x, x′ : α, y : β | R : Rel(α, β)]] =
[[α, β ` α]]2 × [[α, β ` β]]× U([[α, β ` α]], [[α, β ` β]])

we can formulate what we aim to prove as

〈π1, π2〉∗(
∐

∆[[α]]
(>)) ≤ 〈π1, π3〉∗Ψ(id [[R]]) ⊃ 〈π2, π3〉∗Ψ(id [[R]]),

where∆ denotes the diagonal map.

Using the Beck-Chevalley condition on the square

[[α]]× [[β]]× [[R]]
∆[[α]]×id

//

π1

��

[[α]]2 × [[β]]× [[R]]

〈π1,π2〉
��

[[α]]
∆[[α]] // [[α]]2

we get
〈π1, π2〉∗(

∐
∆[[α]]

(>)) =
∐

∆[[α]]×id [[β]]×[[R]]
(>).

Now the result follows from using the adjunction and the fact that

〈π1, π3〉 ◦ (∆[[α]] × id [[β]]×[[R]]) = 〈π2, π3〉 ◦ (∆[[α]] × id [[β]]×[[R]]).

External equality implies internal equality (11) since the model ofλ2 included in the model is sound. Internal
equality is clearly an equivalence relation.

The axioms concerning types as relations (12) - (15) follow from the fact thatJ is required to be a morphism
of λ2 fibrations and that theλ2 structure inRelations→ RelCtx is given by the interpretation of products
and quantification of relations. For instance soundness of the (15) is proved as follows:

[[~α, ~α′ | − | ~R : Rel(~α,~α′) ` (
∏
β. σ)[~R]]] =

J([[~α `
∏
β. σ]]) =

[[~α, ~α′ | ~R : Rel(~α, ~α′) ` (∀γ, γ′, S : Rel(γ, γ′)). σ[~R, S]]]

where the second equality holds sinceJ preserves simpleΩ-products.

Finally, to prove soundness of rule (16), it suffices to prove soundness of

Ξ | Γ, x : σ, y : τ | Θ | > ` ((x : σ, y : τ). φ)(x, y) ⊃⊂ φ,

but
[[Ξ | Γ, x : σ, y : τ | Θ ` ((x : σ, y : τ). φ)(x, y)]] =

Ψ([[Ξ | Γ | Θ ` (x : σ, y : τ). φ]]) =
Ψ ◦Ψ−1([[Ξ | Γ, x : σ, y : τ | Θ ` φ]]) = [[Ξ | Γ, x : σ, y : τ | Θ ` φ]].

46

3.2 Completeness

The Soundness Theorem (3.10) allows us to reason about APL-structures using Abadi & Plotkin’s logic.
The Completeness Theorem below states that any formula that holds in all APL-structures, is provable
in the logic. This allows us to reason about the logic using the class of APL-structures. However, since
the APL-structure below is constructed from the logic, this does not say much. Instead, one should view
the Completeness Theorem as stating that the class of APL-structures is not too restrictive; it completely
describes the logic.

Theorem 3.17 (Completeness).There exists an APL-structure with the property that any formula of Abadi
& Plotkin’s logic based on pureλ2 that holds in the structure may be proved in the logic.

Proof. We construct the APL-structure syntactically, giving the categories in question the same names as in
the diagram of item 1 in Definition 3.3.

• The categoryKind has sequences of the formα1 : Type, . . . , αn : Type as objects, where we identify
these contexts up to renaming (in other words, we may think of objects as natural numbers). A
morphism fromΞ into α1 : Type, . . . , αn : Type is a sequence of types(σ1, . . . , σn) such that allσi

are well-formed in contextΞ.

• Objects in the fibre ofType overΞ are well-formed types in this context, where we identify types
up to renaming of free type variables. Morphisms in this fibre fromσ to τ are equivalence classes of
termst such thatΞ | − ` t : σ → τ where we identify terms up to external equality. Reindexing with
respect to morphisms inKind is by substitution.

• The categoryCtx has as objects in the fibre overΞ well-formed contexts of Abadi & Plotkin’s logic:
Ξ | Γ | Θ, where we again identify such contexts up to renaming of free type-variables. A vertical
morphism fromΞ | Γ | Θ to Ξ | Γ′ | R1 : Rel(σ1, τ1), . . . , Rn : Rel(σn, τn) is a pair, consisting of a
morphismΞ | Γ → Ξ | Γ′ in the sense of morphisms inType and a sequence of definable relations
(ρ1, . . . , ρn) such thatΞ | Γ | Θ ` ρi : Rel(σi, τi). We identify two such morphisms represented
by the same type morphism and the definable relations(ρ1, . . . , ρn) and(ρ′1, . . . , ρ

′
n) if, for eachi,

ρi ≡ ρ′i is provable in the logic. one. Reindexing is by substitution.

• The fibre of the categoryProp over a contextΞ | Γ | Θ has as objects formulas in that context, where
we identify two formulas if they are provably equivalent. These are ordered by entailment in the logic.
Reindexing is done by substitution, that is, reindexing with respect to lifts of morphisms fromKind
is done by substitution in Kind-variables, whereas reindexing with respect to vertical maps inCtx is
by substitution in type variables and relational variables.

It is straightforward to verify that this structure satisfies item 1 of Definition 3.3. The only non-obvious
thing to verify here is existence of products and coproducts inProp with respect to vertical maps inCtx.

Suppose(~t, ~ρ) represents a morphism fromΞ | ~x : ~σ | ~R to Ξ | ~y : ~τ | ~S. Then we can define the product
functor inProp by: ∏

(~t,~ρ)(Ξ | ~x : ~σ | ~R ` φ(~x, ~R)) =
Ξ | ~y : ~τ | ~S ` ∀~x.∀~R(~t~x = ~y ∧ (~ρ(~x, ~R) ≡ ~S) ⊃ φ(~x, ~R)).

We define coproduct as: ∐
(~t,~ρ)(Ξ | ~x : ~σ | ~R ` φ(~x, ~R)) =

Ξ | ~y : ~τ | ~S ` ∃~x.∃~R.~t~x = ~y ∧ ~ρ(~x, ~R) ≡ ~S ∧ φ(~x, ~R).

47

The functorU of item 2 is defined as

U(σ, τ) = R : Rel(σ, τ)

and
U(t : σ → σ′, u : τ → τ ′) = Ξ | R : Rel(σ′, τ ′) ` (x : σ, y : τ). R(tx, uy)

The mapΨ maps a definable relationΞ | Γ | Θ ` ρ : Rel(σ, τ) to the proposition

Ξ | Γ, x : σ, y : τ | Θ ` ρ(x, y) : Prop,

which is a bijection by Lemma 2.3.

We have defined a pre-APL-structure. The categoryRelCtx obtained from this pre-APL structure has as
objects~α, ~β | Γ | Θ. The fibre ofRelations over an object~α, ~β | Γ | Θ in RelCtx is:

Objects Equivalence classes of definable relations

~α, ~β | Γ | Θ ` ρ : Rel(σ(~α), τ(~β)).

Morphisms A morphism fromρ : Rel(σ(~α), τ(~β)) to ρ′ : Rel(σ′(~α), τ ′(~β)) is a pair of morphismst :
σ → σ′, u : τ → τ ′ such that it is provable that

∀x : σ.∀y : τ. ρ(x, y) ⊃ ρ′(tx, uy).

In the reflexive graph of Lemma 3.7, the functor fromKind to RelCtx acts on objects as

α1, . . . , αn 7→ α1, . . . , αn;β1, . . . , βn | R1 : Rel(α1, β1), . . . , Rn : Rel(αn, βn)

and it takes a morphism~σ : ~α → ~α′ to the triple(~σ(α), ~σ(β), ~σ[~R]). Notice that this defines a morphism
since

~α, ~β | ~R : Rel(~α, ~β) ` σi[~R] : Rel(σi(~α), σi(~β))

This really defines the object part of the functor fromType to Relations since it must preserveλ2-
structure. So this functor takes a type~α ` σ to

~α; ~β | ~R : Rel(~α, ~β) ` σ[~R] : Rel(σ(~α), σ(~β)).

The functor maps a morphism~α | x : σ ` t : τ to the pair(λx : σ. t, λx : σ. t). This defines a morphism in
Relations since the Logical Relations Lemma [12, Lemma 2] implies that

~α; ~β | ~R : Rel(~α, ~β) | x : σ(~α), y : σ(~β) ` σ[~R](x, y) ⊃ τ [~R](t, t[β/α][y/x]).

One may easily verify that the functors above define a reflexive graph ofλ2-fibrations.

Now, by definition, a formula holds in this APL-structure iff it is provable in Abadi & Plotkin’s logic.

Remark 3.18. The Completeness Theorem only states completeness for Abadi & Plotkin’s logic based on
thepureλ2. The reason for this is that the proof uses the Logical Relations Lemma, which is proved in [12]
by structural induction on terms. In the case of general calculi, one must know that the Logical Relations
Lemma holds for term-constants in the language to be able to prove completeness.

48

4 Parametric APL-structures

Given an APL-structure, we may consider the internal logic of the model (to be defined precisely below),
and formulate parametricity as a schema in this logic. For technical reasons we will define parametric APL-
structures as APL-structures not only satisfying the parametricity schema, but also extensionality and very
strong equality (A.7). For parametric APL-structures, we can derive consequences of parametricity using
Abadi & Plotkin’s logic, as in [12]. For many of these proofs extensionality is needed, and we need very
strong equality to deduce from theorems in Abadi & Plotkin’s logic to category theoretic theorems, as we
will see in Section 5. This is the reason why we propose parametric APL-structures as a category-theoretic
definition of parametricity.

The internal language of an APL-structure is simply Abadi & Plotkin’s logic on the internal language of the
λ2-fibration (see [5]), with the ordering relation in a fibre ofProp defined asφ ` ψ iff [[φ]] ` [[ψ]] holds in
the model. Using the internal language we may express properties of the APL-structure, and ask whether
these properties hold in the logic.

Definition 4.1. The extensionality schemes in the internal language of an APL-structure are the schemes

− | − | − ` ∀α, β : Type.∀t, u : α→ β. (∀x : α.tx =β ux) ⊃ t =α→β u, (17)

Ξ | − | − ` ∀f, g : (Πα : Type. σ). (∀α : Type.fα =σ gα) ⊃ f =Πα : Type.σ g, (18)

where in (18)σ ranges over all types such thatΞ, α ` σ : Type.

Lemma 4.2. For any APL-structure, very strong equality (Definition A.7) implies extensionality.

Proof. We can formulate extensionality equivalently as the rules

Ξ | Γ, x : σ | Θ ` t =τ u

Ξ | Γ | Θ ` λx : σ. t =σ→τ λx : σ. u

Ξ, α : Type | Γ | Θ ` f =σ g

Ξ | Γ | Θ ` Λα.Type. f =Πα : Type.σ Λα.Type. g

If internal equality is the same as external equality then these rules hold by the rules for external equality in
Figure 1.

Definition 4.3. The schema

∀~α : Type.∀u, v : σ. (u(σ[eq~α])v ⊃⊂ u =σ v)

is called theIdentity Extension Schema. Hereσ ranges over all types such that~α ` σ : Type.

Definition 4.4. A parametric APL-structureis an APL-structure with very strong equality – and hence
extensionality – satisfying the Identity Extension Schema.

Remark 4.5. If we write out the interpretation of the Identity Extension Schema, we get a category-
theoretical formulation of the notion of parametric APL-structure. It is an APL-structure with very strong
equality, extensionality and in which for all types~α ` σ : Type,

(id [[~α`σ]]2 × [[~α | − | − ` ~eqα]])∗J([[~α ` σ]]) = [[~α | x : σ, y : σ | − ` x =σ y]].

49

Definition 4.6. For any typeβ, ~α ` σ(β, ~α) we can form the parametricity schema:

∀~α : Type.∀u : (
∏
β. σ).∀β, β′ : Type.∀R : Rel(β, β′). (u β)σ[R,eq~α](u β′)

in the empty context.

Proposition 4.7. The Identity Extension Schema implies the parametricity schema. Thus the parametricity
schema holds in any parametric APL-structure.

Proof. Since
~α | u :

∏
β : Type. σ(β, ~α) | − ` u =∏

β : Type.σ
u

always holds in the model, by the Identity Extension Schema, we know that

~α | u :
∏
β : Type. σ(β, ~α) | − ` u(

∏
β : Type. σ)[eq~α]u

holds, but by the Axiom (15) this means that

~α | u :
∏
β : Type. σ(β, ~α) ` ∀β, β′∀R : Rel(β, β′). (u β)(σ[R,eq~α])(u β′)

holds as desired.

Without assuming parametricity we can prove the logical relations lemma:

Lemma 4.8 (Logical Relations Lemma).For any APL-structure the Logical Relations Schema

− | − | − ` tσt

holds, wheret ranges over allclosedterms of closed type, i.e.,− | − ` t : σ.

Proof. The lemma is really just a restatement of the requirement that

J : Type→ Relations

is a functor. Let us write out the details.

A closed termt of closed typeσ corresponds in the model to a mapt : 1 → σ in Type1, and by definition
of the interpretation

[[− | x : σ, y : σ | − ` xσy]] = J(σ).

The fact thatJ is required to be a functor, means exactly that the pair(t, t) should define a map in
Relations, i.e., the formula

− | − | − ` ∀x, y : 1. x1y ⊃ tσt

should hold in the model. Since the relational interpretation of1 is simply the constantly true relation, we
get the statement of the lemma.

Remark 4.9. The Logical Relations Lemma suspiciously resembles the Identity Extension Schema. For a
closed term of open type:~α | − ` t : σ, the Logical Relations Lemma implies(Λα. t)

∏
~α. σ(Λα. t), so that

tσ[eq~α]t. However, since this only holds forclosedtermst, we do not have the formula

∀t : σ. tσ[eq~α]t,

which is the formula that we will need to prove consequences of parametricity.

50

5 Consequences of parametricity

As mentioned in the introduction to Section 4 we may use Abadi & Plotkin’s logic to derive consequences
of parametricity in parametric APL-structures. In this section we exemplify how to do so. Through our
examples, it should become apparent how extensionality and very strong equality play important roles in the
proofs of the consequences.

The proofs of the consequences are based on theorems about Abadi & Plotkin’s logic stated in [12]. For
completeness, we have written out proofs of these theorems, often inspired by [3]. What is new here, is just
that we show how to conclude from the logic to the APL-structures.

5.1 Dinaturality

We shall use the following definition very often.

Definition 5.1. We say that~α ` σ : Type is an inductively constructed type, if it can be constructed from
free variables~α and closed types using the type constructors ofλ2, i.e.,×,→ and

∏
α..

For example, ifσ is a closed type then
∏
α. σ×α is an inductively constructed type. However, some models

may contain types that are not inductively constructed! For example, in syntactical models, any basic open
type, such as the typeα ` lists(α) is not inductively constructed.

We define the notion of positive and negative occurrences of a type variableα in an inductively constructed
type σ inductively over the structure ofσ as follows. The type variableα occurs positively inα. The
positive occurrences ofα in σ× τ are the positive occurrences ofα in σ and the positive occurrences ofα in
τ . Likewise for negative occurrences. The positive occurrences ofα in σ → τ are the positive occurrences
of α in τ and the negative occurrences ofα in σ. The negative occurrences are the negative inτ and the
positive inσ. The positive and negative occurrences ofα in

∏
β. σ are the same as forσ, if α 6= β. There

are no positive or negative occurrences ofα in
∏
α. σ since we only consider free occurrences of a type

variable.

Supposeσ(α, β) is an inductively constructed type with all free variables inα, β such thatα occurs only
negatively andβ occurs only positively inσ. We may then forf : α→ α′ andg : β → β′ define a morphism

σ(f, g) : σ(α′, β)→ σ(α, β′)

inductively over the structure ofσ as in [12].

It is well-known that Dinaturality is a consequence of parametricity, but we include the proof for complete-
ness.

Lemma 5.2 (Dinaturality). In a parametric APL-structure, the dinaturality schema

∀α, β.∀f : α→ β. σ(idα, f) ◦ (·)α =∏
α.(σ(α,α))→σ(α,β)

σ(f, idβ) ◦ (·)β

holds. Here(·)α denotes the termλu : (
∏
α. σ(α, α)). u(α).

Proof. Supposef : α→ β. By extensionality it suffices to prove that, for anyu :
∏
α. σ(α, α),

σ(idα, f)u(α) =σ(α,β) σ(f, idβ)u(β).

51

Instantiating the Logical Relations Lemma with the types

α, β, γ, δ ` (α→ β)× (γ → δ)
α, β, γ, δ ` σ(β, γ)→ σ(α, δ)

and
t = Λα, β, γ, δ. λω : (α→ β)× (γ → δ). σ(πω, π′ω) :∏
α, β, γ, δ. (α→ β)× (γ → δ)→ σ(β, γ)→ σ(α, δ)

we get
α, β, γ, δ, α′, β′, γ′, δ′ | x : (α→ β)× (γ → δ), y : (α′ → β′)× (γ′ → δ′) |

R1 : Rel(α, α′), R2 : Rel(β, β′), R3 : Rel(γ, γ′), R4 : Rel(δ, δ′) |
x(R1 → R2)× (R3 → R4)y ` σ(πx, π′x)(σ[R2, R3]→ σ[R1, R4])σ(πy, π′y).

Recall the notation〈f〉 for the graph of the functionf defined as(x : α, y : β). f(x) =β y. If we set
α, β, γ, α′ to α and setδ, β′, γ′, δ′ to β and letR1 = eqα,R2 = R3 = 〈f〉 andR4 = eqβ , then we get

x(eqα → 〈f〉)× (〈f〉 → eqβ)y ` σ(πx, π′x)(σ[〈f〉, 〈f〉]→ σ[eqα,eqβ])σ(πy, π′y).

If we setx = 〈idα, f〉 andy = 〈f, idβ〉 then sinceidα(eqα → 〈f〉)f andf(〈f〉 → eqβ)idβ we obtain

σ(idα, f)(σ[〈f〉, 〈f〉]→ σ[eqα,eqβ])σ(f, idβ).

Since the parametricity schema tells us that

u(α)σ[〈f〉, 〈f〉]u(β),

it follows that
σ(idα, f)(u(α))(σ[eqα,eqβ])σ(f, idβ)u(β),

but by the Identity Extension Schema this is just

σ(idα, f)(u(α)) =σ(α,β) σ(f, idβ)u(β).

5.2 Products

Consider the typeT =
∏
α. α→ α. The termΛα. λx : α. x inhabitsT . Thus

Proposition 5.3. In any model ofλ2 the typeT defines a fibred weak terminal object.

Theorem 5.4. In a parametric APL-structure, the proposition

∀u : T. (u =T Λα. λx : α. x)

holds in the internal logic.

Proof. By extensionality it suffices to prove that

α : Type | u : T, x : α ` (uα)x =α x.

Consider the relation

α : Type | u : T, x : α ` ρ = (y : α, z : α). y =α x : Rel(α, α).

52

By parametricity we have

α : Type | u : T, x : α ` (u α)(ρ→ ρ)(u α),

but this means that
α : Type | u : T, x : α ` y =α x ⊃ (u α)y =α x.

Theorem 5.5. In a parametric APL-structure,T defines a fibred terminal object ofType→ Kind.

Proof. Supposeu : σ → T is a morphism in the fibre. By the above theorem and extensionality,u is
internally equal toλy : σ.Λα. λx : α. x. By very strong equality we have external equality betweenu and
λy : σ.Λα. λx : α. x. SoT is a terminal object.

For two typesσ andτ in the same fibre, consider

σ×̂τ =
∏
α. ((σ → τ → α)→ α).

We use×̂ to distinguish this definition from the usual fibrewise product denoted×. We will show that×̂
defines a weak product in the fibre, and that in parametric APL-structures it defines a genuine product.

Let projectionsπ : σ×̂τ → σ andπ′ : σ×̂τ → τ be defined by

πx = x σ (λx : σ. λy : τ. x)
π′x = x τ (λx : σ. λy : τ. y)

and letpair : σ → τ → σ×̂τ be defined by

pair x y = Λα. λf : σ → τ → α. f x y

If f : α→ σ andg : α→ β, we will write 〈f, g〉 for λx : α. pair (f x) (g x) . Then

π ◦ 〈f, g〉 = λx : α. (pair (f x) (g x)) σ (λx : σ. λy : τ. x) = λx : α. f x = f

and likewise
π′ ◦ 〈f, g〉 = g

This proves:

Proposition 5.6. In any model ofλ2 the construction̂× defines a fibrewise weak product.

Theorem 5.7. For any parametric APL-structure the proposition

∀σ, τ. 〈π, π′〉 =σ×̂τ idσ×̂τ

holds in the internal logic.

Proof. For anyf : σ → τ → α definef∗ : σ×̂τ → α as

f∗ x = x α f.

Supposez : σ×̂τ . By parametricity, for any relationR : Rel(α, β),

(z α)((eqσ → eqτ → R)→ R)(z β).

53

Now, for anyf : σ → τ → α,
f∗(pair x y) = pair x y α f = f x y,

i.e.,
pair(eqσ → eqτ → 〈f∗〉)f,

which means that
(z σ×̂τ pair)〈f∗〉(z α f).

In other words,
f∗(z σ×̂τ pair) =α z α f.

Since the left hand side of this equation simply is

(z σ×̂τ pair) α f,

we get by extensionality sinceα, f were arbitrary,

z σ×̂τ pair =σ×̂τ z.

Suppose now that we are givenf : σ → τ → α. We constructg : σ×̂τ → α by

g z = f (π z) (π′ z)

Thenpair(eqσ → eqτ → 〈g〉)f since

g (pair x y) = f (π ◦ pair x y)(π′ ◦ pair x y) = f x y

Parametricity now states that for anyz : σ×̂τ

(z σ×̂τ)((eqσ → eqτ → 〈g〉)→ 〈g〉)(z α).

Thus(z σ×̂τ pair)〈g〉(z α f) and since(z σ×̂τ pair) =σ×̂τ z we have

f (π z) (π′ z) = g z =α z α f.

By extensionality
λz : σ×̂τ.Λα. λf : σ → τ → α. f (π z) (π′ z) =σ×̂τ→σ×̂τ

λz : σ×̂τ.Λα. λf : σ → τ → α. z α f = idσ×̂τ .

But the left hand side of this equation is just〈π, π′〉.

Theorem 5.8. In any parametric APL-structure,̂× defines a fibrewise product inType→ Kind.

Proof. Since clearly〈π ◦ f, π′ ◦ f〉 = 〈π, π′〉 ◦ f any map intoσ×̂τ is uniquely determined by its compo-
sition withπ andπ′ by Theorem 5.7 and very strong equality.

54

5.3 Coproducts

For the empty sum we define
I =

∏
α. α.

Proposition 5.9. In any model ofλ2, I defines a fibred weak initial object.

Proof. Supposeσ is a type over someKind object Ξ. The interpretation of the termx : I ` xσ is a
morphism fromI to σ in the fibre overΞ.

Theorem 5.10. In a parametric APL-structure, the proposition

∀u : I.⊥

holds in the internal logic of the model.

Proof. Parametricity says

∀u :
∏
α. α.∀α, β : Type.∀R : Rel(α, β). u(α)Ru(β)

Instantiate this with the definable relation

(x : 1, y : 1).⊥ : Rel(1, 1)

Theorem 5.11. In a parametric APL-structure,I defines a fibred initial object ofType→ Kind.

Proof. Given two morphismsu, v : I → σ we have

(∀x : I.⊥) ` (∀x : I. ux =σ vx) ` (u =I→σ v),

so, by very strong equality, we haveu = v.

Given two typesσ andτ we define

σ + τ =
∏
α. (σ → α)→ (τ → α)→ α

and introduce combinatorsinlσ,τ : σ → σ + τ , inrσ,τ : τ → σ + τ and

casesσ,τ :
∏
α. ((σ → α)→ (τ → α)→ (σ + τ)→ α)

by
inlσ+τ (a) = Λα. λf : σ → α. λg : τ → α. f(a),
inrσ+τ (a) = Λα. λf : σ → α. λg : τ → α. g(a),

casesσ+τ α f g ω = ω α f g.

Now, suppose we are given two morphismst : σ → α andu : τ → α. Then we may define[u, t] =
casesσ,τ α t u : σ + τ → α and we then have

[u, t] ◦ inlσ,τ (x) = inlσ,τ x α t u = t(x)

and likewise
[u, t] ◦ inrσ,τ (y) = inrσ,τ x α t u = u(y)

so we have proved the following proposition.

55

Proposition 5.12. For any model ofλ2, the operation+ defines a fibred weak coproduct.

We will prove that in a parametric APL-structure,σ + τ is in fact a coproduct.

Theorem 5.13. In a parametric APL-structure, the proposition

∀α, σ, τ : Type.∀h : σ + τ → α. h =σ+τ→α [h ◦ inlσ+τ , h ◦ inrσ+τ]

holds.

Proof. We will first prove that
[inlσ+τ , inrσ+τ] =σ+τ idσ+τ .

Instantiating the parametricity schema forω : σ + τ with the relation〈f〉 we get that, for anyf : α → β
and alla : σ → α andβ : τ → α,

f(ω α a b) =β ω β (f ◦ a) (f ◦ b).

Now consider anya′ : σ → α andb′ : τ → α and setf : σ + τ → α to

f(u) = u α a′ b′.

If we seta above toinl andb to inr we get

(ω (σ + τ) inl inr) α a′ b′ =β ω α (f ◦ inl) (f ◦ inr). (19)

Since
f ◦ inl(x) = inl(x) α a′ b′ = a′(x),

for all x : σ, and likewisef ◦ inr(y) = b′(y), for y : τ , (19) reduces to

(ω(σ + τ) inl inr) α a′ b′ =β ω α a
′ b′.

By extensionality this implies
(ω(σ + τ)inl inr) =σ+τ ω,

and using extensionality again we obtain

[inlσ+τ , inrσ+τ] =σ+τ→σ+τ idσ+τ . (20)

Finally, by the parametricity condition oncases, we have for anyh : σ + τ → α that

h(cases(σ + τ) inl inr ω) =α casesα (h ◦ inl) (h ◦ inr) ω,

so by extensionality and (20),
h =σ+τ→α [h ◦ inl, h ◦ inr].

Theorem 5.14. In any parametric APL-structure,+ defines a fibred coproduct ofType→ Kind.

Proof. Using very strong equality, Theorem 5.13 tells us that maps out ofσ+ τ are uniquely determined by
their compositions withinl andinr.

56

5.4 Initial algebras

Definition 5.15. Consider a fibred functor

E

 @
@@

@@
@@

@
T // E

~~}}
}}

}}
}}

B.

An indexed family of initial algebras for the functorT is a family

(inΞ : T (σΞ)→ σΞ)Ξ∈Obj B

such that each inΞ is an initial algebra for the restriction ofT to the fibre overΞ and the family is closed
under reindexing. If each inΞ is only a weak initial algebra we call it a family of weak initial algebras.

Supposeα ` σ : Type is an inductively constructed type (see Definition 5.1) in whichα occurs only
positively. Thenσ(α) can be considered a functor in each fibre [12]. Actually, in [12] Abadi & Plotkin
construct a term

t :
∏
α, β : Type. (α→ β)→ σ(α)→ σ(β),

which internalizes the morphism part of the functorσ.

The typeσ induces a fibred functor

Type //

$$J
JJJJJJJJ Type

zzttttttttt

Kind

mappingΞ ` τ to Ξ ` σ(τ). In this section we study families of initial algebras for such functors.

First we prove the graph lemma:

Lemma 5.16. If α ` σ is an inductively constructed type in a parametric APL-structure in whichα occurs
only positively, interpreted as a fibred functor as in [12], then the formula

∀α, β : Type.∀f : α→ β. σ[〈f〉] ≡ 〈σ(f)〉

holds in the internal language of the model, where, as usual,ρ ≡ ρ′ is short for

∀x, y. ρ(x, y) ⊃⊂ ρ′(x, y).

Proof. Since the polymorphic strengtht mentioned above is parametric, we have, for any pair of relations
ρ : Rel(α, α′) andρ′ : Rel(β, β′),

t α β((ρ→ ρ′)→ (σ[ρ]→ σ[ρ′]))t α′ β′. (21)

If we instantiate this withρ = eqα, ρ′ = 〈f〉 for some mapf : α→ β, we get

t α α((eqα → 〈f〉)→ (eqσ(α) → σ[〈f〉]))t α β,

using the Identity Extension Schema. Sinceidα(eqα → 〈f〉)f , and sincet α β f = σ(f) andt α α idα =
σ(idα) = idσ(α) we get

idσ(α)(eqσ(α) → σ[〈f〉])σ(f),

57

that is,
∀x : σ(α). x(σ[〈f〉])σ(f)x.

Thus we have proved〈σ(f)〉 impliesσ[〈f〉].
To prove the other direction, instantiate (21) with the relationsρ = 〈f〉 andρ′ = eqβ for f : α → β. Since
f(〈f〉 → eqβ)idβ ,

σ(f)(σ[〈f〉]→ eqσ(β))idσ(β).

So for anyx : σ(α) andy : σ(β) we havex(σ[〈f〉])y impliesσ(f)x = y. In other words,σ[〈f〉] implies
〈σ(f)〉.

We shall now define a family of initial algebras for the functor induced byσ. In each fibreTypeΞ we may
define the type

µα. σ(α) =
∏
α. ((σ(α)→ α)→ α)

with combinators
fold:

∏
α. ((σ(α)→ α)→ µβ. σ(β)→ α)

and
in : σ(µα. σ(α))→ µα. σ(α)

given by
foldα f z = z α f

and
in z = Λα. λf : σ(α)→ α. f(σ(foldα f)z).

Theorem 5.17. In any model of second-orderλ-calculus the family

(Ξ ` in : σ(µα. σ(α))→ µα. σ(α))Ξ

is a family of weak initial algebras forσ.

Proof. Given any algebraf : σ(α)→ α in any fibre, the diagram

σ(µα. σ(α)) in //

σ(fold α f)

��

µα. σ(α)

fold α f

��
σ(α)

f // α

is commutative since
(foldα f) ◦ in z = in z αf = f(σ(foldα f) z)

and
f ◦ σ(foldα f) z = f(σ(foldα f) z).

We will show that in a parametric APL-structure,(Ξ ` in)Ξ actually is a family of initial algebras. First we
prove a lemma.

58

Lemma 5.18. In a parametric APL-structure, the formula

foldµα. σ(α) in =µα.σ(α)→µα.σ(α) idµα.σ(α)

holds in the internal logic.

Proof. Consider an arbitrary elementω : µα. σ(α) and a mapf : α → β. The parametricity condition then
gives

(ω α)((σ[〈f〉]→ 〈f〉)→ 〈f〉)(ω β).

Since Lemma 5.16 tells us thatσ[〈f〉] ≡ 〈σ(f)〉, this means that, ifa : σ(α) → α andb : σ(β) → β have
the property that

∀x : σ(α). f(a x) =β b(σ(f) x)

(that is, iff is a morphism of algebras), then

f(ω α a) =β ω β b.

Consider now an arbitrary algebrak : σ(α)→ α and instantiate the above with the algebra morphismfoldαk
from in to k, to get

foldα k(ω µα. σ(α) in) =α ω α k.

Since the left hand side of this equation is(ω µα. σ(α) in) α k, we get by extensionality that

ω µα. σ(α) in =µα.σ(α) ω

and therefore, using extensionality again,

foldµα. σ(α) in =µα.σ(α)→µα.σ(α) idµα.σ(α),

as required.

Theorem 5.19.Supposeg : µα. σ(α) → α induces a map between algebras from in tof : σ(α) → α in a
parametric APL-structure. Then

g =µα.σ(α)→α foldα f

holds in the internal logic.

Proof. Sinceg is a map of algebras, the parametricity condition on an arbitraryω : µα. σ(α) entails as in
the proof of Lemma 5.18 that

g(ω µα. σ(α) in) =α ω α f

and therefore the result follows from extensionality since, by Lemma 5.18,

ω µα. σ(α) in = (foldµα. σ(α) in) ω =µα.σ(α) ω

and, moreover,
ω α f = (foldα f) ω.

Theorem 5.20. In a parametric APL-structure,(Ξ ` in)Ξ is a family of initial algebras forσ.

Proof. Using very strong equality Thm 5.19 gives uniqueness of algebra morphisms out ofin.

59

Remark 5.21. Consider the case of an inductively constructed typeα, β ` σ(α, β) in whichα andβ occur
only positively. For each closed typeτ we may consider the typeα ` σ(α, τ) and the analysis above gives
us a family of initial algebras for this functor. Moreover, for each morphismf : τ → τ ′ between closed
types we get a morphism of algebras induced by initiality:

σ(µα. σ(α, τ), τ)

inτ

��

//___ σ(µα. σ(α, τ ′), τ)

σ(id ,f)

��
σ(µα. σ(α, τ ′), τ ′)

inτ ′
��

µα. σ(α, τ) //______ µα. σ(α, τ ′).

For example, if we consider the typeα, β ` 1 + α × β, then for anyτ , we get lists(τ) = µα. (1 + α × τ)
and, for anyf : τ → τ ′, the induced morphism is the familiar morphism mapf : lists(τ)→ lists(τ ′), which
appliesf to each element in a list.

5.5 Final coalgebras

In this section we consider the same setup as in Section 5.4, that is,α ` σ : Type is an inductively con-
structed type in whichα occurs only positively. As beforeσ defines a fibred endofunctor onType →
Kind.

Definition 5.22. Consider a fibred functor

E

 @
@@

@@
@@

@
T // E

~~}}
}}

}}
}}

B.

An indexed family of final coalgebras for the functorT is a family

(outΞ : σΞ → T (σΞ))Ξ∈Obj B

such that each outΞ is a final coalgebra for the restriction ofT to the fibre overΞ and the family is closed
under reindexing. If each outΞ is only a weak final coalgebra we call it a family of weak final coalgebras.

In this section we define a family of weak final coalgebras forσ and prove that for parametric APL-structures
it is in fact a family of final coalgebras. First we need to define existential quantification in each fibre as∐

α. σ(α) =
∏
α. (

∏
β. (σ(β)→ α))→ α

and the combinatorpack:
∏
α. (σ(α)→

∐
β. σ(β)) by

packα x = Λβλf :
∏
α. (σ(α)→ β). f α x.

In each fibre we define the type

να. σ(α) =
∐
α. ((α→ σ(α))× α) =

∏
α. (

∏
β. (β → σ(β))× β → α)→ α

60

with combinators
unfold:

∏
α. ((α→ σ(α))→ α→ (να. σ(α)))

and
out: να. σ(α)→ σ(να. σ(α))

defined as
unfoldα f x = packα 〈f, x〉

and
out(x) = x σ(να. σ(α)) (Λαλ〈f, x〉 : ((α→ σ(α))× α). σ(unfoldα f)(f x)).

Theorem 5.23. In any model of second-orderλ-calculus(Ξ ` out)Ξ is a family of weak final coalgebras
for σ.

Proof. Consider a coalgebraf : α→ σ(α) in any fibre. Then

α
f //

unfoldα f

��

σ(α)

σ(unfoldα f)
��

να. σ(α) out // σ(να. σ(α))

commutes since

out(unfoldα f z) = out(packα 〈f, z〉) =
(packα 〈f, z〉) (σ(να. σ(α))) (Λαλ〈f, x〉 : ((α→ σ(α))× α). σ(unfoldα f)(f x)) =

σ(unfoldα f)(f z)

Lemma 5.24. In a parametric APL-structure,

unfoldνα. σ(α) out

is internally equal to the identity onνα. σ(α).

Proof. Seth = unfoldνα. σ(α) out in the following.

By parametricity, for anyk : α→ β,

unfoldα(〈k〉 → σ[〈k〉])→ (〈k〉 → eqνα.σ(α))unfoldβ.

Hence, sinceσ[〈k〉] ≡ 〈σ(k)〉 by Lemma 5.16, if

k : (f : α→ σ(α))→ (g : β → σ(β))

is a morphism of coalgebras, then

unfoldα f =α→να.σ(α) (unfoldβ g) ◦ k.

So sinceh is a morphism of coalgebras fromout to out we haveh = h2. Intuitively, all we need to prove
now is thath is “surjective”.

61

Consider anyg :
∏
α. ((α→ σ(α))× α→ β). By parametricity and Lemma 5.16, for any coalgebra map

k : (f : α→ σ(α))→ (f ′ : α′ → σ(α′)), we must have

∀x : α. g α 〈f, x〉 =β g α
′ 〈f ′, k(x)〉.

Using this on the coalgebra mapunfoldα f from f to outwe obtain

∀x : α. g α〈f, x〉 =β g να. σ(α)〈out,unfoldα f x〉.

In other words, if we define
k :

∏
α. ((α→ σ(α))× α→ τ),

whereτ = (να. σ(α)→ σ(να. σ(α)))× να. σ(α), to be

k = Λα. λ〈f, x〉 : (α→ σ(α))× α. 〈out,unfoldα f x〉,

then
∀α. g α =(α→σ(α))×α→β (g να. σ(α)) ◦ (k α). (22)

Now, suppose we are givenα, α′, R : Rel(α, α′) and termsf, f ′ such that

f((R→ σ[R])×R→ β)f ′.

Then, by (22) and parametricity ofg

g α f =β g α
′ f ′ =β (g να. σ(α))(k α′ f ′),

from which we conclude

g(∀(α, β,R : Rel(α, β)). ((R→ σ[R])×R→ 〈g να. σ(α)〉))k.

This implies that for anyx : να. σ(α) by parametricity we have

x β g =β g να. σ(α) (x τ k).

Thus, sinceg was arbitrary, we may apply the above tog = k and get

x τ k =τ k να. σ(α) (x τ k) = 〈out,unfoldνα. σ(α) π(x τ k) π′(x τ k)〉.

If we write
l = λx : να. σ(α).unfoldνα. σ(α) π(x τ k) π′(x τ k),

then sincek is a closed term, so isl, and from the above calculations we conclude that we have

∀β. ∀g :
∏
α. (α→ σ(α))× α→ β. x β g =β g να. σ(α) 〈out, l x〉.

Now, finally

h(l x) = unfoldνα. σ(α) out(l x) =
packνα. σ(α) 〈out, l x〉 =

Λβ. λg :
∏
α. ((α→ σ(α))× α→ β). g να. σ(α) 〈out, l x〉 =να.σ(α)

Λβ. λg :
∏
α. ((α→ σ(α))× α→ β). x β g = x

where we have used extensionality. Thusl is a right inverse toh, and we conclude

h x =να.σ(α) h
2(l x) =να.σ(α) h(l x) =να.σ(α) x.

62

Theorem 5.25. In a parametric APL-structure,(Ξ ` out)Ξ is a family of final coalgebras forσ.

Proof. Consider a map of coalgebras intoout:

α
f //

g

��

σ(α)

σ(g)
��

να. σ(α) out // σ(να. σ(α)).

By parametricity ofunfoldwe have

unfoldα f =α→να.σ(α) (unfoldνα. σ(α) out) ◦ g =α→να.σ(α) g.

Very strong equality then implies uniqueness of coalgebra morphisms intooutas desired.

5.6 Generalizing to strong fibred functors

In this section, our aim is to generalize the results of Sections 5.4 and 5.5 to initial algebras and final
coalgebras for a more general class of fibred functors, than the ones defined by inductively constructed
types. These functor are called strong fibred functors.

Definition 5.26. An endofunctorT : B → B on a cartesian closed category is calledstrong if there exists
a natural transformationtσ,τ : τσ → TτTσ preserving identity and composition:

1
îdσ //

̂idTσ ""D
DD

DD
DD

DD σσ

tσ,σ

��
TσTσ

σσ1
2 × σ

σ2
3

comp //

t×t
��

σσ1
3

t
��

TσTσ1
2 × TσTσ2

3

comp // TσTσ1
3 .

The natural transformationt is called thestrengthof the functorT .

One should note thatt in the definition above represents the morphism part of the functorT in the sense that
it makes the diagram

1
f̂ //

T̂ f ""D
DD

DD
DD

DD τσ

tσ,τ

��
TτTσ

commute, for any morphismf : σ → τ . This follows from the commutative diagram

1
îd

$$
îd

@@
@

��@
@@

f̂

��

σσ t //

fσ

��

TσTσ

TfTσ

��
τσ t // TτTσ.

63

Definition 5.27. A strong fibred functoris a fibred endofunctor

E

��?
??

??
??

T // E

��~~
~~

~~
~

B

on a fibred ccc, for which there exists a fibred natural transformationt from the fibred functor(−)(+)

to T (−)T (+) satisfying commutativity of the two diagrams of Definition 5.26 in each fibre. The natural
transformationt is called thestrengthof the functorT .

In this definition, one should of course check that the two functors(−)(+) andT (−)T (+) — a priori only
defined on the fibres — in fact define fibred functors

Eop ×B E //

$$II
III

III
II

E

����
��

��
��

B.

But this is easily seen. Notice also thatT is not required to preserve the fibred ccc-structure and that the
components oft are preserved under reindexing sincet is a fibred natural transformation.

Example 5.28. An inductively constructed type with one free variableα ` σ : Type, whereα occurs only
positively, defines a strong fibred functor: see Section 5.4.

But in many situations one may want to reason about other strong fibred functors. For example, if theλ2-
fibration of the APL-structure models other type constructions than the ones fromλ2 for which there are
natural functorial interpretations, one may want to prove existence of initial algebras for functors induced
by types in this extended language.

All fibred endofunctors onλ2-fibrations are in a sense given by types.

Lemma 5.29. For any strong fibred functor

Type

$$J
JJJJJJJJ

F // Type

yyttttttttt

Kind

on aλ2-fibration there exists, in the internal language ofType→ Kind a typeα ` σ and a term

− ` s :
∏
α, β. (α→ β)→ σ(α)→ σ(β)

inducingF .

Proof. Denote byT ∈ TypeΩ the generic object of theλ2-fibration and for any typeτ ∈ TypeΞ denote
by τ̂ : Ξ→ Ω the map satisfyingτ = τ̂∗(T). Setσ = F (T). Then for any typeτ : TypeΞ,

F (τ) = F (τ̂∗T) = τ̂∗σ

which is the interpretation ofσ(τ) in the internal language.

64

Now suppose the fibred natural transformationt is a strength forF . Consider the component(tΩ2)[[α,β`α]],[[α,β`β]].
This is a map inTypeΩ2 from [[α, β ` α→ β]] to [[α, β ` σ(α)→ σ(β)]], i.e. a termα, β ` t′ : (α→ β)→
(σ(α)→ σ(β)) in the internal language. Sets = Λα.Λβ. t′.

To check thatσ, s induce the functorF we only need to check that for any pair of typesτ, τ ′ ∈ TypeΞ,
Ξ ` s τ τ ′ is interpreted as(tΞ)τ,τ ′ . But [[Ξ ` s τ τ ′]] = 〈τ, τ ′〉∗(t′) = (tΞ)τ,τ ′ , sincet is preserved by
reindexing.

Lemma 5.29 tells us that we can reason about strong fibred functors in the internal language. For instance,
denoting the strong fibred functor byσ we may write

α, β | f : α→ β ` σ(f) : σ(α)→ σ(β)

for s α β f wheres is the polymorphic term inducingσ’s action on morphisms.

Furthermore, since the morphism part of the functor is represented by apolymorphicterm, we can use
parametricity to reason about it. For instance, we may prove the following generalization of Lemma 5.16.

Lemma 5.30 (Graph Lemma). For any parametric APL-structure, ifσ is a strong fibred endofunctor
Type→ Type, then the formula

∀α, β : Type.∀f : α→ β. σ[〈f〉] ≡ 〈σ(f)〉

holds in the internal language of the APL-structure, whereρ ≡ ρ′ is short for

∀x, y. ρ(x, y) ⊃⊂ ρ′(x, y).

The proof of this lemma is the same as the proof of Lemma 5.16.

Corollary 5.31. For any parametric APL-structure, the morphism part of a strong fibred endofunctorσ is
uniquely determined by the object part.

Proof. By Lemma 5.30,y = σ(f)(x) iff xσ[〈f〉]y.

Theorem 5.32. In a parametric APL-structure, any strong fibred functorF : Type→ Type has

• A family of initial algebras defined as in Section 5.4

• A family of final coalgebras defined as in Section 5.5

Proof. The proofs work exactly as in Sections 5.4 and 5.5 since we may express the functorF in the internal
language, as described above.

The fact that these initial algebras and final coalgebras are preserved by reindexing follows from the fact
that the strengthst are preserved.

6 Concrete APL-structures

In this section we define a concrete parametric APL-structure based on a well-known variant of the per-
model (see, for instance, [5, Section 8.4]).

65

The diagram of Definition 3.3 in the concrete model is:

UFam(RegSub(Asm))

r

��
PFam(Per)

p

**TTTTTTTTTTTTTTTTT
� � I // UFam(Asm)

q

��
PPer

(23)

The fibrationp is the fibration of [5, Def. 8.4.9]; we repeat the definition here. In the following,Per
andAsm, will denote the sets of partial equivalence relations and assemblies respectively on the natural
numbers (see [5]).

The categoryPPer is defined as

Objects Natural numbers.

Morphisms A morphismf : n→ 1 is a pair(fp, f r) wherefp : Pern → Per is any map and

f r ∈
∏

~R,~S∈Pern

[∏
i≤n P (N/Ri × N/Si)→ P (N/fp(~R)× N/fp(~S)

]
is a map that satisfiesthe identity extension condition: f r(

−→
Eq) = Eq. A morphism fromn

tom is anm-vector of morphism fromn to 1.

We can now definePFam(Per) as the indexed category with fibre overn defined as

Objects morphisms,n→ 1 of PPer.

Morphisms a morphism fromf to g is an indexed family of maps(α~R)~R∈Pern where

α~R : N/fp(~R)→ N/gp(~R)

are tracked uniformly, i.e., there exists a codee such that, for all~R and [n] ∈ N/fp(~R),
α~R([n]) = [e · n]. Further, the morphismα should respect relations, that is, ifAi ⊂
N/Ri × N/Si and(a, b) ∈ f r(~A) then(α~R(a), α~S(b)) ∈ gr(~A).

Reindexing is by composition.

Next we define the fibrationq. The fibre categoryUFam(Asm)n is defined as

Objects all mapsf : Pern → Asm.

Morphisms a morphism fromf to g is an indexed family of maps(α~R)~R∈Pern where

α~R : f(~R)→ g(~R)

are maps between the underlying sets of the assemblies that are tracked uniformly, i.e.
there exists a codee such that for all~R and alli ∈ f(~R) and alla ∈ Ef(~R)(i) we have
e · a ∈ Eg(~R)(α~R(i)).

66

Reindexing is again by composition.

Finally we can define the categoryUFam(RegSub(Asm)) as

Objects An object overf is any family of subsets(A~R ⊆ f(~R))~R, where by subset we mean subset
of the underlying set of the assembly.

Morphisms In each fibre the morphisms are just subset inclusions.

Reindexing is defined as follows: Supposeφ : f → g is a morphism inUFam(Asm) projecting to
qφ : n→ m in PPer. By definition this is a map in the fibre ofUFam(Asm) overn from f to (qφ)∗(g).
Such morphisms are given by indexed families of maps

φ~R : f(~R)→ g ◦ (qφ)p(~R)

ranging over~R ∈ Pern so we can define

φ∗(A~S ⊂ g(~S))~S∈Perm = (φ−1
~R

(Ag◦(qφ)p(~R)))~R∈Pern

The inclusionI is obtained by projecting(fp, f r) to fp using the inclusion ofPer into Asm.

Lemma 6.1. p is aλ2-fibration.

Proof. This is [5, Prop. 8.4.10]. The ccc-structure is given by a pointwise construction, and1 is clearly a
generic object. For a typef : n+ 1→ 1 we define

∏
f : n→ 1 as

(
∏
f)p(~R) = {(a, a′) | ∀U, V ∈ Per.∀B ⊆ N/U × N/V. a ∈ |fp(~R,U)| and

a′ ∈ |fp(~R, V)| and([a], [a′]) ∈ f r
(~R,U),(~R,V)

(~Eq~R, B)}

and
(
∏
f)r

~R×~S
(~A) = {([a]∏(f)p(~R), [a

′]∏(f)p(~S)) | ∀U, V ∈ Per.∀B ⊆ N/U × N/V
([a]fp(~R,U), [a

′]fp(~S,V)) ∈ f
r
(~R,U),(~S,V)

(~A,B)}

for ~A ⊆ ~R× ~S.

Theorem 6.2. The diagram (23) defines a parametric APL-structure.

We do not prove Lemma 6.2 directly. Instead, we will show in Remark 8.27 that (23) is a special case of the
parametric completion process of Section 8.

Remark 6.3. In the above model we use nothing special about the PCAN so the same construction applies
to pers and assemblies over any PCA. All the lemmas above generalize, so that in the general case we also
obtain a parametric APL-structure.

6.1 A parametric non-well-pointed APL-structure

We may generalize the construction above even further to the case of relative realizability. Suppose we are
given a PCAA and a sub-PCAA]. We can then define the APL-structure as above with pers and assemblies
overA, with the only exception that morphisms inPFam(Per) andUFam(Asm) should be uniformly
tracked by codes inA]. All the proofs of section 6 generalize so that we obtain:

67

Proposition 6.4. For any PCAA and sub-PCAA] the diagram

UFam(RegSub(Asm(A,A])))

r

��
PFam(Per(A,A]))

p

++VVVVVVVVVVVVVVVVVVV
� � I // UFam(Asm(A,A]))

q

��
PPer(A,A])

defines a parametric APL-structure.

However, one may also prove:

Proposition 6.5. The fibrePFam(Per(A,A]))0 is in general not well-pointed.

Proof. Consider a per of the form{(a, a)}, for a ∈ A \ A]. There may be several maps out of this per, but
it does not have any global points.

Proposition 6.4 tells us that all the theorems of Section 5 apply, such that theλ2-fibration

PFam(Per(A,A]))→ PPer(A,A])

has all the properties that we consider consequences of parametricity. This should be compared to [1] in
which a family of parametric models is presented (with another definition of “parametric model”) and the
consequences of parametricity are proved only for thewell-pointedparametric models.

7 Comparing with Ma & Reynolds notion of parametricity

In this section we compare the notion of parametricity presented above with Ma & Reynolds’ notion of
parametricity [6] (see also [5]). This latter notion was the first proposal for a general category theoretic
formulation of parametricity and is perhaps the most well-known.

To define parametricity in the sense Ma & Reynolds, consider first a situation where we are given aλ2-
fibration E // B and a logic on the types given by an indexed first-order logic fibration

D // E // B .

Consider the category of relations on closed typesLR(E1) defined as

LR(E1) //

��

D1

��

// D

��
E1 × E1

× // E1
� � // E

where by1 we mean the terminal object ofB. In this case we have a reflexive graph of categories

E1
// LR(E1)oo

oo
,

where the functor going left to right maps a type to the identity on that type. By reflexive graph we mean
that the two compositions starting and ending inE1 are identities.

68

Definition 7.1. Theλ2-fibration
E

��
B

is parametric in the sense of Ma & Reynolds with respect toD → E if there exists aλ2-fibrationF → C
and a reflexive graph ofλ2 fibrations 

E

��
B

 //


F

��
C

oo

oo

such that the restriction to the fibres over the terminal objects becomes

E1
// LR(E1)oo

oo
.

Given an APL-structure, we have a logic over types given by the pullback ofProp alongI. We also have a
reflexive graph giving the relational interpretation of all types. It is natural to ask what kind of parametricity
we obtain by requiring that the reflexive graph giving the relational interpretation of types satisfies the
requirements of Definition 7.1.

First we notice thatRelations1 = LR(E1), and that the two maps going fromRelations to E1 are in
fact the domain and codomain maps, as required, so the requirements of Definition 7.1 only effect the nature
of the mapJ .

The last requirement of Definition 7.1 says exactly that, for all closed typesσ,

J([[σ]]) = [[eqσ]].

Consider now an open type~α ` σ : Type and a vector of closed types~τ . Then, sinceJ is a map of
fibrations, we have

J([[σ(~τ)]]) = J([[~τ]]∗[[~α ` σ]]) = J([[~α ` σ]]) ◦ [[eq~τ]] = [[σ[eq~τ]]].

In other words, the model satisfies a weak form of Identity Extension Schema:

Definition 7.2. The schema
∀u, v : σ(~τ). (uσ[eq~τ]v) ⊃⊂ u =σ(~τ) v

where~α ` σ ranges over all types and~τ ranges over all closed types is called theweak identity extension
schema.

We will briefly mention which of the consequences of parametricity mentioned in Section 5 that hold under
assumption of the weak Identity Extension Schema.

First we notice that the weak Identity Extension Schema implies the parametricity schema

∀u : (
∏
β : Type. σ(β, τ2, . . . , τn)). u(∀β. σ[β,eqτ2 , . . . ,eqτn

])u

in the case where theτi are closed types.

69

Using only this weak version of the parametricity schema, we can still prove existence of terminal and initial
types, since in these cases we only need to use parametricity on the closed typesT andI.

The proofs of existence of products and coproducts, however, fail whenσ andτ are open types, since we
need to use the parametricity condition on the open typesσ×̂τ andσ + τ .

The case of initial algebras goes through, since the proof only uses parametricity ofµα. σ(α), which is a
closed type. The proof of Lemma 5.24, however, uses parametricity of the type

∏
α. ((α→ σ(α))×α→ β)

whereβ is a type variable, so this proof does not go through with only the weak parametricity schema. In
other words, in the setting of reflexive graphs as in Definition 7.1, we do not have a proof of existence of
final coalgebras.

See also [15] for a related discussion.

8 A parametric completion process

In this section we give a description of a parametric completion process that given a model ofλ2 internal
to some category satisfying certain requirements produces a parametric APL-structure. The construction
is related to the parametric completion process of [15] in the sense that the process that constructs theλ2-
fibration contained in the APL-structure generated by our completion process is basically the parametric
completion process of [15] (only the setup varies slightly). This means that if the ambient category is a
topos, then the parametric completion process of [15] produces models parametric in our new sense which
then satisfies the consequences of parametricity of Section 5. This fact is no surprise, but, to our knowledge,
it has not been proved in the literature.

The concrete model of Section 6 is a result of the parametric completion process described in this section.
Before describing the completion process we recall the theory of internal models ofλ2.

8.1 Internal models for λ2

Suppose we are given a locally cartesian closed categoryE. Given a full internal categoryD of E we may
consider the externalizationD

Fam(D)

��
E

.

We shall denote byD0 the object of objects, and byD1 the object of morphisms ofD. The fibre overΞ ∈ E
is the internal functor category fromΞ considered as a discrete category toD, i.e., objects are morphisms
Ξ→ D0 and morphism are morphisms ofE: Ξ→ D1.

Proposition 8.1. SupposeD is a full internally cartesian closed category that has right Kan extensions
for internal functorsF : Ξ → D along projectionsΞ × D0 → Ξ. Then the externalization ofD is a
λ2-fibration.

Proof. SinceD is internally cartesian closed, its externalization has cartesian closed fibres preserved under
reindexing [5, Corollary 7.3.9]. ClearlyD0 is a generic object for the fibration.

Polymorphism is modeled using the Kan extensions, since for any typeσ : Ξ × D0 → D the right Kan

70

extension ofσ alongπ : Ξ×D0 → Ξ is the functor
∏
α. σ in the diagram

Ξ×D0
σ //

π

��

D

Ξ.

∏
α.σ

;;v
v

v
v

v

The universality condition for the right Kan extension then gives the bijective correspondence

Nat(τ ◦ π, σ) ∼= Nat(τ,
∏
α. σ)

between the sets of natural transformations. Sinceπ∗τ = τ ◦ π, for τ : Ξ → D, this states exactly that the
right Kan extension provides the right adjoint toπ∗, as required.

To show that the Beck-Chevalley condition is satisfied, we need to show that foru : Ξ′ → Ξ we have

u∗(
∏
α. σ) ∼=

∏
α. ((u× id)∗σ),

that is,
(
∏
α. σ) ◦ u ∼=

∏
α. (σ ◦ (u× id)).

By Lemma 8.2 below, we may write out the values of these two functors on objectsA ∈ Ξ′ as limits:

((
∏
α. σ) ◦ u)(A) = lim←−

u(A)→π(A′)

σ(A′) (24)

(
∏
α. (σ ◦ u× id))(A) = lim←−

A→πA′′
σ(u× id(A′′)). (25)

In (24) we take the limit over all mapsf : u(A) → π(A′) in the discrete categoryΞ. But since this is a
discrete category, such maps only exist in the caseπ(A′) = u(A), so (24) can be rewritten as∏

D′∈D0
σ(u(A), D′).

Likewise (25) can be rewritten as ∏
D′′∈D0

σ(u(A), D′′),

proving that the Beck-Chevalley condition is satisfied.

Lemma 8.2. Suppose the Kan extensionRKH(F) in the diagram

L H //

F
��

H

RKH(F)����
��

��
�

F

exists. IfL, H are discrete, thenRKH(F) is given as a pointwise limit construction (as in [7, Theorem 1,
p.237]).

Proposition 8.1 justifies the following definition.

Definition 8.3. An internal categoryD of a locally cartesian closed categoryE is called aninternal model
of λ2 if it satisfies the assumptions of Proposition 8.1.

71

8.2 Input for the parametric completion process

The parametric completion process takes the following ingredients as input:

1. A quasitoposE

2. An internal modelD of λ2 in E.

We will further assume that the inclusion

Fam(D) //

##G
GGGGGGGG E→

cod~~}}
}}

}}
}}

E

which we have already assumed is full and faithful, preserves products and is closed under regular subob-
jects. The latter means that for each objectE ∈ E, the fibre categoryFam(D)E is closed under regular
subobjects as a subcategory ofE/E.

The logicRegSubE → E of regular subobjects induces a logic onE→ by

Q //

��

RegSubE

��
E→ dom // E,

which, by Lemma A.8, makes the composable fibration

Q // E→ cod // E ,

an indexed first-order logic fibration with an indexed family of generic objects, simple products and simple
coproducts.

Let Σ be the regular subobject classifier ofE. We can now form an internal fibration2 by using the
Grothendieck construction on the functor(d ∈ D) 7→ Σd, with Σd ordered pointwise. We think of this
fibration as the internalization ofRegSubE → E restricted toD and write it asa : Q → D. Notice
that sinceD is closed under regular subobjects,Q → D is a subfibration of the subobject fibration onD,
and since its externalization is simply the restriction ofQ → E→, it is closed under the logical operations
>,∧,⊃,∀,= from the regular subobject fibration.

Associated to the model given byD there is a canonical pre-APL- structure

Q

��
Fam(D)

$$JJJJJJJJJJ
// E→

��
E

(26)

To this we can associate, as usual, the fibration of relations denoted byRelationsD → RelCtxD.

2By internal fibration, we mean an internal functor, whose externalization is a fibration. By an internal fibration having structure
such as∧,⊃,∀, = we mean that the externalization has the same (indexed) structure

72

8.3 The completion process

We define the categoryLR(D) to have as objects logical relations ofD in the logic ofQ and as morphisms
pairs of morphisms inD that preserve relations.

Lemma 8.4. The categoryLR(D) is an internal cartesian closed category ofE.

Proof. We set
LR(D)0 = {(X,Y, φ) ∈ D0 ×D0 ×Q0 | a(φ) = X × Y }

and
LR(D)1 =

∐
(X,Y,φ),(X′,Y ′,φ′)∈LR(D)0

{(f, g) ∈ D1 ×D1 |
f : X → X ′ ∧ g : Y → Y ′ ∧ φ ≤ (f × g)∗φ′}.

For the cartesian closed structure we define:

(X,Y, φ)× (X ′, Y ′, φ′) = (X ×X ′, Y × Y ′, φ× φ′),

whereφ× φ′((x, x′), (y, y′)) = φ(x, y) ∧ φ′(x′, y′), and

(X,Y, φ)→ (X ′, Y ′, φ′) = (X → X ′, Y → Y ′, φ→ φ′),

where
φ→ φ′(f, g) = ∀x ∈ X∀y ∈ Y (φ(x, y) ⊃ φ′(f(x), g(y))).

Let
G = · // ·oo

oo

be the generic reflexive graph category, and consider the functor categoryEG. Since it is well known that
Cat(EG) ∼= Cat(E)G andCCCat(EG) ∼= CCCat(E)G it follows that

Lemma 8.5. D // LR(D)oo
oo

is an internal cartesian closed category ofEG.

We now aim to prove thatD // LR(D)oo
oo

is an internal model ofλ2. By the lemma, all that remains

is to prove that there are right Kan extensions for internal functors fromΞ×D0
// Ξ′ × LR(D0)oo

oo
to

D // LR(D)oo
oo

along projections toΞ // Ξ′oo
oo

. This is the same a saying that the fibration

Fam(Dn // LR(D)n
oo
oo

)→ EG

has right adjoints to reindexing functors along projections.

We first consider the simpler case with spans in stead of reflexive graphs. LetR(D) denote the internal
category

LR(D)
∂0

����
��

��
�

∂1

��9
99

99
99

D D

insideEΛ, whereΛ is the obvious category.

73

An object ofFam(R(D)) is a triple of maps(f, g, ρ) such that

LR(D)0

����
��

��
�

��:
::

::
::

Θ

��4
44

44
44

��

ρ 22fffffffffff

D0 D0

Ξ0

f 33ffffffffffff Ξ1

g 22eeeeeeeeeeeeeee

(27)

commutes. SinceLR(D)0 is the object of all relations on objects ofD, the idea is that we can consider
such a triple as a definable relation

[[Ξ0,Ξ1 | Θ ` ρ : Rel(f(Ξ0), g(Ξ1))]],

i.e., an object ofRelationsD. We will make this intuition precise in Lemma 8.6.

A vertical morphism in the categoryFam(R(D)) from (f, g, ρ) to (f ′, g′, ρ′) is by definition a triple consist-
ing of a morphism fromf to f ′, a morphism fromg to g′ and a morphism fromρ to ρ′. But since morphisms
in LR(D) are pairs of morphisms preserving relations, and since the triple of morphisms is required to
make the obvious diagram commute, we can consider such a morphism as a pair(s : f → f ′, t : g → g′)
such that

∀A ∈ Θ.∀x : f(∂0(A)), y : g(∂1(A)). ρ(x, y) ⊃ ρ′(s∂0(A)(x), t∂1(A)(y)),

as interpreted in the internal language of the quasi-topos, where⊃ refers to the internal ordering inQ.

Lemma 8.6. There is an isomorphism of fibrations
Fam(R(D))

��
EΛ

 ∼= //


RelationsD

��
RelCtxD


Proof. Unwinding the definition ofRelCtxD, we find that the objects are triples(Ξ0,Ξ1,Ξ) together with
mapsΞ→ Ξ0 × Ξ1 in E. A map fromΞ→ Ξ0 × Ξ1 to Ξ′ → Ξ′

0 × Ξ′
1 is a triple

ρ : Ξ→ Ξ′, f : Ξ0 → Ξ′
0, g : Ξ1 → Ξ′

1

making the obvious diagram commute. ThusRelCtxD
∼= EΛ.

Objects inRelationsD are given as morphism inRelCtxD into the interpretation ofα, β | R : Rel(α, β)
in (26). But the interpretation of this is easily seen to be∐

α,β∈D0
Σα×β → D0 ×D0,

and sinceLR(D)0 =
∐

α,β∈D0
Σα×β we get a bijective correspondence between objects ofRelationsD

and objects ofFam(R(D)). For morphisms, a vertical morphism inFam(R(D)) from (f, g, ρ) to (f ′, g′, ρ′)
is by the above discussion a pair of morphismst : f → f ′, s : g → g′ satisfyingρ ⊃ (t × s)∗ρ′, which is
exactly the same as a vertical morphism inRelationsD.

Lemma 8.7. All internal functors
Ξ

444 ��

��
Ξ0 Ξ1

×R(D)0 → R(D) have right Kan extensions along the projection

to
Ξ

444 ��

��
Ξ0 Ξ1

74

Proof. The statement to be proved is equivalent to the statement that the fibration on the left hand side of
the isomorphism of Lemma 8.6 has simple products. Since we know that the fibration on the right of the
isomorphism has simple products, we are done.

Let us now consider the case that we are really interested in. We shall assume that we are given a functor
(f t, f r) in EG:

Ξ′ × LR(D)0
π //

∂1

��
∂0

��

fr

##H
HHHHHHHHHHHHHHHHHHHHH Ξ′

∂1

��
∂0

��
Ξ×D0

f t

##G
GGGGGGGGGGGGGGGGGGGGGG

I

OO

π // Ξ

I

OO

LR(D)

∂1

��
∂0

��
D,

I

OO

(28)

and we would like to find a right Kan extension of(f t, f r) along (π, π) (notice that we have used the
notation∂0, ∂1, I for the structure maps of all objects ofEG - this should not cause any confusion, since it
will be clear from the context which map is referred to). Let us call this extension(

∏
par f

t,
∏

par f
r). An

obvious idea is to try the pair(
∏
f t,

∏
f r) provided by Lemma 8.7. However,

∏
par f

r should commute
with I, and we cannot know that

∏
f r will do that. Consider

∏
f r(I(A)) for someA ∈ Ξ:∏̄

f r(I(A))
��

��∏
f t(A)×

∏
f t(A).

If we pull this relation back along the diagonal on
∏
f t(A) we get a subobject

|
∏
f r(I(A))| // //∏ f t(A)

(called thefield of
∏
f r(I(A))). Logically, |

∏
f r(I(A))| is the set{x ∈

∏
f t(A) | (x, x) ∈

∏̄
f r(I(A))},

so if we restrict
∏
f r(I(A)) to this subobject, we get a relation relation containing the identity relation.

The other inclusion will be easy to prove. Thus the idea is to let
∏

par f
t be the map that mapsA to

|
∏
f r(I(A))|, and let

∏
par f

r(R) be the relation obtained by restricting
∏
f r(R) to

∏
par f

t(∂0(R)) ×∏
par f

t(∂1(R)).

Theorem 8.8. For (f t, f r), (π, π) as in (28), the right Kan extension of(f t, f r) along(π, π) exists.

Proof. We will define
∏

par f
t(A) as the pullback

(
∏

par f
t)(A)
��

��

// (
∏
f r)(I(A))
��

��∏
f t(A) ∆ //∏ f t(A)×

∏
f t(A)

75

where∆ is the diagonal map. We define
∏

par f
r(R) for R ∈ Ξ′, to be the pullback

(
∏

par f
r)(R)
��

��

// (
∏
f r)(R)
��

��∏
par f

t(∂0R)×
∏

par f
t(∂1R) // //∏ f t(∂0R)×

∏
f t(∂1R).

First we will show that
∏

par f
r(I(A)) = I(

∏
par f

t(A)) for all A. Logically∏
par f

r(I(A)) = {(x, y) ∈
∏
f r(I(A)) | (y, y), (x, x) ∈

∏
f r(I(A))} ⊇

{(x, x) | x ∈ |
∏
f r(I(A))|} = I(

∏
par f

t(A))

To prove the other inclusion suppose(x, y) ∈
∏

par f
r(I(A)) ⊆

∏
f r(I(A)). Then for anyσn+1 ∈ D0,

(x, y) ∈ π∗(
∏
f r)(I(A), I(σn+1)).

Let εA,σn+1 denote the appropriate component of the counit forπ∗ a
∏

. Then

(εA,σn+1x, εA,σn+1y) ∈ π∗(
∏
f r)(I(A), I(σn+1)) = I(f t(A, σn+1)),

so εA,σn+1x = εA,σn+1y. Since
∏
f t(A) is the product off t(A, σn+1) overσn+1 in D0, andεA,σn+1 is

simply the projection onto theσn+1-component,εA,σn+1x = εA,σn+1y for all σn+1 impliesx = y as desired.

Finally we will show that
∏

par provides the desired right adjoint. Recall that a morphism from(gt, gr) to
(ht, hr), where

Ξ′ gr
//

∂1

��
∂0

��

LR(D)0

∂1

��
∂0

��
Ξ

I

OO

gt
// D0

I

OO

and likewise(ht, hr) is a morphisms : gt → ht preserving relations. In the internal language this means
that for eachA ∈ Ξ we have a mapsA : gt(A) → ht(A) such that forR with ∂0(R) = A, ∂1(R) = B,
(x, y) ∈ gr(R) implies(sA(x), sB(y)) ∈ hr(R).

Now, from Lemma 8.7 we easily derive a one-to-one correspondence between maps(gt, gr)→ (
∏
f t,

∏
f r)

and maps(gt ◦ π, gr ◦ π) → (f t, f r). Since
∏

par f
t(A) ⊆

∏
f t(A), for this correspondence to carry

over, we only need to check that ifs denotes a map from(gt ◦ π, gr ◦ π) to (f t, f r), and s̃ the adjoint
correspondent tos, then s̃ preserves relations, and ifx ∈ gt(A), then s̃(x) ∈

∏
par f

t(A). But since
(x, x) ∈ gr(I(A)) = I(gt(A)), we must have(s̃(x), s̃(x)) ∈

∏
f r(I(A)), so s̃(x) ∈

∏
par f

t(A) as
desired. For the preservation of relations, suppose(x, y) ∈ gr(R). Then

(s̃(x), s̃(y)) ∈
∏
f r(R) ∩

∏
par f

t(∂0R)×
∏

par f
t(∂1R) =

∏
par f

r(R).

Corollary 8.9. The fibrationFam(LR(D) // Doo
oo

)→ EG is aλ2-fibration.

Remark 8.10. If E is a topos thenQ is the subobject fibration onD, andT→ K is in fact the model ofλ2

that Robinson and Rosolini prove to be parametric in the sense of reflexive graphs (Definition 7.1) in [15].
One interesting difference however, is that [15] considered only models ofλ2 that satisfied a “suitability
for polymorphism” condition stating that the model is closed underLR(D)0-products. In our setup, this
condition is replaced by the condition that the regular subobject fibration models∀, and that the internal
categoryD is closed under regular subobjects.

76

Remark 8.11. Consider a morphismξ between typesf andg in the modelT → K. At first sight, such a
morphism is a pair of morphism(ξ0, ξ1) with ξi : fi → gi. But morphisms inLR(D) are given by pairs of
maps inD, and commutativity of

LR(D)n
0

ξ1 //

∂i

��

LR(D)1

∂i

��
Dn

0
ξ0 // D1

tells us thatξ1 must be given by(ξ0, ξ0). Thusmorphisms between types are morphisms between the usual
interpretations of types preserving the relational interpretations.

8.4 The APL-structure

In this section we embed theλ2 fibration of Corollary 8.9 into a full parametric APL-structure.

Consider the functor(·)0 : EG → E that maps a diagramX0
// X1oo

oo
toX0, and consider the pullback of

(26) along(·)0:
P

��
T � � //

 B
BB

BB
BB

B C

��
EG.

(29)

Lemma 8.12. The functor(·)0 extends to a morphism of fibrations:

Fam
(

LR(D)OO
����

D

)
(·)0 //

��

Fam(D)

��
EG

(·)0 // E.

Proof. The required map maps an object(
X1OO
����

X0

)
//
(

LR(D)0OO
����

D0

)

of Fam
(

LR(D)0OO
����

D0

)
to the objectX0

// D0 of Fam(D). Likewise for morphisms.

As a consequence of Lemma 8.12 we can extend (29) to

P

��
Fam

(
LR(D)0OO

����
D0

)
//

((QQQQQQQQQQQQQQ
T � � //

��;
;;

;;
;;

;;
C

��
EG.

(30)

77

If we eraseT from (30) we obtain the diagram

P

��
Fam

(
LR(D)OO
����

D

)
� � I //

$$J
JJJJJJJJ

C

��
EG.

(31)

Theorem 8.13.The diagram (31) defines a parametric APL-structure.

We will prove Theorem 8.13 in a series of lemmas.

Corollary 8.14. If D is an internal model ofλ2 in a topos, which is closed under subobjects, then the para-
metric completion process of [15] provides aλ2-fibration that satisfies the consequences of parametricity
provable in Abadi & Plotkin’s logic.

Proof. This follows from Remark 8.10.

Remark 8.15. The types (the objects ofFam
(

LR(D)OO
����

D

)
) in the APL-structure (31) are morphisms

(
LR(D)0OO

����
D0

)n

→
(

LR(D)0OO
����

D0

)
in EG. Thus types contain both the usual interpretation (the mapf0 : Dn

0 → D0) and a relational

interpretation (the mapf1 : LR(D)n
0 → LR(D)0). But since the mapFam

(
LR(D)0OO

����
D0

)
→ T forgets the

relational interpretation, the logic on types, given byP, is given only by the logic on the usual interpretation
of the types. To be more precise, a logical relation in the model of (31) between typesf andg is a relation
in the sense of the logicQ between

∐
~d∈Dn

0
f0(~d)→ Dn

0 and
∐

~d∈Dn
0
g0(~d)→ Dn

0 .

Notice also that the relational interpretation of a type (given byf1) is in a sense parametric since the
diagram

LR(D)n
0

f1 // LR(D)0

Dn
0

f0 //

i

OO

D0

i

OO

is required to commute. This is basically the reason why the APL-structure is parametric.

Remark 8.16. One may restrict the APL-structure of (31) to the full subcategory ofEG on powers of the
generic object. This way one obtains aλ2-fibration in whichType is the only kind. To prove that this defines
a parametric APL-structure, one will need to change the proof presented here slightly to obtain the reflexive
graph.

Lemma 8.17. C→ K is fibred cartesian closed andI is a faithful product-preserving functor.

78

Proof. The first statement follows from the fact thatE→ → E is a fibred cartesian closed fibration.

I is a restriction of the composition

Fam
(

LR(D)OO
����

D

)

((QQQQQQQQQQQQQQ

// T

��:
::

::
::

::
� � // C′

��
EG

.

The mapT → C′ is the pullback of the inclusion of the externalization of a full internal cartesian closed
category intoE→. This is faithful and product preserving by assumption.

The mapFam
(

LR(D)OO
����

D

)
→ T is the map that maps

f :
(

LR(D)0OO
����

D0

)n

→
(

LR(D)iOO
����

Di

)
to f0 : Dn

0 → Di (for i = 0, 1 denoting objects and morphisms respectively). Since product structure of
internal categories of graph categories is given pointwise, this map clearly preserves fibred products.

As mentioned in Remark 8.11, a morphism fromf to g with

f, g :
(

LR(D)0OO
����

D0

)n

→
(

LR(D)0OO
����

D0

)
is just a map fromf0 to g0 preserving relations. Thus the first map is also faithful.

Lemma 8.18. The composable fibrationP → C → K is an indexed first-order logic fibration with an in-
dexed family of generic objects. Moreover, the composable fibration has simple products, simple coproducts
and very strong equality.

Proof. The composable fibrationP → C → K is a pullback ofQ → E→ → E which has the desired
properties according to Lemma A.8. All of this structure is always preserved under pullback, except simple
products and coproducts. These are preserved since the mapK→ E preserves products.

As in Remark 3.4 we can now construct the functorU as needed in Definition 3.3. Thus we have:

Proposition 8.19. The diagram (31) defines a pre-APL-structure with very strong equality.

Consider the graphW :
·
OO

����
·

·
OO

����
·

·
mmmmm
vv QQQQQ

((

where we assume that the two graphs included are reflexive graphs. The graphW:

LR(D)
OO

����
D

LR(D)
OO

����
D

LR(D)
mmmmm
vv QQQQQ

((

79

defines an internal category inEW .

An object ofFam(W) can be denoted by a triple(f, g, ρ), wheref andg are types in the same fibre (that

is, objects ofFam
(

LR(D)OO
����

D

)
in the same fibre) andρ is a morphismLR(D)n

0 → LR(D)0 such that the

diagram
LR(D)0

����
��

��
��

��8
88

88
88

8

LR(D)n
0

��:
::

::
::

:

����
��

��
��

ρ 22eeeeeeeeee

D0 D0

Dn
0

f0
22eeeeeeeeeeeeeeee Dn

0

g0
22eeeeeeeeeeeeeee

(32)

commutes.

Now, as noted in Remark 8.15 types in the pre-APL structure (31) are given by both an ordinary interpreta-
tion of types and a relational interpretation of types, but relations between types are just given by relations
between the ordinary interpretation of types. Thus we may think of such triples as objects of the form

[[~α, ~β | ~R : Rel(~α, ~β) ` φ(R) : Rel(f(~α), g(~β))]]

in the categoryRelations as formed from the pre-APL structure (31), in the same way as in Lemma 8.6.

Note that since we have proved that the diagram (31) defines a pre-APL-structure, we can reason about
it using the parts of Abadi & Plotkin’s logic not involving the relational interpretation of types. In the
following we shall use this to work in the internal language of the pre-APL-structure.

Proposition 8.20. There is an isomorphism of fibrations:
Fam(W)

��
EW

 ∼= //


Relations

��
RelCtx


Proof. The argument is essentially the same as the proof of Lemma 8.6.

Lemma 8.21. The graphW is an internal model ofλ2 in EW .

Proof. This is a consequence of Proposition 8.20.

Proposition 8.22. There is a reflexive graph ofλ2-fibrations
Fam

(
LR(D)OO
����

D

)
��

EG

 //


Fam(W)

��
EW

oo

oo

Remark 8.23. The reflexive graph in [15] arises this way, although the setup of [15] is slightly different.

80

Proof. An object ofFam(W) is a map inEW


Ξ1OO

����
Ξ2

Ξ4OO

����
Ξ5

Ξ3

mmmmm
vv QQQQQ

((

→


LR(D)0OO

����
D0

LR(D)0OO

����
D0

LR(D)0
mmmmm
vv QQQQQ

((

 .

Let us denote such objects as triples(f, g, ρ) wheref :
(

Ξ1OO
����

Ξ2

)
→

(
LR(D)0OO

����
D0

)
, g :

(
Ξ4OO
����

Ξ5

)
→

(
LR(D)0OO

����
D0

)
and

ρ : Ξ3 → LR(D)0 . The domain and codomain maps of the postulated reflexive graph map(f, g, ρ) to f
andg respectively, and the last map mapsf to (f, f, f1).

The domain and codomain map preserve simple products since from the viewpoint of Proposition 8.22 these
are just the domain and codomain map of Lemma 3.7. The middle map component of the simple products in
Fam(W) → EW is computed by computing the simple products as in Lemma 8.7 and then restricting the
the right domain and codomain. Since this is the same as the computation of the relational part of the simple

products ofFam
(

LR(D)OO
����

D

)
, the last map of the reflexive graph also commutes with simple products.

Proposition 8.24. The pre-APL-structure (31) has a full APL-structure.

Proof. This follows from Proposition 8.22 and Proposition 8.20.

Lemma 8.25. The APL-structure (31) satisfies extensionality.

Proof. The model has very strong equality, which implies extensionality (4.2).

Lemma 8.26. The APL-structure (31) satisfies the identity extension axiom.

Proof. Consider a typef with n free variables. We need to show that

〈idΩn , idΩn〉∗J(f) ◦ [[~α | − | − ` eq~α]] = [[~α ` eqf(~α)]].

The mapJ is defined as the composition of two maps. The first map mapsf to (f, f, f1) :
LR(D)n

0OO

����
Dn

0

LR(D)n
0OO

����
Dn

0

LR(D)n
0

mmmmm
vv QQQQQ

((

→


LR(D)0OO

����
D0

LR(D)0OO

����
D0

LR(D)0
mmmmm
vv QQQQQ

((

 .

Sincef makes the diagram

LR(D)n
0

����

f1 // LR(D)0

����
Dn

0

OO

f0 // D0

OO

commute we know thatf1(eq~α) = eqf0(~α).

Theorem 8.13 is now the collected statement of 8.19 8.24, 8.25 and 8.26.

81

Remark 8.27. As mentioned in the introduction to this section, the concrete APL-structure of Section 6 can
be considered as a result of the parametric completion process. If we consider the internal categoryPer in
the categoryAsm of assemblies, then using the parametric completion process on this data we obtain the
APL-structure of Section 6. To see this, we need to use the fact that there exists an isomorphism of fibrations

UFam(Asm)

''OOOOOOOOOOO

∼= // Asm→

yytttttttttt

Asm.

This proves Theorem 6.2.

9 Parametric Internal Models

The definition of APL-structure admittedly asks for a substantial amount of structure. In this section we
sketch how much of that structure may be derived in the case of internal models ofλ2.

Let E be a quasi-topos and letj be a local operator (also known as closure operator or Lawvere-Tierney
topology) onE. We writeEj for the full subcategory ofj-sheaves,a for the associated sheaf functor,I for
the inclusion ofj-sheaves, andη for the natural transformationId → I a.

Let C be an internal model ofλ2 E. ThenaC is an internal category inEj andη : C→ aC is an internal
functor.

Consider the following diagram:

P

��

// S

��

// RegSubEj

��
Fam(C)

&&MMMMMMMMMMMM
I // Fam(Ej)

��

// Ej
→

��

dom // Ej

E a
// Ej

(33)

whereI is the functor induced by the composition of the internal functorη : C→ aC and the inclusion of
the externalization ofC into Ej

→ is faithful.

Suppose that

• the internal functorη : C→ aC is faithful,

• the internal categoryaC is a subcategory ofEj (i.e., the inclusion of the externalization ofC into
Ej

→ is faithful).

Then the functorI in the above diagram is faithful and the leftmost part of the diagram (33) (the part going
down and left fromP) is a pre-APL-structure, and we can thus define thatthe internal λ2 modelC in E is
parametric with respect to j if this pre-APL-structure is a parametric APL-structure.

One should, of course, think ofj as specifying the logic with respect to which the model is parametric.

The completion process presented in the previous section takes a full internalλ2 model in a quasi-toposF
and produces an internal model inE = FG with j on E such thatF = Ej (the associated sheaf functor

82

a takes
X1OO
����

X0

to X0) and which satisfies the two items above ensuring thatI is faithful. The results in the

previous section then show that the internal model inF is parametric with respect to thisj.

This description of parametric internal models allows us to state precisely the (still) open problem of whether
there exists parametric models that are inherently parametric (not constructed though a completion process):

Problem 9.1. Does there exist a full internalλ2 model in a quasi-toposE that is parametric with respect to
the trivial topologyj (such thatEj = E) ?

10 Conclusion

We have defined the notion of an APL-structure and proved that it provides sound and complete models for
Abadi and Plotkin’s logic for parametricity, thereby answering a question posed in [12, page 5]. We have
also defined a notion of parametric APL-structures, for which we can prove the expected consequences of
parametricity using the internal logic. The consequences proved in this document are existence of inductive
and coinductive datatypes. These consequences have, to our knowledge not been proved in general for
models parametric in the sense of Ma & Reynolds, but only for specific models.

We have presented a family of parametric models, some of which are not well-pointed. This means that our
notion of parametricity is useful also in the absence of well-pointedness.

We have provided an extension of the parametric completion process of [15] that produces parametric APL-
structures. This means that for a large class of models, we have proved that the parametric completion of
Robinson and Rosolini produce models that satisfy the consequences of parametricity.

In subsequent papers we will show how to modify the parametric completion process to produce domain-
theoretic parametric models and how to extend the notion of APL-structure to include models of polymor-
phic linear lambda calculus [11].

A Composable Fibrations

This appendix is concerned with the theory of composable fibrations, by which we simply mean pairs of
fibrations such that the codomain of the first is the domain of the second fibration. This appendix contains
definitions referred to in the text.

Suppose we are given a composable fibration:

F
p // E

q // B

We observe that

• The compositeqp is a fibration. This is easily seen from the definition.

• If p andq are cloven, we may choose a cleavage by liftingu twice tou for eachI in Obj F and
u : X → qpI.

• If p, q are split the composite fibration will be split sincevu = v ◦ u = v ◦ u.

Thus in the case above we may consider the composable fibration as a doubly indexed category, and rein-
dexing inF with respect tou in B is given byu∗

83

The lemmas below refer to the fibrationsp, q above.

Definition A.1. We say that(ΩA)A∈Obj B is an indexed family of generic objects for the composable pair of
fibrations(p, q) if for all A, ΩA ∈ Obj EA is a generic object for the restriction ofp to EA and if the family
is closed under reindexing, ie., for all morphismsu : A→ B in B, u∗(ΩB) ∼= ΩA.

Before we define the concept of an indexed first-order logic fibration, we recall the definition of first-order
logic fibration from [5] .

Definition A.2. A fibrationp : F→ E is called afirst-order logic fibrationif

• p is a fibred preorder that is fibred bicartesian closed.

• E has products.

• p has simple products and coproducts, i.e., right, respectively left adjoints to reindexing functors
induced by projections, and these satisfy the Beck-Chevalley condition.

• p has fibred equality, i.e., left adjoints to reindexing functors induced byid ×∆ : I×J → I×J ×J ,
satisfying the Beck-Chevalley condition.

Readers worried about the Frobenius condition should note that this comes for free in fibred cartesian closed
categories.

Definition A.3. We say that(p, q) has indexed (simple) products/coproducts/equality if each restriction of
p to a fibre ofq has the same satisfying the Beck-Chevalley condition, and these commute with reindexing,
i.e., if u is a map inB then there is a natural isomorphism̄u∗

∏
f
∼=

∏
u∗f ū

∗ or ū∗
∐

f
∼=

∐
u∗f ū

∗ (this
can also be viewed as a Beck-Chevalley condition).

Definition A.4. We say that(p, q) is an indexed first order logic fibrationif p is a fibrewise bicartesian
closed preorder, and(p, q) has indexed simple products, indexed simple coproducts and indexed equality.

We can also talk about composable fibrations(p, q) simply having products, coproducts, etc. This should
be the case if the compositeqp has (co-)products, but we should also require the right Beck-Chevalley
conditions to hold. Notice that sinceu∗ in qp is the same as̄u∗ in p we can write the product as either

∏
u

in qp or
∏

ū in p.

Definition A.5. We say that the composable fibration(p, q) has products / coproducts if for each map
u : I → J in B, and each objectX ∈ EJ the reindexing functor̄u∗ : FX → Fu∗X has a right / left
adjoint. Moreover, these (co)-products must satisfy the Beck-Chevalley condition for two sorts of diagram
corresponding to reindexing inB andE respectively. First if

H
v //

a

��

K

b
��

I
u // J

is a pullback diagram inB, then by [5, Exercise 1.4.4]

a∗u∗X
v̄ //

ā
��

b∗X

b̄
��

u∗X
ū // X

84

is a pullback diagram inE, and we require that the Beck-Chevalley condition is satisfied with respect to this
diagram. Second, iff : Y → X is a vertical map inE, then the Beck-Chevalley condition should be satisfied
with respect to the diagram

u∗Y
ū //

u∗f
��

Y

f

��
u∗X

ū // X

(34)

which by the way is a pullback by [5, Exercise 1.4.4].

The composable fibration(p, q) has simple (co-)products if it has (co-)products with respect to projections
as defined above.

In the case of the APL-structures, the logical content of the Beck-Chevalley condition for diagrams of the
form (34) will be that

(∀α : Type. φ)[t/x] = ∀α : Type. (φ[t/x]).

Definition A.6. We say that a first-order logic fibration hasvery strong equalityif internal equality in the
fibration implies external equality.

Definition A.7. We say that the indexed first order logic fibration(p, q) hasvery strong equalityif each
restriction ofp to a fibre ofq has.

The next lemma gives a way of obtaining indexed first-order logic fibrations.

Lemma A.8. SupposeQ′ → E is a first-order logic fibration with a generic object on a locally cartesian
closed categoryE. Suppose further, thatQ′ → E has products and coproducts with respect to mapsA ×B

A′ → A from pullback diagrams
A×B A′ //

��

A

��
A′ // B,

and coproducts with respect to maps

idC ×B ∆A : C ×B ×A→ C ×B A×B A,

all satisfying the Beck-Chevalley condition. Then the composable fibration

Q // E→ cod // E ,

whereQ→ E→ is the pullback
Q //

��

Q′

��
E→ dom // E,

is an indexed first-order logic fibration with an indexed family of generic objects, simple products and simple
coproducts. Moreover, ifQ′ → E has very strong equality, so does the composable fibration.

85

Proof. The fibred bicartesian structure exists since the fibres ofQ → E→ are the fibres ofQ′ → E. This
structure is clearly preserved by reindexing.

The fibrewise product ofA→ B andA′ → B in E→ isA×B A′ → B with projection

A×B A′ π //

$$H
HHHHHHHH A

����
��

��
��

B

.

The indexed (co-)product along this map inQ → E→ is the (co-)product alongπ in E, which exists by
assumption. For the Beck-Chevalley condition for vertical pullbacks, recall that the domain functorE→ →
E preserves pullbacks, so for a vertical map

A′′ f //

 A
AA

AA
AA

A A

����
��

��
��

B

taking the pullback ofπ alongf in the categoryE→, and then applying the domain functor gives the pullback

A′′ ×B A′

��

// A×B A′

��
A′′ f // A

in E, so that the Beck-Chevalley condition in this case reduces to Beck-Chevalley for the fibrationQ′ → E.

To prove that these indexed simple (co-)products commute with reindexing, consider a mapu : B′ → B in
E. We need to prove that for the diagram

u∗(A)×B′ u∗(A′)

π
wwnnnnnnnnnnnn

ū //

��

A×B A′

π
{{vvvvvvvvv

��

u∗A
ū //

''PPPPPPPPPPPPPP A

$$H
HHHHHHHHH

B′ u // B,

we have, for products̄u∗
∏

π
∼=

∏
π ū

∗ and for coproducts̄u∗
∐

π
∼=

∐
π ū

∗ . But this follows from the
Beck-Chevalley condition inQ′ → E.

Indexed fibred equality is given by coproduct along maps

idC ×B ∆A : C ×B A→ C ×B A×B A,

which are required to exists. As with indexed (co-)products, the Beck-Chevalley conditions reduce to the
Beck-Chevalley conditions forQ′ → E.

We define the family of generic objects to be the projections(Σ×B → B)B∈E in E→ whereΣ is the generic
object ofQ→ E. This family is clearly closed under reindexing, and maps

A
h //

f ��@
@@

@@
@@

Σ×B

π
{{xx

xx
xx

xx
x

B

86

correspond to mapsA→ Σ in E, which correspond to objects ofQ′
A
∼= Qf .

We shall prove that we have simple products; simple coproducts are proved similarly. Supposeπ : D×D′ →
D is a projection inE. Forf : A→ D in E→, π̄ is the map

A×D′

f×id
��

π // A

f

��
D ×D′ π // D.

Reindexing along this map inQ corresponds to reindexing inQ′ alongπ : A×D′ → A, so by existence of
simple products inQ′ → E we have a right adjointπ∗ a

∏
π.

We need to prove Beck-Chevalley first for pullbacks inE. In this case a pullback inE

D ×D′′ idD×u//

π′

��

D ×D′

π′

��
D′′ u // D′

lifts to the pullback

D × u∗A

��

id×ū //
π′

wwoooo
D ×A

id×f

��

π′xxrrr
rr

u∗A
ū //

��

A
f

��
D ×D′′

π′

wwooo
oo id×u

// D ×D′

π′yyssss

D′′
u

// D′

in E→. The Beck-Chevalley condition for this pullback reduces to the Beck-Chevalley condition for the
upper square inQ′ → E which is known to hold.

We should also check that the Beck-Chevalley condition holds in the case of the pullback.

A′ ×D′

h×id

xxrrrrrrrrrr

π̄ //

��

A′

h

����
��

��
��

��

A×D′ π̄ //

&&LLLLLLLLLL A

��?
??

??
??

?

D ×D′ π // D

But again this reduces to the Beck-Chevalley condition forQ′ → E becausēπ is a projection.

Very strong equality is clearly preserved.

References

[1] B.P. Dunphy.Parametricity as a notion of uniformity in reflexive graphs. PhD thesis, 2004. 1, 6.1

[2] Brian Dunphy and Uday S. Reddy. Parametric limits. InProceedings of the 19th IEEE Symposium on
Logic in Computer Science (LICS-04)), pages 242–251, 2004.

87

[3] R. Hasegawa. Categorical data types in parametric polymorphism.Mathematical Structures in Com-
puter Science, 4:71–109, 1994. 1, 5

[4] J.M.E. Hyland, E.P. Robinson, and G. Rosolini. The discrete objects in the effective topos.Proc.
London Math. Soc., 3(60):1–36, 1990. 1

[5] B. Jacobs.Categorical Logic and Type Theory, volume 141 ofStudies in Logic and the Foundations
of Mathematics. Elsevier Science Publishers B.V., 1999. 1, 2, 2.1, 3.1, 4, 6, 6, 6, 7, 8.1, A, A.5, A

[6] Q. Ma and J.C. Reynolds. Types, abstraction, and parametric polymorphism, part 2. In S. Brookes,
M. Main, A. Melton, M. Mislove, and D. Schmidt, editors,Mathematical Foundations of Programming
Semantics, volume 598 ofLecture Notes in Computer Science, pages 1–40. Springer-Verlag, 1992. 1,
1, 7

[7] S. Mac Lane.Categories for the Working Mathematician. Springer-Verlag, 1971. 8.2

[8] J.C. Mitchell. Foundations for Programming Languages. MIT Press, 1996. 1

[9] A. M. Pitts. Non-trivial power types can’t be subtypes of polymorphic types. In4th Annual Symposium
on Logic in Computer Science, pages 6–13. IEEE Computer Society Press, Washington, 1989. 1

[10] A.M. Pitts. Polymorphism is set theoretic, constructively. In D. H. Pitt, A. Poigné, and D. E. Ryde-
heard, editors,Category Theory and Computer Science, Proc. Edinburgh 1987, volume 283 ofLecture
Notes in Computer Science, pages 12–39. Springer-Verlag, 1987. 1

[11] G.D. Plotkin. Second order type theory and recursion. Notes for a talk at the Scott Fest, February
1993. 1, 10

[12] Gordon Plotkin and Martı́n Abadi. A logic for parametric polymorphism. InTyped lambda calculi and
applications (Utrecht, 1993), volume 664 ofLecture Notes in Comput. Sci., pages 361–375. Springer,
Berlin, 1993. (document), 1, 2, 2.3, 2.4, 3.2, 3.18, 4, 5, 5.1, 5.4, 5.16, 10

[13] J.C. Reynolds. Types, abstraction, and parametric polymorphism.Information Processing, 83:513–
523, 1983. 1

[14] J.C. Reynolds. Polymorphism is not set-theoretic. In G. Kahn, D. B. MacQueen, and G. D. Plotkin,
editors,Semantics of Data Types, volume 173 ofLecture Notes in Computer Science, pages 145–156.
Springer-Verlag, 1984. 1

[15] E.P. Robinson and G. Rosolini. Reflexive graphs and parametric polymorphism. In S. Abramsky,
editor,Proc. 9th Symposium in Logic in Computer Science, pages 364–371, Paris, 1994. I.E.E.E. Com-
puter Society. 1, 7, 8, 8.10, 8.14, 8.23, 10

[16] G. Rosolini. Notes on synthetic domain theory. Draft, 1995.

[17] I. Rummelhoff. Polynat in PER-models.Theoretical Computer Science, 316(1–3):215–224, May
2004.

[18] R.A.G. Seely. Categorical semantics of higher-order polymorphic lambda calculus.The Journal of
Symbolic Logic, 52(4):969–989, December 1987. 1

[19] Izumi Takeuti. An axiomatic system of parametricity.Fund. Inform., 33(4):397–432, 1998. Typed
lambda-calculi and applications (Nancy, 1997). 2.2

88

[20] P. Wadler. Theorems for free! In4’th Symposium on Functional Programming Languages and Com-
puter Architecture, ACM, London, September 1989. 1, 1

[21] P. Wadler. The Girard-Reynolds isomorphism (second edition). Manuscript, March 2004. 2.2

89

Parametric Domain-theoretic models of Linear Abadi & Plotkin
Logic

Lars Birkedal
Rasmus Ejlers Møgelberg

Rasmus Lerchedahl Petersen

Abstract

We present a formalization of a linear version of Abadi and Plotkin’s logic for parametricity for
a polymorphic dual intuitionistic / linear type theory with fixed points, and show, following Plotkin’s
suggestions, that it can be used to define a wide collection of types, including solutions to recursive
domain equations. We further define a notion of parametric LAPL-structure and prove that it provides a
sound and complete class of models for the logic. Finally, we present a concrete parametric parametric
LAPL-structure based on suitable categories of partial equivalence relations over a universal model of
the untyped lambda calculus.

Contents

1 Introduction 93

1.1 Outline . 95

2 Linear Abadi-Plotkin Logic 95

2.1 PILLY . 95

2.1.1 Equality . 96

2.1.2 Ordinary lambda abstraction . 99

2.2 The logic . 100

2.2.1 Definable relations . 101

2.2.2 Constructions on definable relations . 101

2.2.3 Admissible relations . 103

2.2.4 Axioms and Rules . 105

2.2.5 Admissible relations preserved by structure maps 108

2.2.6 Extensionality and Identity Extension Schemes . 109

3 Proofs in LAPL 110

3.1 Logical Relations Lemma . 110

3.2 A category of linear functions . 113

3.3 Tensor types . 115

91

3.4 Unit object . 116

3.5 Initial objects and coproducts . 117

3.6 Terminal objects and products . 118

3.7 Natural Numbers . 120

3.7.1 Induction principle . 121

3.8 Types as functors . 121

3.9 Existential types . 123

3.10 Initial algebras . 125

3.11 Final Coalgebras . 126

3.12 Recursive type equations . 129

3.12.1 Parametrized initial algebras . 130

3.12.2 Dialgebras . 131

3.12.3 Compactness . 132

3.13 Recursive type equations with parameters . 135

4 LAPL-structures 136

4.1 Soundness . 146

4.2 Completeness . 149

5 Parametric LAPL-structures 152

5.1 Solving recursive domain equations in parametric LAPL-structures 152

5.2 Parametrized recursive type equations . 155

6 Concrete Models 156

6.1 The connection to CUPERs . 159

6.2 Lifting . 159

6.3 Going fibred . 161

6.4 A domain-theoretic model of PILL . 162

6.5 A parametric domain-theoretic model of PILL . 163

92

1 Introduction

In this paper we show how to define parametric domain-theoretic models of polymorphic intuitionistic /
linear lambda calculus. The work is motivated by two different observations, due to Reynolds and Plotkin.

In 1983 Reynolds argued that parametric models of the second-order lambda calculus are very useful for
modeling data abstraction in programming [25] (see also [20] for a recent textbook description). For real
programming, one is of course not just interested in a strongly terminating calculus such as the second-
order lambda calculus, but also in a language with full recursion. Thus inloc. cit. Reynolds also asked
for a parametricdomain-theoreticmodel of polymorphism. Informally, what is meant [26] by this is a
model of an extension of the polymorphic lambda calculus [24, 10], with a polymorphic fixed-point operator
Y : ∀α. (α→ α) → α such that

1. types are modeled as domains, the sublanguage without polymorphism is modeled in the standard
way andY σ is the least fixed-point operator for the domainσ;

2. the logical relations theorem (also known as the abstraction theorem) is satisfied when the logical
relations are admissible, i.e., strict and closed under limits of chains;

3. every value in the domain representing some polymorphic type is parametric in the sense that it satis-
fies the logical relations theorem (even if it is not the interpretation of any expression of that type).

Of course, this informal description leaves room for different formalizations of the problem. Even so, it
has proved to be a non-trivial problem. Unpublished work of Plotkin [22] indicates one way to solve the
problem model-theoretically by using strict, admissible partial equivalence relations over a domain model
of the untyped lambda calculus but, as far as we know, the details of this relationally parametric model have
not been worked out in detail before. (We do that here.) Inloc. cit. Plotkin also suggested that one should
consider parametric domain-theoretic models not only of polymorphic lambda calculus but of polymorphic
intuitionistic / linear lambda calculus, since this would give a way to distinguish, in the calculus, between
strict and possibly non-strict continuous functions, and since some type constructions, e.g., coproducts,
should not be modeled in a cartesian closed category with fixed points [11]. Indeed Plotkin argued that such
a calculus could serve as a very powerful metalanguage for domain theory in which one could also encode
recursive types, using parametricity. To prove such consequences of parametricity, Plotkin suggested to use
a linear version of Abadi and Plotkin’s logic for parametricity [23] with fixed points.

Thus parametric domain-theoretic models of polymorphic intuitionistic / linear lambda calculus are of im-
port both from a programming language perspective (for modeling data abstraction) and from a purely
domain-theoretic perspective.

Recently, Pitts and coworkers [21, 4] have presented a syntactic approach to Reynolds’ challenge, where
the notion of domain is essentially taken to be equivalence classes of terms modulo a particular notion of
contextual equivalence derived from an operational semantics for a language called Lily, which is essentially
polymorphic intuitionistic / linear lambda calculus endowed with an operational semantics.

In parallel with the work presented here, Rosolini and Simpson [27] have shown how to construct parametric
domain-theoretic models using synthetic domain-theory in intuitionistic set-theory. Moreover, they have
shown how to give a computationally adequate denotational semantics of Lily.

In the present paper we make the following contributions to the study of parametric domain-theoretic models
of intuitionistic / linear lambda calculus:

93

• We present a formalization of Linear Abadi-Plotkin Logic with fixed points (LAPL). The term lan-
guage, called PILLY for polymorphic intuitionistic / linear logic, is a simple extension of Barber and
Plotkin’s calculus for dual intuitionistic / linear lambda calculus (DILL) with polymorphism and fixed
points and the logic is an extension of Abadi-Plotkin’s logic for parametricity with rules for forming
admissible relations. The logic allows for intuitionistic reasoning over PILLY terms;i.e., the terms
can be linear but the reasoning about terms is always done intuitionistically.

• We give detailed proofs in LAPL of consequences of parametricity, including the solution of recursive
domain equations; these results and proofs have not been presented formally in the literature before.

• We give a definition of aparametric LAPL-structure, which is a categorical notion of a parametric
model of LAPL, with associated soundness and completeness theorems.

• We show how to solve recursive domain equations in parametric LAPL-structures by a simple use of
the internal language and the earlier proofs in LAPL.

• We present a detailed definition of a concrete parametric LAPL-structure based on suitable categories
of partial equivalence relations over a universal model of the untyped lambda calculus, thus confirming
the folklore idea that one should be able to get a parametric domain-theoretic model using partial
equivalence relations over a universal model of the untyped lambda calculus.

We remark that one can see our notion of parametric LAPL-structure as a suitable categorical axiomatization
of a good category of domains. In Axiomatic Domain Theory much of the earlier work has focused on
axiomatizing the adjunction between the category of predomains and continuous functions and the category
of predomains and partial continuous functions [6, Page 7] – here we axiomatize the adjunction between
the category of domains and strict functions and the category of domains and all continuous functions and
extend it with parametric polymorphism, which then suffices to also model recursive types.

In the technical development, we make use of a notion of admissible relations, which we axiomatize, since
admissible may mean different things in different models. We believe our axiomatization is reasonable in
that it accommodates several different kinds of models, such as the classical one described here and models
based on synthetic domain theory [18].

The work presented here builds upon our previous work on categorical models of Abadi-Plotkin’s logic for
parametricity [5], which includes detailed proofs of consequences of parametricity for polymorphic lamdba
calculus and also includes a description of a parametric completion process that given an internal model of
polymorphic lambda calculus produces a parametric model. It is not necessary to be familiar with the details
of [5] to read the present paper (except for Appendix A of [5], which contains some definitions and theory
concerning composable fibrations), but, for readers unfamiliar with parametricity, it may be helpful to start
with [5], since the proofs of consequences of parametricity given here are slightly more sophisticated than
the ones in [5] because of the use of linearity.

In subsequent papers we intend to show how one can define a computationally adequate model of Lily and
how to produce parametric LAPL-structures from Rosolini and Simpson’s models based on intuitionistic set
theory [27] (this has been worked out at the time of writing [18]) and from Pitts and coworkers operational
models [4] (we conjecture that this is possible, but have not checked all the details at the time of writing).
As a corollary one then has that the encodings of recursive types mentioned in [27] and [4] really do work
out (these properties were not formally proved inloc. cit.). We will also extend the parametric completion
process of [5] to produce a parametric LAPL-structure given a model of polymorphic intuitionistic / linear
lambda calculus, see [16].

94

1.1 Outline

The remainder of this paper is organized as follows. In Section 2 we present LAPL, the logic for reasoning
about parametricity over polymorphic intuitionistic / linear lambda calculus (PILLY). In Section 3 we give
detailed proofs of many consequences of parametricity, including initial algebras and final coalgebras for
definable functors and recursive types of mixed variance. In Section 4 we present our definition of an
LAPL-structure, and we prove soundness and completeness with respect to LAPL in Sections 4.1 and 4.2,
respectively. The definition of LAPL-structure builds upon fibred versions of models of intuitionistic / linear
logic [3, 14]. In our presentation we assume that the reader is familiar with models of intuitionistic / linear
logic.1 In Section 5 we present our definition of aparametricLAPL-structure and prove that one may solve
recursive domains equations in such. In Section 6 we present a concrete parametric LAPL-structure based
on partial equivalence relations over a universal domain model. To make it easier to understand the model,
we first present a model of PILLY (without parametricity) and then show how to make it into a parametric
LAPL-structure. We also include an example of calculations in the concrete model.

2 Linear Abadi-Plotkin Logic

In this section we define a logic for reasoning about parametricity for Polymorphic Intuitionistic Linear
Lambda calculus with fixed points (PILLY). The logic is based on Abadi and Plotkin’s logic for parametric-
ity [23] for the second-order lambda calculus and thus we refer to the logic as Linear Abadi-Plotkin Logic
(LAPL).

The logic for parametricity is basically a higher-order logic over PILLY . Expressions of the logic are
formulas in contexts of variables of PILLY and relations among types of PILLY . Thus we start by defining
PILLY .

2.1 PILL Y

PILLY is essentially Barber and Plotkin’s DILL [2] extended with polymorphism and a fixed point combi-
nator.

Well-formed type expressions in PILLY are expressions of the form:

α1 : Type, . . . , αn : Type ` σ : Type

whereσ is built using the syntax

σ ::= α | I | σ ⊗ τ | σ (τ | !σ |
∏
α. σ.

and all the free variables of sigma appear on the left hand side of the turnstile. The last construction binds
α, so if we have a type

α1 : Type, . . . , αn : Type ` σ : Type,

then we may form the type

α1 : Type, . . . , αi−1Type, αi+1Type . . . αn : Type `
∏
αi. σ : Type.

1To aid readers unfamiliar with these matters, we have written a short technical note containing detailed definitions and propo-
sitions needed here [17].

95

We useσ, τ , ω, σ′, τ ′. . . to range over types. The list ofα’s is called the kind context, and is often denoted
simply byΞ or ~α. Since there is only one kind this annotation is often omitted.

The terms of PILLY are of the form:

Ξ | x1 : σ1, . . . , xn : σn;x′1 : σ′1, . . . , x
′
m : σ′m ` t : τ

where theσi, σ′i, andτ are well-formed types in the kind contextΞ. The list ofx’s is called the intuitionistic
type context and is often denotedΓ, and the list ofx′’s is called the linear type context, often denoted∆. No
repetition of variable names is allowed in any of the contexts, but permutation akin to having an exchange
rule is. Note, that due to the nature of the axioms of the to-be-introduced formation rules, weakening and
contraction can be derived for all but the linear context.

The grammar for terms is:

t ::=x | ? | Y | λ◦x : σ.t | t t | t⊗ t |!t | Λα : Type. t | t(σ) |
let x : σ ⊗ y : τ bet in t | let !x : σ bet in t | let ? bet in t

We useλ◦, which bear some graphical resemblance to(, to denote linear function abstraction. And we use
s, t, u. . . to range over terms.

The formation rules are given in Figure 1.Ξ | Γ;∆ is considered well-formed if for all typesσ appearing
in Γ and∆, Ξ ` σ : Type is a well-formed type construction.∆ and∆′ are considered disjoint if the set
of variables appearing in∆ is disjoint from the set of variables appearing in∆′. We use− to denote an
empty context. As the types of variables in the let-constructions and function abstractions are often apparent
from the context, these will just as often be omitted. What we have described above is calledpurePILLY .
In general we will consider PILLY over polymorphic signatures [12, 8.1.1]. Informally, one may think of
such a calculus as pure PILLY with added type-constants and term-constants. For instance, one may have a
constant type for integers or a constant type for listsα ` lists(α) : Type. We will be particularly interested
in the internal language of a PILLY model (see Section 4), which in general will be a non-pure calculus.

We will also sometimes speak of the calculus PILL. This is PILLY without the fixed point combinatorY .

2.1.1 Equality

Theexternal equalityrelation on PILLY terms is the least equivalence relation given by the rules in Figure 2.
The definition makes use of the notion of acontext, which, loosely speaking, is a term with exactly one hole
in it. Formally contexts are defined using the grammar:

C[−] ::= − | let ? beC[−] in t | let ? bet in C[−] | t⊗ C[−] | C[−]⊗ t |
let x⊗ y beC[−] in t | let x⊗ y bet in C[−] | λ◦x : σ.C[−] |
C[−] t | t C[−] |!C[−] | let !x beC[−] in t | let !x bet in C[−] |
Λα : Type. C[−] | C[−]σ

A Ξ | Γ;∆ ` σ — Ξ | Γ′;∆′ ` τ context is a contextC[−] such that for any well-formed termΞ | Γ;∆ `
t : σ, the termΞ | Γ′;∆′ ` C[t] : τ is well-formed. A context islinear, if it does not contain a subcontext of
the form!C[−].

We prove a couple of practical lemmas about external equality.

Lemma 2.1. SupposeΞ | Γ;∆ ` f, g : !σ (τ are terms such that

Ξ | Γ, x : σ;∆ ` f(!x) = g(!x).

Thenf = g.

96

Ξ | Γ;− ` ? : I

Ξ | Γ;− ` Y :
∏
α. !(!α (α) (α

Ξ | Γ, x : σ;− ` x : σ

Ξ | Γ;x : σ ` x : σ

Ξ | Γ;∆ ` t : σ (τ Ξ | Γ;∆′ ` u : σ
∆,∆′ disjoint

Ξ | Γ;∆,∆′ ` t u : τ

Ξ | Γ;∆, x : σ ` u : τ

Ξ | Γ;∆ ` λ◦x : σ. u : σ (τ

Ξ | Γ;∆ ` t : σ Ξ | Γ;∆′ ` s : τ
∆,∆′ disjoint

Ξ | Γ;∆,∆′ ` t⊗ s : σ ⊗ τ

Ξ | Γ;− ` t : σ

Ξ | Γ;− `!t : σ

Ξ, α : Type | Γ;∆ ` t : σ
Ξ | Γ;∆ is well-formed

Ξ | Γ;∆ ` Λα : Type. t :
∏
α : Type. σ

Ξ | Γ;∆ ` t :
∏
α : Type. σ Ξ ` τ : Type

Ξ | Γ;∆ ` t(τ) : σ[τ/α]

Ξ | Γ;∆ ` s : σ ⊗ σ′ Ξ | Γ;∆′, x : σ, y : σ′ ` t : τ
∆,∆′ disjoint

Ξ | Γ;∆,∆′ ` let x : σ ⊗ y : σ′ bes in t : τ

Ξ | Γ;∆ ` s : !σ Ξ | Γ, x : σ;∆′ ` t : τ
∆,∆′ disjoint

Ξ | Γ;∆,∆′ ` let !x : !σ bes in t : τ

Ξ | Γ;∆ ` t : I Ξ | Γ;∆′ ` s : σ

Ξ | Γ;∆,∆′ ` let ? bet in s : σ

Figure 1: Formation rules for terms

97

β-term
Ξ | Γ;∆ ` (λ◦x : σ. t)u = t[u/x]

β-type
Ξ | Γ;∆ ` (Λα : Type. t)σ = t[σ/α]

η-term
Ξ | Γ;∆ ` λ◦x : σ. (tx) = t

η-type
Ξ | Γ;∆ ` Λα : Type. (tα) = t

β − ?
Ξ | Γ;∆ ` let ? be ? in t = t

η − ?
Ξ | Γ;∆ ` let ? bet in ? = t

β −⊗
Ξ | Γ;∆ ` let x⊗ y bes⊗ u in t = t[s, u/x, y]

η −⊗
Ξ | Γ;∆ ` let x⊗ y bet in x⊗ y = t

β−!
Ξ | Γ;∆ ` let !x : σ be!u in t = t[u/x]

η−!
Ξ | Γ;∆ ` let !x : σ bet in !x = t

Ξ | Γ;∆ ` t = s : σ C[−] is aΞ | Γ;∆ ` σ − Ξ | Γ′;∆′ ` τ context

Ξ | Γ′;∆′ ` C[t] = C[s] : τ

C[−] is a linear context

Ξ | Γ;∆ ` let ? bet in C[u] = C[let ? bet in u]

C[−] is a linear context and does not bindx, y or contain them free

Ξ | Γ;∆ ` let x⊗ y bet in C[u] = C[let x⊗ y bet in u]

C[−] is linear and does not bindx or contain it free

Ξ | Γ;∆ ` let !x bet in C[u] = C[let !x bet in u]

Ξ | Γ;− ` f : !σ (σ

Ξ | Γ;− ` f !(Y σ (!f)) = Y σ (!f)

Figure 2: Rules for external equality

98

Ξ: Ctx Ξ ` σ : Type Ξ | Γ;∆: Ctx

Ξ | Γ | Θ: Ctx Ξ | Γ;∆ ` t : σ Ξ | Γ;∆ ` t = u

Ξ | Γ | Θ ` ρ : Rel(σ, τ) Ξ | Γ | Θ ` ρ : AdmRel(σ, τ)

Ξ | Γ | Θ ` φ : Prop Ξ | Γ | Θ | φ1, . . . , φn ` ψ

Figure 3: Types of judgements

Proof. Using the rules for external equality, we conclude from the assumption that

Ξ | Γ;∆, y : !σ ` let !x bey in f(!x) = let !x bey in g(!x)

and further that
Ξ | Γ;∆, y : !σ ` f(let !x bey in !x) = g(let !x bey in !x).

Thus
Ξ | Γ;∆, y : !σ ` f(y) = g(y),

and hencef = λ◦y : !σ. f(y) = λ◦y : !σ. g(y) = g.

2.1.2 Ordinary lambda abstraction

We encode ordinary lambda abstraction in the usual way by defining

σ → τ =!σ (τ

and
λx : σ. t = λ◦y : !σ. let !x bey in t

wherey is a fresh variable. This gives us the rule

Ξ | Γ, x : σ;∆ ` t : τ

Ξ | Γ;∆ ` λx : σ. t : σ → τ

For evaluation we have the rule

Ξ | Γ;− ` t : σ Ξ | Γ;∆ ` f : σ → τ

Ξ | Γ;∆ ` f !t : τ

and the equality rules give
(λx : σ. t) !s = t[s/x].

Note that using this notation the constantY can obtain the more familiar looking type

Y : Πα. (α→ α) → α

99

2.2 The logic

As mentioned, expressions of LAPL live in contexts of variables of PILLY and relations among types of
PILLY . The contexts look like this:

Ξ | Γ | R1 : Rel(τ1, τ ′1), . . . , Rn : Rel(τn, τ ′n), S1 : AdmRel(ω1, ω
′
1), . . . , Sm : AdmRel(ωm, ω

′
m)

whereΞ | Γ;− is a context of PILLY and theτi, τ ′i , ωi, ω
′
i are well-formed types in contextΞ, for all i. The

list of R’s andS’s is called the relational context and is often denotedΘ. As for the other contexts we do
not allow repetition, but permutation of variables. TheR’s and theS’s are interchangeable.

The concept of admissible relations is taken from domain theory. Intuitively admissible relations relate⊥ to
⊥ and are chain complete.

It is important to note that there is no linear component∆ in the contexts — the point is that the logic only
allows for intuitionistic (no linearity) reasoning about terms of PILLY , whereas PILLY terms can behave
linearly.

Propositions in the logic are given by the syntax:

φ ::= (t =σ u) | ρ(t, u) | φ ⊃ ψ | ⊥ | > | φ ∧ ψ | φ ∨ ψ | ∀α : Type. φ |
∀x : σ. φ | ∀R : Rel(σ, τ). φ | ∀S : AdmRel(σ, τ). φ |
∃α : Type. φ | ∃x : σ. φ | ∃R : Rel(σ, τ). φ | ∃S : AdmRel(σ, τ). φ

whereρ is a definable relation (to be defined below). The judgements of the logic are presented in figure 3.
In the following we give formation rules for the above.

Remark 2.2. Our Linear Abadi & Plotkin logic is designed for reasoning about binary relational para-
metricity. For reasoning about other arities of parametricity, one can easily replace binary relations in the
logic by relations of other arities. In the case of unary parametricity, for example, one would then have an
interpretation of types as predicates. See also [28, 29]

We first have the formation rule for internal equality:

Ξ | Γ;− ` t : σ Ξ | Γ;− ` u : σ

Ξ | Γ | Θ ` t =σ u : Prop

Notice here the notational difference betweent = u and t =σ u. The former denotesexternalequality
and the latter is a proposition in the logic. The rules for⊃, ∨ and∧ are the usual ones, where⊃ denotes
implication.>,⊥ are propositions in any context. We use⊃⊂ for biimplication.

We have the following formation rules for universal quantification:

Ξ | Γ, x : σ | Θ ` φ : Prop

Ξ | Γ | Θ ` ∀x : σ. φ : Prop

Ξ | Γ | Θ, R : Rel(σ, τ) ` φ : Prop

Ξ | Γ | Θ ` ∀R : Rel(σ, τ). φ : Prop

Ξ | Γ | Θ, S : AdmRel(σ, τ) ` φ : Prop

Ξ | Γ | Θ ` ∀S : AdmRel(σ, τ). φ : Prop

Ξ, α | Γ | Θ ` φ : Prop
Ξ | Γ | Θ is well-formed

Ξ | Γ | Θ ` ∀α : Type. φ : Prop

100

The side conditionΞ | Γ | Θ is well-formed means that all the types of variables inΓ and of relation
variables inΘ are well-formed inΞ (i.e., all the free type variables of the types occur inΞ).

There are similar formation rules for the existential quantifier.

Before we give the formation rule forρ(t, u), we discuss definable relations.

2.2.1 Definable relations

Definable relations are given by the grammar:

ρ ::= R | (x : σ, y : τ).φ

Definable relations always have a domain and a codomain, just as terms always have types. The basic
formation rules for definable relations are:

Ξ | Γ | Θ, R : Rel(σ, τ) ` R : Rel(σ, τ)

Ξ | Γ, x : σ, y : τ | Θ ` φ : Prop

Ξ | Γ | Θ ` (x : σ, y : τ). φ : Rel(σ, τ)

Ξ | Γ | Θ ` ρ : AdmRel(σ, τ)

Ξ | Γ | Θ ` ρ : Rel(σ, τ)

Notice that in the second rule we can only abstractintuitionisticvariables to obtain definable relations. In the
last rule,ρ : AdmRel(σ, τ) is an admissible relation, to be discussed below. The rule says that the admissible
relations constitute a subset of the definable relations.

An example of a definable relation is the graph relation of a function:

〈f〉 = (x : σ, y : τ). fx =τ y,

for f : σ (τ . The equality relationeqσ is defined as the graph of the identity map.

If ρ : Rel(σ, τ) is a definable relation, and we are given terms of the right types, then we may form the
proposition stating that the two terms are related by the definable relation:

Ξ | Γ | Θ ` ρ : Rel(σ, τ) Ξ | Γ;− ` t : σ, s : τ

Ξ | Γ | Θ ` ρ(t, s) : Prop
(1)

We shall also writetρs for ρ(t, s).

We introduce some shorthand notation for reindexing of relations. Forf : σ′ (σ, g : τ ′ (τ and
ρ : Rel(σ, τ), we write(f, g)∗ρ for the definable relation

(x : σ′, y : τ ′). ρ(f x, g y).

2.2.2 Constructions on definable relations

In this subsection we present some constructions on definable relations, which will be used to give a rela-
tional interpretation of the types of PILLY .

101

If ρ : Rel(σ, τ) andρ′ : Rel(σ′, τ ′), then we may construct a definable relation

(ρ (ρ′) : Rel((σ (σ′), (τ (τ ′)),

defined by
ρ (ρ′ = (f : σ (σ′, g : τ (τ ′).∀x : σ.∀y : τ. ρ(x, y) ⊃ ρ′(fx, gy).

If
Ξ, α, β | Γ | Θ, R : AdmRel(α, β) ` ρ : Rel(σ, τ)

is well-formed andΞ | Γ | Θ is well-formed,Ξ, α ` σ : Type, andΞ, β ` τ : Type we may define

∀(α, β,R : AdmRel(α, β)). ρ : Rel((
∏
α : Type. σ), (

∏
β : Type. τ))

as
∀(α, β,R : AdmRel(α, β)). ρ =

(t :
∏
α : Type. σ, u :

∏
β : Type. τ).∀α, β : Type.∀R : AdmRel(α, β). ρ(tα, uβ).

Forρ : Rel(σ, τ), we seek to define a relation!ρ : Rel(!σ, !τ). First we define for any typeσ the proposition
(−) ↓ onσ as

x ↓≡ ∃f : σ (I. f(x) =I ?.

The intuition here is that types are pointed, andx ↓ is thought of asx 6= ⊥. Since we have also fixed points,
we may think of types as domains.

We further define the mapε : !σ (σ asλ◦x : !σ. let !y bex in y = λx : σ. x. We can now define

!ρ = (x : !σ, y : !τ). x ↓⊃⊂ y ↓ ∧(x ↓⊃ ρ(εx, εy)).

Following the intuition of domains,! is to be thought of as lifting, andε the unit providing the unlifted
version of an element. The intuitive reading of!ρ is, that⊥ is related to⊥ (represented by the fact, thatx is
related toy if neitherx ↓ nory ↓) and that two!’ed elements are related if their un-!-ed versions are.

Next we define the tensor product ofρ andρ′

ρ⊗ ρ′ : Rel((σ ⊗ σ′), (τ ⊗ τ ′)),

for ρ : Rel(σ, τ) andρ′ : Rel(σ′, τ ′). The basic requirement for this definition is that⊗ should become a left
adjoint to(in the category of relationsLinAdmRelations to be defined in Section 4. To give a concrete
definition satisfying this requirement, we take a slightly long route. We first introduce the map

f : σ ⊗ τ (
∏
α. (σ (τ (α) (α

defined as
f x = let x′ ⊗ x′′ : σ ⊗ τ bex in Λα. λ◦h : σ (τ (α. h x′ x′′.

Then we define

ρ⊗ ρ′ = (f, f)∗(∀(α, β,R : AdmRel(α, β)). (ρ (ρ′ (R) (R),

or, if we write it out,

ρ⊗ ρ′ = (x : σ ⊗ σ′, y : τ ⊗ τ ′).∀α, β,R : AdmRel(α, β).
∀t : σ (τ (α, t′ : σ′ (τ ′ (β. (ρ (ρ′ (R)(t, t′) ⊃
R(let x′ ⊗ x′′ bex in t x′ x′′, let y′ ⊗ y′′ bey in t′ y′ y′′).

102

The reason for this at first sight fairly convoluted definition, is that we will later prove, using parametricity,
thatσ ⊗ τ is isomorphic to

∏
α. (σ (τ (α) (α, and we already have a relational interpretation of

the latter. The idea of using this definition of⊗ is due to Alex Simpson. We use the same trick to define a
relation onI:

Following the same strategy as before, we define a relationIRel : AdmRel(I, I) using the map

f : I (
∏
α. α (α

defined asλ◦x : I. let ? bex in id , whereid = Λα. λ◦x : α. x and define

IRel = (f, f)∗(∀(α, β,R : AdmRel(α, β)). R (R),

which, if we write it out, is

(x : I, y : I).∀(α, β,R : AdmRel(α, β)).∀z : α,w : β. zRw ⊃ (let ? bex in z)R(let ? bey in w).

2.2.3 Admissible relations

The relational interpretation of a type withn free variables is a function takingn relations and returning a
new relation. However, we will not require that this function is defined on all vectors of relations, but only
that it is defined on vectors of “admissible relations”. On the other hand this function should also return
admissible relations. Since “admissible” might mean different things in different settings, we axiomatize
the concept of admissible relations.

The axioms for admissible relations are formulated in Figure 4. In the last of these rulesρ ≡ ρ′ is a shorthand
for ∀x, y. ρ(x, y) ⊃⊂ ρ′(x, y).

Proposition 2.3. The class of admissible relations contains all graphs and is closed under the constructions
of Section 2.2.2.

Proof. Graph relations are admissible since equality relations are and admissible relations are closed under
reindexing. For the constructions of Section 2.2.2, we just give the proof of(.

We must prove that forρ, ρ′ admissible relationsρ (ρ′ is admissible

Ξ | Γ | Θ ` ρ′ : AdmRel(σ′, τ ′)

Ξ | Γ, x, y | Θ ` (f, g). ρ′(f x, g y) : AdmRel(σ (σ′, τ (τ ′)

Ξ | Γ | Θ ` ρ : AdmRel(σ, τ)

Ξ | Γ, x : σ, y : τ | Θ ` ρ(x, y) : Prop

Ξ | Γ, x : σ, y : τ | Θ ` (f : σ (σ′, g : τ (τ ′). ρ(x, y) ⊃ ρ′(f x, g y) : AdmRel((σ (σ′), (τ (τ ′))

Ξ | Γ | Θ ` (f : σ (σ′, g : τ (τ ′).∀x : σ, y : τ. ρ(x, y) ⊃ ρ′(f x, g y) : AdmRel((σ (σ′), (τ (τ ′))

where in the top deduction on the left, we have reindexedρ′ along the evaluation maps

λ◦f : σ (σ′. f x λ◦g : τ (τ ′. g y.

Now, finally, we may give the last formation rule for definable relations:

α1, . . . , αn ` σ(~α) : Type Ξ | Γ | Θ ` ρ1 : AdmRel(τ1, τ ′1), . . . , ρn : AdmRel(τn, τ ′n)

Ξ | Γ | Θ ` σ[~ρ] : AdmRel(σ(~τ), σ(~τ ′))

103

Ξ | Γ | Θ, R : AdmRel(σ, τ) ` R : AdmRel(σ, τ)

Ξ | Γ | Θ ` eqσ : AdmRel(σ, σ)

Ξ | Γ | Θ ` ρ : AdmRel(σ, τ) Ξ | Γ;− ` t : σ′ (σ, u : τ ′ (τ x, y /∈ Γ

Ξ | Γ | Θ ` (x : σ′, y : τ ′). ρ(t x, u y) : AdmRel(σ′, τ ′)

Ξ | Γ | Θ ` ρ, ρ′ : AdmRel(σ, τ) x, y /∈ Γ

Ξ | Γ | Θ ` (x : σ, y : τ). ρ(x, y) ∧ ρ′(x, y) : AdmRel(σ, τ)

Ξ | Γ | Θ ` ρ : AdmRel(σ, τ) x, y /∈ Γ

Ξ | Γ | Θ ` (x : τ, y : σ). ρ(y, x) : AdmRel(τ, σ)

Ξ | Γ | Θ ` ρ : AdmRel(σ, τ)

Ξ | Γ | Θ `!ρ : AdmRel(!σ, !τ)

x, y /∈ Γ

Ξ | Γ | Θ ` (x : σ, y : τ).> : AdmRel(σ, τ)

Ξ | Γ | Θ ` ρ : AdmRel(σ, τ) Ξ | Γ | Θ ` φ : Prop x, y /∈ Γ

Ξ | Γ | Θ ` (x : σ, y : τ). φ ⊃ ρ(x, y) : AdmRel(σ, τ)

Ξ, α | Γ | Θ ` ρ : AdmRel(σ, τ) Ξ | Γ | Θ Ξ ` σ : Type Ξ ` τ : Type x, y /∈ Γ

Ξ | Γ | Θ ` (x : σ, y : τ).∀α : Type. ρ(x, y) : AdmRel(σ, τ)

Ξ | Γ, z : ω | Θ ` ρ : AdmRel(σ, τ) x, y /∈ Γ

Ξ | Γ | Θ ` (x : σ, y : τ).∀z : ω. ρ(x, y) : AdmRel(σ, τ)

Ξ | Γ | Θ, R : AdmRel(ω, ω′) ` ρ : AdmRel(σ, τ) x, y /∈ Γ

Ξ | Γ | Θ ` (x : σ, y : τ).∀R : AdmRel(ω, ω′). ρ(x, y) : AdmRel(σ, τ)

Ξ | Γ | Θ, R : Rel(ω, ω′) ` ρ : AdmRel(σ, τ) x, y /∈ Γ

Ξ | Γ | Θ ` (x : σ, y : τ).∀R : Rel(ω, ω′). ρ(x, y) : AdmRel(σ, τ)

Ξ | Γ | Θ ` ρ : AdmRel(σ, τ), ρ′ : Rel(σ, τ) Ξ | Γ | Θ | > ` ρ ≡ ρ′

Ξ | Γ | Θ ` ρ′ : AdmRel(σ, τ)

Figure 4: Rules for admissible relations

104

Observe thatσ[~ρ] is a syntactic construction and is not obtained by substitution as in [23]. Still the notation
σ[ρ1/α1, . . . , ρn/αn] might be more complete, but this quickly becomes overly verbose. In [23]σ[~ρ] is to
some extent defined inductively on the structure ofσ, but in our case that is not enough, since we will need
to form σ[~ρ] for type constants (when using the internal language of a model of LAPL). We callσ[~ρ] the
relational interpretation of the typeσ.

2.2.4 Axioms and Rules

The last judgement in figure 3 has not yet been mentioned. It says that in the given context, the formulas
φ1, . . . , φn collectively implyψ. We will often writeΦ for φ1, . . . , φn.

Having specified the language of LAPL, it is time to specify the axioms and inference rules. We have all the
usual axioms and rules of predicate logic plus the axioms and rules specified below.

Rules for substitution:

Rule 2.4.
Ξ | Γ, x : σ | Θ | > ` φ Ξ | Γ ` t : σ

Ξ | Γ | Θ | > ` φ[t/x]

Rule 2.5.
Ξ | Γ | Θ, R : Rel(σ, τ) | > ` φ Ξ | Γ | Θ ` ρ : Rel(σ, τ)

Ξ | Γ | Θ | > ` φ[ρ/R]

Rule 2.6.
Ξ | Γ | Θ, S : AdmRel(σ, τ) | > ` φ Ξ | Γ | Θ ` ρ : AdmRel(σ, τ)

Ξ | Γ | Θ | > ` φ[ρ/S]

Rule 2.7.
Ξ, α | Γ | Θ | > ` φ Ξ ` σ : Type

Ξ | Γ[σ/α] | Θ[σ/α] | > ` φ[σ/α]

Thesubstitutionaxiom:

Axiom 2.8. ∀α, β : Type.∀x, x′ : α.∀y, y′ : β.∀R : Rel(α, β.)R(x, y)∧
x =α x

′ ∧ y =β y
′ ⊃ R(x′, y′)

Rules for∀-quantification:

Rule 2.9.
Ξ, α | Γ | Θ | Φ ` ψ

==================== Ξ | Γ | Θ ` Φ
Ξ | Γ | Θ | Φ ` ∀α : Type.ψ

Rule 2.10.
Ξ | Γ, x : σ | Θ | Φ ` ψ
================== Ξ | Γ | Θ ` Φ
Ξ | Γ | Θ | Φ ` ∀x : σ.ψ

Rule 2.11.
Ξ | Γ | Θ, R : Rel(τ, τ ′) | Φ ` ψ
======================== Ξ | Γ | Θ ` Φ
Ξ | Γ | Θ | Φ ` ∀R : Rel(τ, τ ′).ψ

Rule 2.12.
Ξ | Γ | Θ, S : AdmRel(τ, τ ′) | Φ ` ψ
=========================== Ξ | Γ | Θ ` Φ
Ξ | Γ | Θ | Φ ` ∀S : AdmRel(τ, τ ′).ψ

Rules for∃-quantification:

Rule 2.13.
Ξ, α | Γ | Θ | φ ` ψ

==================== Ξ | Γ | Θ ` ψ
Ξ | Γ | Θ | ∃α : Type.φ ` ψ

105

Rule 2.14.
Ξ | Γ, x : σ | Θ | φ ` ψ
================= Ξ | Γ | Θ ` ψ
Ξ | Γ | Θ | ∃x : σ.φ ` ψ

Rule 2.15.
Ξ | Γ | Θ, R : Rel(τ, τ ′) | φ ` ψ
======================== Ξ | Γ | Θ ` ψ
Ξ | Γ | Θ | ∃R : Rel(τ, τ ′.)φ ` ψ

Rule 2.16.
Ξ | Γ | Θ, S : AdmRel(τ, τ ′) | φ ` ψ
=========================== Ξ | Γ | Θ ` ψ
Ξ | Γ | Θ | ∃S : AdmRel(τ, τ ′).φ ` ψ

External equality implies internal equality:

Rule 2.17.
Ξ | Γ;− ` t = u : σ

Ξ | Γ | Θ | > ` t =σ u

There are also obvious rules expressing that internal equality is an equivalence relation.

Intuitively admissible relations should relate⊥ to⊥ and we need an axiom stating this. In general, we will
use(−) ↓ as the test forx 6= ⊥.

Rule 2.18.

Ξ | Γ | Θ ` ρ : Rel(!σ, !τ), ρ′ : AdmRel(!σ, !τ) x, y /∈ Γ

Ξ | Γ | Θ | ∀x : σ, y : τ. ρ(!x, !y) ⊃ ρ′(!x, !y) `
∀x : !σ, y : !τ. x ↓⊃⊂ y ↓⊃ (ρ(x, y) ⊃ ρ′(x, y))

We have rules concerning the interpretation of types as relations:

Rule 2.19.
~α ` αi : Type Ξ | Γ | Θ ` ~ρ : AdmRel(~τ , ~τ ′)

Ξ | Γ | Θ | > ` αi[~ρ] ≡ ρi

Rule 2.20.
~α ` σ (σ′ : Type Ξ | Γ | Θ ` ~ρ : AdmRel(~τ , ~τ ′)

Ξ | Γ | Θ | > ` (σ (σ′)[~ρ] ≡ (σ[~ρ] (σ′[~ρ])

Rule 2.21.
~α ` σ ⊗ σ′ : Type Ξ | Γ | Θ ` ~ρ : AdmRel(~τ , ~τ ′)

Ξ | Γ | Θ | > ` (σ ⊗ σ′)[~ρ] ≡ (σ[~ρ]⊗ σ′[~ρ])

Rule 2.22.
Ξ | Γ | Θ ` ~ρ : AdmRel(~τ , ~τ ′)

Ξ | Γ | Θ | > ` I[~ρ] ≡ IRel

Rule 2.23.
~α `

∏
β. σ(~α, β) : Type Ξ | Γ | Θ ` ~ρ : AdmRel(~τ , ~τ ′)

Ξ | Γ | > ` (
∏
β. σ(~α, β))[~ρ] ≡ ∀(β, β′, R : AdmRel(β, β′)). σ[~ρ,R])

Rule 2.24.
~α `!σ : Type Ξ | Γ | Θ ` ~ρ : AdmRel(~τ , ~τ ′)

Ξ | Γ | Θ | > ` (!σ)[~ρ] ≡!(σ[ρ])

Hereρ ≡ ρ′ is shorthand for∀x, y. xρy ⊃⊂ xρ′y.

If the definable relationρ is of the form(x : σ, y : τ). φ(x, y), thenρ(t, u) should be equivalent toφ with
x, y substituted byt, u:

Rule 2.25.
Ξ | Γ, x : σ, y : τ | Θ ` φ : Prop Ξ | Γ;− ` t : σ, u : τ

Ξ | Γ | Θ | > ` ((x : σ, y : τ). φ)(t, u) ⊃⊂ φ[t, u/x, y]

106

Axiom 2.26. Ξ | Γ;− | Θ ` Y (
∏
α. (α→ α) → α)Y

Given a definable relationρ we may construct a propositionρ(x, y). On the other hand, ifφ is a proposition
containing two free variablesx andy, then we may construct the definable relation(x, y). φ. The next
lemma tells us that these constructions give a correspondence between definable relations and propositions,
which is bijective up to provable equivalence in the logic.

Lemma 2.27. Supposeφ is a proposition with at least two free variablesx : σ, y : τ . Then

((x : σ, y : τ). φ)(x, y) ⊃⊂ φ

Supposeρ : Rel(σ, τ) is a definable relation, then

ρ ≡ (x : σ, y : τ). ρ(x, y).

Proof. The first biimplication follows trivially from Rule 2.25. For the second, we need to prove

∀z : σ,w : τ. ρ(z, w) ⊃⊂ ((x : σ, y : τ). ρ(x, y))(z, w),

which is trivial by the same rule.

The substitution axiom above implies thereplacementrule:

Lemma 2.28.
Ξ | Γ | − ` t =σ t

′ Ξ | Γ, x : σ;− ` u : τ

Ξ | Γ | − ` u[t/x] =τ u[t′/x]

Proof. Consider the definable relation

ρ = (y : σ, z : σ). u[y/x] =τ u[z/x].

Clearlyρ(t, t) holds, so by substitutionρ(t, t′) holds.

Lemma 2.29.
ρ(x, y) ∧ ρ′(x′, y′) ⊃ ρ⊗ ρ′(x⊗ x′, y ⊗ y′)

Proof. Supposeρ(x, y) ∧ ρ′(x′, y′) and that(ρ (ρ′ (R)(t, t′). Then clearlyR(t x x′, t′ y y′) and thus,
since

let x⊗ x′ bex⊗ x′ in t x x′ = t x x′,

we concludeρ⊗ ρ′(x⊗ x′, y ⊗ y′).

Lemma 2.30. For x : σ, (!x) ↓ always holds in the logic.

Proof. Definef : !σ (I asλ◦x : !σ . let !y bex in ?. Then clearlyf(!x) = ?.

Lemma 2.31. For anyρ : Rel(σ, τ), x : σ, y : τ

xρy ⊃⊂!x(!ρ)!y

Proof. Sinceε(!x) = let !y be!x in y = x this follows from Lemma 2.30.

107

2.2.5 Admissible relations preserved by structure maps

We now proceed to show a couple of practical lemmas expressing that various structure maps preserve
admissible relations. The maps that we are interested in are

εσ : !σ (σ
δσ : !σ (!!σ,

which, categorically in the models of PILLY , are the structure maps of a comonad, and

dσ : !σ (!σ⊗!σ
eσ : !σ (I,

which are the maps that make the comonad into a linear category. The maps are syntactically given as

εσ = λ◦x : !σ. let !y bex in y
δσ = λ◦x : !σ. let !y bex in !!y
dσ = λ◦x : !σ. let !y bex in !y⊗!y
eσ = λ◦x : !σ. let !y bex in ? .

Lemma 2.32. For all admissible relationsρ : AdmRel(σ, τ),

(εσ, ετ) : !ρ (ρ, (δσ, δτ) : !ρ (!!ρ

are maps of relations, i.e.,!ρ(x, y) impliesρ(εσx, ετy) and!!ρ(δσx, δτy).

Proof. The lemma clearly holds in the case ofx, y of the form!x′, !y′. Sinceρ(εσx, ετy) and!!ρ(δσx, δτy)
both define admissible relations from!σ to !τ , by Rule 2.18 we conclude that!ρ(x, y) implies

(x ↓⊃⊂ y ↓) ⊃ ρ(εσx, ετy)

and(x ↓⊃⊂ y ↓) ⊃!!ρ(δσx, δτy). Since!ρ(x, y) ⊃ (x ↓⊃⊂ y ↓) we are done.

Lemma 2.33. For all admissible relationsρ : AdmRel(σ, τ),

(dσ, dτ) : !ρ (!ρ⊗!ρ, (eσ, eτ) : !ρ (IRel

are maps of relations, i.e.,!ρ(x, y) implies!ρ⊗!ρ(dσx, dτy) andIRel(eσx, eτy).

Proof. To prove that(d, d) is a map of relations, since

let x′ ⊗ x′′ be(let !y bex in !y⊗!y) in t x′ x′′ = let !y bex in t !y !y

we need to prove that

!ρ(x, y) ⊃ (∀α, β,R : AdmRel(α, β)).∀t : !σ (!σ (α, t′ : !τ (!τ (β.
t(!ρ (!ρ (R)t ⊃ R(let !z bex in t !z !z, let !z bey in t′ !z !z)

Since the expression on the right hand side of the first⊃ is admissible inx, y and!ρ(x, y) ⊃ x ↓⊃⊂ y ↓, by
Rule 2.18 it suffices to prove the implication in the casex =!x′, y =!y′. In this case, let!z bex in t !z !z =
t !x′ !x′, so the implication is trivial.

To prove that(e, e) is a map of relations, we need to prove that

!ρ(x, y) ⊃ (∀α, β,R : AdmRel(α, β)).∀z : α,w : β.
zRw ⊃ (let ? be(let !v bex in ?) in z)R(let ? be(let !v bey in ?) in w).

The implication clearly holds in the case ofx, y of the form!x′, !y′, and so, since!ρ(x, y) ⊃ x ↓ ∧y ↓, as
before we conclude from Rule 2.18 that the implication holds in general.

108

2.2.6 Extensionality and Identity Extension Schemes

Consider the twoextensionality schemes:

(∀x : σ. t x =τ u x) ⊃ t =σ(τ u
(∀α : Type. t α =τ u α) ⊃ t =∏

α : Type.τ u.

These are taken as axioms in [23], but we shall not take these as axioms as we would like to be able to talk
about models that are not necessarily extensional.

Lemma 2.34. It is provable in the logic that

∀f, g : σ → τ. (∀x : σ. f(!x) =τ g(!x)) ⊃ ∀x : !σ. f(x) =τ g(x).

In particular, extensionality implies

∀f, g : σ → τ. (∀x : σ. f(!x) =τ g(!x)) ⊃ f =σ→τ g

Proof. This is just a special case of Rule 2.18.

The schema
− | − | − ` ∀~α : Type. σ[eq~α] ≡ eqσ(~α)

is called theidentity extension schema. Hereσ ranges over all types, andeq~α is short notation for
eqα1

, . . . ,eqαn
.

For any typeβ, α1, . . . , αn ` σ(β, ~α) we can form theparametricity schema:

− | − | − ` ∀~α∀u : (
∏
β. σ).∀β, β′.∀R : AdmRel(β, β′). (u β)σ[R,eq~α](u β′),

where, for readability, we have omitted: Type afterβ, β′.

Proposition 2.35. The identity extension schema implies the parametricity schema.

Proof. The identity extension schema tells us that

∀~α∀u : (
∏
β. σ). u(

∏
β. σ)[eq~α]u.

Writing out this expression using Rule 2.23 for the relational interpretation of polymorphic types, one ob-
tains the parametricity schema.

In the case of second-order lambda-calculus, the parametricity schema implied identity extension for the
pure calculus, since it provided the case of polymorphic types in a proof by induction. It is interesting to
notice that this does not seem to be the case for PILLY , since it seems that we need identity extension to
prove for exampleeqσ ⊗ eqτ ≡ eqσ⊗τ .

Lemma 2.36. Given linear contextsC andC ′, suppose

∀x : σ.∀y : τ. C[x⊗ y] =ω C
′[x⊗ y].

then
∀z : σ ⊗ τ. let x⊗ y bez in C[x⊗ y] =ω let x⊗ y bez in C ′[x⊗ y]

109

Proof. Consider

f = λ◦x : σ. λ◦y : τ. C[x⊗ y] f ′ = λ◦x : σ. λ◦y : τ. C ′[x⊗ y]

then
f (eqσ (eqτ (eqω) f ′.

If z : σ ⊗ τ then by identity extensioneqσ ⊗ eqτ (z, z). By definition ofeqσ ⊗ eqτ we have

let x⊗ x′ bez in fxx′ =ω let x⊗ x′ bez in f ′xx′

which proves the lemma.

This completes our presentation of LAPL. In the following section we show how to use the logic to prove
various consequences of parametricity. We shall write “using extensionality” and “using identity extension”
to mean that we assume the extensionality schemes and the identity extension schema, respectively.

3 Proofs in LAPL

3.1 Logical Relations Lemma

Lemma 3.1. In pure LAPL, for~α, β ` τ , ~α ` ω and~ρ : Rel(~σ, ~τ),

τ [ω/β][~ρ] ≡ τ [~ρ, ω[~ρ]]

Proof. Simple induction on the structure ofτ . The casesτ = αi and τ = β are trivial. For the case
τ = τ ′ ⊗ τ ′′,

(τ ′ ⊗ τ ′′)[ω/β] [~ρ] ≡ τ ′[ω/β][~ρ]⊗ τ ′′[ω/β][~ρ] ≡
τ ′[ρ, ω[~ρ]]⊗ τ ′′[ρ, ω[~ρ]] ≡ (τ ′ ⊗ τ ′′)[ρ, ω[~ρ]]

Likewise for the cases ofτ = τ ′ (τ ′′ andτ =!τ ′. The last case isτ =
∏
α′. τ ′ and in this caseα′ is not

free inω, so
(
∏
α′. τ ′)[ω/β][~ρ] ≡ ∀α′0, α′1, R : AdmRel(α′0, α

′
1). τ

′[ω/β][~ρ,R] ≡
∀α′0, α′1, R : AdmRel(α′0, α

′
1). τ

′[~ρ,R, ω[~ρ]] ≡ (
∏
α′. τ ′)[~ρ, ω[~ρ]]

Lemma 3.2. SupposeΞ | Γ, z : σ;− ` t(z) : τ andΞ | Γ, z′ : σ′;− ` t′(z′) : τ ′ and

Ξ | Γ | Θ ` ρ : Rel(σ, σ′), ρ′ : AdmRel(τ, τ ′).

Then
Ξ | Γ | Θ | ∀x : σ, y : σ′. ρ(x, y) ⊃ ρ′(t(x), t′(y)) `

∀x : !σ, y : !σ′. !ρ(x, y) ⊃ ρ′(let !z bex in t(z), let !z′ bey in t′(z′))

Proof. Consider the special case of Rule 2.18 used on the relations(x : !σ, y : !σ′). !ρ(x, y) and

(x : !σ, y : !σ′). ρ′(let !z bex in t(z), let !z′ bey in t′(z′)).

This gives us

Ξ | Γ | Θ | ∀x : σ, y : σ′. !ρ(!x, !y) ⊃ ρ′(let !z be!x in t(z), let !z′ be!y in t′(z′)) `
∀x : !σ, y : !σ′. !ρ(x, y) ∧ (x ↓⊃⊂ y ↓) ⊃ ρ′(let !z bex in t(z), let !z′ bey in t′(z′))

110

From this we conclude the desired implication using the fact that!ρ(!x, !y) ⊃⊂ ρ(x, y) (Lemma 2.31),
let !z be!x in t(z) = t(x) and!ρ(x, y) ⊃ x ↓⊃⊂ y ↓.

Lemma 3.3 (Logical Relations Lemma).In pure LAPL, for any closed term− | −;− ` t : τ ,

tτt.

In words, any closed term of closed type, is related to itself in the relational interpretation of the type.

Proof. We will prove that for any term

~α | ~x′ : ~σ′(α); ~x : ~σ(α) ` t(~α, ~x′, ~x) : τ

in the pure calculus; the proposition

− | −;− ` ∀~α, ~β.∀~R : AdmRel(~α, ~β).∀~x : ~σ(~α), ~y : ~σ(~β).∀~x′ : ~σ′(~α), ~y′ : ~σ′(~β).
~x~σ[~R]~y ∧ ~x′~σ′[~R]~y′ ⊃ t(~α, ~x′, ~x)τ [~R]t(~β, ~y′, ~y)

holds in the logic. Here~x~σ[~R]~y is short for

x1σ1[~R]y1 ∧ . . . ∧ xnσn[~R]yn

The special case of the vectors~α, ~σ, ~σ′ of length zero is the statement of the lemma. The proof proceeds
by structural induction ont, and it is for the induction we need the seemingly stronger induction hypothesis
described above.

Caset = xi: In this case~x is of length one, and the proposition is trivial.

Caset = x′i: In this case~x is empty, and this case is also trivial.

Caset = ?: We always have?I[~R]?.

Caset = Y : This is Axiom 2.26

Caset = λ◦xn+1 : σn+1. t
′: By induction, the proposition holds fort′. We must show that if~x~σ[~R]~y ∧

~x′~σ′[~R]~y′, then
t(~α, ~x′, ~x)(σn+1 (τ)[~R]t(~β~y′~y).

The induction hypothesis tells us that if furtherxn+1σn+1[~R]yn+1, then

t′(~α, ~x′, ~x, xn+1)τ [~R]t′(~β, ~y′, ~y, yn+1),

and sincet(~α, ~x′, ~x)xn+1 = t′(~α, ~x′, ~x, xn+1) we have the desired result.

Caset = t′ t′′: By induction the proposition holds for the termst′, t′′, and so since

t(~α, ~x′, ~x) = t′(~α, ~x′, ~y) t′′(~α, ~x′, ~z)

the proposition holds by definition of(τ (τ ′)[~R].

Caset = t′ ⊗ t′′: By induction, the proposition holds fort′, t′′. Clearly

t(~α, ~x′, ~x) = t′(~α, ~x′, ~y)⊗ t′′(~α, ~x′, ~z)

and so the proposition holds by Lemma 2.29.

111

Caset = Λαm+1. t
′: We must show that if~x~σ[~R]~y ∧ ~x′~σ′[~R]~y′, then

t(~α, ~x′, ~x)(
∏
αm+1. τ)[~R]t(~β, ~y′, ~y),

i.e., for allαm+1, α
′
m+1, Rm+1 : AdmRel(αm+1, α

′
m+1),

t(~α, ~x′, ~x) αm+1τ [~R,Rm+1]t(~β, ~y′, ~y) α′m+1,

By induction, the proposition holds fort′. But up to the position of the quantifiers

∀αm+1, α
′
m+1, Rm+1 : AdmRel(αm+1, α

′
m+1),

this is exactly the proposition we need, and the rest of the proof is just simple logic.

Caset = t′(ω): By induction, the proposition holds fort′. So sincet(~α, ~x′, ~x) = t′(~α, ~x′, ~x)(ω(~α)), if
~x~σ[~R]~y ∧ ~x′~σ′[~R]~y′, then

t(~α, ~x′, ~x)τ [~R, ω[~R]]t(~β, ~y′, ~y).

By Lemma 3.1, we get the desired result.

Caset =!t′: In this case~x is of length zero. By induction, under the usual assumptions,

t′(~α, ~x′)τ [~R]t′(~β, ~y′).

Sincet(~α, ~x′) =!t′(~α, ~x′), we need to show

!t′(~α, ~x′)!τ [~R]!t′(~β, ~y′).

which follows from Lemma 2.31.

Caset = let z : ω ⊗ z′ : ω′ be t′ in t′′: We know by induction that

t′(~α, ~x′, ~x)(ω ⊗ ω′)[~R]t′(~β, ~y′, ~y),

and if furtherzω[R]v andz′ω′[R]v′ then

t′′(~α, ~x′, ~x, z, z′)τ [~R]t′′(~β, ~y′, ~y, v, v′).

The latter tells us that

λ◦z, z′. t′′(~α, ~x′, ~x, z, z′)(ω[R] (ω′[R] (τ [R])λ◦v, v′. t′′(~β, ~y′, ~y, v, v′),

so by definition ofω[R]⊗ ω′[R], we get

let z : ω ⊗ z′ : ω′ bet′(~α, ~x′, ~x) in t′′(~α, ~x′, ~x, z, z′)τ [R]
let v : ω ⊗ v′ : ω′ bet′(~β, ~y′, ~y) in t′′(~β, ~y′, ~y, v, v′)

as desired.

Caset = let !z : ω be t′ in t′′: By definition

t(~α, ~x′, ~x) = let !z bet′(~α, ~x′, ~x) in t′′(~α, ~x′, ~x, z).

Suppose we are given~α, ~β, ~R : AdmRel(~α, ~β), and suppose~x~σ[~R]~y and~x′~σ′[~R]~y′. If we further know
zω[R]z′, then by induction

t′′(α, ~x′, ~x, z)τ [R]t′′(β, ~y′, ~y, z′).

By Lemma 3.2 we conclude that ifv(!ω[R])v′ then

(let !z bev in t′′(α, ~x′, ~x, z))τ [R](let !z bev′ in t′′(β, ~y′, ~y, z)).

Since by inductiont′(~α, ~x′, ~x)!ω[~R]t′(~α, ~y′, ~y), we are done.

112

σ ∼=
∏
α. (σ (α) (α

σ ⊗ τ ∼=
∏
α. (σ (τ (α) (α

I ∼=
∏
α. α (α

0 =
∏
α. α

1 =
∏
α. α

σ + τ =
∏
α. (σ (α) → (τ (α) → α

σ × τ =
∏
α. (σ (α) + (τ (α) (α

N =
∏
α. (α (α) → α (α∐

α. σ =
∏
β. (
∏
α. σ (β) (β

µα. σ =
∏
α. (σ (α) (α

να. σ =
∐
α. !(α (σ)⊗ α

Figure 5: Types definable using parametricity

Cases = let ? bes′ in s′′: By induction, if~x~σ[~R]~y and~x′~σ′[~R]~y′ then

s′′(~α, ~x′, ~x)τ [~R]s′′(~β, ~y′, ~y)

and
s′(~α, ~x′, ~x)IRels

′(~β, ~y′, ~y).

The definition of the latter tells us exactly that

(let ? bes′(~α, ~x′, ~x) in s′′(~α, ~x′, ~x))τ [~R](let ? bes′(~β, ~y′, ~y) in s′′(~β, ~y′, ~y))

as desired.

3.2 A category of linear functions

At this point we wish to show certain types definable via polymorphism as summed up in Figure 5. To state
this precisely, we introduce for each kind contextΞ the categoryLinTypeΞ as follows:

Objects are typesΞ | −;− ` σ : Type.

Morphisms[Ξ | −;− ` f : σ (τ] are equivalence classes of terms of typeσ (τ ; the equivalence
relation on these terms beinginternalequality.

Composition in this category is given by lambda abstraction, i.e.f : σ (τ composed withg : ω (σ
yieldsλ◦x : ω. f(gx).

We start by proving that under the assumption of identity extension and extensionality, for all typesΞ `
σ : Type we have an isomorphism of objects ofLinTypeΞ:

σ ∼=
∏
α. (σ (α) (α

for α not free inσ. We can define terms

f : σ (
∏
α. ((σ (α) (α)

113

and
g :
∏
α. ((σ (α) (α) (σ

by
f = λ◦x : σ.Λα. λ◦h : σ (α. h x

and
g = λ◦x :

∏
α. ((σ (α) (α). x σ idσ

Clearly
g (f x) = (f x) σ idσ = x

sogf = idσ. Notice that this only involve external equality and thus we did not need extensionality here.

Proposition 3.4. Using identity extension and extensionality, one may prove thatfg is internally equal to
the identity.

Proof. For a terma :
∏
α. (σ (α) (α we have

f ◦ g a = Λα. λ◦h : σ (α. h(a σ idσ).

Using extensionality, it suffices to prove that

Ξ, α | h : σ (α | − ` h(a σ idσ) =α a α h

holds in the internal logic.

By the parametricity schema we know that for any admissible relationρ : AdmRel(τ, τ ′)

(a τ)((eqσ (ρ) (ρ)(a τ ′)

If we instantiate this with the admissible relation〈h〉, we get

(a σ)((eqσ (〈h〉) (〈h〉)(a α)

Sinceidσ(eqσ (〈h〉)h we know that(a σ idσ)〈h〉(a α h), i.e.,

h(a σ idσ) =α a α h,

as desired.

This proof may essentially be found in [5].

Intuitively, what happens here is thatσ is a subtype of
∏
α. (σ (α) (α, where the inclusionf mapsx

to application atx. We use parametricity to show that
∏
α. (σ (α) (α does not contain anything that is

not inσ.

114

3.3 Tensor types

The goal of this section is to prove

σ ⊗ τ ∼=
∏
α. (σ (τ (α) (α

using identity extension and extensionality, forΞ ` σ : Type andΞ ` τ : Type types in the same context.
The isomorphism is in the categoryLinTypeΞ.

This isomorphism leads to the question of wether tensor types are actually superfluous in the language. The
answer is yes in the following sense: Call the language without tensor types (andI) t and the language as is
T . Then there are transformationsp : T → t andi : t→ T , i being the inclusion, such thatp ◦ i = idT and
i ◦ p ∼= idt. This is all being stated more precisely, not to mention proved, in [16]. In this paper we settle for
the isomorphism above.

We can construct terms
f : σ ⊗ τ (

∏
α. (σ (τ (α) (α

and
g : (

∏
α. (σ (τ (α) (α) (σ ⊗ τ

by
f y = let x⊗ x′ : σ ⊗ τ bey in Λα. λ◦h : σ (τ (α. h x x′

and
g y = y σ ⊗ τ pairing,

where the mappairing : σ (τ (σ ⊗ τ is

pairing = λ◦x : σ. λ◦x′ : τ. x⊗ x′.

Let us show that the compositiong ◦ f is the identity.

g ◦ f y = g(let x⊗ x′ : σ ⊗ τ bey in Λα. λ◦h : σ (τ (α. h x x′) =
(let x⊗ x′ : σ ⊗ τ bey in Λα. λ◦h : σ (τ (α. h x x′) σ ⊗ τ pairing =
(Λα. λ◦h : σ (τ (α. let x⊗ x′ : σ ⊗ τ bey in h x x′) σ ⊗ τ pairing =

let x⊗ x′ : σ ⊗ τ bey in x⊗ x′ = y.

Proposition 3.5. Using extensionality and identity extension one may prove that the composition

fg : (
∏
α. (σ (τ (α) (α) ((

∏
α. (σ (τ (α) (α)

is internally equal to the identity.

Proof. We compute

f ◦ g y = f(y σ ⊗ τ pairing) =
let x⊗ x′ : σ ⊗ τ be(y σ ⊗ τ pairing) in Λα. λ◦h : σ (τ (α. h x x′

Suppose we are given a typeα and a maph : σ (τ (α. We can defineφh : σ ⊗ τ (α as

φh = λ◦y : σ ⊗ τ. let x⊗ x′ : σ ⊗ τ bey in h x x′.

115

Thenφh(pairing x x′) = h x x′, which means thatpairing(eqσ (eqτ (〈φh〉)h. By the parametricity
schema

Ξ, α | h : σ (τ (α, y :
∏
α. (σ (τ (α) (α | − | > `

(y σ ⊗ τ)((eqσ (eqτ (〈φh〉) (〈φh〉)(y α)
so

(y σ ⊗ τ pairing)〈φh〉(y α h),

i.e,
φh(y σ ⊗ τ pairing) =α y α h.

Writing this out we get

Ξ, α | h : σ (τ (α, y :
∏
α. (σ (τ (α) (α | − | > `

let x⊗ x′ : σ ⊗ τ be(y σ ⊗ τ pairing) in h x x′ =α y α h.

Using extensionality we get

Λα. λ◦h : σ (τ (α. let x⊗ x′ : σ ⊗ τ be(y σ ⊗ τ pairing) in (h x x′) =α y.

This is enough, since by the rules for external equality the left hand side is

let x⊗ x′ : σ ⊗ τ be(y σ ⊗ τ pairing) in (Λα. λ◦h : σ (τ (α. h x x′).

3.4 Unit object

The goal of this section is to prove that identity extension together with extensionality implies

I ∼=
∏
α. α (α.

The isomorphism holds inLinTypeΞ for all Ξ.

We first define mapsf : I (
∏
α. α (α andg : (

∏
α. α (α) (I as

f = λ◦x : I. let ? bex in id ,
g = λ◦t :

∏
α. α (α. t I ?,

where
id = Λα. λ◦y : α. y.

We first notice that
g(f(x)) = (let ? bex in id) I ? =

let ? bex in (id I ?) = let ? bex in ? = x.

Proposition 3.6. Using identity extension and extensionality, we have thatfg is internally equal to the
identity on

∏
α. α (α.

Proof. First we write out the definition

fg = λ◦t : (
∏
α. α (α). let ? be(t I ?) in id .

We show that for anyt :
∏
α. α (α, for any typeσ, and anyx : σ we havefg(t) σ x =σ t σ x.

116

Givenσ, x as above, we can defineh : I (σ ash = λ◦z : I. let ? bez in x. Then〈h〉 is admissible, so by
identity extension

(t I)(〈h〉 (〈h〉)(t σ).

Sinceh(?) = x we haveh(t I ?) =σ t σ x, and by definition

h(t I ?) = let ? be(t I ?) in x = let ? be(t I ?) in (id σ x) =
(let ? be(t I ?) in id) σ x = f ◦ g(t) σ x.

3.5 Initial objects and coproducts

We define
0 =

∏
α. α

For eachΞ this defines a weak initial object inLinTypeΞ, since for any typeΞ ` σ, there exists a term
0σ : 0 (σ, defined as

λ◦x : 0. x σ

Proposition 3.7. Supposef : 0 (σ for some typeΞ ` σ. Using identity extension and extensionality it is
provable thatf =0(σ 0σ. Thus,0 is an initial object inLinTypeΞ for eachΞ.

Proof. First notice that for any maph : σ (τ , by identity extension(x σ)〈h〉(x τ) for anyx : 0. Thus, by
extensionality,h ◦ 0σ =0(τ 0τ for anyh : σ (τ . In particular, for any typeσ, the caseh = 0σ gives us
x 0 σ =σ x σ, i.e.,00 =0(0 id0. If f : 0 (σ, by the above we have0σ =0(σ f ◦ 00 =0(σ f

Next, supposeΞ ` σ, τ are types in the same context. We define

σ + τ =
∏
α. (σ (α) → (τ (α) → α

and show under the assumption of identity extension and extensionality that this defines a coproduct ofσ
andτ in LinTypeΞ.

First define termsinσ : σ (σ + τ , inτ : τ (σ + τ as

inσ = λ◦x : σ.Λα. λf : σ (α. λg : τ (α. f(x)
inτ = λ◦y : τ.Λα. λf : σ (α. λg : τ (α. g(y)

For any pair of mapsf : σ (ω, g : τ (ω define the copairing[f, g] : σ + τ (ω as

[f, g] = λ◦x : σ + τ. x ω !f !g,

then clearly[f, g](inσ(x)) = f(x) and[f, g](inτ (y)) = g(y), and soσ + τ is a weak coproduct ofσ andτ
in LinTypeΞ. We remark that the copairing constructor can also be defined as a polymorphic term

[−,−] : Λα. (σ (α) → (τ (α) → σ + τ (α

of intuitionistic function type. Of course we can define an even more generel copairing by abstractingσ, τ
as well.

Lemma 3.8. If h : ω (ω′, f : σ (ω andg : τ (ω, then using extensionality and identity extension, it
is provable that[h ◦ f, h ◦ g] =σ+τ(ω′ h ◦ [f, g].

117

Proof. Since
f(eqσ (〈h〉)h ◦ f
g(eqτ (〈h〉)h ◦ g

for anyx : σ + τ ,
(x ω !f !g)〈h〉(x ω′ !(h ◦ f) !(h ◦ g))

by identity extension, i.e.,h([f, g](x)) = [h ◦ f, h ◦ g](x).

Lemma 3.9. Using extensionality and identity extension, it is provable that[inσ, inτ] =σ+τ(σ+τ idσ+τ .

Proof. Given anyω, a : σ (ω, b : τ (ω, we have

[a, b]([inσ, inτ](x)) =ω [[a, b] ◦ inσ, [a, b] ◦ inτ](x) =ω [a, b](x)

for anyx : σ + τ . By unfolding the definition of[a, b] in the above equality we get

[inσ, inτ](x) ω !a !b =ω x ω !a !b.

Sinceω, a, b were arbitrary, extensionality (and Lemma 2.34) implies[inσ, inτ](x) =σ+τ x for all x.

Proposition 3.10.For anyf : σ (ω, g : τ (ω andh : σ+τ (ω, if h◦inσ =σ(ω f andh◦inτ =τ(ω g,
then it is provable using identity extension and extensionality thath =σ+τ(ω [f, g]. Thusσ + τ is a
coproduct ofσ andτ in LinTypeΞ.

Proof.
[f, g] =σ+τ(ω [h ◦ inσ, h ◦ inτ] =σ+τ(ω h ◦ [inσ, inτ] =σ+τ(ω h

3.6 Terminal objects and products

The initial object0 is also weakly terminal, since for any typeσ,

Ωσ(0 = Y σ !idσ(0

is a term of typeσ (0. In fact, using parametricity,0 can be proved to be terminal.

Proposition 3.11. Supposef, g : σ (0. Using identity and extensionality it is provable thatf =σ(0 g.
Thus0 is a terminal object inLinTypeΞ for anyΞ.

Proof. We will prove
∀x, y : 0. x =0 y

which, by extensionality, implies the proposition. Suppose we are givenx, y : 0. The term

λ◦z : 0. z 0 (σ y

has type0 (σ, and thus is equal to0σ. This means thatx σ =σ x 0 (σy. Likewisex 0 (σy =σ y σ,
sox σ =σ y σ. Since this holds for allσ, by extensionalityx =0 y.

118

Supposeσ, τ are types in the same contextΞ. Define

σ × τ =
∏
α. (σ (α) + (τ (α) (α.

This defines a weak product inLinTypeΞ with projectionsπσ : σ× τ (σ andπτ : σ× τ (τ defined as

πσ = λ◦x : σ × τ. x σ (inσ(σidσ)
πτ = λ◦x : σ × τ. x τ (inτ(τ idτ)

The pairing of termsf : ω (σ andg : ω (τ is 〈f, g〉 : ω (σ × τ defined as

〈f, g〉 = λ◦x : ω.Λα. λ◦h : (σ (α) + (τ (α). [λ◦z : σ (α. z ◦ f, λ◦z : τ (α. z ◦ g] h x

Then
πσ(〈f, g〉(x)) = 〈f, g〉(x) σ (inσ(σidσ) = (λ◦z : σ (σ. z ◦ f) idσ x = f(x)

and soπσ ◦ 〈f, g〉 = f and likewiseπτ ◦ 〈f, g〉 = g proving thatσ × τ defines a weak product.

Lemma 3.12. Using identity extension and extensionality it is provable that for anyf : ω (σ, g : ω (
τ, k : ω′ (ω,

〈f, g〉 ◦ k =ω′(σ×τ 〈f ◦ k, g ◦ k〉

Proof. The lemma is easily proved by the following direct computation using properties of coproducts
established above. The notation(− ◦ k) below denotes the termλ◦y : ω (α. y ◦ k of type (ω (α) (
ω′ (α.

〈f ◦ k, g ◦ k〉(x) =σ×τ Λα. λ◦h : (σ (α) + (τ (α). [λ◦z : σ (α. z ◦ f ◦ k, λ◦z : τ (α. z ◦ g ◦ k] h x
=σ×τ Λα. λ◦h. [(− ◦ k) ◦ (λ◦z : σ (α. z ◦ f), (− ◦ k) ◦ (λ◦z : τ (α. z ◦ g)] h x
=σ×τ Λα. λ◦h. (− ◦ k) ◦ [(λ◦z : σ (α. z ◦ f), (λ◦z : τ (α. z ◦ g)] h x
=σ×τ Λα. λ◦h. [(λ◦z : σ (α. z ◦ f), (λ◦z : τ (α. z ◦ g)] h (k(x))
=σ×τ 〈f, g〉 ◦ k(x)

Lemma 3.13. Identity extension and extensionality implies that〈πσ, πτ 〉 =σ×τ(σ×τ idσ×τ .

Proof. We must show that for anyx : σ × τ , anyα and anyh : (σ (α) + (τ (α)

[λ◦z : σ (α. z ◦ πσ, λ
◦z : σ (α. z ◦ πτ] h x =α x α h

In fact, since we are dealing with coproducts, it suffices to show that for anyl : σ (α andk : τ (α

l(πσ(x)) =α x α (inσ(α l)
k(πτ (x)) =α x α (inτ(α k)

We just prove the first of these equations. Since

idσ(eqσ (〈l〉)l

by parametricity of a polymorphic version ofin,

inσ(σ(idσ)((eqσ (〈l〉) + (eqτ (〈l〉)inσ(α(l)

119

and so by parametricity ofx : σ × τ

x σ (inσ(σ idσ)〈l〉x α (inσ(α l)

i.e.
πσ(x)〈l〉x α (inσ(α l)

as desired.

Proposition 3.14. Supposeh : ω (σ × τ is such thatπσ ◦ h =ω(σ f andπτ ◦ h =ω(τ g then it is
provable using identity extension and extensionality thath =ω(σ×τ 〈f, g〉. Thusσ × τ is a product ofσ
andτ in LinTypeΞ.

Proof.
h =ω(σ×τ 〈πσ, πτ 〉 ◦ h =ω(σ×τ 〈πσ ◦ h, πτ ◦ h〉 =ω(σ×τ 〈f, g〉.

3.7 Natural Numbers

We define the type of natural numbers as

N =
∏
α. (α (α) → α (α.

We further define terms0: N, s : N (N as

0 = Λα. λf : α (α. λ◦x : α. x, s = λ◦y : N.Λα. λf : α (α. λ◦x : α. f(y α !f x)

and prove that(N, 0, s) is a weak natural numbers object in eachLinTypeΞ, and, using parametricity and
extensionality, an honest natural numbers object.

Suppose we are given a typeσ, a terma : σ and a morphismb : σ (σ. We can then defineh : N (σ as
h(y) = y σ !b a. Then clearlyh(0) = a, andh(s x) = b(x σ !b a) = b(h(x)), so(N, 0, s) is a weak natural
numbers object.

We can express the weak natural numbers object property as: for alla, b, there exists anh such that

I
0 ◦

a
◦@

@@
@@

@@
@ N

h

◦

s ◦N
h

◦
σ b ◦σ

commutes.

Lemma 3.15. Identity Extension and extensionality implies

∀x : N. x N !s 0 =N x

Proof. Suppose we are givenσ, a, b and defineh as above. Sinceb ◦ h = h ◦ s andh 0 = a, we have
s(〈h〉 (〈h〉)b and0〈h〉a, by parametricity ofx, (x N !s 0)〈h〉(x σ !b a), i.e.,

(x N !s 0) σ !b a =σ x σ !b a.

Lettingσ range over all types anda, b over all terms, using extensionality and Lemma 2.34, we have

x N !s 0 =N x,

as desired.

120

We can now prove thatN is a natural numbers object in eachLinTypeΞ.

Lemma 3.16. Assuming identity extension and extensionality, givenσ, a, b, the maph defined as above is
up to internal equality the uniqueh′ such thath′(0) = a, h′(s x) = b(h′ x).

Proof. Supposeh′ satisfies the requirements of the lemma. Thens(〈h′〉 (〈h′〉)b and0〈h′〉a (this is just a
reformulation of the requirements), so for arbitraryx : N, by parametricity ofx,

x σ !b a =σ h
′(x N !s 0) =σ h

′(x).

Thus, by extensionality,h′ =N(σ h.

3.7.1 Induction principle

The parametricity principle for the natural numbers implies, that ifR : AdmRel(N,N), andx : N, then

(x N)((R (R) → R (R)(x N).

So if s(R (R)s andR(0, 0), then
(x N !s 0)R(x N !s 0).

By Lemma 3.15,x N !s 0 =N x, so we can conclude thatR(x, x). If φ is a proposition onN such that
(x : N, y : N). φ(x) is admissible, then from parametricity we obtain the usual induction principle

(φ(0) ∧ ∀x : N. φ(x) ⊃ φ(s(x))) ⊃ ∀x : N. φ(x).

3.8 Types as functors

Definition 3.17. We say that~α ` σ : Type is an inductively constructed type, if it can be constructed from
free variables~α and closed types using the type constructors of PILLY , i.e.,(,⊗, I, ! and

∏
α..

For example, all types of pure PILLY are inductively defined, and ifσ is a closed type then
∏
α. σ×α is an

inductively constructed type. However, some models may contain types that are not inductively constructed!
For example, in syntactical models, any basic open type, such as the typeα ` lists(α) is not inductively
constructed.

We define positive and negative occurences of free type variables in inductively defined types as usual. The
type variableα occurs positive in the typeα and the positive occurences of a type variableα in σ (τ are
the positive occurences ofα in τ and the negative inσ. The negative occurences ofα in σ (τ are the
positive inσ and the negative inτ . The positive and negative occurences ofα in

∏
β. σ are the positive

and negative occurences inσ for α 6= β. The rest of the type constructors preserve positive and negative
occurences of type variables.

If σ(α, β) is an inductively defined type in which the free type variableα appears only negatively and the
free type variableβ appears only positively, then we can considerσ as a functorLinTypeop×LinType →
LinType by defining the term

Mσ(α,β) :
∏
α, β, α′, β′. (α′ (α) → (β (β′) → σ(α, β) (σ(α′, β′),

which behaves as the morphism part of a functor, i.e., it respects composition and preserves identities. We
defineMσ(α,β) by structural induction onσ. This construction immediately generalizes to types with less or
more than two free type variables, all of which appear only positively or negatively.

121

For the base case of the induction, ifσ(α, β) = β, define

Mβ = Λα, β, α′, β′. λf, g. g.

In the caseσ(β, α) (τ(α, β) we define the term

Mσ(β,α)(τ(α,β) :∏
α, β, α′, β′. (α′ (α) → (β (β′) → (σ(β, α) (τ(α, β)) (σ(β′, α′) (τ(α′, β′)

by
Mσ(β,α)(τ(α,β) = Λα, β, α′, β′. λf, g.

λ◦h : σ(β, α) (τ(α, β). (Mτ α β α
′ β′ f g) ◦ h ◦ (Mσ β

′ α′ β α g f).

For bang types, we define:

M!σ(α,β) = Λα, β, α′, β′. λf : α′ (α. λg : β (β′. λ◦x : !σ(α, β).
let !y bex in !(Mσ(α,β) α β α

′ β′ f g y).

For tensor types, we define:

Mσ(α,β)⊗τ(α,β) = Λα, β, α′, β′. λf, g. λ◦z : σ(α, β)⊗ τ(α, β).
let x⊗ y : σ(α, β)⊗ τ(α, β) bez in (Mσα β α

′ β′ f g x)⊗ (Mτα β α
′ β′ f g y).

The last case is the case of polymorphic types:

M∏
ω.σ(α,β)

= Λα, β, α′, β′. λf, g. λ◦z :
∏
ω. σ(α, β).

Λω : Type.Mσ(α,β) α β α
′ β′ f g (z ω).

Lemma 3.18. The termMσ respects composition and preserves identities, i.e., forf ′ : α′′ (α′, f : α′ (
α, g : β (β′, andg′ : β′ (β′′,

• Mσ(α,β) α β α
′′ β′′!(f ◦ f ′) !(g′ ◦ g) = (Mσ(α,β) α

′ β′ α′′ β′′ !f ′ !g′) ◦ (Mσ(α,β) α β α
′ β′ !f !g),

• Mσ(α,β)α β α β !idα!idβ = idσ(α,β).

Proof. The proof proceeds by induction over the structure ofσ, and most of it is the same as in [23], except
the case of tensor-types and!. These cases are essentially proved in [2].

Notice that in the proof of Lemma 3.18 we do not need parametricity. Suppose

Ξ | −;− ` f : α′ (α, g : β (β′.

We shall writeσ(f, g) for
Mσ(α,β)α β α

′ β′ !f !g.

The type ofσ(f, g) is σ(α, β) (σ(α′, β′). Notice that we applyM to !f, !g, sinceM is of intuitionistic
function type (→ instead of(). By the previous lemma,σ defines a bifunctorLinTypeop×LinType →
LinType.

First we consider this in the case of only one argument:

122

Lemma 3.19 (Graph lemma). Assuming identity extension, for any typeα ` σ with α occuring only
positively and any mapf : τ (τ ′

σ[〈f〉] ≡ 〈σ(f)〉.

Likewise, supposeα ` σ′ is a type withα only occuring negatively. Then identity extension implies

σ[〈f〉] ≡ 〈σ(f)〉op,

whereσ(f)〉op is (x : σ(τ), y : σ(τ ′)). 〈σ(f)〉(y, x).

Proof. We will only prove the first half of the lemma; the other half is proved the same way. Sinceα occurs
only positively inσ, we will assume for readability thatMσ has type

∏
α, β. (α (β) → σ(α) (σ(β).

By parametricity ofMσ, for any pair of admissible relationsρ : AdmRel(α, α′) andρ′ : AdmRel(β, β′)

(Mσ α β)((ρ (ρ′) → (σ[ρ] (σ[ρ′]))(Mσ α
′ β′). (2)

Let f : τ (τ ′ be arbitrary. If we instantiate (2) withρ = eqτ andρ′ = 〈f〉, we get

(Mσ τ τ)((eqτ (〈f〉) → (eqσ(τ) (σ[〈f〉]))(Mσ τ τ
′),

using the identity extension schema. Sinceidτ (eqτ (〈f〉)f ,

!idτ !(eqτ (〈f〉)!f,

and usingMσ τ τ
′ !f = σ(f) we get

idσ(τ)(eqσ(τ) (σ[〈f〉])σ(f),

i.e.,
∀x : σ(τ). x(σ[〈f〉])(σ(f)x).

We have thus proved〈σ(f)〉 impliesσ[〈f〉].
To prove the other direction, instantiate (2) with the admissible relationsρ = 〈f〉, ρ′ = eqτ ′ for f : τ (τ ′.
Sincef(〈f〉 (eqτ ′)idτ ′ ,

σ(f)(σ[〈f〉] → eqσ(τ ′))idσ(τ ′).

So for anyx : σ(τ) andy : σ(τ ′) we havex(σ[〈f〉])y impliesσ(f)x =σ(τ ′) y. This just means thatσ[〈f〉]
implies〈σ(f)〉.

3.9 Existential types

In this section we consider existential or sum types. IfΞ, α ` σ is a type, we define the typeΞ `
∐
α. σ as∐

α. σ =
∏
β. (
∏
α. σ (β) (β

In fact, this defines a functor
LinTypeΞ,α → LinTypeΞ

with functorial action as defined in Section 3.8. In this section we show that this functor is left adjoint to the
weakening functor

LinTypeΞ → LinTypeΞ,α

123

mapping a typeΞ ` σ to Ξ, α ` σ. In other words, we show that for any typeΞ ` τ , there is a one-to-one
correspondence between termsΞ ` t : (

∐
α. σ) (τ and termsΞ, α ` σ (τ if we consider terms up to

internal equality provable using identity extension and extensionality.

First define the term
pack:

∏
α. (σ (

∐
α. σ)

asΛα. λ◦x : σ.Λβ. λ◦f :
∏
α. (σ (β). f α x. The correspondence is as follows. Suppose firstΞ, α `

t : σ (τ . ThenΞ ` t̂ : (
∐
α. σ) (τ is λ◦x :

∐
α. σ. x τ (Λα. t). If Ξ ` s : (

∐
α. σ) (τ then

Ξ, α ` ŝ : σ (τ is defined to beλx : σ. s(packα x).

Now, suppose we start with a termΞ, α ` t : σ (τ then

ˆ̂t = λ◦x : σ. (λ◦y :
∐
α. σ. y τ (Λα. t)) (packα x)

= λ◦x : σ.packα x τ (Λα. t)
= λ◦x : σ. (Λα. t) α x
= t.

It remains to prove that̂̂s is equal tos for any Ξ ` s : (
∐
α. σ) (τ . For this we need to use identity

extension.

Lemma 3.20. Supposex :
∐
α. σ, τ, τ ′ are types andf : τ (τ ′, g :

∏
α. σ (τ . Then using identity

extension and extensionality,
x τ ′ (Λα. f ◦ (g α)) =τ ′ f (x τ g)

Proof. Using identity extension ong it is easy to see thatg(
∏
α. σ (〈f〉)Λα. f ◦ (g α). If x :

∐
α. σ then

by identity extension
x τ g〈f〉x τ ′ (Λα. f ◦ (g α))

which is what we needed to prove.

Lemma 3.21. It is provable using identity extension and extensionality that

∀x : (
∐
α. σ). x

∐
α. σ pack=∐

α.σ x

Proof. Suppose we are givenβ andf :
∏
α. σ (β. We show that

x β f =β x (
∐
α. σ) packβ f

Definef ′ = λ◦x : (
∐
α. σ) x β f of type(

∐
α. σ) (β. By Lemma 3.20

x β (Λα. f ′ ◦ (packα)) =β f
′(x

∐
α. σ pack) =β x

∐
α. σ packβ f

so we just need to show thatΛα. f ′ ◦ (packα) is internally equal tof . But

Λα. f ′ ◦ (packα) α y =β f
′ (packα y) =β packα y β f =β f α y.

Proposition 3.22. SupposeΞ ` s : (
∐
α. σ) (τ . It is provable using identity extension and extensionality

that ˆ̂s is internally equal tos.

Proof.
ˆ̂s(x) =τ x τ (Λα. λ◦x′ : σ. s (packα x′)) =τ s (x

∐
α. σ pack) =τ s x

where for the second equality we have used Lemma 3.20.

124

3.10 Initial algebras

Supposeα ` σ : Type is an inductively constructed type in whichα occurs only positively. As we have just
seen, such a type induces a functor

LinTypeΞ → LinTypeΞ

for eachΞ. We aim to define an initial algebra for this type.

Define the closed type
µα. σ(α) =

∏
α. (σ(α) (α) → α,

and define
fold:

∏
α. (σ(α) (α) → (µα. σ(α) (α)

as
fold = Λα. λf : σ(α) (α. λ◦u : µα. σ(α). u α !f,

and
in : σ(µα. σ(α)) (µα. σ(α)

as
in z = Λα. λf : σ(α) (α. f(σ(foldα !f) z).

Lemma 3.23. For any algebraf : σ(τ) (τ , fold τ !f is a map of algebras from(µα. σ(α), in) to (τ, f),
i.e., the diagram

σ(µα. σ(α)) in ◦

σ(fold τ !f)

◦

µα. σ(α)

fold τ !f

◦
σ(τ)

f
◦τ

commutes.

Proof. Forx : σ(µα. σ(α))

(fold τ !f) ◦ in x = in x τ !f = f(σ(fold τ !f) x),

as desired.

In words we have shown thatin defines a weakly initial algebra for the functor defined byσ in LinTypeΞ

for eachΞ. Notice that parametricity was not needed in this proof.

Lemma 3.24. SupposeΞ | Γ;− ` f : σ(τ) (τ andΞ | Γ;− ` g : σ(ω) (ω are algebras forσ, and
Ξ | Γ;− ` h : τ (ω is a map of algebras, i.e.,h f = g σ(h). Then, assuming identity extension and
extensionality,

h ◦ (fold τ !f) =µα.σ(α)(ω foldω !g.

Proof. Sinceh is a map of algebras
f(〈σ(h)〉 (〈h〉)g,

so by the Graph Lemma (3.19)
f(σ[〈h〉] (〈h〉)g

125

and by Lemma 2.31
!f(!(σ[〈h〉] (〈h〉))!g.

Clearly(fold, fold) ∈ eq∏
α.(σ(α)(α)→(µα.σ(α)(α)

, and thus, by identity extension,

(fold, fold) ∈
∏
α. (σ(α) (α) → (β (α)[eqµα.σ(α)/β],

so for anyx : µα. σ(α),
(fold τ !f x)〈h〉(foldω !g x),

i.e.,
h ◦ (fold τ !f) =µα.σ(α)(ω foldω !g,

as desired.

Lemma 3.25. Using identity extension and extensionality,

foldµα. σ(α) !in =µα.σ(α)(µα.σ(α) idµα.σ(α).

Proof. By Lemma 3.24 we know that for any typeτ , f : σ(τ) (τ andu : µα. σ(α)

(fold τ !f) ◦ (foldµα. σ(α) !in) u =τ fold τ !f u.

The left hand side of this equation becomes

fold τ !f (u µα. σ(α) !in) = (u µα. σ(α) !in)τ !f

and, since the right hand side is simply
u τ !f,

the lemma follows from Lemma 2.34.

Theorem 3.26.SupposeΞ | −;− ` f : σ(τ) (τ is an algebra andΞ | −;− ` h : µα. σ(α) (τ is a map
of algebras from in tof . Then if we assume identity extension and extensionality,h =µα.σ(α)(τ fold τ !f.

Proof. By Lemma 3.24 we have

h ◦ (foldµα. σ(α) !in) =µα.σ(α)(τ fold τ !f.

Lemma 3.25 finishes the job.

We have shown thatin defines an initial algebra.

3.11 Final Coalgebras

As in section 3.10 we will assume thatα ` σ(α) : Type is a type in whichα occurs only positively, and this
time we construct final coalgebras for the induced functor.

Define
να. σ(α) =

∐
α. !(α (σ(α))⊗ α =

∏
β. (
∏
α. (!(α (σ(α))⊗ α (β)) (β

with combinators
unfold:

∏
α. (α (σ(α)) → α (να. σ(α),

out: να. σ(α) (σ(να. σ(α))

126

defined by
unfold = Λα. λ◦f : !(α (σ(α)). λ◦x : α.packα (f ⊗ x)

out = λ◦x : να. σ(α). x σ(να. σ(α)) r,

where

r :
∏
α. !(α (σ(α))⊗ α (σ(να. σ(α))

r = Λα. λ◦y : !(α (σ(α))⊗ α. letw ⊗ z bey in σ(unfoldα w)(let !f bew in f z).

Lemma 3.27. For any coalgebraf : τ (σ(τ), the map unfoldτ !f is a map of coalgebras fromf to out.

Proof. We need to prove that the following diagram commutes

τ
f

◦

unfoldτ !f

◦

σ(τ)

σ(unfoldτ !f)

◦
να. σ(α) out◦σ(να. σ(α)).

But this is done by a simple computation

out(unfoldτ !f x) = out(pack τ(!f)⊗ x) =
packτ(!f)⊗ x σ(να. σ(α)) r = r τ ((!f)⊗ x) =

σ(unfoldτ (!f)) (f x).

Lemma 3.27 shows thatout is a weakly final coalgebra for the functor induced byσ onLinTypeΞ for each
Ξ. Notice that parametricity was not needed here.

Lemma 3.28. Supposeh : (f : τ (σ(τ)) ((f ′ : τ (σ(τ)) is a map of coalgebras. If we assume
identity extension, then the diagram

τ

h

◦

unfoldτ !f
◦να. σ(α)

τ ′
unfoldτ ′ !f ′

◦nnnnnnnnnnnnnn

commutes internally.

Proof. Using the Graph Lemma, the notion ofh being a map of coalgebras can be expressed as

f(〈h〉 (σ[〈h〉])f ′.

Now, by parametricity ofunfold,

unfoldτ !f(〈h〉 (eqνα.σ(α))unfoldτ ′ !f ′,

which is exactly what we wanted to prove.

Lemma 3.29. Using extensionality and identity extension,

unfoldνα. σ(α) !out

is internally equal to the identity onνα. σ(α).

127

Proof. Seth = unfoldνα. σ(α) !out in the following.

By Lemma 3.27h is a map of coalgebras fromout to out, so by Lemma 3.28,h = h2. Intuitively, all we
need to prove now is thath is “surjective”.

Consider anyg :
∏
α. (!(α (σ(α)) ⊗ α (β). For any coalgebra mapk : (f : α (σ(α)) ((f ′ :

α′ (σ(α′)), we must have, by Lemmas 3.19, 2.31, and 2.29,

(!f ⊗ x)(!(〈k〉 (σ[〈k〉])⊗ 〈k〉)(!f ′ ⊗ kx),

so by identity extension and parametricity ofg,

∀x : α. g α (!f)⊗ x =β g α
′ (!f ′)⊗ k(x).

Using this on the coalgebra mapunfoldα !f from f to outwe obtain

∀x : α. g α (!f)⊗ x =β g να. σ(α) (!out)⊗ unfoldα !f x.

By Lemma 2.34 this implies that

∀f : !(α (σ(α)), x : α. g α f ⊗ x =β g να. σ(α) (!out)⊗ unfoldα f x,

which implies

∀z : !(α (σ(α))⊗ α. g α z =β g να. σ(α) (let f ⊗ x bez in (!out)⊗ unfoldα f x)

using Lemma 2.36.

In other words, if we define
k :
∏
α. (!(α (σ(α))⊗ α (τ),

whereτ =!(να. σ(α) (σ(να. σ(α)))⊗ να. σ(α), to be

k = Λα. λ◦y :!(α (σ(α))⊗ α. let f ⊗ x bey in (!out)⊗ unfoldα f x,

then
∀α. g α =!(α(σ(α))⊗α(β (g να. σ(α)) ◦ (k α). (3)

Now, suppose we are givenα, α′, R : Rel(α, α′) and termsf, f ′ such that

f(!(R (σ[R])⊗R)f ′.

Then, by (3) and parametricity ofg

g α f =β g α
′ f ′ =β (g να. σ(α))(k α′ f ′),

from which we conclude

g(∀(α, β,R : Rel(α, β)). (!(R (σ[R])⊗R (〈g να. σ(α)〉op))k.

(Here we useSop for the inverse relation ofS.) Using parametricity, this implies that, for anyx : να. σ(α),
we have

x β g =β g να. σ(α) (x τ k).

128

Thus, sinceg was arbitrary, we may apply the above tog = k and get

x τ k =τ k να. σ(α) (x τ k) = let f ⊗ z be(x τ k) in (!out)⊗ unfoldα f z.

If we write
l = λx : να. σ(α). let f ⊗ z be(x τ k) in unfoldα f z,

then, sincek is a closed term, so isl, and from the above calculations we conclude that we have

∀β. ∀g :
∏
α. !(α (σ(α))⊗ α (β. x β g =β g να. σ(α) (!out)⊗ (l x).

Now, finally,

h(l x) = unfoldνα. σ(α) !out(l x) =
packνα. σ(α) !out⊗ (l x) =

Λβ. λg :
∏
α. (!(α (σ(α))⊗ α (β). g να. σ(α) !out⊗ (l x) =να.σ(α)

Λβ. λg :
∏
α. (!(α (σ(α))⊗ α (β). x β g = x,

where we have used extensionality. Thusl is a right inverse toh, and we conclude

h x =να.σ(α) h
2(l x) =να.σ(α) h(l x) =να.σ(α) x.

Theorem 3.30. SupposeΞ | −;− ` f : τ (σ(τ) is a coalgebra andΞ | −;− ` h : τ (µα. σ(α) is
a map of algebras fromf to out. Then if we assume identity extension and extensionalityh =τ(µα.σ(α)

unfoldα !f .

Proof. Consider a map of coalgebras intoout:

τ
f

◦

h

◦

σ(τ)

σ(h)

◦
να. σ(α) out◦σ(να. σ(α)).

By Lemmas 3.28 and 3.29,

unfoldτ !f =τ(να.σ(α) (unfoldνα. σ(α) !out) ◦ g =τ(να.σ(α) g.

Theorem 3.30 shows thatout is a final coalgebra for the endofunctor onLinTypeΞ induced byσ for each
Ξ.

3.12 Recursive type equations

In this section we consider inductively constructed typesα ` σ(α) and construct closed typesτ such that
σ(τ) ∼= τ . In Sections 3.10 and 3.11 we solved the problem in the special case ofα occuring only positively
in σ, by finding initial algebras and final coalgebras for the functor induced byσ.

129

This section details the sketch of [22], but the theory is due to Freyd [8, 7, 9]. In short, the main observation
is that because of the presense of fixed points, the initial algebras and final coalgebras of Sections 3.10,
3.11 coincide (Theorem 3.36 below). This phenomenon is called compactness, and was studied by Freyd in
loc. cit..

Before we start, observe that we may split the occurences ofα in σ in positive and negative occurences. So
our standard assumption in this section is that we are given a typeα, β ` σ(α, β), in whichα occurs only
negatively andβ only positively, and we look for a typeτ , such thatσ(τ, τ) ∼= τ .

3.12.1 Parametrized initial algebras

Setω(α) = µβ. σ(α, β) =
∏
β. (σ(α, β) (β) (β. Now,ω induces a contravariant functor from types

to types.

Lemma 3.31. Assuming identity extension and extensionality, forf : α′ (α, ω(f) : ω(α) (ω(α′) is (up
to internal equality) the uniqueh such that

σ(α, ω(α))

σ(id ,h)

◦

in ◦ω(α)

h

◦

σ(α, ω(α′))

σ(f,id)

◦
σ(α′, ω(α′)) in ◦ω(α′)

commutes internally.

Proof. One may definein as a polymorphic term

in :
∏
α. σ(α, ω(α)) (ω(α)

by
in = Λα. λ◦z : σ(α, ω(α)).Λβ. λf : σ(α, β) (β. f(σ(λx : α. x, foldβ !f) z).

By parametricity we have
in α′(σ(〈f〉, ω(〈f〉)) (ω(〈f〉))in α,

which, by the Graph Lemma (Lemma 3.19), means that

in α′(〈σ(f, ω(f))〉op (〈ω(f)〉op)in α,

which in turn amounts to internal commutativity of the diagram of the lemma.

Uniqueness is by initiality ofin (in LinTypeα, proved as before) used on the diagram

σ(α, ω(α))

σ(id ,h)

◦

in ◦ω(α)

h

◦
σ(α, ω(α′))

σ(f,id)
◦σ(α′, ω(α′)) in ◦ω(α′).

130

3.12.2 Dialgebras

Definition 3.32. A dialgebra forσ is a quadruple(τ, τ ′, f, f ′) such thatτ andτ ′ are types, andf : σ(τ ′, τ) (
τ andf ′ : τ ′ (σ(τ, τ ′) are morphisms. A morphism of dialgebras from(τ0, τ ′0, f0, f

′
0) to (τ1, τ ′1, f1, f

′
1) is

a pair of morphismsh : τ0 (τ1, h′ : τ ′1 (τ ′0, such that

σ(τ ′0, τ0)
f0 ◦

σ(h′,h)

◦

τ0

h

◦
σ(τ ′1, τ1) f1

◦τ1

τ ′1
f ′1 ◦

h′

◦

σ(τ1, τ ′1)

σ(h,h′)

◦
τ ′0 f ′0

◦σ(τ0, τ ′0).

Lemma 3.33. If (h, h′) is a map of dialgebras andh, h′ are isomorphisms, then(h, h′) is an isomorphism
of dialgebras.

Proof. The only thing to prove here is that(h−1, (h′)−1) is in fact a map of dialgebras, which is trivial.

Remark 3.34. If we for the typeα, β ` σ : Type consider the endofunctor

〈σop, σ〉 : LinTypeop
Ξ × LinTypeΞ → LinTypeop

Ξ × LinTypeΞ

defined by(α, β) 7→ (σ(β, α), σ(α, β)), then dialgebras forσ are exactly the algebras for〈σop, σ〉, maps of
dialgebras are maps of algebras for〈σop, σ〉 and initial dialgebras correspond to initial algebras.

Theorem 3.35. Assuming identity extension and extensionality, initial dialgebras exist for all functors in-
duced by typesσ(α, β), up to internal equality.

Proof. In this proof, commutativity of diagrams will mean commutativity up to internal equality.

Setω(α) = µβ. σ(α, β). Then,ω defines a contravariant functor. Define

τ ′ = να. σ(ω(α), α), τ = ω(τ ′) = µβ. σ(τ ′, β).

Sinceτ ′ is defined as the final coalgebra for a functor, we have a morphism

out: τ ′ (σ(ω(τ ′), τ ′) = σ(τ, τ ′),

and sinceτ is defined to be an initial algebra, we get a morphism

in : σ(τ ′, τ) (τ.

We will show that(τ, τ ′, in,out) is an initial dialgebra.

Suppose we are given a dialgebra(τ0, τ ′0, g, g
′). Sincein is an initial algebra, there exists a unique mapa,

such that
σ(τ ′0, ω(τ ′0))

in ◦

σ(id ,a)

◦

ω(τ ′0)

a

◦
σ(τ ′0, τ0)

g
◦τ0,

131

and thus, sinceout is a final coalgebra, we find a maph′ making the diagram

τ ′0
g′

◦

h′

◦

σ(τ0, τ ′0)
σ(a,id)

◦σ(ω(τ ′0), τ
′
0)

σ(ω(h′),h′)

◦
τ ′

out ◦σ(ω(τ ′), τ ′)

(4)

commute. Seth = a ◦ ω(h′). We claim that(h, h′) defines a map of dialgebras. The second diagram of
Definition 3.32 is simply (4). The first diagram of 3.32 follows from the commutativity of the composite
diagram

σ(τ ′, ω(τ ′)) in ◦

σ(h′,ω(h′))

◦

ω(τ ′)

ω(h′)

◦
σ(τ ′0, ω(τ ′0))

in ◦

σ(id ,a)

◦

ω(τ ′0)

a

◦
σ(τ ′0, τ0)

g
◦τ0,

(5)

where the top diagram commutes by Lemma 3.31.

Finally, we will prove that(h, h′) is the unique dialgebra morphism. Suppose we are given a map of
dialgebras(k, k′) from (τ, τ ′, in, out) to (τ0, τ ′0, g, g

′). By the first diagram of Definition 3.32, we have a
commutative diagram

σ(τ ′, τ) in ◦

σ(id ,k)

◦

τ

k

◦
σ(τ ′, τ0)

σ(k′,id)
◦σ(τ ′0, τ0)

g
◦τ0.

Since clearly (5) also commutes whenk′ is substituted forh′, by (strong) initiality ofin, we conclude that
k =τ(τ ′ a ◦ ω(k′). Finally, by the second diagram of Definition 3.32 we have commutativity of

τ ′0

k′

◦

g′
◦σ(τ0, τ ′0)

σ(a,id)
◦σ(ω(τ ′0), τ

′
0)

σ(ω(k′),k′)

◦
τ ′

out ◦σ(ω(τ ′), τ ′).

So sinceout is a final coalgebra we concludek′ =τ ′0(τ ′ h
′.

3.12.3 Compactness

As advertised in the introduction to this section, the presence of fixed points makes initial algebras and final
coalgebras coincide.

Theorem 3.36 (Compactness).Assuming identity extension and extensionality, for all typesα ` σ(α) in
whichα occurs only positively, in−1 is internally a final coalgebra and out−1 is internally an initial algebra.
Furthermore in−1 and out−1 can be written as terms of PILLY .

132

Proof. By Theorems 3.26 and 3.30in is an initial algebra, andout is a final coalgebra forσ. Consider

h = Y (να. σ(α)) (µα. σ(α) (λh : να. σ(α) (µα. σ(α). in ◦ σ(h) ◦ out).

SinceY is a fixed-point operator, we know that

σ(να. σ(α))

σ(h)

◦

να. σ(α)out◦

h

◦
σ(µα. σ(α)) in ◦µα. σ(α)

commutes. Sincein−1 is a coalgebra, we also have a mapk going the other way, and sinceout is a final
coalgebra,kh =να.σ(α)(να.σ(α) idνα.σ(α). Sincein is an initial algebra, we know thathk =µα.σ(α)(µα.σ(α)

idµα.σ(α). Soin−1 ∼= outas coalgebras andout−1 ∼= in as algebras, internally.

Lemma 3.37. Assume identity extension and extensionality. Let(τ, τ ′, in,out) be the initial dialgebra from
the proof of Theorem 3.35. Then(τ ′, τ,out−1, in−1) is also an initial dialgebra internally.

Proof. In this proof, commutativity of diagrams is up to internal equality.

Suppose we are given a dialgebra(τ0, τ ′0, g, g
′). We will show that there exists a unique morphism of

dialgebras from(τ ′, τ,out−1, in−1) to (τ0, τ ′0, g, g
′).

By Theorem 3.36, for all typesα, in−1 : ω(α) (σ(α, ω(α)) is a final coalgebra for the functorβ 7→
σ(α, β), andout−1 : σ(τ, τ ′) (τ ′ is an initial algebra for the functorα 7→ σ(ω(α), α).

Let a be the unique map making the diagram

τ ′0
g′

◦

a

◦

σ(τ0, τ ′0)

σ(id ,a)

◦
ω(τ0)

in−1

◦σ(τ0, ω(τ0))

commute. Defineh to be the unique map making

σ(τ, τ ′) out−1

◦

σ(ω(h),h)

◦

τ ′

h

◦
σ(ω(τ0), τ0)

σ(a,id)
◦σ(τ ′0, τ0)

g
◦τ0

(6)

commute. We defineh′ to beω(h) ◦ a and prove that(h, h′) is a map of dialgebras. The first diagram of
Definition 3.32 is simply (6). Commutativity of the second diagram follows from commutativity of

τ ′0
g′

◦

a

◦

σ(τ0, τ ′0)

σ(id ,a)

◦
ω(τ0)

ω(h)

◦

in−1

◦σ(τ0, ω(τ0))

σ(h,ω(h))

◦
ω(τ ′) in−1

◦σ(τ ′, ω(τ ′)),

(7)

133

where commutativity of the last diagram follows from Lemma 3.31.

Finally, we will show that if(k, k′) is another map of dialgebras from(τ ′, τ,out−1, in−1) to (τ0, τ ′0, g, g
′)

thenh =τ ′(τ0 k andh′ =τ ′0(τ k
′. By the second diagram of Definition 3.32 we know that

τ ′0
g′

◦

k′

◦

σ(τ0, τ ′0)
σ(k,id)

◦σ(τ ′, τ ′0)

σ(id ,k′)

◦
τ in−1

◦σ(τ ′, τ)

(8)

commutes. Clearly, if we substitutek for h in (7), we obtain a diagram that commutes by Lemma 3.31. So,
using the fact thatin−1 is a final coalgebra on (8), we getk′ =τ ′0(τ ω(k) ◦ a.

The first diagram of Definition 3.32 implies that

σ(τ, τ ′) out−1

◦

σ(ω(k),k)

◦

τ ′

k

◦
σ(ω(τ0), τ0)

σ(a,id)
◦σ(τ ′0, τ0)

g
◦τ0

commutes. Comparing this to (6) we obtainh =τ ′(τ0 k, by initiality of out−1.

Theorem 3.38. Assuming identity extension and extensionality, for all typesσ(α, β) whereα occurs only
negatively andβ only positively, there exists a typeτ and a mapf : σ(τ, τ) (τ , such that(τ, τ, f, f−1) is
an initial dialgebra up to internal equality.

Proof. As usual commutativity of diagrams will be up to internal equality.

We have a unique map of dialgebras

(h, h′) : (τ, τ ′, in,out) → (τ ′, τ,out−1, in−1)

We claim that(h′, h) is also a map of dialgebras from(τ, τ ′, in,out) to (τ ′, τ,out−1, in−1). To prove this we
need to prove commutativity of the diagrams

σ(τ ′, τ) in ◦

σ(h,h′)

◦

τ

h′

◦
σ(τ, τ ′) out−1

◦τ ′

τ in−1

◦

h

◦

σ(τ ′, τ)

σ(h′,h)

◦
τ ′

out ◦σ(τ, τ ′)

,

but the fact that(h, h′) is a map of dialgebras tells us exactly that

σ(τ ′, τ) in ◦

σ(h′,h)

◦

τ

h

◦
σ(τ, τ ′) out−1

◦τ ′

τ in−1

◦

h′

◦

σ(τ ′, τ)

σ(h,h′)

◦
τ ′

out ◦σ(τ, τ ′),

and these two diagram are the same as the above but in opposite order. Thus, by uniqueness of maps of
dialgebras out of(τ, τ ′, in,out), we geth =τ(τ ′ h

′. Since(h, h) is a map between initial dialgebras,h is
an isomorphism.

134

Now definef : σ(τ, τ) (τ to be in ◦ σ(h−1, idτ). Then clearly(idτ , h
−1) is a morphism of dialgebras

from (τ, τ, f, f−1) to (τ, τ ′, in,out), since the diagrams proving(idτ , h
−1) to be a map of dialgebras are

σ(τ, τ)

σ(h−1,id)

◦

σ(h−1,id)
◦

f

◦σ(τ ′, τ) in ◦τ

id

◦
σ(τ ′, τ) in ◦τ

τ ′
out ◦

h−1

◦

σ(τ, τ ′)

σ(id ,h−1)

◦
τ in−1

◦

f−1

◦σ(τ ′, τ)
σ(h,id)

◦σ(τ, τ).

Clearly the first diagram commutes, and the second diagram is just part of the definition of(h, h) being a map
of dialgebras. Thus(idτ , h

−1) defines an isomorphism of dialgebras from(τ, τ, f, f−1) to (τ, τ ′, in,out),
as desired.

Corollary 3.39. Assuming identity extension and extensionality, for all typesα, β ` σ(α, β), whereα occurs
only negatively andβ only positively, there exists a typeτ such thatσ(τ, τ) ∼= τ in eachLinTypeΞ.

Proof. The isomorphism isin ◦ σ(h−1, id).

Notice that the closed termsτ (σ(τ, τ) andσ(τ, τ) (τ always exist, independent of the assumption of
parametricity. We use parametricity to prove that they are each others inverses.

3.13 Recursive type equations with parameters

We now consider recursive type equations with parameters, i.e., we consider types~α, α ` σ(~α, α) and look
for types~α ` τ(~α) satisfyingσ(~α, τ(~α)) ∼= τ(~α). As before, we need to split occurences of the variableα
into positive and negative occurences, and since we would like to be able to construct nested recursive types,
we need to keep track of positive and negative occurences of the variables~α in the solutionτ as well. So
we will suppose that we are given a type~α, ~β, α, β ` σ(~α, ~β, α, β) in which the variables~α, α occur only
negatively and the variables~β, β only positively.

Of course, the proof proceeds as in the case without parameters. However, one must take care to obtain the
right occurences of parameters, and so we sketch the proof here.

Lemma 3.40.Suppose~α, ~β, α, β ` σ(~α, ~β, α, β) is a type in which the variables~α, α occur only negatively
and the variables~β, β only positively. There exists types~α, ~β ` τ(~α, ~β) in which~α occurs only negatively
and~β only positively and~α, ~β ` τ ′(~α, ~β) in which~α occurs only positively and~β only negatively and terms

in : σ(~α, ~β, τ ′(~α, ~β), τ(~α, ~β)) (τ(~α, ~β)
out: τ ′(~α, ~β) (σ(~β, ~α, τ(~α, ~β), τ ′(~α, ~β))

such that for any pair of types~α, ~β ` ω, ω′, and terms

g : σ(~α, ~β, ω′, ω) (ω

g′ : ω′ (σ(~β, ~α, ω, ω′)

there exists uniqueh, h′ making

σ(~α, ~β, τ ′(~α, ~β), τ(~α, ~β))

σ(~α,~β,h′,h)

◦

in ◦τ(~α, ~β)

h

◦
σ(~α, ~β, ω′, ω)

g
◦ω

ω′
g′

◦

h′

◦

σ(~β, ~α, ω, ω′)

σ(~β,~α,h,h′)

◦
τ ′(~α, ~β)

out ◦σ(~β, ~α, τ(~α, ~β), τ ′(~α, ~β))

135

commute up to internal equality.

Proof. Define
ω(~α, ~β, α) = µβ. σ(~α, ~β, α, β)
τ ′(~α, ~β) = να. σ(~β, ~α, ω(~α, ~β, α), α)
τ(~α, ~β) = ω(~α, ~β, τ ′(~α, ~β))

Notice that we have swapped the occurences of~α, ~β in σ in the definition ofτ ′, making all occurences of~α
in τ ′ positive and all occurences of~β in τ ′ negative. The rest of the proof proceeds exactly as the proof of
Theorem 3.35.

Theorem 3.41. Suppose~α, ~β, α, β ` σ(~α, ~β, α, β) is a type as in Lemma 3.40. Then there exists a type
τ(~α, ~β) with ~α occuring only negatively and~β only positively, and a term

in : σ(~α, ~β, τ(~β, ~α), τ(~α, ~β)) (τ(~α, ~β)

satisfying the conclusion of Lemma 3.41 withτ ′(~α, ~β) = τ(~β, ~α) and

out = in−1 : τ(β, α) (σ(~β, ~α, τ(~α, ~β), τ(~β, ~α)).

Proof. Using Theorem 3.36, we can prove as in the proof of Lemma 3.37 that the pair

out−1 : σ(~α, ~β, τ(~β, ~α), τ ′(~β, ~α)) (τ ′(~β, ~α)
in−1 : τ(~β, ~α) (σ(~β, ~α, τ ′(~β, ~α), τ(~β, ~α))

also satisfies the conclusion of Lemma 3.41. Proceeding as in the proof of Lemma 3.38 we get an isomor-
phismτ(~α, ~β) ∼= τ ′(~β, ~α) up to internal equality, which implies the theorem.

Corollary 3.42. For any type~α, ~β, α, β ` σ(~α, ~β, α, β) is a type as in Lemma 3.40, there exist a type
τ(~α, ~β) with ~α occuring only negatively and~β only positively and an isomorphism

σ(~α, ~β, τ(~β, ~α), τ(~α, ~β)) ∼= τ(~α, ~β)

in LinType
~α,~β

.

4 LAPL-structures

In this section we introduce the notion of LAPL-structure. An LAPL-structure is a model of LAPL.

First, however, we call to mind what a model of PILL is and how PILL is interpreted in such a model (for a
full description of models for PILL and interpretations in these, see e.g. [19, 17, 2, 15, 5]).

A model of PILL is a fibred symmetric monoidal adjunction

LinType

p
&&LLLLLLLLLL

G

11⊥ Type
Fqq

zzttttttttt

Kind,

such thatLinType is fibred symmetric monoidal closed; the tensor inType is a fibred cartesian product;
Type is equivalent to the category of finite products of free coalgebras for the comonadFG onLinType;

136

Kind is cartesian;p has a generic object and simple products with respect to projections forgettingΩ, where
Ω is p of the generic object. See [17] for detailed explanation of this definition.

PILL is interpreted in such models as follows. A typeσ is interpreted as an object[[σ]] ∈ LinType using
the SMCC structure to interpret⊗,(, I and the comonadFG to interpret!, and we interpret a term

~α | ~x : ~σ; ~x′ : ~σ′ ` t : τ

as a morphism
![[σ1]]⊗ . . .⊗![[σn]]⊗ [[σ′1]] ⊗ . . .⊗ [[σ′m]] ([[τ]]

in LinType, where! = FG. Notice that we denote the morphisms inLinType by (.

The comonad structure onLinType induced by the adjunction gives us two natural transformationsδ : ! (
!! andε : ! (id . These are defined in the internal language as

δσ = λ◦x : !σ. let !y bex in !!y,
εσ = λ◦x : !σ. let !z bex in z.

It turns out that we may interpret the intuitionistic part of the calculus, that is, the terms in the calculus with
no free linear variables, inType. For suppose we are given such a term

Ξ | ~x : ~σ;− ` t : τ.

Then the interpretation of this term inLinType is

[[Ξ | ~x : ~σ;− ` t : τ]] : ⊗i![[Ξ | σi]] ([[Ξ | τ]].

Since⊗i![[Ξ | σi]] ∼= F (
∏

iG([[Ξ | σi]])) (F is strong) and! = FG, we have, using the adjunctionF a G,
that such a term corresponds to

[[Ξ | ~x : ~σ;− ` t]]Type :
∏

iG([[σi]]) → G([[τ]])

in Type. It is easy to prove that

[[Ξ | Γ;− ` s[t/x]]]Type =
[[Ξ | Γ, x : σ;− ` s : τ]]Type ◦ 〈id [[Ξ|Γ;−]], [[Ξ | Γ;− ` t]]Type〉,

using Lemma 3.2.2 of [2].

Definition 4.1. A model of PILLY is a model of PILL, which models a fixed point operator

Y : Πα. (α→ α) → α

Definition 4.2. A pre-LAPL -structure is

1. a schema of categories and functors

Prop

r

��
LinType

p
**UUUUUUUUUUUUUUUUUU

66Type
vv

$$JJJJJJJJJ
� � I // Ctx

q

��
Kind

such that

137

• the diagram

LinType

p
&&LLLLLLLLLL

G

11⊥ Type
Fqq

zzttttttttt

Kind

is a model of PILLY .

• q is a fibration with fibred finite products

• (r, q) is an indexed first-order logic fibration [5] which has products and coproducts with respect
to projectionsΞ× Ω → Ξ in Kind [5], whereΩ is p applied to the generic object ofp.

• I is a faithful product-preserving map of fibrations.

2. a contravariant morphism of fibrations:

LinType×Kind LinType U //

))TTTTTTTTTTTTTTT Ctx

zzvvvvvvvvv

Kind

3. a family of bijections

Ψ : HomCtxΞ
(ξ, U(σ, τ)) → Obj (Propξ×I(G(σ)×G(τ)))

for σ andτ in LinTypeΞ andξ in CtxΞ, which

• is natural in the domain variableξ

• is natural inσ, τ

• commutes with reindexing functors; that is, ifρ : Ξ′ → Ξ is a morphism inKind andu : ξ →
U(σ, τ) is a morphism inCtxΞ, then

Ψ(ρ∗(u)) = (ρ̄)∗(Ψ(u))

whereρ̄ is the cartesian lift ofρ.

Notice thatΨ is only defined on vertical morphisms.

By contravariance of the fibred functorU we mean thatU is contravariant in each fibre. SinceU is uniquely
defined by the requirements on the rest of the structure so we will often refer to a pre-LAPL structure simply
as the diagram in item 1. Strictly speaking, we should denote the bijectionΨ by ΨΞ,ξ,σ,τ since it depends
on all these, but for ease of notation we simply writeΨ.

We now explain how to interpret a subset of LAPL in a pre-LAPL structure. The subset of LAPL we consider
at this stage is LAPL without admissible relations and without the relational interpretation of types.

We interpret the full contexts of the considered subset of LAPL in the categoryCtx as follows. A context

Ξ | x1 : σ1, . . . xn : σn | R1 : Rel(τ1, τ ′1), . . . , Rm : Rel(τm, τ ′m)

is interpreted as ∏
i IG([[σi]])×

∏
j U([[τj]], [[τ ′j]]),

138

where the interpretations of the types is the usual interpretation of types inLinType → Kind.

For notational convenience we shall write[[Ξ | Γ | Θ ` t : τ]] for the interpretation oft in Ctx, that is for

I([[Ξ | Γ;− ` t : τ]]Type) ◦ π

(note the subscriptType), whereπ is the projection

π : [[Ξ | Γ | Θ]] → [[Ξ | Γ | −]]

in Ctx[[Ξ]].

The propositions in the logic are interpreted inProp as follows.

Let ∆I : I → I × I denote the diagonal map, then

[[Ξ | x : τ, y : τ ` x =τ y]] =
∐

∆[[τ]]
(>),

where
∐

∆[[τ]]
denotes the left adjoint to reindexing along∆. Now we can define

[[Ξ | Γ | Θ ` t =σ u]] = 〈[[Ξ | Γ | Θ ` t]], [[Ξ | Γ | Θ ` u]]〉∗[[Ξ | x : τ, y : τ ` x =τ y]].

To interpret∀x : σi0 .φ, recall that a contextΞ | x1 : σ1, . . . , xn : σn | Θ is interpreted as∏
i IG[[σi]]× [[Θ]],

where[[σi]] is the usual interpretation of types inLinType and the product refers to the fibrewise product
in Ctx. We may therefore interpret∀x : σi0 .φ using the right adjoint to reindexing along the projection

π :
∏

i IG[[σi]]× [[Θ]] →
∏

i6=i0
IG[[σi]]× [[Θ]].

Likewise,∀R : Rel(σ, τ.)φ is interpreted using right adjoints to reindexing functors related to the appropriate
projection inCtx. The existential quantifiers∃x : σi0 .φ and∃R : Rel(σ, τ.)φ are interpreted using left
adjoints to the same reindexing functors.

Quantification over types∀α.φ and∃α.φ is interpreted using respectively right and left adjoints toπ̄∗ where
π̄ is the lift of the projectionπ : [[Ξ, α : Type]] → [[Ξ]] in Kind to Ctx. To be more precise, one may easily
show that forΞ | Γ | Θ wellformed[[Ξ, α | Γ | Θ]] = π∗[[Ξ | Γ | Θ]] using the corresponding result for the
interpretation of PILLY , and so the cartesian lift ofπ is a map:

π̄ : [[Ξ, α | Γ | Θ]] → [[Ξ | Γ | Θ]]

and we define
[[Ξ | Γ | Θ ` ∀α. φ]] =

∏
π̄[[Ξ, α | Γ | Θ ` φ]],

where
∏

π̄ is the right adjoint tōπ∗.

Definable relations with domainσ and codomainτ in contextsΞ | Γ | Θ are interpreted as maps from
[[Ξ | Γ | Θ]] intoU([[σ]], [[τ]]). The definable relation

Ξ | Γ | Θ, R : Rel(σ, τ) ` R : Rel(σ, τ)

is interpreted as the projection, and

[[Ξ | Γ | Θ ` (x : σ, y : τ). φ : Rel(σ, τ)]] = Ψ−1([[Ξ | Γ, x : σ, y : τ | Θ ` φ]]).

139

We now define the interpretation ofρ(t, s), for a definable relationρ and termst, s of the right types. First,
for Ξ | Γ | Θ ` ρ : Rel(σ, τ), we define

[[Ξ | Γ, x : σ, y : τ | Θ ` ρ(x, y)]] = Ψ([[Ξ | Γ | Θ ` ρ : Rel(σ, τ)]]).

Next, if Ξ | Γ ` t : σ, s : τ , then

[[Ξ | Γ | Θ ` ρ(t, s)]] =
〈〈π, 〈[[Ξ | Γ | Θ ` t]], [[Ξ | Γ | Θ ` s]]〉〉, π′〉∗[[Ξ | Γ, x : σ, y : τ | Θ ` ρ(x, y)]],

whereπ, π′ are the projections

π : [[Ξ | Γ | Θ]] → [[Ξ | Γ]] π′ : [[Ξ | Γ | Θ]] → [[Ξ | − | Θ]].

One may think of the isomorphismΨ as a model-theoretic version of Lemma 2.27.

To interpret admissible relations, we will assume that we are given a subfunctorV of U , i.e., a contravariant
functorV with domain and codomain asU and a natural transformationV ⇒ U whose components are all
monomorphic. Thus, for allσ, τ , we can considerV (σ, τ) as a subobject ofU(σ, τ). We think ofV (σ, τ)
as the subset of all admissible relations (since the isomorphismΨ allows us to think ofU(σ, τ) as the set of
all definable relations).

We may interpret the logic containing admissible relations by interpretingS : AdmRel(σ, τ) asV ([[σ]], [[τ]]).
Admissible relations are interpreted as maps intoV (σ, τ). For this to make sense we need, of course, to
make sure that the admissible relations in the model (namely the relations that factor through the object of
admissible relations) in fact contain the relations that are admissible in the logic. We need to assume that of
the functorV .

Definition 4.3. A pre-LAPL structure together with a subfunctorV of U is said tomodel admissible
relations, if V is closed under the rules of Figure 4 and Rule 2.18 holds.

Lemma 4.4. In the interpretation given above of the subset of LAPL excluding the relational interpretation
of types in a pre-LAPL structure modeling admissible relations, if

Ξ | Γ, x : σ | Θ ` φ : Prop

is a proposition in the logic, and
Ξ | Γ ` t : σ

is a term, then

[[Ξ | Γ | Θ ` φ[t/x] : Prop]] = 〈〈π, [[Ξ | Γ | Θ ` t : σ]]〉, π′〉∗[[Ξ | Γ, x : σ | Θ ` φ : Prop]],

whereπ, π′ are the projections

π : [[Ξ | Γ | Θ]] → [[Ξ | Γ]] π′ : [[Ξ | Γ | Θ]] → [[Ξ | − | Θ]].

Proof. By induction on the structure ofφ. CasesR(s, s′) ands =τ s′ are easy from definitions, simply
using the fact that

[[Ξ | Γ, x : σ ` s[t/x]]]Type =
[[Ξ | Γ, x : σ ` s : τ]]Type ◦ 〈π[[Ξ|Γ;−]], [[Ξ | Γ ` t]]Type〉

in the PILL model. The casesφ ∧ φ′, φ ⊃ φ′, etc., are just the fact that the fibrewise structure ofProp is
preserved by reindexing, and the cases of the quantifiers is by the Beck-Chevalley condition.

140

Lemma 4.5. For [[Ξ | Γ | Θ ` ρ : Rel(σ, τ)]] : [[Ξ | Γ | Θ]] → U(σ, τ) andt : σ′ (σ ands : τ ′ (τ ,

[[Ξ | Γ | Θ ` (x : σ′, y : τ ′). ρ(t x, s y)]] : [[Ξ | Γ | Θ]] → U(σ′, τ ′) = U(t, s) ◦ [[Ξ | Γ | Θ ` ρ : Rel(σ, τ)]].

Proof. This follows from Lemma 4.4 and naturality ofΨ in σ, τ : Assume for simplicity thatΓ andΘ are
empty.

Observe[[Ξ | x : σ′ ` t x : σ]]Type = G σ′
ηG σ′ //GFG σ′

G εσ′ ◦G σ′
G t //G σ = G(t), whereη is the unit

of the adjunctionF a G. Now

[[Ξ | − | − ` (x : σ, y : τ).ρ(t x, s y)]] = Ψ−1
Ξ ([[Ξ | x : σ, y : τ | − ` ρ(t x, s y)]])

which using Lemma 4.4 and the calculation above gives

Ψ−1
Ξ ((t× s)∗([[Ξ | x : σ, y : τ | − ` ρ(x, y)]])) =

U(t, s) ◦Ψ−1
Ξ ([[Ξ | x : σ, y : τ | − ` ρ(x, y)]]) = U(t, s) ◦ [[Ξ | − | − ` ρ : Rel(σ, τ)]].

Given a pre-LAPL structure modeling admissible relations, we may define a fibration

LinAdmRelations

��
AdmRelCtx ,

which we think of as a model consisting of admissible relations. We first define the categoryAdmRelCtx
by the pullback

AdmRelCtx

〈∂0,∂1〉
��

// Ctx

��
Kind×Kind

× // Kind.

We write an objectΘ in AdmRelCtx over(Ξ,Ξ′) asΞ,Ξ′ | Θ. The fibre ofLinAdmRelations over
an objectΞ,Ξ′ | Θ is

objects triples(φ, σ, τ) whereσ andτ are objects inLinType overΞ andΞ′ respectively andφ
is an admissible relation, i.e. a vertical map

φ : Θ → V (π∗σ, π′∗τ)

in Ctx. Hereπ, π′ are first and second projection respectively out ofΞ× Ξ′.

morphisms A morphism(φ, σ, τ) → (ψ, σ′, τ ′) is a pair of morphism

(t : σ (σ′, u : τ (τ ′)

in LinTypeΞ andLinTypeΞ′ respectively, such that

Ψ(φ) ≤ Ψ(V (t, u) ◦ ψ)),

where we have left the inclusion ofV intoU implicit.

141

Reindexing with respect to vertical mapsρ : Θ → Θ′ in Ctx is done by composition. Reindexing objects of
LinAdmRelations with respect to lifts of maps inKind×Kind is done by reindexing in the fibration
Ctx → Kind. Reindexing of morphisms inLinAdmRelations with respect to maps inKind×Kind
is done by reindexing each map inLinType → Kind. This defines all reindexing since all maps in
AdmRelCtx can be written as a vertical map followed by a cartesian map.

Remark 4.6. In the internal language, objects ofLinAdmRelations are admissible relations

Ξ;Ξ′ | Θ ` ρ : AdmRel(σ, τ).

A vertical morphisms inLinAdmRelations from ρ : AdmRel(σ, τ) to ρ′ : AdmRel(σ′, τ ′) is a pair of
morphismsf : σ (σ′, g : τ (τ ′ in LinType such that in the internal language the formula

∀x : σ, y : τ . ρ(x, y) ⊃ ρ′(f x, g y)

holds (this follows directly from Lemma 4.4).

There exist two canonical maps of fibrations:
LinAdmRelations

��
AdmRelCtx

 ∂0 //

∂1

//


LinType

��
Kind

 .

On the base category∂0, ∂1 map an objectΞ,Ξ′ | Θ to Ξ andΞ′ respectively. On the total category they
map (φ, σ, τ) to σ and τ respectively. In words,∂0 and∂1 map a relation to its domain and codomain
respectively.

Lemma 4.7. The fibrationLinAdmRelations → AdmRelCtx has products in the base, a generic
object and simple products with respect to projections inAdmRelCtx forgetting the generic object. The
maps∂0, ∂1 preserve this structure.

Proof. The categoryAdmRelCtx has products:

(Ξ1,Ξ′1 | Θ1)× (Ξ2,Ξ′2 | Θ2) = Ξ1 × Ξ2,Ξ′1 × Ξ′2 | π∗(Θ1)× π′∗(Θ2)

(see [12, Proposition 9.2.1]).

The fibration has a generic objectΩ,Ω | V (îdΩ, îdΩ), since a morphism into this fromΞ,Ξ′ | Θ in
AdmRelCtx consists of pairs of types(f : Ξ → Ω, g : Ξ′ → Ω) and a morphism fromΘ to V (f̂ , ĝ).

We now show that we have products with respect to projections forgetting the generic object. Given a
relation

Ξ, α; Ξ′, β | Θ, R : AdmRel(α, β) ` ρ : AdmRel(τ, τ ′)

we can define

Ξ,Ξ′ | Θ ` ∀(α, β,R : AdmRel(α, β)). ρ : AdmRel((
∏
α : Type. τ), (

∏
β : Type. τ ′))

as
∀(α, β,R : AdmRel(α, β)). ρ = (t, u).∀α, β : Type.∀R : AdmRel(α, β). (tα)ρ(uβ).

142

We will to show that this defines a right adjoint to weakening. Suppose we have another relation

Ξ,Ξ′ | Θ ` ω : AdmRel(σ, σ′).

We will use the usual adjunction inLinType, where a mapΞ, α | − ` t : σ (τ , with Ξ ` σ : Type
corresponds to

Ξ | − ` t̂ = λ◦x : σ.Λα. (t x) : σ (
∏
α. τ.

We need to prove that(t, u) preserves relations iff(t̂, û) does, but it is clear that

Ξ, α; Ξ′, β | x : σ, y : σ′ | Θ, R : AdmRel(α, β) | xωy ` (t x)ρ(u y)

iff
Ξ,Ξ′ | x : σ, y : σ′ | Θ | xωy ` ∀α, β : Type.∀R : AdmRel(α, β). (t̂ x α)ρ(û y β),

which establishes the bijective correspondence between maps

π∗ω (ρ
======================
ω (∀(α, β,R : Rel(α, β)). ρ

proving that we have in fact defined a product.

Lemma 4.8. The fibrationLinAdmRelations → AdmRelCtx has a fibrewise SMCC-structure and
the two maps∂0, ∂1 are fibred strict symmetric monoidal functors.

Proof. We prove that the constructions⊗, (on definable relations given in Section 2.2.2 define a fibre-
wise symmetric monoidal structure onLinAdmRelations → AdmRelCtx. Notice that sinceV is
closed under the rules of Figure 4, Proposition 2.3 tells us that the constructions on definable relations of
Section 2.2.2 indeed do define operations onLinAdmRelations → AdmRelCtx.

First we will prove that the two operators−⊗−, ρ (− do in fact define functors onLinAdmRelations.
That is, we need to check that if

(t0, s0) : ρ0 (ρ′0 (t1, s1) : ρ1 (ρ′1,

then
(t0 ⊗ t1, s0 ⊗ s1) : ρ0 ⊗ ρ1 (ρ′0 ⊗ ρ′1,

and, if(t, s) : ρ′ (ρ′′, then
(t ◦ −, s ◦ −) : (ρ (ρ′) ((ρ (ρ′′).

To see that⊗ defines a functor, supposex(ρ0 ⊗ ρ1)y andf(ρ′0 (ρ′1 (R)g. We need to show that

R(let z ⊗ z′ be(t0 ⊗ t1)(x) in f z z′, let z ⊗ z′ be(s0 ⊗ s1)(y) in g z z′).

Recall that(t0 ⊗ t1)x = let ω ⊗ ω′ bex in t0 ω ⊗ t1 ω
′ in PILL. Notice then that

let z ⊗ z′ be(t0 ⊗ t1)(y) in f z z′ = let z ⊗ z′ bey in f (t0(z)) (t1(z′)),

and
(λ◦z, z′. f (t0(z)) (t1(z′)))(ρ0 (ρ1 (R)(λ◦z, z′. g (s0(z)) (s1(z′))).

The result now follows from the assumption thatx(ρ0 ⊗ ρ1)y.

143

To prove thatρ (− is a functor, suppose(f, g) : ρ (ρ′ andρ(x, y). Then clearlyρ′′(t ◦ f(x), s ◦ g(y)),
as required.

We need to show thatρ (− is right adjoint to− ⊗ ρ, and that the adjoint components are natural inρ.
Since we are given a similar adjunction inLinType, all we need to show is that

(t, s) : ρ ((ρ′ (ρ′′)

iff
(t̂, ŝ) : ρ⊗ ρ′ (ρ′′,

wheret̂, ŝ are the maps corresponding tot, s in the adjunction onLinType. Suppose first that

(t, s) : ρ ((ρ′ (ρ′′) andx(ρ⊗ ρ′)y.

The definition of the latter says exactly that, for all(t, s) : ρ ((ρ′ (ρ′′), we must haveρ′′(t̂ x, ŝ y).

Now, suppose(t̂, ŝ) : ρ ⊗ ρ′ (ρ′′ andxρy ∧ x′ρ′y′. By Lemma 2.29ρ ⊗ ρ′(x ⊗ x′, y ⊗ y′) and so
ρ′′(t̂(x⊗ x′), ŝ(y ⊗ y′)). Hence, sincêt(x⊗ x′) = t x x′ (likewise fors), we are done.

We now proceed to prove that the functors−⊗−, ρ (− define a fibred SMCC structure on

LinAdmRelations → AdmRelCtx.

The unit in a fibre isIRel : AdmRel(I, I) whereI is the unit in the appropriate fibres ofLinType. The
maps giving the isomorphisms

(−)⊗ ((=)⊗ (≡)) ∼= ((−)⊗ (=))⊗ (≡),
(−)⊗ I ∼= (−), (−)⊗ (=) ∼= (=)⊗ (−)

are simply pairs of the corresponding maps in the fibrewise SMC-structure ofLinType. These maps satisfy
the coherence properties simply because the maps inLinType do the same. One has to check that the maps
defined by pairing maps in fact define maps inLinAdmRelations, i.e., that they preserve relations.

One direction of the isomorphismσ ⊗ I ∼= σ is given by the mapλ◦x : σ. x ⊗ ?. To see that this preserves
relations, supposexρy. Since?IRel?, (x ⊗ ?)(ρ ⊗ IRel)(y ⊗ ?) by Lemma 2.29. For the other direction,
considerfσ : σ (I (σ given asf = λ◦x : σλ◦x′ : I. let ? bex′ in x. Then the mapσ ⊗ I (σ is
simply f̂σ, and we have proved earlier that it now suffices to prove thatfσ preserves relations. So suppose
xρy ∧ x′IRely

′. By definition ofx′IRely
′ we can conclude thatρ(fσ x x

′, fτ y y
′).

The isomorphism(ρ⊗ ρ′)⊗ ρ′′ ∼= ρ⊗ (ρ′ ⊗ ρ′′) is obtained using the adjunction as follows

(ρ⊗ ρ′)⊗ ρ′′ (ρ′′′

===============
ρ (ρ′ (ρ′′ (ρ′′′

================
ρ ((ρ′ ⊗ ρ′′) (ρ′′′

================
ρ⊗ (ρ′ ⊗ ρ′′) (ρ′′′

and it is easily seen that this isomorphism is given by pairs of the usual maps inLinType. Likewise the
isomorphismρ⊗ ρ′ ∼= ρ′ ⊗ ρ comes from

ρ⊗ ρ′ (ρ′′

==========
ρ (ρ′ (ρ′′

==========
ρ′ (ρ (ρ′′

==========
ρ′ ⊗ ρ (ρ′′.

By construction, the functors∂0, ∂1 are fibred strict symmetric monoidal functors.

144

Lemma 4.9. The fibrationLinAdmRelations → AdmRelCtx has a fibred comonad structure induced
by the functorρ 7→!ρ. The maps∂0, ∂1 map this comonad to the fibred comonad! on the nose.

Proof. We need to check that! defines a functor, i.e., that if(f, g) : ρ (ρ′, then(!f, !g) : !ρ (!ρ′. It is
easy to see that

∀x, y. !ρ(!x, !y) ⊃!ρ′((!f)(!x), (!g)(!y))

since(!f)(!x) =!(f(x)). Now the result follows from Rule 2.18.

The comonad maps are given by(ε, ε) : !ρ (ρ and(δ, δ) : !ρ (!!ρ. These preserve relations by Lemma 2.32,
and the commutative diagrams of a fibred comonad are preserved since they hold for the fibred comonad on
LinType → Kind.

Lemma 4.10. The fibrationLinAdmRelations → AdmRelCtx has natural transformations

d : !(−) ⇒!(−)⊗!(−), e : !(−) ⇒ IRel

making it a fibred linear fibration. The maps∂0, ∂1 preserve this structure on the nose.

Proof. The mapsd, e are given by(d, d) and(e, e), which preserve relations by Lemma 2.33. The necessary
diagrams commute by the same diagrams for the fibred comonad onLinType → Kind, and the functors
∂0, ∂1 preserve the structure on the nose by construction.

If we defineAdmRelations to be the category of finite products of coalgebras [17], we obtain a PILL-
model

LinAdmRelations

**TTTTTTTTTTTTTTTT 00⊥ AdmRelations
pp

uukkkkkkkkkkkkkk

AdmRelCtx

and two maps of PILL-models∂0, ∂1. This model need not be a PILLY -model, since for pre-LAPL-
structuresY does not necessarily preserve relations.

Definition 4.11. An LAPL-structure is a pre-LAPL-structure modeling admissible relations, together with
a map of PILL-modelsJ from

LinType

&&LLLLLLLLLL 11⊥ Type
qq

zzttttttttt

Kind

to
LinAdmRelations

**TTTTTTTTTTTTTTTT 00⊥ AdmRelations
pp

uukkkkkkkkkkkkkk

AdmRelCtx

such that when restricting to the fibred linear categories,J together with∂0, ∂1 is a reflexive graph, i.e.,
∂0 ◦ J = ∂1 ◦ J = id .

145

In the following, we will often confuseJ with the map of fibred linear categories fromLinType → Kind
to LinAdmRelations → AdmRelCtx.

We need to show how to interpret the rule

α1, . . . , αn ` σ(~α) : Type Ξ | Γ | Θ ` ρ1 : AdmRel(τ1, τ ′1), . . . , ρn : AdmRel(τn, τ ′n)

Ξ | Γ | Θ ` σ[~ρ] : AdmRel(σ(~τ), σ(~τ ′))

in LAPL-structures.

SinceJ preserves products in the base and generic objects,J([[~α ` σ(~α)]]) is a relation fromσ(~α) toσ(~β) in
context[[~α; ~β | ~R : AdmRel(~α, ~β)]]. It thus makes sense to define

[[~α, ~β | − | ~R : AdmRel(~α, ~β) ` σ[~R]]]

to beJ([[~α | σ(~α)]]), so all we need to do now is to reindex this object. We reindex it to the rightKind
context using

〈~τ , ~τ ′〉 : [[Ξ]] → Ω2n,

thus obtaining
[[Ξ | − | ~R : AdmRel(~τ , ~τ ′) ` σ[~R] : Rel(σ(~τ), σ(~τ ′))]].

ForΞ | Γ | Θ ` ~ρ : AdmRel(~τ , ~τ ′), we define

[[Ξ | Γ | Θ ` σ[~ρ] : AdmRel(σ(~τ), σ(~τ ′))]] =
[[Ξ | − | ~R : AdmRel(~τ , ~τ ′) ` σ[~R]]] ◦ [[Ξ | Γ | Θ ` ~ρ : AdmRel(~τ , ~τ ′)]].

where by[[Ξ | Γ | Θ ` ~ρ : AdmRel(~τ , ~τ ′)]] we mean the pairing

〈[[Ξ | Γ | Θ ` ρ1]], . . . , [[Ξ | Γ | Θ ` ρn]]〉.

Remark 4.12. To model a version of Linear Abadi & Plotkin Logic for unary or other arities of parametric-
ity as in Remark 2.2, the functorU should, have corresponding arity and the domain and codomain of the
bijectionΨ should be changed accordingly. Furthermore instead of considering the fibration of binary rela-
tionsLinAdmRelations → AdmRelCtx we should consider a fibration of relations of the appropriate
arity.

4.1 Soundness

In this section we prove that the interpretation of LAPL in LAPL-structures is sound. First, we present a
series of reindexing lemmas.

Lemma 4.13. If Ξ | Γ, x : σ | Θ ` φ : Prop is a proposition in the logic, and

Ξ | Γ ` t : σ

is a term, then

[[Ξ | Γ | Θ ` φ[t/x] : Prop]] = 〈〈π, [[Ξ | Γ | Θ ` t : σ]]〉, π′〉∗[[Ξ | Γ, x : σ | Θ ` φ : Prop]]

whereπ, π′ are the projections

π : [[Ξ | Γ | Θ]] → [[Ξ | Γ]] π′ : [[Ξ | Γ | Θ]] → [[Ξ | − | Θ]].

146

Lemma 4.14. If Ξ | Γ, x | Θ ` ρ : Rel(τ, τ ′) is a definable relation in the logic, and

Ξ | Γ ` t : σ

is a term, then

[[Ξ | Γ, x | Θ ` ρ]] ◦ 〈〈π, [[Ξ | Γ | Θ ` t : σ]]〉, π′〉 = [[Ξ | Γ | Θ ` ρ[t/x]]].

Notice that Lemma 4.13 differs from Lemma 4.4 since the latter only concerns the interpretation of the part
of the logic not including the relational interpretation of types.

Proof. The two lemmas above are proved simultaneously. We only include the proof of the former, for
which we only need to extend the proof of Lemma 4.4 to the case ofρ(s, u). But this follows easily by
induction using the latter lemma.

Lemma 4.15. If Ξ | Γ | Θ ` φ : Prop then

[[Ξ | Γ, x : σ | Θ ` φ : Prop]] = π∗[[Ξ | Γ | Θ ` φ : Prop]],

whereπ is the obvious projection. Likewise, ifΞ | Γ | Θ ` ρ : Rel(σ, τ) then

[[Ξ | Γ, x : σ | Θ ` ρ : Rel(σ, τ)]] = [[Ξ | Γ | Θ ` ρ : Rel(σ, τ)]] ◦ π,

whereπ is the obvious projection.

Proof. The lemma can be proved in a way similar to Lemmas 4.13 and 4.15.

Lemma 4.16. If Ξ ` σ : Type then

[[Ξ | Γ[σ/α] | Θ[σ/α] ` φ[σ/α]]] = 〈id [[Ξ]], [[σ]]〉∗[[Ξ, α : Type | Γ | Θ ` φ]],

and
[[Ξ | Γ[σ/α] | Θ[σ/α] ` ρ[σ/α]]] = 〈id [[Ξ]], [[σ]]〉∗[[Ξ, α : Type | Γ | Θ ` ρ]],

where the vertical line in〈id [[Ξ]], [[σ]]〉 denotes the cartesian lift.

Proof. We know that

[[Ξ | Γ[σ/α] | Θ[σ/α]]] = 〈id [[Ξ]], [[σ]]〉∗[[Ξ, α : Type | Γ | Θ]]

since the corresponding statement holds in the PILL-model and the functorsF,G, I commute with reindex-
ing.

Now one proceeds by simultaneous induction onφ andρ. For ρ = R and forρ = τ [~ρ] one uses thatΨ
commutes with reindexing. Forφ = u =τ u

′ one uses the Beck-Chevalley condition, as is also done for the
cases of∃ and∀. The remaining cases either follow by induction or from the fact that the fibrewise structure
in Prop (⊃,∧, etc.) is preserved by reindexing.

147

Lemma 4.17. If Ξ | Γ | Θ ` φ then

[[Ξ | Γ | Θ ` φ]] = π∗Ξ,α→Ξ[[Ξ, α | Γ | Θ ` φ]].

Likewise, if IfΞ | Γ | Θ ` ρ then

[[Ξ | Γ | Θ ` ρ]] = π∗Ξ,α→Ξ[[Ξ, α | Γ | Θ ` ρ]].

Proof. By simultaneous induction.

Lemma 4.18. If Ξ | Γ | Θ ` ρ : Rel(τ, τ ′) is a definable relation and

Ξ | Γ | Θ, R : Rel(τ, τ ′) ` φ,

then
[[Ξ | Γ | Θ ` φ[ρ/R]]] = (〈id [[Ξ|Γ|Θ]], [[ρ]]〉)∗[[Ξ | Γ | Θ, R : Rel(τ, τ ′) ` φ]].

Likewise, IfΞ | Γ | Θ ` ρ : Rel(τ, τ ′) is a definable relation and

Ξ | Γ | Θ, R : Rel(τ, τ ′) ` ρ′ : Rel(σ, σ′),

then
[[Ξ | Γ | Θ, R : Rel(τ, τ ′) ` ρ′]] ◦ (〈id [[Ξ|Γ|Θ]], [[Ξ | Γ | Θ ` ρ]]〉) = [[Ξ | Γ | Θ ` ρ′[ρ/R]]].

The same holds for substitution of admissible relations.

Proof. By simultaneous induction onφ andρ′, using naturality ofΨ, Beck-Chevalley and the fact that the
fibrewise structure inProp is preserved by reindexing.

Lemma 4.19. If Ξ | Γ | Θ ` φ is a proposition then

[[Ξ | Γ | Θ, R : Rel(σ, τ) ` φ]] = π∗[[Ξ | Γ | Θ ` φ]],

whereπ is the obvious projection. Likewise, ifΞ | Γ | Θ ` ρ : Rel(σ′, τ ′) is a definable relation then

[[Ξ | Γ | Θ, R : Rel(σ, τ) ` ρ]] = [[Ξ | Γ | Θ ` ρ]] ◦ π,

whereπ is the obvious projection. The same holds for substitution of admissible relations.

Proof. Again by simultaneous induction.

Theorem 4.20 (Soundness).The interpretation given above of LAPL in LAPL-structures is sound with
respect to the Rules and Axioms 2.9-2.26.

Proof. Rules 2.9-2.16 hold since the interpretation of quantification is given by adjoints to weakening,
considering Lemmas 4.15, 4.17, 4.19 above.

Rules 2.4-2.7 hold since substitution corresponds to reindexing as in the lemmas above.

Rule 2.8 is proved exactly as in [5].

Rule 2.17 holds since externally equal maps are interpreted equally in the model, by soundness of the
interpretation of PILLY . Clearly internal equality is an equivalence relation.

Rule 2.18 is required to hold in Definition 4.3.

148

Rules 2.19-2.24 all hold sinceJ preserves SMCC-structure, generic objects, simple products and!.

To prove soundness of Rule 2.25, it suffices to prove soundness of

Ξ | Γ, x : σ, y : τ | Θ | > ` ((x : σ, y : τ). φ)(x, y) ⊃⊂ φ,

but
[[Ξ | Γ, x : σ, y : τ | Θ ` ((x : σ, y : τ). φ)(x, y)]] = Ψ([[Ξ | Γ | Θ ` (x : σ, y : τ). φ]]) =

Ψ ◦Ψ−1([[Ξ | Γ, x : σ, y : τ | Θ ` φ]]) = [[Ξ | Γ, x : σ, y : τ | Θ ` φ]].

To prove Axiom 2.26, notice thatJ is required to be a functor. This means that it maps[[Y]] : I (
[[
∏
α. (α→ α) → α]] to a morphism fromIRel to the relational interpretation of

∏
α. (α → α) → α.

By the requirement, that(J, ∂0, ∂1) is a reflexive graph, this map must be([[Y]], [[Y]]). Since?IRel? and
[[Y]](?) = Y we getY (

∏
α. (α→ α) → α)Y .

4.2 Completeness

Theorem 4.21 (Completeness).There exists an LAPL-structure with the property that any formula of LAPL
over pure PILLY holds in this model iff it is provable in LAPL.

Proof. We construct the LAPL-structure syntactically, giving the categories in question the same names as
in the diagrams of the definitions of pre-LAPL- and LAPL-structures.

• The categoryKind has as objects sequences of the form

α1 : Type, . . . , αn : Type,

where we identify these contexts up to renaming (in other words, we may think of objects as natural
numbers). A morphism fromΞ into

α1 : Type, . . . , αn : Type

is a sequence of types(σ1, . . . , σn) such that allσi are well-formed in contextΞ.

• Objects in the fibre ofLinType overΞ are well-formed types in this context. Morphisms in this fibre
from σ to τ are equivalence classes of termst such thatΞ | −;x : σ ` t : τ , where we identify terms
up to external equality. Equivalently, we may think of morphisms as termsΞ | −;− ` t : σ (τ .
Composition is by substitution, and reindexing with respect to morphisms inKind is by substitution.

• Objects in the fibre ofType overΞ are well-formed sequences of types in this context. Morphism in
this fibre fromσ1, . . . , σn to τ1, . . . , τm are equivalence classes of sequences of terms(ti)i≤m, such
that for eachi the term

Ξ | ~x : ~σ;− ` ti : τi
is well-formed, where the sequences(ti) and(t′i) are identified if, for eachi, ti is externally equal to
t′i. Reindexing with respect to morphisms inKind is by substitution.

• The functorLinType → Type maps a morphism−;x : σ ` t : τ to x : σ;− ` t : τ . The functor
going the other way maps a sequence of objects(σi) to⊗i!σi. It maps a morphism(ti) from (σi) to
(τi) to

Ξ | −; y : ⊗i!σi ` let ⊗i x
′
i : ⊗i!σi bey in let !~x be~x′ in ⊗i!ti.

For further details of the term model for PILL see [2].

149

• The categoryCtx has as objects in the fibre overΞ well-formed contexts of LAPL:Ξ | Γ | Θ. A
vertical morphism fromΞ | Γ | Θ to

Ξ | Γ′ | R1 : Rel(σ1, τ1), . . . , Rn : Rel(σn, τn), S1 : AdmRel(σ′1, τ
′
1), . . . , Sm : AdmRel(σ′m, τ

′
m)

is a triple, consisting of a morphismΞ | Γ → Ξ | Γ′ in the sense of morphisms inType, a sequence
of definable relations(ρ1, . . . , ρn), and a sequence of admissible relations(ω1, . . . , ωm), such that
Ξ | Γ | Θ ` ρi : Rel(σi, τi) andΞ | Γ | Θ ` ωi : AdmRel(σ′i, τ

′
i). We identify two such morphisms

represented by the same type morphism and the definable relations(ρ1, . . . , ρn) and (ρ′1, . . . , ρ
′
n)

and admissible relations(ω1, . . . , ωm) and(ω′1, . . . , ω
′
m), respectively, if, for eachi, j, the formulas

ρi ≡ ρ′i andωj ≡ ω′j are provable in the logic, where, as usual,ρi ≡ ρ′i is short for

∀x : σi, y : τi. ρi(xi, yi) ⊃⊂ ρ′i(xi, yi),

and likewise forωj ≡ ω′j . The inclusion functorI is the obvious one. Reindexing is by substitution.

• The fibre of the categoryProp over a contextΞ | Γ | Θ has as objects formulas in that context,
where we identify two formulas if they are provably equivalent. These are ordered by the implication
in the logic. Reindexing is done by substitution, that is, reindexing with respect to lifts of morphisms
fromKind is done by substitution in type-variables, whereas reindexing with respect to vertical maps
in Ctx is by substitution in term variables and relation variables.

An easy fibred version of the completeness proof in [2] shows thatKind,Type,LinType together with
the functors described above form a PILLY model. The fibrationCtx → Kind clearly has fibred products
formed by appending contexts, and the inclusion functorI is clearly faithful and product-preserving.

We need to prove thatProp → Ctx → Kind is an indexed first-order logic fibration with products
and coproducts with respect to simple projections inKind. The fibrewise bicartesian structure is given by
∨,∧,⊃,⊥,>. Fibred simple products and coproducts are given by quantifying over relations and variables,
simple products in the composite fibration is given by quantifying over types. We can in fact prove that the
composite fibration has all indexed products and coproducts (in particular, that it has equality).

Suppose(~t, ~ρ) represents a morphism fromΞ | ~x : ~σ | ~R to Ξ | ~y : ~τ | ~S (the vectors~R, ~S consist of
both definable and admissible relations, and the vector~ρ is a concatenation of the corresponding vectors
of admissible and definable relations from the definition above). We can then define the product functor in
Prop as: ∏

(~t,~ρ)(Ξ | ~x | ~R ` φ(~x, ~R)) =
Ξ | ~y | ~S ` ∀~x.∀~R(~t~x = ~y ∧ (~ρ(~x, ~R) ≡ ~S) ⊃ φ(~x, ~R)).

We define coproduct as: ∐
(~t,~ρ)(Ξ | ~x | ~R ` φ(~x, ~R)) =

Ξ | ~y | ~S ` ∃~x.∃~R.~t~x = ~y ∧ ~ρ(~x, ~R) ≡ ~S ∧ φ(~x, ~R)).

We remark that the equality we will actually be using in the model is the obvious

(Ξ | Γ, x : σ | Θ ` φ) 7→ (Ξ | Γ, x : σ, y : σ | Θ ` φ ∧ x =σ y)

The functorU of item 2 is defined as

U(σ, τ) = R : Rel(σ, τ)

150

and
U(t : σ (σ′, u : τ (τ ′) = Ξ | R : Rel(σ′, τ ′) ` (x : σ, y : τ). R(tx, uy).

The required isomorphismΨ is just the isomorphism given by Lemma 2.27. The functorV is defined as

V (σ, τ) = R : AdmRel(σ, τ)

and
V (t : σ (σ′, u : τ (τ ′) = Ξ | R : AdmRel(σ′, τ ′) ` (x : σ, y : τ). R(tx, uy).

We have defined a pre-LAPL-structure modeling admissible relations. If we constructAdmRelCtx as in
the definition of LAPL-structure, we obtain:

Objects ~α, ~β | Γ | ~R : AdmRel(~σ(~α), ~τ(~β)), ~R′ : Rel(~σ′(~α), ~τ ′(~β)).

Morphisms A morphism from

~α, ~β | Γ | ~R : AdmRel(~σ(~α), ~τ(~β)), ~R′ : Rel(~σ′(~α), ~τ ′(~β))

to
~α′, ~β′ | Γ′ | ~S : AdmRel(~ω(~α′), ~κ(~β′)), ~S′ : Rel(~ω′(~α′), ~κ′(~β′))

consists of two morphism inKind:

~µ : ~α→ ~α′

and
~ν : ~β → ~β′,

a morphism from~α, ~β | Γ to ~α, ~β | Γ′[~µ, ~ν/~α′, ~β′] in LinType
~α,~β

, and a sequence of
admissible relations~ρ and a sequence of definable relations~ρ′ such that, for all i,j,

~α, ~β | Γ | ~R : AdmRel(~σ(~α), ~τ(~β)), ~R′ : Rel(~σ′(~α), ~τ ′(~β)) ` ρi : AdmRel(ωi(~µ), κi(~ν))
~α, ~β | Γ′ | ~R : AdmRel(~σ(~α), ~τ(~β)), ~R′ : Rel(~σ′(~α), ~τ ′(~β)) ` ρ′j : Rel(ω′j(~µ), κ′j(~ν)).

As in Ctx these morphisms are identified up to provable equivalence of the definable rela-
tions.

The fibre ofLinAdmRelations over an object~α, ~β | Γ | R : AdmRel(~σ(~α), ~τ(~β)), ~R′ : Rel(~σ′(~α), ~τ ′(~β))
in AdmRelCtx becomes:

Objects Equivalence classes of definable relations

~α, ~β | ~Γ | R : AdmRel(~σ(~α), ~τ(~β)), ~R′ : Rel(~σ′(~α), ~τ ′(~β)) ` ρ : AdmRel(σ(~α), τ(~β)).

Morphisms A morphism fromρ : AdmRel(σ(~α), τ(~β)) to ρ′ : AdmRel(σ′(~α), τ ′(~β)) is a pair of mor-
phismst : σ (σ′, u : τ (τ ′ such that it is provable in the logic that:

∀x : σ.∀y : τ. ρ(x, y) ⊃ ρ′(tx, uy)

151

We will construct the mapJ as a map of fibred linear categories fromLinType → Kind to

LinAdmRelations → AdmRelCtx

as follows. On the base categoriesJ is defined on objects as

J(α1, . . . , αn) = α1, . . . , αn;β1, . . . , βn | R1 : AdmRel(α1, β1), . . . , Rn : AdmRel(αn, βn).

We defineJ on the objects of the total categories (and on the morphisms of the base category) as

J(~α ` σ : Type) = ~α, ~β | ~R : AdmRel(~α, ~β) ` σ[R] : AdmRel(σ(~α), σ(~β)).

To defineJ on morphisms of the fibre categories, suppose~α | −;− ` t : σ (τ . We defineJ(t) = (t, t).
To see that(t, t) in fact is a map fromσ[~R] to τ [~R], notice that the Logical Relations Lemma (3.3) tells us
that

Λ~α. t(
∏
~α. σ (τ)Λ~α. t,

which means exactly that(t, t) : σ[~R] (τ [~R].

Rules 2.19-2.24 tell us thatJ is a strict fibred symmetric monoidal closed functor preserving products and!
on the nose. Since theε andδ of the fibred comonad onLinAdmRelations → AdmRelCtx are simply
(ε, ε) and(δ, δ) it is clear thatJ preserve these as well.

Now, by definition, a formula holds in this LAPL-structure iff it is provable LAPL.

5 Parametric LAPL-structures

Definition 5.1. A parametric LAPL-structure is an LAPL-structure with very strong equality in which
identity extension holds in the internal logic.

Recall that very strong equality implies extensionality. We ask that identity extension and extensionality
hold because this means that all the results from Section 3 apply to the internal logic of the LAPL-structure.
Strong equality will be used to conclude that properties proved in the internal logic also hold externally,
as exemplified in the following subsection, where we show how to solve recursive domain equations in
parametric LAPL-structures.

5.1 Solving recursive domain equations in parametric LAPL-structures

Definition 5.2. An endofunctorT : Bop ×B → B, for B an SMCC, is calledstrong if there exists a natural
transformationtσ,τ,σ′,τ ′ :!(σσ′)⊗!((τ ′)τ) (T (σ′, τ ′)T (σ,τ) preserving identity and composition:

I
!îdσ⊗!îdτ ◦

̂idTσ ◦P
PPPPPPPPPPPPPP !(σσ)⊗!(τ τ)

tσ,τ,σ,τ

◦
T (σ, τ)T (σ,τ)

!(σσ′)⊗!((τ ′)τ)⊗!((σ′)σ′′)⊗!((τ ′′)τ ′)
comp

◦

t⊗t

◦

!(σσ′′)⊗!((τ ′′)τ)

t

◦
T (σ′, τ ′)T (σ,τ) ⊗ T (σ′′, τ ′′)T (σ′,τ ′)

comp
◦T (σ′′, τ ′′)T (σ,τ).

The natural transformationt is called thestrength of the functorT . (Note that we here used exponential
notationXY for the closed structure inB.)

152

One should note thatt in the definition above represents the morphism part of the functorT in the sense that
it makes the diagram

I
!f̂⊗!ĝ

◦

T̂ (f,g) ◦Q
QQQQQQQQQQQQQQQ !(σσ′)⊗!((τ ′)τ)

tσ,τ,σ′,τ ′

◦
T (σ′, τ ′)T (σ,τ)

(9)

commute, for any pair of morphismsf : σ′ (σ, g : τ (τ ′. This follows from the commutative diagram

I
îd

◦
!îd⊗!îd

III
I

◦I
III

!f̂⊗!ĝ

◦

!σσ⊗!τ τ t ◦

!(σf)⊗!(gτ)

◦

T (σ, τ)T (σ,τ)

T (f,g)T (σ,τ)

◦
!σσ′⊗!(τ ′)τ t ◦T (σ′, τ ′)T (σ,τ).

In fact, (9) shows that we can define the action ofT on morphisms from the strength.

Definition 5.3. If E → B is a fibred SMCC, then a fibred functor

Eop ×B E

$$III
III

III
I

T // E

����
��

��
��

B

is calledstrong fibred if there exists a fibred natural transformationt from

!((=)(−))⊗!((=′)(−
′)) to T (−,=′)T (=,−′)

satisfying commutativity of the two diagrams of Definition 5.2 in each fibre. The natural transformationt is
called thestrength of the functorT .

The fibred strengtht is a natural transformation between two fibred functors

E×B Eop ×B Eop ×B E //

((QQQQQQQQQQQQQQ E

����
��

��
�

B

For example, in the case of a PILLY -model, the interpretation of any inductively constructed typeα, β `
σ(α, β) with α occuring only negatively andβ only positively induces a strong fibred functor, since as
described in Section 3.8, for each such type we can define a term

− ` t :
∏
α, β, α′, β′. (α′ (α) → (β (β′) → σ(α, β) (σ(α′, β′)

The object part of the functorF is then defined as

F (τ, τ ′) = [[σ(τ, τ ′)]]

153

and the strengths of the functor is defined as

(sΞ)τ,τ ′,ω,ω′ = [[Ξ ` t τ τ ′ ω ω′]].

The morphism part of the functor is induced by the strength.

In fact, an a sense these are the only fibred strong functors on PILLY -models.

Lemma 5.4. Suppose

LinTypeop ×Kind LinType F //

))TTTTTTTTTTTTTTTT
LinType

xxrrrrrrrrrr

Kind

is a fibred strong functor on a PILLY -model. Then there exists a typeα, β ` σ and a term

− ` t :
∏
α, β, α′, β′. (α′ (α) → (β (β′) → σ(α, β) (σ(α′, β′)

in the internal language ofLinType → Kind inducingF .

Proof. Let T : LinTypeΩ denote the generic object of the fibrationLinType → Kind. For each type
τ : LinTypeΞ there exists a mapΞ → Ω, which we will denotêτ such that̂τ∗T = τ .

Defineσ = F ([[α, β ` α]], [[α, β ` β]]). Then for any pair of types(τ, τ ′) ∈ (LinTypeop×KindLinType)Ξ

F (τ, τ ′) = F (〈τ̂ , τ̂ ′〉∗([[α, β ` α]], [[α, β ` β]])) = 〈τ̂ , τ̂ ′〉∗σ

sinceF is fibred. In the internal languageΞ ` σ(τ, τ ′) is interpreted as〈τ̂ , τ̂ ′〉∗σ and so indeedσ induces
the action ofF on objects.

Let s denote the strength of the fibred functorF . Consider the component

(sΩ4)[[α,β,α′,β′`α]],[[α,β,α′,β′`β]],[[α,β,α′,β′`α′]],[[α,β,α′,β′`β′]]

and denote it byt′. In the internal language,t′ is a term, and we can consider the polymorphic term

− ` t = Λα.Λβ.Λα′.Λβ′. t′ :
∏
α, β, α′, β′. (α′ (α) → (β (β′) → (σ(α, β) (σ(α′, β′)).

We just need to show that the strength induced by the termt is in facts, but

[[Ξ ` t τ τ ′ ω ω′]] = 〈τ̂ , τ̂ ′, ω̂, ω̂′〉∗t′ = (sΞ)τ,τ ′,ω,ω′

sinces is preserved by reindexing.

Theorem 5.5. In a parametric LAPL-structure, for any strong fibred functorF there exists a closed typeτ
such thatF (τ, τ) ∼= τ in LinType1 for 1 the terminal object ofKind.

Proof. Since by Lemma 5.4 we can expressF in the internal language, we can copy the proofs from Sec-
tions 3.10, 3.11, 3.12. The functorial interpretation of types of Section 3.8 should be substituted by the
polymorphic term provided by Lemma 5.4. Since internal equality implies external equality, we get the
result in the “real world”.

Remark 5.6. Since the functorF is fibred, we may reindexτ to get a family of objects(!∗Ξτ)Ξ∈Kind such
that for eachΞ, !∗Ξτ satisfiesF (!∗Ξτ, !

∗
Ξτ) ∼=!∗Ξτ in the fibre, where!Ξ is the unique mapΞ → 1 in Kind.

Remark 5.7. Parametric LAPL-structures do not in general model recursive types, that is, we do not have
for all typesσ : LinTypeΩ a typeτ such thatσ(τ) ∼= τ , since there may not be a functorial action corre-
sponding toσ.

154

5.2 Parametrized recursive type equations

An inductively constructed typeα1, β1, . . . , αn, βn ` σ with 2n free type variables, in which the variables
~α occur only negatively and the variables~β only positively induces a fibred functor

(LinTypeop ×Kind LinType)n F //

**UUUUUUUUUUUUUUUUU
LinType

xxqqqqqqqqqq

Kind.

On the other hand Definition 5.3 can easily be extended to define what it means that a functorF as above
is strong fibred, and Lemma 5.4 extends to show that such strong fibred functors correspond to typesσ as
above and closed polymorphic terms of type∏

~α, ~β, ~α′, ~β′. (α′1 (α1) → (β1 (β′1) → . . .→ (α′n (αn) → (βn (β′n) → σ(~α, ~β) (σ(~α′, ~β′)

in the internal language. The following theorem is then the corresponding extension of Theorem 5.5 obtained
using the analysis of Section 3.13.

Theorem 5.8. In a parametric LAPL-structure, for any strong fibred functor

(LinTypeop ×Kind LinType)n+1 F //

**UUUUUUUUUUUUUUUUU
LinType

xxrrrrrrrrrrr

Kind.

there exists a strong fibred functor

(LinTypeop ×Kind LinType)n FixF //

**UUUUUUUUUUUUUUUUU
LinType

xxqqqqqqqqqq

Kind.

and a fibred natural isomorphism

F (X1, Y1, . . . , Xn, Yn,FixF (Y1, X1, . . . , Yn, Xn),FixF (X1, Y1, . . . , Xn, Yn))
∼= FixF (X1, Y1, . . . , Xn, Yn).

Moreover, ifG is a strong fibred functor

(LinTypeop ×Kind LinType)m G //

**UUUUUUUUUUUUUUUUU
(LinTypeop ×Kind LinType)n

ttiiiiiiiiiiiiiiiii

Kind.

then Fix(F ◦ (G× id)) = FixF ◦G.

155

6 Concrete Models

In this section we describe a parametric LAPL structure based on admissible pers over a universal domain
as advocated by Plotkin [22]. Pers are known to model the typedλ-calculus, and admissible pers further
facilitates a fixed point operator.

As noted in Section 4, to model PILL one has to provide a fibred symmetric monoidal adjunction. We do
this by constructing a regular symmetric monoidal adjunction and then define the fibration pointwise.

The standard example is a lifting functor and a forgetful functor. This is also the case here albeit slightly
obfuscated, as lifting is coded in the language of the universal domain. This is an adaptation of [13].

Finally, to be able to model polymorphism, the entire construction is done fibred. Parametricity is then
ensured by a yet-to-be-described completion process, but first we present the “clean” version:

LetD be a reflexive cpo, i.e. a pointedω-chain-complete partial order such that we have

Φ: D → [D → D] and Ψ: [D → D] → D,

both Scott-continuous and satisfying
Φ ◦Ψ = id[D→D]

where [D → D] denotes the cpo of continuous functions fromD to D. We assume, without loss of
generality, that bothΦ andΨ are strict. It is standard that there exists strict continuous functions

〈·, ·〉 : D ×D → D, π : D → D and π′ : D → D,

such that for alld, d′ ∈ D:
π〈d, d′〉 = d and π′〈d, d′〉 = d′.

We useı to denoteΨ(id[D→D]). Notice thatΦ(ı) = id[D→D].

Definition 6.1. An admissible partial equivalence relation onD is a partial equivalence relationR onD
satisfying

strict ⊥DR⊥D,

ω-chain complete For (xn)n∈ω and(yn)n∈ω ω-chains inD:

(∀n ∈ ω.xn R yn) ⇒
⊔
n∈ω

xn R
⊔
n∈ω

yn,

Definition 6.2. ForR andS pers onD, define the set ofequivariant functions from R to S as

F(R,S) = {f ∈ [D → D]|x R y ⇒ f(x) S f(y)}

and the set ofstrict equivariant functions from R to S as

F(R,S)⊥ = {f ∈ F(R,S)|f(⊥D) = ⊥D}.

NoteF(R,S)⊥ ⊆ F(R,S).

Definition 6.3. ForR andS pers onD, define onF(R,S) orF(R,S)⊥ the equivalence relation'R,S by

f 'R,S g ⇔ ∀d ∈ D. d R d⇒ f(d) S g(d)

156

We writePER(D) for the category of partial equivalence relations overD. Recall that it has partial equiva-
lence relations overD as objects and that a morphism[f] : R→ S is an equivalence class inF(R,S)/ 'R,S .
Elements of[f] are calledrealizers for [f].

Definition 6.4. We define the categoryAP(D) of admissible partial equivalence relations overD as the
full subcategory ofPER(D) on the admissible pers.

Lemma 6.5. There is a faithful functorClasses : AP(D) → Set mapping an admissible per to the set of
equivalence classes and an equivalence class of realizers to the map of equivalence classes they induce.

Proof. This is well-defined since to realizers are equivalent precisely when they define the same map of
equivalence classes.

Theorem 6.6. The categoryAP(D) is a sub-cartesian closed category ofPER(D).

Proof. We recall the constructions. It is straightforward to verify that the resulting pers are admissible. The
terminal object1 is the admissible per defined by

d 1 d′ ⇔ d = ⊥D = d′.

The binary product ofR andS is
〈d1, d2〉 R× S 〈d′1, d′2〉

m
d1 R d′1 ∧ d2 S d

′
2

This is an exhaustive description, understood that only pairs are related in the product. The exponential of
R andS, SR, is given by

d SR d′ ⇔ Φ(d) 'R,S Φ(d′).

Definition 6.7. The categoryAP(D)⊥ of admissible pers and strict continuous functions is the full-on-
objects subcategory ofAP(D) with morphisms[f] : R→ S equivalence classes inF(R,S)⊥/ 'R,S .

Note that inAP(D)⊥, morphisms are required to have astrict continuous realizer.

Theorem 6.8. AP(D)⊥ is a cartesian sub-category ofAP(D).

Proof. Obvious using thatπ, π′, and〈·, ·〉 are strict.

Theorem 6.9. The categoryAP(D)⊥ is symmetric monoidal closed.

Proof. The tensor ofR andS is

〈d1, d2〉 R⊗ S 〈d′1, d′2〉
m

〈d1, d2〉 R× S 〈d′1, d′2〉
∨(

d1 R d1 ∧ d2 S d2 ∧ d′1 R d′1 ∧ d′2 S d
′
2 ∧

(d1 R ⊥D ∨ d2 S ⊥D) ∧ (d′1 R ⊥D ∨ d′2 S ⊥D)

)

157

This complicated looking definition is most easily understood through the functorClasses: The equivalence
classes of the tensor product are those of the product with the modification that all pairs where one of the
coordinates are related to⊥D has been gathered in one big equivalence class. It can thus be seen as a
quotient of the product.

The unit of the tensorI is defined by

dId′ ⇔ d = d′ = ⊥D ∨ d = d′ = 〈ı,⊥D〉.

This definition is not taken out of the blue.I is actually in the image of a lifting functor to be defined later.
Notice the “if construct” onI, which will be available on all lifted relations:

d I d ⇒ d = ⊥D ∨ d = 〈ı,⊥D〉
⇒ π(d) = ⊥D ∨ π(d) = ı
⇒ Φ(π(d)) = ⊥[D→D] ∨ Φ(π(d)) = id[D→D]

Thus ford I d, Φ(π(d))(d′) can be read as “ifd 6= ⊥D thend′ else⊥D”. We will use this to construct
realizers.

The exponential ofR andS,R (S, is given by

d R (S d′ ⇔ d SR d′ ∧ (d′′ R ⊥D ⇒ Φ(d)(d′′) S ⊥D S Φ(d′)(d′′))

The proof consist of a series of straightforward verifications.

For later use we shall mention how regular subobjects look in this category. We useA � R to express that
A is a regular subobject ofR, if R is an admissible per.

Lemma 6.10.
A � R⇔ Classes(A) ⊆ Classes(R) ∧A ∈ obj(AP(D)⊥)

Proof. In PER(D) there is a standard way of constructing an equalizer out of a subset of the equivalence
classes. This also works here, and the image of an equalizer is easily seen to be admissible. Thus all regular
subobjects have a representative, which is tracked by the identity onD.

We also need to know the following fact about admissible pers

Lemma 6.11. If I is an arbitrary set, and for alli ∈ I,Ri is an admissible per overD then⋂
i∈I

Ri

is an admissible per overD.

Proof. We intersect relations, which may be seen as sets of pairs. Thus we have the following equation

d
⋂
i∈I

Ri d
′ ⇔ ∀i ∈ I. d Ri d

′

which makes the statement obvious, as allRi are admissible.

158

6.1 The connection to CUPERs

In [1] Amadio and Curien show how complete uniform pers over a universal domain allows on to solve
domain equations on the per level. As we claim, the same is true for admissible pers, a comparison is
natural.

There are, however, some technical issues which makes this a little difficult.

Cupers are defined over a universal solution to the domain equation

D = T (D) = (D ⇀ D) + (D ×D)

In the categoryCPOip of pointed directed complete partial orders and injection-projection pairs. It is known
thatD is then the colimit of theωop-chain

⊥ = 0
! // T0

T ! // T 20
T 2! // . . .

DenotingTn0 byDn we have by the cocone property fo eachn the diagram:

Dn
in

55C D

jntt

Definingpn = in ◦ jn : D → D we can define a cuper onD as a relationR ⊆ D ×D such that

• If A ⊆ R andA ⊆dir D ×D then
⊔
A ∈ R.

• If d R e then for alln, pn(d) R pn(e).

So apart from using directed-complete rather than chain-complete cpos and living on a universal domain
solving a slightly different domain equation, cupers live on a domain with a known structure, and this
structure appears in their definition.

Thus the only reasonable way to compare the two notions is to consider a suitably adapted notion of admis-
sible pers over the above describedD. We then find, that the cupers form a proper subset of the admissible
pers.

It is noticeable, that cupers facilitate an ordering of the equivalence classes and thus allows one to solve
recursive domain equations, while admissible pers achieve this by modeling polymorphicλ-calculus and
calling upon parametricity2. Hence the two approaches are somewhat different.

6.2 Lifting

We now define a notion of lifting, to establish an adjunction betweenAP(D) andAP(D)⊥. Our notion of
lifting is essentially the one in [13], specialized to the partial combinatory algebra defined byD, Φ andΨ.

Let PD denote the power set ofD. Define the mapL′0 : PD → PD by

L′0(A) = {d ∈ D|π(Φ(d)(ı)) = ı ∧ π′(Φ(d)(ı)) ∈ A},

for A ⊆ D. And then the mapL0 : AP(D)0 → (AP(D)⊥)0 by

Classes(L0(R)) = {L′0(K)|K ∈ D/R} ∪ {{⊥D}}.
2And calling upon parametricity is, as far as we know, only possible after the deployment of a parametric completion process.

159

Notice the “if construct” available on a liftet relation: IfR is an admissible per then

d L0(R) d ⇒ d = ⊥D ∨ π(Φ(d)(ı)) = ı
⇒ π(Φ(d)(ı)) = ⊥D ∨ π(Φ(d)(ı)) = ı
⇒ Φ(π(Φ(d)(ı))) = ⊥[D→D] ∨ Φ(π(Φ(d)(ı))) = id[D→D]

ThusΦ(π(Φ(d)(ı)))(d′) can be read “ifd /∈ ⊥L0(R) thend′ else⊥D”, where⊥D of course represents⊥S

for any admissible perS.

We also have a “lift” and an “unlift”: Ifd ∈ A thenΨ(λd′ ∈ D.〈ı, d〉) ∈ L0(A) and if d ∈ L0(A) then
π′(Φ(d)(ı)) ∈ A. This is convenient for constructing realizers.

Similarly define, for admissible persR andS, the mapL′1 : F(R,S) → F(L0(R), L0(S))⊥ by

L′1(f) = λd ∈ D.Φ(π(Φ(d)(ı)))(Ψ(λd′ ∈ D.〈ı, f(π′(Φ(d)(ı)))〉))

which reads “ifd /∈ ⊥L0(R) then lift(f (unlift d)) else⊥D”.

And then the mapL1 : (AP(D))1 → (AP(D)⊥)1 by

L1(f) = [L′1(tf)]'L0(R),L0(S)

for f : R → S. A tedious, but straightforward, verification shows that the definitions ofL′0, L0, L′1 and
L1 all make sense, and thatL = (L0, L1) : AP(D) → AP(D)⊥ defines a functor. There is an obvious
forgetful functorU : AP(D)⊥ → AP(D).

Theorem 6.12.There is a monoidal adjunctionL a U .

Proof. One first shows thatL is left adjoint toU in the ordinary sense. The unit of the adjunction is given
by (ηR : R→ UL(R))R∈APD0 , all tracked by

tη = λd ∈ D.Ψ(λd′ ∈ D.〈ı, d〉).

Forf : R→ U(S) in AP(D)⊥, the required uniqueh : L(R) → S in AP(D)⊥, such thatU(h) ◦ ηR = f ,
is given by the realizer

th = λd ∈ D.Φ(π(Φ(d)(ı)))(tf (π′(Φ(d)(ı)))),

wheretf is a realizer forf .

To show that the adjunction is monoidal it suffices by to show that the left adjointL is a strong symmetric
monoidal functor (see [17] for an explanation). To this end, we must exhibit an isomorphismmI : I → L(1)
and a natural isomorphismmR,S : L(R)⊗L(S) → L(R×S). This is mostly straightforward; we just include
the definition ofmR,S : L(R)⊗ L(S) → L(R× S): it is the morphism tracked by the realizer

λd ∈ D.
Φ(π(Φ(π(d))(ı)))(

Φ(π(Φ(π′(d))(ı)))(
Ψ(λd′ ∈ D.〈ı, 〈π′(Φ(π(d))(ı)), π′(Φ(π′(d))(ı))〉〉)

)
)

which reads

160

“if π(d) 6= ⊥ then
if π′(d) 6= ⊥ then

lift of 〈unlift(π(d)), unlift(π′(d))〉
else⊥D

else⊥D”.

Following a similar chain of thought, the inverse is tracked by

λd ∈ D.
Φ(π(Φ(d)(ı)))(

〈Ψ(λd′ ∈ D.〈ı, π(π′(Φ(d)(ı)))〉),Ψ(λd′ ∈ D.〈ı, π′(π′(Φ(d)(ı)))〉)〉
)

which reads

“if d 6= ⊥ then
〈lift of π(unlift(d)), lift of π′(unlift(d))〉

else⊥D”.

6.3 Going fibred

In order to model polymorphism, we do a fibred version of the adjunction presented in the last subsection,
thus arriving at the PILL-model

UFam(AP(D)⊥)
U

00

q

""DDDDDDDDDDDDDDDDD ⊥ UFam(AP(D))
Lpp

p

}}{{
{{

{{
{{

{{
{{

{{
{{

{

Set.

(10)

Define the contravariant functorP : Setop → Cat by mapping setI to the categoryP (I) with

objects:(Ri)i∈I where for alli ∈ I,Ri is an object ofAP(D).

morphisms:(αi)i∈I : (Ri)i∈I → (Si)i∈I , where, for alli ∈ I, αi ∈ AP(D)(Ri, Si) and∃α ∈ [D →
D]. ∀i ∈ I. αi = [α]'Ri,Si

.

For a functionf : I → J , the reindexing functorP (f) is simply given by composition withf .

Define the contravariant functorQ : Setop → Cat given by mapping setI to the categoryQ(I) with

objects:(Ri)i∈I where for alli ∈ I,Ri is an object ofAP(D)⊥.

morphisms:(αi)i∈I : (Ri)i∈I → (Si)i∈I where for alli ∈ I, αi ∈ AP(D)⊥(Ri, Si) and∃α ∈ [D →
D]. ∀i ∈ I. αi = [α]'Ri,Si

.

161

For a functionf : I → J , the reindexing functorQ(f) is again simply given by composition withf .

That we have two contravariant functors is obvious. The Grothendieck construction then gives us two
split fibrations,p : UFam(AP(D)) → Set andq : UFam(AP(D)⊥) → Set. The functorsL andU
easily lift to fibred functors between these two fibrations (we abuse notation and also denote the fibred
functors byL andU). Explicitly, on objectsL(I, (Ri)i∈I) = (I, (L(Ri))i∈I) and on vertical morphisms
L(I, (fi)i∈I) = (I, (L(fi))i∈I). Likewise forU . These are not recursive definitions, they simply look so
because of the reuse of letters.

Theorem 6.13.L andU are split fibred functors andL a U is a split fibred strong monoidal adjunction

Proof. It is obvious thatL andU are split fibred functors; the second part follows immediately from Theo-
rem 6.12.

6.4 A domain-theoretic model of PILL

To show that (10) is a model of PILL it remains to be shown thatq has a generic object and simple products.

Lemma 6.14. The setΩ = Obj(AP(D)⊥) = Obj(AP(D)) is a split generic object of the fibrationq. The
fibration q has simple splitΩ-products satisfying the Beck-Chevalley condition.

Proof. The first part is obvious. For the second part, one uses the usual definition for uniform families of
ordinary pers and verifies that it restricts to admissible pers: We recall from [12] that given any projection
πA : A× Ω → A in Set, the right adjoint∀A to π∗A is given on objects by intersection:

∀A((R(a,ω))(a,ω)∈A×Ω) = (
⋂
ω∈Ω

R(a,ω))a∈A.

By lemma 6.11 the resulting per is admissible.

Theorem 6.15.The diagram(10)constitutes a model of PILLY .

Proof. Given the preceding results it only remains to verify that (1) the structure in the diagram models the
polymorphic fixed point combinator and that (2)UFam(AP(D)) is equivalent to the category of products
of free coalgebras ofUFam(AP(D))⊥.

For (1), the required follows, as expected, because the pers are strict and complete. In more detail, the
reasoning is as follows: It is well-known that there is a Scott-continuous functiony ∈ [[D → D] → D]
giving fixed-points through iterated application at⊥D. Since realizers are Scott-continuous functions in
[D → D], every realizerα has a fixed-pointy(α) in D given by

⊔
n(αn)(⊥D). If for some admissible per

R, α ∈ F(R,R), then, sinceR is strict,α respectsR, andR is chain-complete,y(α) R y(α). Thus the
equivalence class ofy(α) exists and is a fixed-point of the morphism represented byα. This is applicable
both inAP(D) andAP(D)⊥, but is not so interesting on strict morphisms. It is, however, inAP(D)⊥ that
we model the calculus, and thus here we want a fixed-point combinator — albeit only for some morphisms,
namely those of type!R (R = R → R, corresponding to morphisms ofAP(D). Intuitively, we wish to
take such a morphism, transpose it, grab the fixed-point inAP(D) and call the whole process a morphism
in AP(D)⊥. This is possible, since transposition cascades to the level of realizers. The function that
transposes a morphism and returns the fixed-point of the result is continuous. The fixed-point function is in
F(R → R,R), for anyR, and thus its code is a member of∀αType.(α → α) (α. Precomposing with

162

a uniform realizer forε before taking the code, one easily obtains the polymorphic fixed-point combinator
Y : ∀αType.(α→ α) → α. Writing this out, one arrives at

Ψ(λd ∈ D.y(λd′ ∈ D.Φ(Φ(π(Φ(d)(ı)))(π′(Φ(d)(ı))))(〈ı, d′〉)))

For (2), observe that by [17, Proposition 1.21] applied to Theorem 6.8 it suffices to show thatUFam(AP(D))
is equivalent to the coKleisli category of the adjunctionL a U , but this follows from the fact thatU is a
forgetful functor.

6.5 A parametric domain-theoretic model of PILL

In this section, we introduce a parametric version of the thus far constructed model. It is essentially ob-
tained through a parametric completion process such as the one described in [5] for internalλ2 models (as
mentioned in the Introduction, we will generalize that completion process to produce parametric LAPL-
structures in [16]).

We will arrive at the diagram

PFam(AP(D)⊥)

((QQQQQQQQQQQQ
U

00⊥ PFam(AP(D))

vvnnnnnnnnnnnn

Lpp

PAP(D)

(11)

Our construction is based on reflexive graphs and since our strategy is to obtain relational parametricity for
admissible relations (to also model the fixed point combinator in the parametric model), we consider the set
RefGrph of diagrams

A � R× S,

whereA is a regular subobject ofR × S in AP(D)⊥. (It is crucial that subobject is in the category with
strict maps — it means thatA will relate the equivalence class of⊥ in R to the equivalence class of⊥ in S.

IdentifyingRefGrphn with n, we define the base categoryPAP(D) by

Objects: n ∈ N — objects are natural numbers.

Morphisms: f : n→ m is anm-tuple,(f1, . . . , fm), where eachfi is a pair(fp
i , f

r
i) satisfying

• fp
i is a map of objects(Obj(AP(D)⊥))n → Obj(AP(D)⊥)

• f r
i is a map, that to two vectors of objects ofAP(D)⊥ associates maps of subobjects

f r
i ∈ Π~R,~S∈(Obj(AP(D)⊥))n

(
Πj∈{1,...,n} RegSub(Rj × Sj) → RegSub(fp

i (~R)× fp
i (~S))

)
satisfying

∀~R ∈ (Obj(AP(D)⊥))n.f r
i (~R, ~R)(~EqRj) = Eqfp

i (~R),

where the regular subobjects are to be calculated inAP(D)⊥.

We now describePFam(AP(D)⊥) → PAP(D) andPFam(AP(D)) → PAP(D). As objects they
basically contain an (indexed) per and an (indexed) relational interpretation of this per. As morphisms they

163

have uniformly tracked morphisms that respect admissible relations. We wish to model admissible relations
as regular subobjects inAP(D)⊥, so we introduce the notationA � R forA ∈ Obj(RegSubAP(D)⊥(R)).

We plan to use the Grothendieck construction, and so define indexed categories:(PFam(AP(D)⊥))n is
defined with

Objects: f : n→ 1 is a morphism inPAP(D) from n to 1.

Morphisms: α : f → g is a uniformly tracked family of morphisms(α~R)~R∈(Obj(AP(D)⊥))n of AP(D)⊥
such that

α~R : fp(~R) → gp(~R).

Thatα is uniformly tracked means that there is a strict continuous functiontα ∈ [D → D] such that

∀~R ∈ (Obj(AP(D)⊥))n.α~R = fp(~R)[tα]gp(~R).

Furthermore thisα should respect relations:

∀ ~A � ~R× ~S.〈a, b〉 f r(~R, ~S, ~A) 〈a, b〉 ⇒ 〈tα(a), tα(b)〉 gr(~R, ~S, ~A) 〈tα(a), tα(b)〉.

Quite similarly(PFam(AP(D)))n is defined as the category with

Objects: f : n→ 1 is a morphism inPAP(D) from somen to 1.

Morphisms: α : f → g is a uniformly tracked family of morphisms(α~R)~R∈(Obj(AP(D)⊥))n of AP(D)
such that

α~R : U(fp(~R)) → U(gp(~R))

whereU : AP(D)⊥ → AP(D) is the forgetful functor. That we now ask for morphisms ofAP(D)
removes the demand, that the uniform tracker be strict. Again thisα should respect relations:

∀ ~A � ~R× ~S.〈a, b〉 fp(~R, ~S, ~A) 〈a, b〉 ⇒ 〈tα(a), tα(b)〉 gp(~R, ~S, ~A) 〈tα(a), tα(b)〉

HereA is still a regular subobject inAP(D)⊥.

Note that the only difference between the two definitions is the choice of category in which theα~R are
required to be morphisms.

Definition 6.16. DefineL : PFam(AP(D)) → PFam(AP(D)⊥) on

objects by
L((fp, f r)) = (F p, F r)

where
F p(~R) = L(fp(~R))

and
F r((~R, ~S, ~A)) = L(f r(~R, ~S, ~A))

morphisms by
L(α : (fp, f r) → (gp, gr))(R) = L(α(R))

DefineU : PFam(AP(D)⊥) → PFam(AP(D)) in a similar way usingU instead ofL.

164

Lemma 6.17. If A � R× S, thenL(A) � L(R)× L(S).

Lemma 6.18.L : PFam(AP(D)) → PFam(AP(D)⊥) andU : PFam(AP(D)⊥) → PFam(AP(D))
are both functors, andL a U

Proof. Easy given lemma 6.17 and the fact that for all admissible persR, L(EqR) = EqL(R). Lemma 6.17
ensures that the realizertη for the unit ofL a U also defines a natural transformationid ⇒ UL with the
required universal property.

By an easy extension of Theorem 6.6, we have:

Theorem 6.19.PFam(AP(D)) is fibred cartesian closed.

Proof. It turns out to be easy, since the product of two regular subobjects turns out to be a regular subobject
of the product, and the exponent of two regular subobjects turns out to be a regular subobject of the exponent.
Since the adjunction works on the level of realizers and realizers are uniform, the adjunction holds.

Theorem 6.20.PFam(AP(D)⊥) is fibred cartesian and fibred symmetric monoidal closed.

Proof. We just present the SMCC structure: The tensor product of(fp, f r) and(gp, gr) in the fibre

(PFam(AP(D)⊥))n,

is denoted by(fp, f r)⊗ (gp, gr) and defined by

(fp, f r)⊗ (gp, gr) = (fp ⊗ gp, f r ⊗ gr),

where
(fp ⊗ gp)(~R) = fp(~R)⊗ gp(~R)

and(f r⊗gr)(~R, ~S)(~A) is defined as the image of the mapf r(~R, ~S)(~A)⊗gr(~R, ~S)(~A) → fp(~R)⊗gp(~R)×
fp(~S)⊗ gp(~S) tracked by

tt = λd ∈ D.〈〈ππd, ππ′d〉, 〈π′πd, π′π′d〉〉

which on pairs of pairs have the following behavior:

〈〈rf , sf 〉, 〈rg, sg〉〉 7→ 〈〈rf , rg〉, 〈sf , sg〉〉.

The unitpI of the tensor is given by the object(~R 7→ I, (~R, ~S) 7→ EqI).

The exponential of(fp, f r) and(gp, gr) in (PFam(AP(D)⊥))n, is (fp, f r) ((gp, gr) defined by

(fp, f r) ((gp, gr) = (fp (gp, f r (gr)

where
(fp (gp)(~R) = fp(~R) (gp(~R)

and(f r (gr)(~R, ~S)(~A) is defined by

〈dr, ds〉 (f r (gr)(~R, ~S)(~A) 〈d′r, d′s〉
m

〈r, s〉 f r(~R, ~S)(~A) 〈r′, s′〉 ⇒ 〈Φ(dr)(r),Φ(ds)(s)〉 gr(~R, ~S)(~A) 〈Φ(d′r)(r
′),Φ(d′s)(s

′)〉
∧

〈dr, ds〉 (fp (gp)(~R)× (fp (gp)(~S) 〈d′r, d′s〉

165

This is an exhaustive description, in the sense that only pairs are ever related.

To verify the adjunction(−) ⊗ (fp, f r) a (fp, f r) ((−), we use that we know that it holds in the
first component and then check that the bijection can be restricted to realizers that define morphisms in the
second component; the latter is a direct consequence of the way the relational interpretations of⊗ and(
are defined.

Lemma 6.21. L a U is a fibred symmetric monoidal adjunction.

Proof. This proceeds much as in the unfibred case. We show thatL is a fibred strong symmetric monoidal
functor. We must provide a morphismmI and a natural transformationm, but we can simply use the same
realizers as before, since everything has been defined coordinatewise and these realizers are independent of
the specific pers, and hence are uniform realizers.

Lemma 6.22. Ω = 1 is a split generic object ofPFam(AP(D)⊥) → PAP(D).

Proof. Obvious.

Lemma 6.23. If (fp, f r) is an object ofPFam(AP(D)⊥)n+1, then(
⋂
fp,
⋂
f r), where

(
⋂
fp)(R1, . . . , Rn)(x, y) ⇐⇒⋂

R∈Obj(AP(D)⊥) f
p(R1, . . . , Rn, R)(x, y) ∧ ∀R,S,A � R× S. 〈x, y〉f r(EqR1 , . . . , EqRn , A)〈x, y〉

and

〈x, y〉(
⋂
f r)(A1 � R1 × S1, . . . , An � Rn × Sn)〈x′, y′〉 ⇐⇒

∀R,S,A � R× S. 〈x, y〉fp(A1, . . . , An, A)〈x′, y′〉 ∧ (
⋂
fp)(~R)(x, x′) ∧ (

⋂
fp)(~S)(y, y′)

is an object ofPFam(AP(D)⊥)n.

Lemma 6.24. PFam(AP(D)⊥) has simpleΩ-products.

Proof. The construction is as in [12, Section 8.4]. Given a projectionπ : n + m → n, we must define a
right adjoint toπ∗. This is done by extending the construction of the previous lemma in an obvious way to
a functor.

Proposition 6.25. The diagram (11) constitutes a PILLY model.

Proof. It only remains to verify that the structure models the fixed point combinator. Here we simply use
theY from Theorem 6.15, which works since relations are strict and chain complete.

We now proceed to show that this new PILLY model can be extended to an LAPL-structure. For this we
need just two more fibrations,q : Fam(Set) → PAP(D) andr : Fam(Sub(Set)) → Fam(Set). The
fibre ofFam(Set) overn has as

Objects mapsf : obj(AP(D))n → Set.

Morphisms t : f → g is a family

(t~R : f(~R) → g(~R))~R∈obj(AP(D))n

166

and reindexing is given by composition. The fibre ofFam(Sub(Set)) over an objectf : obj(AP(D))n →
Set is a preorder with

Objects mapsg : obj(AP(D))n → Set, such that

∀~R ∈ obj(AP(D))n. g(~R) ⊆ f(~R).

Morphisms There is a morphismg → g′ if

∀~R ∈ obj(AP(D))n. g(~R) ⊆ g′(~R).

Here reindexing is with respect to morphisms inPAP(D) is given by composition, whereas reindexing
with respect to morphisms inFam(Set) is given by inverse image.

Lemma 6.26. q is a fibration with fibred products, and(r, q) is an indexed first-order logic fibration with
simpleΩ-products and -coproducts.

Proof.
Sub(Set)

��
Set

is a first-order logic fibration with generic object and all simple products and coproducts. By Lemma A.8 in
[5] we can construct the pullback

Fam(Sub(Set)) //

��

Sub(Set)

��
Set→

dom // Set

obtaining thatFam(Sub(Set)) −→ Set→ cod−→ Set is a composable fibration with the desired qualities.
Yet this is not quite the right fibration. Fortunately we have

Fam(Set) ' //

%%KKKKKKKKKK Set→

cod{{wwwwwwwww

Set

by the isomorphism mapping(Ux)x∈X toqx∈XUx → X. And now

Fam(Sub(Set)) //

��

Fam(Sub(Set))

��
Fam(Set) //

��

Fam(Set) ' //

((QQQQQQQQQQQQQQ Set→

cod

��
PAP(D) // Set

is a pullback. The bottom half is a pullback by definition, the mapPAP(D) → Set operates as follows

n 7→ obj(AP(D))n (~fp, ~f r) : n→ m 7→ ~fp : obj(AP(D))n → obj(AP(D))m

And the top one easily is a pullback as well. As→ preserves products, the leftmost composable fibration
have the desired qualities.

167

We can then define the functorI : PFam(AP(D)) → Fam(Set) to be the fibred version ofClasses.

Lemma 6.27. I is a faithful and product-preserving map of fibrations.

It is now time to define the contravariant map of fibrations

PFam(AP(D)⊥)2 U //

((QQQQQQQQQQQQQ
Fam(Set)

xxppppppppppp

PAP(D)

This is defined at indexn on

Objects byU(f, g) = ~R 7→ P (I(fp(~R))× I(gp(~R))), whereP (−) denotes powerset,

Morphisms byU(α : f → f ′, β : g → g′) = ~R 7→

A ⊆ I(f ′p(~R))× I(g′p(~R)) 7→ { (x, y) ∈ I(fp(~R))× I(gp(~R)) | (I(α)(x), I(β)(y)) ∈ A }

Lemma 6.28.U is a contravariant map of fibrations.

Proof. U can be equivalently defined as

(σ, τ) 7→ 2I(σ)×I(τ),

which makes the statement clear.

We can then define a family of bijections(χn)n∈Obj(PAP(D)) such that for allf, g ∈ (PFam(AP(D)⊥))n

andM ∈ (Fam(Set))n

χn : Fam(Set)(M,Un(f, g))n → Obj(Fam(Sub(Set))M×In(Un(f)×Un(g)))

by
χn(h) = {(m, (a, b))|(a, b) ∈ h(m)}

Lemma 6.29. χ is a bijection, which is natural in the domain variable, is natural inf ,g, and which com-
mutes with reindexing functors.

We have now proved:

Proposition 6.30. The diagram

Fam(Sub(Set))

��
PFam(AP(D)⊥)

))SSSSSSSSSSSSSS
U

33
⊥ PFam(AP(D))

��

L
ss

� � // Fam(Set)

uukkkkkkkkkkkkkk

PAP(D)

(12)

constitutes a pre-LAPL structure.

168

Now we define a subfunctorV of U on

Objects by V (f, g) = ~R 7→ { I(A) | A �AP(D)⊥ (fp(~R)× gp(~R)) },

One can now show thatV is closed under all the constructions performable on admissible relations and that
it contains all graph relations.

Lemma 6.31. The structure in diagram (12) andV model admissible relations.

Proof. We refer to figure 4 and provide only a part of a formula to hint at which construction we are debating:

eqσ: Equality on a typeσ is modeled as the diagonal subobject of[[σ]] × [[σ]]. This corresponds to an
admissible relation because it is isomorphic to[[σ]] by the continuous functionsλd ∈ D. 〈d, d〉 andπ.

ρ(t x, u y): Reindexing an admissible relation by a strict continuous function (i.e.(t, u)) is bound to
give an admissible relation. We consider chain-completeness: Given two index-wise related chains
in (t, u)−1(ρ), (t, u) taken on these gives us two index-wise related chains inρ. Sinceρ is chain-
complete their limits are related inρ, and since(t, u) is continuous the limits of the original chains is
in the inverse image of the limit inρ.

ρ(x, y)∧ρ′(x, y): Conjunction is modeled by intersection, under which admissible relations by lemma 6.11
are stable.

(x : τ, y : σ). ρ(y, x): swapping the abscissa and ordinal axis does not break admissibility.

!ρ: This is simply the usual lift of relations.

>: This is all classes. This is admissible.

φ ⊃ ρ(x, y): If φ does not hold we get all classes. Ifφ does hold we getρ which is admissible.

Quantifications: All quantifications are modeled through intersections and are thus taken care of by lemma 6.11.

Having come so far, we move on to describeLinAdmRelations andAdmRelCtx from Section 4.
Recall thatAdmRelCtx is defined as the pullback

AdmRelCtx //

〈∂0,∂1〉
��

Fam(Set)

��
PAP(D)×PAP(D) × // PAP(D)

which means thatAdmRelCtx has as

Objects triples(n,m,Φ) whereΦ: obj(AP(D))n+m → Set, assigns a set to a vector of admissible pers.

Morphisms triples(f, g, ρ) : (n,m,Φ) → (n′,m′,Φ′) wheref : n → n′ andg : m → m′ are morphisms
in PAP(D) andρ is an indexed family of maps

ρ = (ρ~R,~S : Φ(~R, ~S) → Φ′(~fp(~R), ~gp(~S)))~R∈obj(AP(D))n,~S∈obj(AP(D))m

whereΦ andΦ′ are evaluated on the combined lists of admissible pers.

169

In this concrete caseLinAdmRelations can be described as follows: Given an object(n,m,Φ) over
(n,m), the fibre ofLinAdmRelations over(n,m,Φ) has as

Objects triples(φ, f, g) such thatf andg are objects ofPFam(AP(D)⊥) overn andm respectively and
φ is an indexed family of maps

φ = (φ~R,~S : Φ(~R, ~S) → {A | A � fp(~R)× gp(~S) })~R∈obj(AP(D))n,~S∈obj(AP(D))m

Morphisms A morphism(φ, f, g) → (ψ, f ′, g′) is a pair of morphisms

(t : f → f ′, u : g → g′)

in (PFam(AP(D)⊥))n and(PFam(AP(D)⊥))m, respectively, such that

∀~R ∈ obj(AP(D))n, ~S ∈ obj(AP(D))m.∀z ∈ Φ(~R, ~S).
〈x, y〉 φ(z) 〈x, y〉 ⇒ 〈t(x), u(y)〉 ψ(z) 〈t(x), u(y)〉

Note that we now have two obvious projections∂0 and∂1.

Finally we can define the required functorJ .
PFam(AP(D)⊥)

��
PAP(D)

 //


LinAdmRelations

��
AdmRelCtx


For the base categories,J is defined on

Objects by n 7→ (n, n, (
∏

i{A | A � Ri × Si })~R,~S∈AP(D)n)

Morphisms by f 7→ (f, f,
∏

i f
r
i)

and for the total categories,J is defined on

Objects by (fp, f r) 7→ (f r, f, f)

Morphisms by α 7→ (α, α).

This definition on morphisms is legal becauseα preserves relations.

In order to show thatJ preserves tensor products, we need the following lemma

Lemma 6.32. The tensor product inLinAdmRelations → AdmRelCtx can be described as

(ρ, f, g)⊗ (ρ′, f ′, g′) = (ρ⊗ ρ′, f ⊗ f ′, g ⊗ g′)

whereρ⊗ ρ′ is calculated pointwise, i.e forz ∈ φ(~R, ~S)

(ρ⊗ ρ′)~R,~S(z) = ρ(z)⊗ ρ′(z)

Proof. We argue that this construction defines a left adjoint to(. The standard curry-uncurry-adjunction
holds, on the level of realizers even, which is not hard to show.

170

Lemma 6.33. J is a map of linearλ2-fibrations.

Proof. We must show thatJ preserves(, ⊗,
∏
, I and !.

The constructions in the two categories are virtually identical except for⊗ until application of lemma 6.32.

To check the case of! we consider the logical expression for!ρ : AdmRel(σ, τ):

(x :!σ, y :!τ).x ↓ ⇐⇒ y ↓ ∧ x ↓⊃ ρ(εx, εy)

The expressionx ↓ equatesx 6= [⊥]. Hencex ↓ ⇐⇒ y ↓ express the fact that no lifted class is related to
[⊥] in !ρ.

Further sinceε provides us with unlifted versions of its argument,x ↓⊃ ρ(εx, εy) states that liftet classes
are related in!ρ only if their unlifted versions are related inρ.

This is an exact description of the lifting performed by the functorL.

It is easy to see that∂0J = id and∂1J = id .

Theorem 6.34.The diagram in(12)constitutes a parametric LAPL-structure.

Proof. By the preceding results it is clear that it is an LAPL-structure; it only remains to show that it is
a parametric such. Extensionality holds since the logic is essentially given by regular subobjects, which
means that we have very strong equality [12], and thus also extensionality. The parametricity schema is
easily verified to hold.

Example 6.35. To ease notation in this example we shall write(x, y) ∈ A for 〈x, y〉A〈x, y〉 for regular
subobjectsA � R × S, as we do in LAPL. We will also leaveΨ,Φ implicit, and simply writef x for
Φ(f)(x).

We consider the typeNat = [[
∏
α. (α (α) → α (α]]. By definition

d(Natp)d′

iff for all R,S pers and all regular subobjectsA � R× S, (f, g) ∈ (A (A) and(x, y) ∈ A

(d f x, d′ g y) ∈ A.

The domain ofNat contains the elements⊥ = λfλx.⊥ andn = λf. λx. fn(x), in particular0 = λfλx. x.

Lemma 6.36. Supposen ≤ m. Thenn = m.

Proof. Consider the two functionsf, g : D → D given byf(d) = 〈d, ι〉, whereι is the code of the identity
function, andg being the first projection. Both are continuous and sinceg ◦ f = id f is injective. Define
the sequence of elementsxn = fn(⊥). This sequence is strictly increasing.

Now, if n ≤ m then
xn = n f ⊥ ≤ m f ⊥ = xm

son ≤ m. Further,
xm−n = n g xm ≤ m g xm = ⊥

som = n.

171

Lemma 6.37. The per
{{⊥}} ∪ { {n} | n}

is a admissible.

Proof. Direct consequence of the lemma above.

Proposition 6.38. Supposed(Natp)d. Then eitherd = ⊥ or d = n.

Proof. Consider the discrete admissible perD:

{{d} | d ∈ D}

Then givenf, x consider the regular subobjectA � Nat×D given by

(⊥,⊥) ∈ A, ∀n. (n, fn(x)) ∈ A.

A is admissible, simply because it contains no interesting increasing chains. Clearly(succ, f) ∈ A (A,
so

(d succ0, d f x) ∈ A,

i.e., if d succ0 = ⊥, thend f x = ⊥ for all f, x and sod = ⊥, and if d succ0 = n for somen, then
d f x = fn(x), for all f, x, sod = n. As we have seen, there are no other possibilities ford succ0.

Proposition 6.39. Supposed(Natp)d′, thend = d′.

Proof. Analyzing the above proof we see that

d = d succ0

By considering the regular subobjectA � Nat×Nat given by

(⊥,⊥) ∈ A, ∀n. (n, n) ∈ A

we conclude
d succ0 = d′ succ0.

Acknowledgments

We gratefully acknowledge discussions with Milly Maietti, Gordon Plotkin, John Reynolds, Pino Rosolini
and Alex Simpson.

172

References

[1] Roberto M. Amadio and Pierre-Louis Curien.Domains and Lambda-Calculi, volume 46 ofCambridge
Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge, 1998. 6.1

[2] A. Barber. Linear Type Theories, Semantics and Action Calculi. PhD thesis, Edinburgh University,
1997. 2.1, 3.8, 4, 4.2

[3] P.N. Benton. A mixed linear and non-linear logic: Proofs, terms and models (preliminary report).
Technical report, University of Cambridge, 1995. 1.1

[4] G. M. Bierman, A. M. Pitts, and C. V. Russo. Operational properties of Lily, a polymorphic lin-
ear lambda calculus with recursion. InFourth International Workshop on Higher Order Operational
Techniques in Semantics, Montréal, volume 41 ofElectronic Notes in Theoretical Computer Science.
Elsevier, September 2000. 1

[5] L. Birkedal and R. Møgelberg. Categorical models for Abadi-Plotkin’s Logic for parametricity.Math-
ematical Structures in Computer Science, 2005. To Appear (Accepted for publication). 1, 3.2, 4, 1,
4.1, 6.5, 6.5

[6] M. Fiore. Axiomatic Domain Theory in Categories of Partial Maps. Distinguished Dissertations in
Computer Science. Cambridge University Press, 1996. 1

[7] P.J. Freyd. Algebraically complete categories. In A. Carboni, M. C. Pedicchio, and G. Rosolini,
editors,Category Theory. Proceedings, Como 1990, volume 1488 ofLecture Notes in Mathematics,
pages 95–104. Springer-Verlag, 1990. 3.12

[8] P.J. Freyd. Recursive types reduced to inductive types. InProceedings of the fifth IEEE Conference on
Logic in Computer Science, pages 498–507, 1990. 3.12

[9] P.J. Freyd. Remarks on algebraically compact categories. In M. P. Fourman, P.T. Johnstone, and
A. M. Pitts, editors,Applications of Categories in Computer Science. Proceedings of the LMS Sympo-
sium, Durham 1991, volume 177 ofLondon Mathematical Society Lecture Note Series, pages 95–106.
Cambridge University Press, 1991. 3.12

[10] J.-Y. Girard. Interprétation fonctionelle et́elimination des coupures de l’arithḿetique d’ordre
suṕerieur. Thèse d’Etat, Université Paris VII, 1972. 1

[11] H. Huwig and A. Poigńe. A note on inconsistencies caused by fixpoints in a cartesian closed category.
Theoretical Computer Science, 73:101–112, 1990. 1

[12] B. Jacobs.Categorical Logic and Type Theory, volume 141 ofStudies in Logic and the Foundations
of Mathematics. Elsevier Science Publishers B.V., 1999. 2.1, 4, 6.4, 6.5, 6.5

[13] J.R. Longley and A.K. Simpson. A uniform approach to domain theory in realizability models.Math.
Struct. in Comp. Science, 11, 1996. 6, 6.2

[14] M. Maietti, P. Maneggia, and E. Ritter. Relating categorical semantics for intuitionistic linear logic.
Applied Categorical Structures, 2004. To Appear. 1.1

[15] Maria E Maietti, Paola Maneggia, Valeria de Paiva, and Eike Ritter. Relating categorical semantics for
intuitionistic linear logic. Technical Report CSR-01-7, University of Birmingham, School of Computer
Science, August 2001. 4

173

[16] R. E. Møgelberg. Parametric completion for models of polymorphic intuitionistic / linear lambda
calculus. Technical Report TR-2005-60, IT University of Copenhagen, February 2005. 1, 3.3, 6.5

[17] R. E. Møgelberg, L. Birkedal, and R. L. Petersen. Categorical models of PILL. Technical Report
TR-2005-58, IT University of Copenhagen, February 2005. 1, 4, 4, 6.2, 6.4

[18] R. E. Møgelberg, L. Birkedal, and G. Rosolini. Synthetic domain theory and models of linear Abadi
& Plotkin logic. Technical Report TR-2005-59, IT University of Copenhagen, February 2005. 1

[19] R.L. Petersen and J. Thamsborg. Polymorphism and linearity all in one pill. Student Project, 2003. 4

[20] B.C. Pierce.Types and Programming Languages. MIT Press, 2002. 1

[21] A. M. Pitts. Parametric polymorphism and operational equivalence.Mathematical Structures in com-
puter Science, 10:321–359, 2000. 1

[22] G.D. Plotkin. Second order type theory and recursion. Notes for a talk at the Scott Fest, February
1993. 1, 3.12, 6

[23] Gordon Plotkin and Martı́n Abadi. A logic for parametric polymorphism. InTyped lambda calculi and
applications (Utrecht, 1993), volume 664 ofLecture Notes in Comput. Sci., pages 361–375. Springer,
Berlin, 1993. 1, 2, 2.2.3, 2.2.6, 3.8

[24] J.C. Reynolds. Towards a theory of type structure. InColloquium sur La Programmation, volume 19
of Lecture Notes in Computer Science, pages 408–423. Springer-Verlag, 1974. 1

[25] J.C. Reynolds. Types, abstraction, and parametric polymorphism.Information Processing, 83:513–
523, 1983. 1

[26] J.C. Reynolds. Private communication, June 2000. 1

[27] G. Rosolini and A. Simpson. Using synthetic domain theory to prove operational properties of a
polymorphic programming language based on strictness. Manuscript, 2004. 1

[28] Izumi Takeuti. An axiomatic system of parametricity.Fund. Inform., 33(4):397–432, 1998. Typed
lambda-calculi and applications (Nancy, 1997). 2.2

[29] P. Wadler. The Girard-Reynolds isomorphism (second edition). Manuscript, March 2004. 2.2

174

Categorical Models of PILL

Rasmus Ejlers Møgelberg
Lars Birkedal

Rasmus Lerchedahl Petersen

Abstract

We review the theory of adjunctions and comonads in the 2-category of symmetric monoidal ad-
junctions. This leads to the definitions of linear adjunctions, linear categories and models of DILL as in
[1, 6, 7]. This theory is generalized to the fibred case, and we define models of PILL and PILLY and
morphisms between them.

Contents

1 Models of DILL 176

1.1 The 2-category of symmetric monoidal categories . 176

1.2 The co-Kleisli category and the Eilenberg-Moore category of a comonad 178

1.3 The category of products of free coalgebras . 182

2 PILL models 185

175

1 Models of DILL

1.1 The 2-category of symmetric monoidal categories

In the following SMC stands for symmetric monoidal category.

Definition 1.1. A functor of SMC’s fromC to C′ is a functorF plus natural transformation

m : F (−)⊗ F (=) ⇒ F (−⊗ =)

and mapmI : I → F (I) satisfying the following commutative diagrams

(F (−)⊗ F (=))⊗ F (≡)
∼= //

m⊗id
��

F (−)⊗ (F (=)⊗ F (≡))

id⊗m
��

F ((−)⊗ (=))⊗ F (≡)

m

��

F (−)⊗ F ((=)⊗ (≡))

m

��
F (((−)⊗ (=))⊗ (≡))

∼= // F ((−)⊗ ((=)⊗ (≡)))

I ⊗ F (−)
∼= //

mI⊗id
��

F (−)

∼=
��

F (I)⊗ F (−) m // F (I ⊗ (−))

F (−)⊗ F (=)
∼= //

m

��

F (=)⊗ F (−)

m

��
F ((−)⊗ (=))

∼= // F ((=)⊗ (−))

The functorF is calledstrongif the transformationsm,mI are isomorphisms andstrict if they are identities.

The composite of symmetric monoidal functors

(F,mF ,mF
I) : C → C′ and(G, mG,mG

I) : C′ → C′′

is (GF, G(mF) ◦mG, G(mF
I) ◦mG

I), where

GF (−)⊗GF (=) mG
+3 G(F (−)⊗ F (=))

G(mF
I)
+3 GF (−⊗ =)

I
mG

I // G(I)
G(mF

I)
// GF (I).

Definition 1.2. A symmetric monoidal transformation between symmetric monoidal functors(F,mF ,mF
I)

and(G, mG,mG
I) is a natural transformationφ : F ⇒ G in the usual sense satisfying

F (−)⊗ F (=) mF
//

φ⊗φ
��

F ((−)⊗ (=))

φ
��

G(−)⊗G(=) mG
// G((−)⊗ (=))

I
mG

I

!!D
DD

DD
DD

D
mF

I

}}{{
{{

{{
{{

F (I)
φI // G(I).

The above defines the 2-category of SMC’s. In this 2-category one can define adjunctions, monads, comon-
ads etc. as usual. In the following we write out some of these definitions in detail.

176

Definition 1.3. A pair of functors of SMC’s

C
G

33⊥ D
F

ss

constitute a symmetric monoidal adjunction (withF left adjoint), if F a G as usual and both the unit
η : idD ⇒ GF and the counitε : FG ⇒ idC are symmetric monoidal transformations. This means that the
following diagrams commute:

FG(−)⊗ FG(=)

ε⊗ε

��

mF
// F (G(−)⊗G(=))

F (mG)
��

(−)⊗ (=) FG((−)⊗ (=))ε
oo

I

mF
I
��

F (I)
F (mG

I)
// FG(I)

ε

ddIIIIIIIIII

(−)⊗ (=)

η⊗η

��

η // GF ((−)⊗ (=))

GF (−)⊗GF (=) mG
// G(F (−)⊗ F (=))

G(mF)

OO I

η

��

mG
I // G(I)

G(mF
I)zzvvv

vv
vv

vv

GF (I)

The following theorem is originally from [5].

Theorem 1.4. An adjunctionF a G between symmetric monoidal categories is a symmetric monoidal
adjunction iffF is a strong symmetric monoidal functor.

For a proof we refer to [8, 2]. We just note that if(F,mF ,mF
I) is strong symmetric, then the natural trans-

formationsmG : G(−)⊗G(=) → G((−)⊗ (=)) is given as the adjoint correspondent to the composition

F (G(−)⊗G(=))
(mF)−1

// FG(−)⊗ FG(=) ε⊗ε // (−)⊗ (=)

and the natural transformationmG
I is given as the adjoint correspondent to

(mF
I)−1 : FI → I.

A symmetric monoidal comonad on an SMCC is a vector((F,m, mI), ε, δ) such that(F,m, mI) is a
SMC epifunctor,(F, ε, δ) is a comonad andε, δ are symmetric monoidal transformations. Since the usual
construction of a comonad from an adjunction can be carried out inside any 2-category, we obtain:

Lemma 1.5. Any symmetric monoidal adjunction

C
G

33⊥ D
F

ss

gives rise to a symmetric monoidal comonad onC.

Suppose we are given a functorF : C → D between symmetric monoidalclosedcategories. Then there
exists a natural transformationn : F ((−) ((=)) ⇒ F (−) (F (=) defined as

F ((−) ((=)) // F (−) (F ((−) ((=))⊗ F (−) id(m//

F (−) (F (((−) ((=))⊗ (−))
id(F (ev) // F (−) (F (=),

where the first map is the unit of the adjunction.

177

Definition 1.6. A morphism of SMCC’s is simply a morphism of SMC’s. A strong map of SMCC’s is a strong
map of SMC’s where the transformationn above is an isomorphism. The map is strict if it is a strict map of
SMC’s and the transformationn is the identity.

1.2 The co-Kleisli category and the Eilenberg-Moore category of a comonad

Suppose we are given an SMCC and a symmetric monoidal comonad(T, ε, δ) on it. We can then form the
co-Kleisli category of the comonad as usual:

Objects: are the objects ofC.

Morphisms: A morphism fromX to Y is a morphism inC from TX to Y .

Composition: Composition of mapsf : X → Y andg : Y → Z is given as

TX
δX // T 2X

Tf // TY
g // Z.

The natural transformationε plays the role of the identity.

We denote the co-Kleisli category byCT .

We can also form the Eilenberg-Moore category of the comonad as

Objects: Coalgebras for the comonad, i.e., mapsh : X → TX satisfying

X
h //

h
��

TX

δ
��

TX
Th // T 2X

X
h //

id !!D
DD

DD
DD

D TX

ε

��
X

Morphisms: Morphisms of coalgebras

We denote the Eilenberg-Moore category byCT .

Lemma 1.7. The co-Kleisli category of a comonad is isomorphic to the full subcategory of the Eilenberg-
Moore category on the free coalgebras for the comonad, i.e., the coalgebras of the formδX : T (X) →
T 2(X).

Proof. There is clearly a bijective correspondence between objects. We need to check that this correspon-
dence extends to morphisms. Supposeh : TX → Y is a morphism in the co-Kleisli category fromX to Y .
ThenTh ◦ δX defines a morphism of coalgebras since

T 2X
Tδ // T 3X

T 2h // T 2Y

TX
δX //

δX

OO

T 2X

δTX

OO

Th // TY,

δY

OO

where the square to the left commutes by the definition of comonad, and the diagram to the right commutes
by naturality ofδ. To check that this defines a functor from the co-Kleisli category to the Eilenberg-Moore

178

category, supposeh : TX → Y andh′ : TY → Z in C. If we first use the functor and then compose, we
obtain(Th′)◦δY ◦(Th)◦δX . If we first compose and then apply the functor, we obtainT (h′◦Th◦δX)◦δX ,
which by definition of comonad isTh′ ◦ T 2h ◦ δTX ◦ δX . By naturality ofδ, we conclude that the functor
commutes with composition. Clearlyε is mapped to the identity.

Suppose on the other hand thatf : TX → TY defines a map of coalgebras, i.e.,Tf ◦ δX = δY ◦ f . Then
we can define the mapεY ◦ f : TX → Y , which is a map in the co-Kleisli category fromX to Y . Again we
need to check that this defines a functor. Supposef ′ : TY → TZ is another map of coalgebras. Composing
first and the applying the functor givesεZ ◦ f ′ ◦ f . Applying the functor first and then composing gives
εZ◦f ′◦T (εY ◦f)◦δX = εZ◦f ′◦T (εY)◦δY ◦f , sincef is a map of coalgebras. We now useT (εY)◦δY = idY

by one of the equations for comonads to conclude that the functor commutes with composition. Clearly the
identity is mapped toε.

We need to check that the two functors are inverses of each other. Suppose we start with a map in the
co-Kleisli category, i.e., a maph : TX → Y . Applying the two functors to this givesεY ◦ Th ◦ δX =
h ◦ εTX ◦ δX = h. If we start with a map of coalgebrasf : TX → TY , applying the two functors gives
T (εY) ◦ T (f) ◦ δX = T (εY) ◦ δY ◦ f = f .

We have the usual adjunctions betweenC andCT andC andCT . We can illustrate these as

C
F T

22

FT

��

⊥ CT
UT

ss

a

CT ,

UT

KK

i

>>|||||||||||||||||||

wherei is the inclusion. We know thatiFT = F T , UT i = UT . Without further assumptions, neitherCT

nor CT have a natural SMC structure, so it does not make sense to ask for the adjunctions to be symmetric
monoidal.

Definition 1.8. A linear adjunctionis a symmetric monoidal adjunction

C
G

33⊥ D,
F

ss

where the SMC-structure onD is in fact a cartesian structure, andC is SMCC.

A morphism of linear adjunctions fromC
G

33⊥ D
F

ss to C′

G′
33⊥ D′

F ′
ss is a pair of functors

H,K whereH is a strict map of symmetric monoidal closed categories, andK is a strong map of symmetric
monoidal categories such that the diagrams

C G //

H
��

D F //

K
��

C
H
��

C′ F ′
// D′ G′

// C′

179

commuteup to isomorphism. Furthermore,H is required to commute with the comonads induced by the
adjunctions, i.e.,HFG = F ′G′H, Hε = ε′H andHδ = δ′H, whereδ, δ′ are the comultiplications of the
comonad induced by the adjunctions.

A natural transformation from(H,K) to (H,K ′) (notice that the first components of the two functors are
equal) is a natural transformation fromK to K ′.

The definition of natural transformation may seem a bit unintuitive, in particular the fact that natural transfor-
mations are always identity on the SMCC components of a functor. We have chosen this definition because
we want a fairly restrictive notion of equivalence between linear adjunctions.

It is well-known that DILL can be interpreted soundly and completely in any linear adjunction [1]

Remark 1.9. An LNL-model is a linear adjunction in which the cartesian category is closed.

Definition 1.10. A linear category is an SMCCC with a symmetric monoidal comonad((!,m,mI), ε, δ)
and symmetric monoidal natural transformationse : !(−) → I, d : !(−) →!(−)⊗!(−), such that

• For each objectA, (!A, eA, dA) is a commutative comonoid, i.e.,

!A

∼= ##G
GG

GG
GG

GG
dA // !A⊗!A

id⊗eA

��
!A⊗ I

!A
dA //

dA ##G
GG

GG
GG

GG
!A⊗!A

s

��
!A⊗!A

!A

dA

��

dA // !A⊗!A
id⊗dA // !A⊗ (!A⊗!A)

∼=
��

!A⊗!A
dA⊗id // (!A⊗!A)⊗!A,

wheres is the natural transformation(−)⊗ (=) ⇒ (=)⊗ (−),

• eA, dA define coalgebra maps fromδA : !A →!!A to the coalgebrasmI : I →!I and

!A⊗!A
δA⊗δA// !!A⊗!!A m // !(!A⊗!A)

• All coalgebra maps between free coalgebras preserve the comonoid structure, i.e., iff : !A →!B is
such that

!!A
!f // !!B

!A

δA

OO

f // !B

δB

OO

then

!A
f //

eA ��@
@@

@@
@@

@ !B

eB~~~~
~~

~~
~~

I

!A
f //

dA

��

!B

dB

��
!A⊗!A

f⊗f // !B⊗!B.

Linear categories model Intuitionistic Linear Logic (ILL). In ILL, types of the form!A behave intuition-
istically, and intuitively, one should think ofe as providing weakening for these types, andd as providing
contraction.

180

Lemma 1.11. In Definition 1.10, the last condition can be replaced by the condition thatδ preserves
comonoid structure.

Proof. From the definition of comonads, we see thatδ is a coalgebra map, and thus the new condition is a
special case of the old.

For the other implication, suppose thatf : !A →!B is a map of coalgebras. Then

eB ◦ f = e!B ◦ δB ◦ f = e!B ◦ (!f) ◦ δA = e!A ◦ δA = eA

which proves commutativity of the first diagram. For the second notice first that

f =!εB ◦ δB ◦ f =!εB ◦ (!f) ◦ δA.

The result now follows from the following commutative diagram:

!A
δ //

dA

��

!!A

d!A

��

!f // !!B
!ε //

d!B

��

!B

dB

��
!A⊗!A

δ⊗δ // !!A⊗!!A
!f⊗!f // !!B⊗!!B

!ε⊗!ε // !B⊗!B.

Definition 1.12. A morphism of linear categories from(C, !, d, e) to (C′, !′, d′, e′) is a strong symmet-
ric monoidal closed functorF preserving all the comonad structure on the nose, i.e.,!′F = F !, ε′F =
Fε, δ′F = Fδ. If the functorF is strict, we call this a strict functor of linear categories.

Lemma 1.13. For a linear category, the associated Eilenberg-Moore category is cartesian.

Proof. The product of two coalgebrashA : A →!A, hB : B →!B is

A⊗B
hA⊗hB// !A⊗!B m // !(A⊗B)

with projection given by

A⊗B
id⊗hB// A⊗!B

id⊗eB // A⊗ I
∼= // A

and diagonal∆A given by

A
hA // !A

dA // !A⊗!A
εA⊗εA// A⊗A.

Having defined the diagonal, pairing of functionsf : A → B, g : A → C is defined as usual as〈f, g〉 =
f ⊗ g ◦∆A.

The terminal object ismI : I →!I.

Proposition 1.14. Each linear adjunction

C
G

33⊥ D
F

ss

gives rise to a linear category whose comonad is! = FG. This extends to a functor from the category of
linear adjunctions to the category of linear categories with strict morphisms.

181

Proof. Recall first that in a linear adjunction, the left adjoint is strong by Theorem 1.4, i.e.,m,mI are
isomorphisms.

The mapeA is the composition

FGA
F (?) // F (1)

m−1
I // I

anddA is

FGA
F (∆) // F (GA×GA) m−1

// FGA⊗ FGA.

For the details of this proof, we refer to [2].

The last part of the proposition is obvious.

1.3 The category of products of free coalgebras

Given a linear category(C, !, e, d) we defineC?
! to have as objects finite vectors of objects ofC and as

morphisms from(Ai) to (Bj) morphisms ofC! from
∏

δAi to
∏

δBj . This category is equivalent to the full
subcategory ofC! on products of objects ofC!. We callC?

! the category of products of free coalgebras and
we will often denote an object ofC?

! simply as
∏

δAi instead of(Ai).

Lemma 1.15. Given a linear category(C, !, e, d), there is a symmetric monoidal adjunction

C
F ?

!

33⊥ C?
!

U?
!

ss ,

i.e., a linear adjunction whose associated linear category (Proposition 1.14) is isomorphic to(C, !, e, d).

Proof. This is basically the restriction of the adjunction betweenC! andC. To show that the adjunction is
symmetric monoidal, it suffices to show thatU?

! is a strong symmetric monoidal functor. But

U?
! ((Ai)× (Bj)) = U?

! ((A1, . . . An, B1 . . . Bm) =!A1 ⊗ . . .!An⊗!B1 ⊗ . . . Bm

and
U?

! (Ai)⊗ U?
! (Bj) = (⊗i!Ai)⊗ (⊗j !Bj)

soU?
! is clearly a strong symmetric monoidal functor.

Lemma 1.16. The construction of Lemma 1.15 extends to a functor from the category of linear categories
with strict maps to the category of linear adjunctions. This functor is right inverse to the functor of Propo-
sition 1.14.

Proof. SupposeK : (C, !) → (D!′) is a map of linear categories. We defineH : C?
! → D?

!′ by H(Ai) =
(KAi) and on morphisms

H(h : ⊗!Ai → ⊗!Bj) = K(h) : ⊗!KAi = K(⊗!Ai) → K(⊗!Bj) = ⊗!KBj .

The reader may verify that becauseK is strict and commutes withδ, this defines a map of coalgebras.
ClearlyH is a strict map of SMC’s and the two required diagrams commute on the nose.

Definition 1.17. We define the category of DILL models to be the full subcategory of the category of linear
adjunctions on the objects equivalent to the objects induced by linear categories as in Lemma 1.15

182

If we write out the definition above, then a DILL model is a linear adjunctionC
F

33⊥ D
G

ss such that

there exists maps of SMC’sH,K as in

C?
GF

U?
GF

~~

H

��
C

F ?
GF

>>

F

22 D
G

rr

K

OO

such thatH,K is an equivalence of categories and such that

G ∼= U?
GF K, F ?

GF
∼= KF, GH ∼= U?

GF , HF ?
GF

∼= F.

Notice that out of these four equations, the first two are equivalent to the last two using the assumption that
(H,K) is an equivalence of categories.

Clearly DILL-models provide sound models of DILL, but they are in fact also complete [6].

Remark 1.18. In [6] the category of DILL-models is defined by requiring that the cartesian categoryis C?
! ,

and not just is equivalent to it. The authors of [6] then argue that DILL provides the internal language of
the DILL-models meaning that the category of DILL models is equivalent to the category of DILL theories
with translations as morphisms. With our definition of DILL model, we still have a functor constructing the
internal language of a model and a functor constructing the classifying model of a theory. For any theory,
the internal language of the classifying model is isomorphic to the original theory, and for any model, the
classifying model of the internal language is equivalent to the original model.

Proposition 1.19. Given two DILL-models and a morphism between the two corresponding linear cate-
gories, there exists an extension of this morphism to a morphism of DILL-models. This extension is unique
up to isomorphism.

Proof. The map is up to equivalence given by Lemma 1.16.

We now give two examples of DILL-models. The first is a practical reformulation of the categoryC?
! and

the second (Proposition 1.21) handles a special case in whichC! is equivalent toC?
! .

We now give a different definition of the categoryC?
! .

Objects: Finite vectors of objects fromC.

Morphisms: A morphism from(Ai)i to (Bj)j is a family of morphisms(fj : ⊗i!Ai →
Bj)j .

Composition: The composite of(fj)j : (Ai)i → (Bj)j and(gk)k : (Bj)j → (Ck)k is

⊗i!Ai

⊗iδAi // ⊗i!!Ai
m // !(⊗i!Ai)

〈!fj〉j // ⊗j(!Bj)
(gk)k // (Ck)k,

where〈!fj〉j is the pairing of the functions!fj defined as

!(⊗i!Ai)
d // ⊗j !(⊗i!Ai)

⊗j !fj // ⊗j !Bj .

183

Identity: The identity on(Ai) is

(⊗i!Ai
πi // !Ai

ε // Ai)i,

whereπi0 : ⊗i!Ai → Ai0 is defined as

⊗i!Ai

⊗i6=i0
eAi

⊗id
// (⊗i6=i0I)⊗Ai0

∼= // Ai0 .

Lemma 1.20. The description above describes a category. This category is isomorphic toC?
! .

Proof. To be able to distinguish the two definitions, for the remainder of this proof we denote byD the
definition just above. We prove that there are bijective correspondences between objects and morphisms of
D andC?

! and that these bijections preserve composition and identity. This way we prove both statements
of the lemma simultaneously.

Objects of bothD andC?
! correspond to finite vectors of objects ofC. The correspondence on morphisms is

given by
HomD((Ai)i, (Bj)j) ∼=

∏
j HomD((Ai)i, Bj) ∼=

∏
j HomC(⊗i!Ai, Bj) ∼=∏

j HomC!(
∏

i δAi , δBj) ∼= HomC!(
∏

i δAi ,
∏

j δBj).

In one direction, this correspondence maps a map inD:

(fj : ⊗i!Ai → Bj)j

to

⊗i!Ai

⊗iδAi // ⊗i!!Ai
m // !⊗i!Ai

d // ⊗j !⊗i!Ai
⊗j !fj // ⊗j !Bj

as a map inC!. Going the other way, given a map of coalgebrasf : ⊗i!Ai → ⊗j !Bj , this map corresponds
to (ε ◦ πj ◦ f)j in D.

Since these processes are inverses of each other, we know for example that

⊗i!Ai

⊗iδAi // ⊗i!!Ai
m // !⊗i!Ai

d // ⊗j !⊗i!Ai
⊗j !fj // ⊗j !Bj

πj // !Bj
ε // Bj

is simplyfj . This allows us to conclude that if we start with two maps(fj) : (Ai) → (Bj), (gk) : (Bj) →
(Ck) in D, take the corresponding maps inC?

! , compose these and then go back intoD, we get exactly the
composite of(fj) and(gk) as defined inD. This proves that the isomorphism preserves composition. It is
clear that the isomorphism preserves identity.

Proposition 1.21. Suppose the linear category(C, !, e, d) has products. ThenC! is equivalent in the cate-
gory of SMC’s toC?

! and the usual adjunction betweenC andC! is a DILL-model.

Proof. Notice first that there exists a natural isomorphism⊗i!Ai
∼=!(

∏
i Ai) which is a map of coalgebras,

i.e.,

!(
∏

i Ai)

∼=
��

δ∏
Ai // !!(

∏
i Ai)

!(∼=)
��

⊗i!Ai

⊗iδAi // ⊗i!!Ai
m // !(⊗i!Ai)

184

is commutative. This follows from the Yoneda Lemma and the natural isomorphisms

HomC!(h,
∏

δAi) ∼=
∏

HomC!(h, δAi) ∼=
∏

HomC(B,Ai) ∼=
HomC(B,

∏
Ai) ∼= HomC!(h, δ∏

Ai
),

for h : B →!B.

We need to check that the adjunction betweenC andC! is an SMC adjunction. The SMC structure onC! is
defined by the productδA × δB = δA×B, and we need to check that the functorU! : C! → C is strong. But

U!(δA × δB) = U!(δA×B) =!(A×B) ∼=!A⊗!B = U!(δA)⊗ U!(δB).

The equivalence is given by the obvious inclusion ofC! into C?
! , and the map, that maps

∏
i δAi to δ∏

Ai
.

Clearly the composition starting atC! is the identity. The isomorphism between the other composition and
the identity is the isomorphismδ∏

Ai
∼=

∏
δAi described above. We need to check that the two functors are

in fact strong morphisms of SMC’s, and that the two equivalences make the right triangles commute as in
the text after Definition 1.17.

The inclusion ofC! into C?
! is strong by the isomorphism constructed above, and the functor the other way is

strong, because(
∏

δAi)× (
∏

δBj) maps toδ(
∏

Ai)×(
∏

Bj) which is isomorphic to the product of the images
(in fact equal up to arrangement of parentheses).

Finally, we will check that the triangles mentioned after Definition 1.17 commute up to isomorphism. By
the same remark, it suffices to prove that half the triangles commute, so let us only consider the ones for the
inclusionC! → C?

! . It is easily seen that these triangles commute.

2 PILL models

Definition 2.1 (The 2-category of fibred SMC’s). A fibred symmetric monoidal category is a fibration
together with a fibred functor

E ×B E

$$H
HHHHHHHH

⊗ // E

����
��

��
��

B

and fibred vertical natural transformations making each fibre into an SMC.

A fibred symmetric monoidal functor is a map of fibrations(F,K):

E F //

��

E′

��
B K // B′

together with vertical fibred natural transformationsm,mI , such that for each objectΞ in B the functor
(FΞ,mΞ, (mI)Ξ) is an SMC functor. We say thatF is strong (strict) ifm,mI are fibred isomorphisms
(identities).

A fibred symmetric monoidal natural transformation from(H,K) to (H ′,K ′) is a natural transformation

185

of fibred functors(α, β) as usual, as in

E
H

++

H′
33

p

��

⇓ α E′

p′

��
B

K
,,

K′
22⇓ β B′

such that the usual diagrams are commutative. Notice that these diagrams need not be vertical, for example,
the diagram

H(−)⊗H(=) mH
//

α⊗α
��

H((−)⊗ (=))

α

��
H ′(−)⊗H ′(=) mH′

// H ′((−)⊗ (=))

projects viap′ to

Kp(−) id //

β(−)

��

Kp(−)

β(−)

��
K ′p(−) id // K ′p(−)

sincep(−) = p(=) (so the vertical maps are not vertical . . .)

Having defined what the 2-category of fibred SMC’s is, we can derive the notion of a fibred symmetric
monoidal adjunction. We focus on the case of a fibred symmetric adjunction over a specific base category.

The pair of fibred functorsF,G in

D
G

33

��@
@@

@@
@@

⊥ E
F

ss

����
��

��
�

B
is called a fibred symmetric monoidal adjunction if

• the two fibrations are fibred symmetric monoidal,

• the two functorsF,G are fibred symmetric monoidal,

• there exist fibred vertical symmetric monoidal natural transformationsε : FG ⇒ idD, η : idE ⇒ GF
such that in each fibre overΞ ∈ B, these are counit and unit of the adjunctionFΞ a GΞ.

There is a fibred version of Theorem 1.4.

Theorem 2.2. A fibred adjunction

D
G

33

��@
@@

@@
@@

⊥ E
F

ss

����
��

��
�

B
between fibred symmetric monoidal fibrations is a symmetric monoidal fibred adjunction iffF is strong.

186

Proof. The left adjoint of a fibred symmetric monoidal adjunction is strong since it is strong in each fibre.

For the other direction, we notice that the constructions ofmG,mG
I as described after Theorem 1.4 give us

fibred natural transformations, which satisfy the desired properties, since they satisfy them in each fibre.

Definition 2.3. A fibred linear adjunction is a fibred symmetric monoidal adjunction

D
G

33

��@
@@

@@
@@

⊥ E
F

ss

����
��

��
�

B

whereD is fibred SMCC and the fibred tensor-product onE is a fibred cartesian product.

A map of fibred linear adjunctions from

D
G

33

��@
@@

@@
@@

⊥ E
F

ss

����
��

��
�

B

to D′

G′
33

 A
AA

AA
AA

⊥ E′
F ′

ss

~~~~
~~

~~
~

B′

is a pair of fibred maps(H,L) : (D → B) → (D′ → B′) and (K, L) : (E → B) → (E′ → B′) (over the
same map in the base categories) such that(H,L) is a strict map of fibred SMCC’s preserving the induced
comonad on the nose, and(K, L) is a strong fibred map of SMC’s such that the diagrams

D G //

H
��

E
K
��

F // D
H
��

D′ G′
// E′ F ′

// D′

commute up to vertical isomorphism.

A natural transformation of fibred linear adjunctions from

((H,L), (K, L)) to ((H,L), (K ′, L))

(notice that the(H,L) components of the two maps of fibred linear adjunctions are the same) is a vertical
natural transformation fromK to K ′ overL.

Again, this may seem a strange definition of natural transformations, but we have chosen this definition to
give us a restrictive notion of equivalence of fibred linear adjunctions.

Definition 2.4. A fibred linear category is a fibred SMCC with a fibred symmetric monoidal comonad, and
fibred symmetric monoidal natural transformationse, d such that for each fibre, the restriction of the data
mentioned constitutes a linear category.

A morphism of fibred linear categories is a strong fibred morphism of SMCC’s preserving the comonad
structure on the nose as in Definition 1.10. It is called strict, if the functor is a strict fibred symmetric
monoidal functor.

Proposition 2.5. There is a forgetful functor from the category of fibred linear adjunctions to the category
of fibred linear categories with strict morphisms.

187



Proof. The proof of Proposition 1.14 clearly generalizes.

On the other hand, suppose we are given a fibred linear categoryC → B with comonad!. We can construct
the category of coalgebras for the comonadC! as having as objectsvertical mapsA →!A and the rest of
the construction as usual. This gives a fibrationC! → B. Likewise, we can construct the co-Kleisli fibration
C! → B by taking each fibre to be the co-Kleisli category of the restriction of the comonad, and letting
reindexing be the obvious choice. Finally, we can constructC?

! → B fibrewise as we did in the Section 1.3.

Lemma 2.6. Given a fibred linear categoryC with comonad!, the fibred adjunction

C
F ?

!

33

��>
>>

>>
>>

> ⊥ C?
!

U?
!

ss

~~~~
~~

~~
~~

B

is a fibred linear adjunction. This construction extends to a functor which is right inverse to the forgetful
functor of Proposition 2.5.

Definition 2.7. A PILL-model is a fibred linear adjunction

C
F

33

��@
@@

@@
@@

⊥ D
G

ss

��~~
~~

~~
~

B

equivalent to (in the category of fibred linear adjunctions) the fibred linear adjunction induced by the
comonadGF as in Lemma 2.6 and such that further

• the categoryB is cartesian

• the fibrationC → B has a generic object projecting toΩ in B, and products with respect to projections
Ξ× Ω → Ξ in B.

The condition of the fibred linear adjunction being equivalent to the fibred linear adjunction induced by the
comonad means that there exists mapsH,K fibred overB as in

C?
GF

U?
GF

~~

H

��
C

F ?
GF

>>

F

22 D
G

rr

K

OO

such thatH,K are strong maps of fibred SMC’s and constitute a fibred equivalence, and such that the
obvious four triangles commute up to vertical isomorphisms.

Definition 2.8. A morphism of PILL-models is a morphism of fibred linear adjunctions such that the SMCC
part of the functor preserves generic object, products in the base and products in the fibration.

188

Definition 2.9. A PILLY -model is a PILL model with a polymorphic fixed point combinator

Y :
∏

α : Type. (α → α) → α.

A morphism of PILLY -models is a morphism of PILL-models preservingY .

The following Proposition is a trivial generalization of Proposition 1.19.

Proposition 2.10. Given two PILL-models and a morphism of fibred linear categories between the corre-
sponding fibred linear categories preserving generic object, products in the base and the simple products,
there exists an extension of this map to a map of PILL-models. The extension is unique up to vertical
isomorphism.

Lemma 2.11. The fibrationC?
! → B is isomorphic to the fibration obtained by defining each fibre as in

Lemma 1.20 and defining reindexing to be the obvious choice.

Proof. The two fibrations are fibrewise isomorphic by Lemma 1.20, and we just need to check that the
isomorphism commutes with reindexing, which is obvious.

Proposition 2.12. Suppose the linear fibrationC → B with comonad! has fibrewise products. Then the
usual fibred adjunction betweenC andC! is a fibred linear adjunction, and there exists an equivalence of
fibred linear adjunctions between this and the fibred adjunction betweenC andC?

! .

Proof. The proof of Proposition 1.21 clearly generalizes.

References

[1] A. Barber. Linear Type Theories, Semantics and Action Calculi. PhD thesis, Edinburgh University,
1997. (document), 1.2

[2] P.N. Benton. A mixed linear and non-linear logic: Proofs, terms and models (preliminary report).
Technical report, University of Cambridge, 1995. 1.1, 1.2

[3] Masahito Hasegawa. Categorical glueing and logical predicates for models of linear logic. 1999.

[4] B. Jacobs.Categorical Logic and Type Theory, volume 141 ofStudies in Logic and the Foundations of
Mathematics. Elsevier Science Publishers B.V., 1999.

[5] G. M. Kelly. Doctrinal adjunction. InCategory Seminar (Proc. Sem., Sydney, 1972/1973), pages 257–
280. Lecture Notes in Math., Vol. 420. Springer, Berlin, 1974. 1.1

[6] Maria E Maietti, Paola Maneggia, Valeria de Paiva, and Eike Ritter. Relating categorical semantics for
intuitionistic linear logic. Technical Report CSR-01-7, University of Birmingham, School of Computer
Science, August 2001. (document), 1.3, 1.18

[7] Paola Maneggia.Models of Linear Polymorphism. PhD thesis, University of Birmingham, Feb. 2004.
(document)

[8] Paul-Andŕe Melliès. Categorical models of linear logic revisited.Theoretical Computer Science. To
appear. 1.1

189

Synthetic Domain Theory and Models of Linear Abadi & Plotkin
Logic

Rasmus Ejlers Møgelberg
Lars Birkedal

Giuseppe Rosolini

Abstract

In a recent article [3] the first two authors and R.L. Petersen have defined a notion of parametric
LAPL-structure. Such structures are parametric models of the equational theory PILLY , a polymorphic
intuitionistic / linear type theory with fixed points, in which one can reason using parametricity and, for
example, solve a large class of domain equations [3, 4].

Based on recent work by Simpson and Rosolini [14] we construct a family of parametric LAPL-
structures using synthetic domain theory and use the results ofloc. cit.and results about LAPL-structures
to prove operational consequences of parametricity for a strict version of the Lily programming language.
In particular we can show that one can solve domain equations in the strict version of Lily up to ground
contextual equivalence.

Contents

1 Introduction 193

2 Synthetic Domain Theory 194

2.1 Pointed sets . 195

2.2 Domains and predomains . 198

3 The category of domains 199

4 The domains fibration 203

5 The parametric fibration 207

6 The LAPL-structure 214

7 Proving consequences of parametricity for Lilystrict 220

7.1 The language Lilystrict . 221

7.2 Translating PILLY into Lily . 225

7.3 Consequences of parametricity for Lilystrict . 231

8 Conclusion 232

191

A Tensor products in parametric LAPL-structures 233

192

1 Introduction

It was first realized by Plotkin [10, 9] that PILLY , a polymorphic type theory with linear as well as intu-
itionistic variables and fixed points, combined with relational parametricity has surprising power, in that one
can define recursive types in the theory. This theory can be seen as an approach to axiomatic domain theory
where the concept of linear and intuitionistic maps correspond to strict and non-strict continuous maps be-
tween domains. In this approach recursive domain equations are solved using polymorphism instead of the
traditional limit-colimit construction.

In [10] Plotkin also sketched a logic for reasoning about parametricity for PILLY (the logic is a variant of
Abadi & Plotkin’s logic for parametricity [11]) and how to solve domain equations for PILLY and prove
correctness of the solutions in the logic using parametricity.

Recently the first two authors together with R.L. Petersen have given a detailed presentation of the logic
sketched by Plotkin and defined the categorical notion of parametric LAPL-structure (Linear Abadi-Plotkin
Logic), which are models of the logic [3, 4]. Using Plotkin’s constructions one can solve recursive domain
equations in LAPL-structures. Inloc. cit.a concrete domain theoretical LAPL-structure based on admissible
pers on a reflexive domain is constructed, and in [7] a parametric completion process along the lines of [12]
is presented constructing parametric LAPL-structures out of a large class of models of PILLY .

In recent work Simpson and Rosolini [14] have constructed an interpretation (or rather a family of inter-
pretations) of Lilystrict — a strict version of Lily [1] — based on Synthetic Domain Theory (SDT). The
interpretation uses a class of domains in an intuitionistic set theory, and the type constructors are interpreted
using simple set-theoretic constructions. It is a result of SDT that such a theory has models, and for each
such model the construction of [14] gives an interpretation of Lilystrict , but one does not have to know the
details of these models to use the interpretation.

Simpson and Rosolini further show how one can use the interpretation to prove operational properties of
Lily strict. In particular, they prove a version of the strictness theorem for Lily [1] for the new language
Lily strict. The strictness theorem states that the two versions of ground contextual equivalence obtained by
observing termination at lifted types for a call-by-value and a call-by-name operational semantics coincide.
They show that the interpretation is adequate with respect to this ground contextual equivalence.

In this paper we present a parametric LAPL-structure based on the interpretation of Lilystrict of [14]. We
have three motivations for this work. First of all, we would like to show that the concept of parametric
LAPL-structure is general enough to incorporate many different models. As mentioned we have already
constructed a concrete domain-theoretic parametric LAPL-structure and shown how to construct parametric
LAPL-structures from PILLY -models using a parametric completion process. In a future paper we intend
to construct a parametric LAPL-structure using operational semantics of Lily, showing that the parametric
reasoning used in [1] can be presented as reasoning in an LAPL-structure.

Our second motivation is that the interpretation presented in [14] is parametric and thus one should be able
to solve recursive domain equations in it. Proving that the interpretation gives rise to an LAPL-structure
provides a formal proof of this.

Our third motivation is that we can use the LAPL-structure and the adequacy of the interpretation of Lilystrict
to show formally consequences of parametricity for Lilystrict. This builds upon the idea from [14] of giving
denotational proofs of the theorems in [1], and extends it to prove properties not included in [1].

We assume that the reader is familiar with LAPL-structures but assume no knowledge of synthetic domain
theory. In Section 2 we introduce synthetic domain theory as presented in [14], constructing a category of
domains. In Sections 4-6 we present the LAPL-structure. We first present a model of PILLY based on the

193

category of domains, then we create a parametric version of this model, and finally we construct the full
parametric LAPL-structure.

In Section 7 we show how to use the parametric LAPL-structure to reason about Lilystrict. In particular,
we show how to solve recursive domain equations in Lilystrict. First, however, we present the language and
sketch the results of [14].

In Appendix A we address the following question: It is well known [10] that in PILLY , using parametricity,
the type for tensor products can be expressed using the other constructions of the language:

σ ⊗ τ ∼=
∏
α. (σ (τ (α) (α.

Does this mean that if one leaves out tensor products of PILLY , then one obtains a language as expressive
as the original PILLY ? In particular, there could exist terms in PILLY , that could not be expressed without
using let-expressions, which of course cannot exist in the language without tensor products. The answer
to the question is yes, and the appendix is included here because this result is needed for solving recursive
domain equations in Lilystrict.

Acknowledgments.We thank Alex Simpson for helpful discussions.

2 Synthetic Domain Theory

The idea of synthetic domain theory as originally conceived by Dana Scott is to consider domains as simply
special sets, and maps between them as all set-theoretic maps. Of course, one of the points of classical
domain theory is that all continuous maps have fixed points, and so all set-theoretic maps between domains
should have fixed points. Classically this entails that all domains are trivial, since ifX is a domain and
x, y ∈ X, x 6= y we can define the mapf : X → X as

f(z) =
{
y z = x
x z 6= x

.

Clearly thisf cannot have a fixed point. This argument does not hold in intuitionistic set theory since the
mapf is not constructively definable. In fact, in some models of intuitionistic set theory interesting classes
of sets with the property that all endofunctions have fixed points do exist.

In this section we recall the approach to synthetic domain theory (SDT) presented in [14]. In fact we follow
[14] closely, but add some details and proofs to assist the reader. In their paper, Simpson and Rosolini work
informally in an intuitionistic set theory, which formally may be taken to be IZF [15]. For later purposes, we
will need to be a bit more refined, but we postpone this issue to Section 4. Simpson and Rosolini’s axioms
for SDT assume given a class of special sets called predomains satisfying certain conditions. Domains are
then defined to be pointed pre-domains, and another axiom states that all endomaps on domains have fixed
points.

We emphasize that there do exist models of SDT as presented here. For example, SDT can be modeled
in any realizability topos satisfying thestrong completeness axiomof [6], by taking predomains to be the
well-complete objects.

In the rest of this paper we will use synthetic domain theory to construct an LAPL-structure. To be precise,
the construction actually gives us a large family of LAPL-structures, since we get one for each model of
SDT.

194

2.1 Pointed sets

Consider the powerset of the one-point set1 = {∅}:

Ω = P (1).

In intuitionistic set theory,Ω is not just the set{∅, {∅}} as it is classically. In fact for every propositionp
one can associate the element

{∅ | p} ∈ Ω

and for each elementX ∈ Ω one can associate the proposition∅ ∈ X, and these associations are each others
inverses up to provable equivalence of propositions. Motivated by this,Ω is calledthe set of truth values.

Simpson and Rosolinis first axiom is that a setΣ ⊆ Ω of truth values is given. The setΣ is to be thought of
as the set of truth values of propositions of the form “P terminates”, for programs P.

Axiom 2.1. The subsetΣ ⊆ Ω is a dominance [13], i.e.,

• > ∈ Ω.

• If p ∈ Σ, q ∈ Ω andp ⊃ (q ∈ Σ) thenp ∧ q ∈ Σ.

For eachp ∈ Σ consider the set

Xp = {A ⊆ X | (∀x, x′ ∈ A. x = x′) ∧ ((∃x ∈ A) ⊃⊂ p)},

i.e.,Xp is the set of subsingleton subsetsA of X which are inhabited (i.e.,∃x ∈ A) with truth valuep.
There is a canonical isomorphismX ∼= X>.

Definition 2.2 ([14]). A pointed set is a pair(X, (rp)p∈Σ) whereX is a set and for eachp ∈ Σ, rp : Xp →
X is a map such that

• for all x ∈ X, r>({x}) = x

• for all p, q ∈ Σ, e ∈ Xp∧q,
rp∧q(e) = rp({rp∧q(e) | p})

The definition above is a generalization of the classical concept of pointed set. In that caseΣ = {⊥,>},
and a pointed set is a setX with two functionsr>, r⊥. The first condition of Definition 2.2 tells us thatr>
is the isomorphismX> ∼= X and sinceX⊥ = {∅}, r⊥ simply corresponds to a point inX.

A strict map is simply a map preserving the pointed structure.

Definition 2.3 ([14]). A strict map from a pointed set(X, (rp)p∈Σ) to a pointed set(Y, (sp)p∈Σ) is a map
f : X → Y such that for allp ∈ Σ ande ∈ Xp

f(rp(e)) = sp({f(x) | x ∈ e})

Following [14], we will often leave the pointed structure implicit and simply writeX for a pointed set
(X, (rp)p∈Σ). Write f : X (Y to denote thatf is a pointed map, and writeX (Y for the set of pointed
maps fromX to Y . Simpson and Rosolini define a subsetX ′ ⊂ X to be a subpointed set ofX if for all
p ∈ Σ ande ∈ (X ′)p the pointrp(e) is inX ′, where(rp)p∈Σ is the pointed structure onX.

195

Lemma 2.4. For any pair of strict mapsf, g : X (Y , the equalizer off andg

{x ∈ X | f(x) = g(x)}

is a subpointed set ofX.

Proof. DefineE = {x ∈ X | f(x) = g(x)}. For anyp ∈ Σ, e ∈ Ep we must show thatrXp (e) ∈ E. But

f(rXp (e)) = rYp ({f(x) | x ∈ e}) = rYp ({g(x) | x ∈ e}) = g(rXp (e)).

Lemma 2.5. For all setsX and families of pointed sets(Yx, (rYxp)p∈Σ)x∈X , the family of maps

r
∏
x∈X Yx

p (e) = (rYxp ({πx(z) | z ∈ e}))x∈X

whereπx :
∏
x∈X Yx → Yx denotes the projection, define a pointed structure on

∏
x∈X Yx. This defines a

categorical product in the category of pointed sets and strict maps.

Proof. Supposee ∈ (
∏
x∈X Yx)

p∧q for somep, q ∈ Σ. Then

r
∏
x Yx

p∧q (e) = (rYxp∧q({πx(z) | z ∈ e}))x∈X =
(rYxp ({rYxp∧q({πx(z) | z ∈ e}) | p}))x∈X = r

∏
x Yx

p ({r
∏
x Yx

p∧q (e) | p}).

This proves that the maps define a pointed structure. Since any pairing of strict maps is strict, this defines a
product in the category of pointed sets and strict maps.

Lemma 2.6. For any setX and all pointed sets(Y, rYp)p∈Σ, the mapsrX→Y
p defined by

rX→Y
p (e) = (x 7→ rYp ({f(x) | f ∈ e}))

define a pointed structure onX → Y . If, moreover,X is pointed, then the setX (Y is a subpointed set
ofX → Y .

Proof. As alwaysX → Y ∼=
∏
x∈X Y and the pointed structure defined above is just the product structure.

We proceed to show thatX (Y is a subpointed set ofX → Y .

Define the setLX =
⋃
p∈ΣX

p. The setX (Y is the equalizer of the two maps

φ, ψ : (X → Y)→ (LX → Y)

defined as
φ(f)(e) = rYp ({f(x) | x ∈ e})
ψ(f)(e) = f(rXp (e))

for e ∈ Xp. By Lemma 2.4 it now suffices to show thatφ, ψ are strict. Supposee ∈ Xp andf ∈ (X → Y)q.
Then

φ(rX→Y
q (f))(e) = rYp ({rX→Y

q (f)(x) | x ∈ e}) =
rYp ({rYq ({g(x) | g ∈ f}) | x ∈ e}.

Now, supposey ∈ {rYq ({g(x) | g ∈ f}) | x ∈ e} then there exists anx ∈ e, i.e., p holds andy =
rYp∧q({g(x) | g ∈ f}). On the other hand if

y ∈ {rYq∧p({g(x) | g ∈ f ∧ x ∈ e}) | ∃x ∈ e}

196

thenp holds andy = rYq ({g(x) | g ∈ f}). Thus

{rYq ({g(x) | g ∈ f}) | x ∈ e} = {rYp∧q({g(x) | g ∈ f ∧ x ∈ e} | ∃x ∈ e}

and so
φ(rX→Y

q (f))(e) = rYp ({rYp∧q({g(x) | g ∈ f ∧ x ∈ e} | ∃x ∈ e}) =
rYp∧q({g(x) | g ∈ f ∧ x ∈ e}).

Likewise

rLX→Y
q ({φ(g) | g ∈ f})(e) = rYq ({φ(g)(e) | g ∈ f}) =

rYq ({rYp ({g(x) | x ∈ e}) | g ∈ f}) =
rYq ({rYp∧q({g(x) | x ∈ e ∧ g ∈ f}) | ∃g ∈ f}) = rYp∧q({g(x) | x ∈ e ∧ g ∈ f})

and soφ is strict.

To see thatψ is strict, compute

ψ(rX→Y
q (f))(e) = rX→Y

q (f)(rXp (e)) =
rYq ({g(rXp (e)) | g ∈ f})

and
rLX→Y
q ({ψ(g) | g ∈ f})(e) = rYq ({ψ(g)(e) | g ∈ f}) =

rYq ({g(rYp (e)) | g ∈ f}).
So ψ is strict, and we conclude thatX (Y is an equalizer of strict maps fromX → Y and so is
subpointed.

However, neither→ nor (define a cartesian closed structure on the category of pointed sets and strict
maps. Clearly→ defines a cartesian closed structure on the category of pointed sets and all maps, and as
will be shown later(is part of a symmetric monoidal closed structure on a category of domains.

Simpson and Rosolini introduce a free pointed structure(LX, (µp)p∈Σ) on any setX as

LX =
⋃
p∈Σ

Xp, µp(E) =
⋃
E,

i.e., forE in (LX)p, µp(E) = {x ∈ e | e ∈ E}.

Lemma 2.7. For all X, (LX, (µp)p∈Σ) is a pointed set.

Proof. We first show that for allE, µp(E) ∈ LX, i.e., (∃x ∈ µp(E)) ∈ Σ. The setµp(E) is inhabited iff
there existse ∈ E andx ∈ e, but if e ∈ E, then(∃x ∈ e) ∈ Σ. This means that settingq = ∃x ∈ µp(E),
we havep ⊃ (q ∈ Σ) and so byΣ being a dominance, we havep ∧ q ∈ Σ. Sinceq ⊃ p, p ∧ q = q.

We check that(µp)p defines a pointed structure. Clearlyµ>({e}) = e. If E ∈ (LX)p∧q consider the
equation

µp∧q(E) = µp({µp∧q(E) | p}).

For any of the two sides to be inhabitedp ∧ q must hold, and in this case both sides reduce toE.

Forf : X → Y , define
Lf : LX → LY

by
Lf(e) = {f(x) | x ∈ e}.

197

Proposition 2.8. The construction L(−) defines a functor from the category of sets to the category of pointed
sets with strict maps. This functor is left adjoint to the forgetful functor.

Proof. For functoriality we simply check thatL(f) is pointed. SupposeE ∈ (LX)p, then

µp({L(f)(e) | e ∈ E}) = µp({{f(x) | x ∈ e} | e ∈ E}) = {f(x) | ∃e ∈ E. x ∈ e}

and
L(f)(µp(E)) = L(f){x | ∃e ∈ E. x ∈ e} = {f(x) | ∃e ∈ E. x ∈ e}.

SoL(f) is pointed.

The adjoint correspondence associates to each strict mapf : LX (Y the set theoretic mapx 7→ f({x}).
To prove that this association is injective, we prove that pointed maps out ofLX are uniquely determined
by their values on singletons. Suppose thatg : LX → Y is pointed, ande ∈ Xp. Since

e = µp({{x} | x ∈ e})

we have
g(e) = g(µp({{x} | x ∈ e})) = rYp ({g({x}) | x ∈ e}).

To show that the correspondence is surjective, supposef : X → Y is a set theoretic map, and consider
f̂ : LX → Y given asf̂(e) = rYp ({f(x) | x ∈ e}). Clearly f̂({x}) = f(x), and so we just need to show

that f̂ is pointed. SupposeE ∈ (LX)p and defineq = (∃x ∈ µp(E)). Then

f̂(µp(e)) = f̂({x | ∃e ∈ E. x ∈ e}) = rYq ({f(x) | ∃e ∈ E. x ∈ e}).

On the other hand

rYp ({f̂(e) | e ∈ E}) = rYp ({r∃x∈e({f(x) | x ∈ e}) | e ∈ E}) =
rYp ({rYq ({f(x) | ∃e ∈ E ∧ x ∈ e}) | p}).

Sinceq ⊃ p, p ∧ q = q and so by the last rule of Definition 2.2 the last part is simply

rYq ({f(x) | ∃e ∈ E ∧ x ∈ e}),

which proves that̂f is pointed.

Lemma 2.9. Σ ∼= L1 and so has a pointed structure.

2.2 Domains and predomains

As said, one of Simpson and Rosolini’s axioms states that a class of special sets called predomains is given.

Axiom 2.10. There is a class of setsPredom calledpredomainssuch that

• If A ∼= B andA is a predomain, then so isB.

• For any set-indexed family of predomains(Ax)x∈X the product
∏
x∈X Ax is a predomain.

• For any pair of functionsf, g : A→ B between predomains, the equalizer off andg is a predomain.

• The set of natural numbersN is a predomain.

198

• If A is a predomain, so is LA.

Lemma 2.11. The sets1 andΣ are predomains.

Proof. The set1 is the empty product and so is a predomain. The setΣ is isomorphic toL1.

Since predomains will be used to model polymorphism it would be desirable to have asetof all predomains,
such that products can be defined over this set. This is unfortunately too much to ask for, so instead Simpson
and Rosolini ask for the existence of a set of predomains containing representatives of each isomorphism
class of predomains.

Axiom 2.12. There exists asetof predomainsP such that for any predomainA there exists a predomain
B ∈ P such thatA ∼= B.

Definition 2.13 ([14]). A domain is a pointed predomain. Denote byDom⊥ the category of domains with
strict maps and byDom the category of domains with all maps. ByD denote the set of pointed structures
on objects ofP, i.e.,

D = {(B, (rp)p∈Σ) | B ∈ P, (rp)p∈Σ is a pointed structure onB}

Clearly the setD has the property that for allA ∈ Dom⊥, there exists an elementB ∈ D such thatA ∼= B
in the categoryDom⊥.

Simpson and Rosolini’s last axiom states that all endomaps on domains have fixed points.

Axiom 2.14. For every domainA there is a function fixA : (A→ A)→ A such that

• fixA gives fixed points, i.e., for anyf : A→ A,

f(fixA(f)) = fixA

• The maps fixA satisfy a uniformity property, i.e., for any domainB and any set of mapsf : A → A,
g : B → B, h : A (B such that

A
f //

h

◦

A

h

◦
B

g // B

commutes,h(fixA(f)) = fixB(g).

3 The category of domains

In this section, it is shown thatDom is cartesian closed,Dom⊥ is symmetric monoidal closed, and there
is a symmetric monoidal adjunction

Dom⊥ 22⊥ Dom
qq

where the left adjoint is the lifting functor and the right adjoint is the forgetful functor. This will prove that
there is a linear structure onDom⊥. These results are basically taken from [14].

199

Lemma 3.1. The categoryDom⊥ is complete.

Proof. This is immediate from Axiom 2.10 and Lemmas 2.5, 2.4.

Lemma 3.2. If A,B are predomains, then so isA→ B. If A,B are domains, then so is andA (B.

Proof. For the first partA→ B ∼=
∏
x∈AB and soA→ B is a predomain by Axiom 2.10.

For the second part, notice that in the proof of Lemma 2.6 it is shown thatA (B is the equalizer of pointed
maps between domainsA→ B andLA→ B, and so by Lemma 3.1 is a domain.

This lemma has two corollaries.

Corollary 3.3. The categoryDom is cartesian closed.

Corollary 3.4. (−) ((=) defines a functorDom⊥
op ×Dom⊥ → Dom⊥.

Proof. It only remains to check that for each strict mapf : A (A′ between domains, and for each domain
B, the maps(f (B) : (A′ (B)→ (A (B) and(B (f) : (B (A)→ (B (A′) are strict. This is
an easy exercise.

Definition 3.5 ([14]). Supposef : A × B → C is a map between domains. Say thatf is strict in the first
variableif for all p ∈ Σ, e ∈ Ap, y ∈ B

f(rAp (e), y) = rCp ({f(x, y) | x ∈ e}).

Likewise one can define what it means forf to be strict in the second variable. The mapf is calledbistrict
if it is strict in both variables.

The⊗ part of the symmetric monoidal structure onDom⊥ (to be defined below) will satisfy the universal
property that strict maps out ofA⊗B correspond bijectively to bistrict maps out ofA×B.

Lemma 3.6. Bistrict maps are strict.

Proof. Supposef : A × B → C is bistrict. Using the isomorphism(A × B)p ∼= Ap × Bp we must show
that

f(rpA(e), rpA(e)) = rpC({f(x, y) | x ∈ e, y ∈ f})

for anyp ∈ Σ, e ∈ Ap, f ∈ Bp. We compute

f(rAp (e), rBp (g)) = rCp ({f(x, rBp (g)) | x ∈ e}) = rCp ({rCp {f(x, y) | y ∈ g} | x ∈ e})

Since
{rCp {f(x, y) | y ∈ g} | x ∈ e} = {f(x, y) | x ∈ e, y ∈ g}

we get
f(rAp (e), rBp (g)) = rCp ({f(x, y) | x ∈ e, y ∈ g})

which shows thatf is strict.

Strict maps are not necessarily bistrict, for example projections are in general strict but not bistrict.

200

Lemma 3.7. If f : A×B (C is bistrict anda : A′ (A, b : B′ (B, c : C (C ′ are strict maps, then

c ◦ f ◦ (a× b)

is bistrict.

Proof. This follows easily by direct calculation.

Lemma 3.8. Strict maps fromA toB (C correspond by currying to bistrict mapsA×B (C.

Proof. First assume thatf : A ((B (C). We show thatf̂ : A × B → C is bistrict. If e ∈ Ap, y ∈ B
then

f̂(rAp (e), y) = f(rAp (e))(y) = rB(C
p ({f(x) | x ∈ e})(y) =

rCp ({f(x)(y) | x ∈ e}) = rCp ({f̂(x, y) | x ∈ e})

and ife ∈ Bp, x ∈ A,

f̂(x, rBp (e)) = f(x)(rBp (e)) = rCp ({f(x)(y) | y ∈ e}) = rCp ({f̂(x, y) | y ∈ e}),

using thatf(x) is strict.

Assume on the other hand thatf̂ is bistrict. We first show that for allx ∈ A, f(x) is strict:

f(x)(rBp (e)) = f̂(x, rBp (e)) = rCp ({f̂(x, y) | y ∈ e}) = rCp ({f(x)(y) | y ∈ e}).

To show thatf is strict, we must show that fore ∈ Ap, y ∈ B, f(rAp (e))(y) = rB(C
p ({f(x) | x ∈ e})(y).

But by definition ofrB(C
p ,

rB(C
p ({f(x) | x ∈ e})(y) = rCp ({f(x)(y) | x ∈ e}) =
rCp ({f̂(x, y) | x ∈ e}) = f̂(rAp (e), y) = f(rAp (e))(y).

Lemma 3.9. There exists a functor(−)⊗(=): Dom⊥×Dom⊥ → Dom⊥ and a domainI givingDom⊥
an SMCC-structure.

Proof. For each domainB the functorB ((−) defined on the category of domains preserves small limits.
The existence of the setD tells us that the solution set condition is satisfied, and so by the Adjoint Functor
Theorem,B ((−) has a left adjointB ⊗ (−).

Using Lemma 3.8 we see that
A ((B (C) ∼= B ((A (C)

and thusA⊗B ∼= B ⊗A. Thus we can define(−)⊗ (=) as a functor in two variables.

The domainI is defined asL(1) (which by the way isΣ). This defines a unit for the tensor since

I ⊗A (B ∼= I ((A (B) ∼= 1→ (A (B) ∼= A (B.

Lemma 3.8 gives a correspondence between strict mapsA⊗B (C and bistrict mapsA×B (C, natural
in C. This correspondence is of course given by a universal map, which is the subject of the next lemma.

201

Lemma 3.10. There exists a natural transformationη : (−) × (=) → (−) ⊗ (=) such that the correspon-
dence between strict maps out of the tensor and bistrict maps out of the product is given by composition with
this natural transformation. Each component of the natural transformation is bistrict and thus strict.

Proof. The component of the unit of the adjunction(−)⊗B a B ((−) atA is a strict map fromA to
B (A⊗B, which corresponds to a bistrict mapη : A×B (A⊗B. This map induces the correspondence
between bistrict maps out ofA×B and strict maps out ofA⊗B, and we proceed to show thatη is natural.

Naturality of the unit is the commutative diagram

A

f

◦

◦(B ((A⊗B))

B((f⊗B)

◦
A′ ◦(B ((A′ ⊗B))

which gives naturality in the first variable ofη. Naturality in the second variable follows by symmetry.

Lemma 3.11. The forgetful functorU : Dom⊥ → Dom is a symmetric monoidal functor with respect to
the cartesian closed structure onDom.

Proof. We need to construct the natural transformationmU : (−) × (=) → (−) ⊗ (=) and the map
mU
I : 1 → I satisfying the requirements of [8, Definition 1.1]. Define the natural transformationmU to

beη of Lemma 3.10, and definemU
I to be the unit of the adjunction of Proposition 2.8 at1, i.e.,mU

I : 1→ I
is the map giving the correspondence between strict maps out ofI and general maps out of1.

We need to check that these maps satisfy the requirements of [8, Definition 1.1]. So first we need to show
that the compositions

(X × Y)× Z η×id // (X ⊗ Y)× Z η // (X ⊗ Y)⊗ Z
∼= // X ⊗ (Y ⊗ Z)

and

(X × Y)× Z
∼= // X × (Y × Z)

id×η // X × (Y ⊗ Z)
η // X ⊗ (Y ⊗ Z)

are equal for all domainsX,Y, Z. But both compositions induce the same bijective natural correspondence
between maps

(X × Y)× Z →W

strict in each variable and strict maps
X ⊗ (Y ⊗ Z) (W

so these two maps are equal. For the diagrams

1×X
∼= //

mUI ×id
��

X

∼=
��

I ×X
η // I ⊗X

X × Y
∼= //

η

��

Y ×X
η

��
X ⊗ Y

∼= // Y ⊗X

both directions in the first diagram induce the correspondence between maps out of1 × X strict in the
second variable and strict maps out ofI⊗X. For the second diagram, both maps induce the correspondence
between bistrict maps out ofX × Y and strict maps out ofY ⊗X.

Lemma 3.12. The lifting functor L: Dom→ Dom⊥ is a strong symmetric monoidal functor.

202

Proof. For all domainsA,B,C

L(A×B) (C ∼= A×B → C ∼= A→ B → C ∼=
LA (LB (C ∼= LA⊗ LB (C

(1)

so thatLA ⊗ LB ∼= L(A × B) and by definitionL1 ∼= I. This defines the natural transformationm
and mapmI needed forL to be a strong symmetric monoidal functor. Now, of course one will have to
show commutativity of the diagrams of [8, Definition 1.1], but this can be done exactly as in the proof of
Lemma 3.11.

Lemma 3.13. The adjunction

Dom⊥
U

22⊥ Dom
Lqq

is symmetric monoidal.

Proof. The functors of the adjunction are symmetric monoidal and the left adjoint is strong, so the lemma
follows from [8, Theorem 1.4].

Lemma 3.14. The functor L: Dom⊥ → Dom⊥ extends the SMCC structure on the category of domains
to a linear category structure.

Proof. This follows from Lemma 3.13 and [8, Proposition 1.14].

4 The domains fibration

In this section we construct a PILLY -model based on the linear structure of the categoryDom⊥. A first
attempt at such a model would model types withn free variables as mapsf : (Dom⊥)n0 → (Dom⊥)0
where(Dom⊥)0 is the class of domains. But to be able to handle polymorphism, we change this model
slightly, such that types become functorsf : (Dom⊥)niso → Dom⊥ where(Dom⊥)iso is the restriction
of Dom⊥ to isomorphisms. The idea here is basically that iff : (Dom⊥)iso → Dom⊥ is a type with one
free variable, then the values off are up to isomorphism determined by the values off on the domains in
D, so we can define the product of all thef(A)’s with A ranging over all domains (i.e., we take the product
over a proper class) as ∏

d∈D f(d)

with projection ontof(A) defined as

∏
d∈D f(d) πd // f(d)

f(i) // f(A)

defined by takingi : d ∼= A. The idea described here will be modified slightly to make the projection
described above independent of the choice ofd, i. The details are described in Lemma 4.2, and the idea of
modelling polymorphism this way is due to [14].

The model described in this section will be modified to a parametric PILLY -model in Section 5.

Some of the constructions of the present section cannot be carried out in the set theoretic setting used in
Section 2, since they involve constructions on classes. In particular, since(Dom⊥)0 is a class and not a set,
the collection of all class maps(Dom⊥)0 → (Dom⊥)0 is not a class, and so since a category has a class
of objects, we cannot use this collection to construct a category.

203

For the concerned reader, we sketch how these issues may be resolved. As the given model of SDT, we
will assume that we have a category of classes satisfying the axioms of Joyal and Moerdijk’s algebraic
set theory [5] as refined in [17] with the notion of classic structure on a regular category with a universe
and a small natural numbers object. Given such a setting, the categoriesDom andDom⊥ mentioned
above are internal categories in the regular category of classes while the collection of all internal functors
(Dom⊥)0 → (Dom⊥)0 is a class in the external sense, since it is a subclass of the class of morphisms of the
category of classes. Thus the fibrations in Lemma 4.7 are defined externally. The examples of realizability
toposes mentioned in Section 2 still provide models as they embed into categories of classes as described in
[18].

The reader should keep in mind that we really construct a family of parametric LAPL-structures. Since the
LAPL-structure is constructed using SDT, we get a parametric LAPL-structure for each model of SDT.

We now begin the detailed description of the model. Consider the category(Dom⊥)iso obtained from
Dom⊥ by restricting to the isomorphisms. We will define the fibration

DFam(Dom⊥)→ {(Dom⊥)niso | n}

by defining the base category to have as objects natural numbers and as morphisms fromn to m functors
(Dom⊥)niso → (Dom⊥)miso. Objects inDFam((Dom⊥)iso) overn are functors(Dom⊥)niso → Dom⊥
and morphisms are natural transformations. Reindexing is by composition.

Lemma 4.1. The fibration
DFam(Dom⊥)→ {(Dom⊥)niso | n}

has a fibred linear structure plus fibred products.

Proof. Supposef, g : (Dom⊥)niso → Dom⊥ are objects ofDFam((Dom⊥)iso)n, we definef ⊗ g by
composing the pairing〈f, g〉 with the functor⊗ : Dom⊥ × Dom⊥ → Dom⊥. Products are likewise
defined pointwise, and the comonad is given by pointwise application ofL. We define(f (g)(~D) =
f(~D) (g(~D) and if~i : ~D (~D′ is a vector of isomorphisms, then(f (g)(~i)(h : f(~D) (g(~D)) =
g(~i) ◦ h ◦ f(~i−1).

Finally, we notice that the equations required for this to define a fibred linear structure hold, since they hold
pointwise.

Lemma 4.2. There exists right Kan extensions for all functors(Dom⊥)n+1
iso → Dom⊥ along projections

(Dom⊥)n+1
iso → (Dom⊥)niso.

Proof. Supposeg : (Dom⊥)n+1
iso → Dom⊥. We defineRKπ(g) : Domn

iso → Dom⊥ as

RKπ(g)(~A) = {x ∈
∏
D∈D g(~A,D) | ∀D,D′ ∈ D, i : D (D′ iso. g(~A, i)xD = xD′}

This is a domain since it is the limit of a diagram of domains, and the category of domains with strict maps
is complete with limits as computed in sets.

The required adjoint correspondence is given as follows. Supposef : (Dom⊥)niso → Dom⊥ andt : π∗f ⇒
g. The ~A component of the natural transformationt̄ : f ⇒ RKπ(g) is given by the family(t ~A,D)D∈D. We

need to show that this map has image in the subsetRKπ(g)(~A), but this follows from the naturality diagram

204

for t:

(π∗f)(~A,D)

(π∗f)(id ,i)=id

◦

t ~A,D
◦g(~A,D)

g(~A,i)

◦
(π∗f)(~A,D′)

t ~A,D′
◦g(~A,D′)

which commutes for each isomorphismi : D (D′.

Suppose on the other hand thatt : f ⇒ RKπ(g). Given any domainB, there existsi : D (B isomorphism,
and we definet ~A,B : f(~A) (g(~A,B) as the composition

f(~A)
t ~A ◦RKπ(g)(~A)

πD ◦g(~A,D)
g(~A,i)

◦g(~A,B)

whereπD is the projection onto theD’th coordinate. We show that this definition is independent of the
choice ofD, i. So supposeD′, i′ is another such choice, then we have a commutative diagram

RKπ(g)(~A)
πD ◦

πD′ ◦M
MMMMMMMMM
g(~A,D)

g(~A,i)
◦

g(~A,(i′)−1◦i)
◦

g(~A,B)

g(~A,D′)
g(~A,i′)

◦sssssssss

where the first triangle commutes by definition ofRKπ(g) and the second triangle commutes byg being a
functor.

One may easily check that these two maps define a bijective correspondence between transformations
π∗f ⇒ g and transformationsf ⇒ RKπ(g). It is clear that the correspondence is natural.

Lemma 4.3. The fibration
DFam(Dom⊥)→ {(Dom⊥)niso | n}

has a generic object and simple products.

Proof. The generic object is simply the inclusion(Dom⊥)iso → Dom⊥. This is a split generic object
since all functors factorize through it.

Supposeg : (Dom⊥)n+1
iso → Dom⊥. We define the product

∏
g : Domn

iso → Dom⊥ to be theRKπ(g).
The universal property of Kan extensions then gives us the desired correspondence between maps

π∗f → g
=======
f →

∏
g

Remark 4.4. From the proof of 4.2 we can extract the interpretation of type specialization. Supposex ∈∏
g(~A) andB is any domain. To specializex toB, we chooseD ∈ D andi : D (B and define

x(B) = g(~A, i)(xD)

wherexD is theD’th component ofx. As we have proved, this definition is independent of the choice of
D, i.

205

Consider the fibrationDFam(Dom) → {(Dom⊥)niso | n} defined to have as objects in the fiber overn
functors(Dom⊥)niso → Dom and as vertical maps natural transformations.

Lemma 4.5. The fibrationDFam(Dom) → {(Dom⊥)niso | n} is equivalent to the fibration of finite
products of free coalgebras for the comonad! onDFam(Dom⊥) → {(Dom⊥)niso | n}. The maps of the
equivalence together with the identity onDFam(Dom⊥) form a map of fibred adjunctions.

Proof. The fibrationDFam(Dom) → {(Dom⊥)niso | n} is the coKleisli fibration corresponding to the
fibred comonad onDFam(Dom⊥)→ {(Dom⊥)niso | n}. Now apply Proposition 1.21 of [8].

Lemma 4.6. The model

DFam(Dom⊥)

))SSSSSSSSSSSSSS 00⊥ DFam(Dom)

uukkkkkkkkkkkkkk

pp

{(Dom⊥)niso | n}

modelsY .

Proof. We defineY = (fixD)D∈D. Strictly speaking, this(fixD)D∈D is an element of the wrong set, since

(fixD)D∈D ∈
∏
D∈D(D → D)→ D

and we need an element in the set
∏
D∈D L(LD (D) (D. But these sets are isomorphic, and in

the following we work with implicit isomorphisms between them. We need to check that(fixD)D∈D in
fact defines an element in the type[[

∏
α. (α→ α)→ α]], i.e., the right Kan extension of the functorD 7→

[(D → D)→ D]. So we need to check that for alli : D (D′ isomorphisms between elementsD,D′ ∈ D

((i→ i)→ i)(fixD) = fixD′

But ((i → i) → i)(fixD) is the map that maps a functionf : D′ → D′ to i(fixD(i−1 ◦ f ◦ i)) and since the
diagram

D
i−1◦f◦i//

i

◦

D

i

◦
D′ f // D′

commutes, uniformity offix implies that for allf : D′ → D′

i(fixD(i−1 ◦ f ◦ i)) = fixD′(f).

We have proved thatY in fact defines an element of[[
∏
α. (α→ α)→ α]].

We need to check thatf !(Y A !f) = Y A !f for all domainsA and all mapsf : A → A. As explained in
Remark 4.4, the termY A is modeled by choosing an isomorphismi : D → A for some domainD ∈ D and
setting[[Y A]] = ((i→ i)→ i)fixD, which as we saw before, by uniformity, simply isfixA. Now, to interpret
[[Y A (!f)]] = fixA(f) we should strictly speaking apply the element ofL(LA (A) (A corresponding to
fixA to {f̄} wheref̄ : LA (A is the strict map corresponding tof : A → A, but this just givesfixA(f) as
one would expect. Likewise[[f !(Y A (!f))]] = f(fixA f), which is equal tofixA(f).

We sum the above to the following

206

Proposition 4.7.

DFam(Dom⊥)

))SSSSSSSSSSSSSS 00⊥ DFam(Dom)

uukkkkkkkkkkkkkk

pp

{(Dom⊥)niso | n}

is a PILLY -model.

5 The parametric fibration

In this section, we basically apply a parametric completion process as in [12, 2] to the model of the last
section. Types in the resulting model will be types in the old model with a relational interpretation mapping
identity relations to identity relations, i.e., satisfying the identity extension schema. First we discuss two
notions of relations.

By a relationR between domainsA,B we mean a subset ofA × B and we writeRel(A,B) for the set of
relations fromA toB. By an admissible relation between domainsA,B we mean a subdomain ofA × B
and we writeAdmRel(A,B) for the set of admissible relations fromA to B. This is also the notion of
admissible relations used in [14]. We shall often writeR(x, y) for (x, y) ∈ R.

Lemma 5.1. Admissible relations are closed under reindexing by strict maps and arbitrary intersections,
i.e., ifR : AdmRel(A,B) andf : A′ (A, g : B′ (B are strict maps between domains then

{(x, y) : A′ ×B′ | R(f(x), g(y))}

is an admissible relation, and if(Rx : AdmRel(A,B))x∈X is a set-indexed family of admissible relations,
then

{(y, z) : A×B | ∀x : X.Rx(y, z)}

is admissible.

Proof. Reindexing is given by pullbacks

{(x, y) : A′ ×B′ | R(f(x), g(y))} //

��

R

��
A′ ×B′ f×g // A×B

and intersections are limits, so the lemma follows fromDom⊥ being complete.

Consider the categoryAdmRel(Dom⊥) whose objects are admissible relations on domains, and whose
morphisms are pairs of strict maps preserving relations, i.e., mapping related elements to related elements.
We denote byAdmRel(Dom⊥)iso the restriction ofAdmRel(Dom⊥) to isomorphisms, i.e., morphisms
in this category are pairs of isomorphisms(f, g) such that(f, g) as well as(f−1, g−1) preserve relations.

We have canonical reflexive graphs of functors:

AdmRel(Dom⊥)iso
//
// (Dom⊥)isooo AdmRel(Dom⊥)

//
// Dom⊥oo

where in both graphs, the functors from left to right map relations to domain and codomain respectively and
the functor going from right to left map a domain to the identity relation on the domain.

207

Lemma 5.2. The categoryAdmRel(Dom⊥) has an SMCC-structure and products. The maps of the
reflexive graph

AdmRel(Dom⊥)
//
// Dom⊥oo

commute with the products and the SMCC-structure.

Proof. ForR : AdmRel(A,B), S : AdmRel(C,D) we define

R× S : AdmRel(A× C,B ×D)
R (S : AdmRel(A (C,B (D)

as
{((x, y), (w, z)) : (A× C)× (B ×D) | R(x,w) ∧ S(y, z)}

and
{(f, g) : (A (C)× (B (D) | ∀x : A, y : B.R(x, y) ⊃ S(f(x), g(y))}.

The relationR× S is easily seen to be admissible from Lemma 5.1. For eachx, y

{(f, g) : (A (C)× (B (D) | R(x, y) ⊃ S(f(x), g(y))} =⋂
(x′,y′)∈R∩{(x,y)}{(f, g) : (A (C)× (B (D) | S(f(x′), g(y′))}

where the intersection is taken inside(A (C) × (B (D). And soR (S can be written as the
intersection ⋂

(x,y)∈A×B

⋂
(x′,y′)∈R∩{(x,y)}

{(f, g) : (A (C)× (B (D) | S(f(x′), g(y′))}

of admissible relations, and so is admissible by Lemma 5.1.

An admissible relation can be considered as a jointly monic span in the usual sense. For the definition of
the tensor on relations, we will change notation a bit. We writeR̄ for the codomain of the maps of the span
in the following, in order not to confuse this with the relation. The point is that the domain of the relation
R⊗ S will not necessarily bēR⊗ S̄ as in the span

R̄⊗ S̄
$$IIII

zzvvv
vv

A⊗ C B ⊗D,

obtained by tensoring the two spans

R̄

��3
33

��

A B

S̄

��2
22

��

C D

since we do not know that this is a jointly monic span. In stead we defineR⊗ S to be the intersection of all
subdomains of(A ⊗ C) × (B ⊗D) containing the image of this span. Now, forT : AdmRel(E,F) and
t : A⊗ C (E, s : B ⊗D (F the pair(t, s) preserves relations iff there exists a mapr as making

R̄⊗ S̄ r //

$$IIII
zzvvvv

T

��2
22

����
�

A⊗ C
t

44B ⊗D
s

66E F

208

commute, because if the mapr exists, then the pullback ofT alongt×s is a subdomain of(A⊗C)×(B⊗D)
containing the image of the⊗-span. On the other hand, if(t, s) preserve relations, then the mapr can be
defined by composition witht× s.
Now, by naturality ofη, the mapr exists iff there exists a mapu making

R̄× S̄ u //

$$IIII
zzvvvv

T

��2
22

����
�

A× C
ŝ

44B ×D

t̂

66E F

commute, wherêt, ŝ are the bistrict maps corresponding tos, t. So(s, t) : R⊗S (T correspond bijectively
to bistrict pairs(ŝ, t̂) : R×S (T , and these pairs correspond bijectively to maps fromR toS (T showing
that(−)⊗ S is left adjoint toS ((−).

The neutral element for⊗ is the identity relation onI ∈ Dom⊥. MapsR⊗eqI (S correspond to bistrict
mapsR× eqI (S, which correspond to strict mapsR (S so thatR ∼= R⊗ I.

The structure maps of the SMCC-structure onAdmRel(Dom⊥) such as the natural transformation

(−)⊗ ((=)⊗ (≡)) (((−)⊗ (=))⊗ (≡)

are just given by pairing the corresponding maps inDom⊥. Of course, one has to show that these maps
preserve relations, but that is easy. Clearly the SMCC-structures omAdmRel(Dom⊥) andDom⊥ com-
mute with the domain and codomain maps. For the equality map, the only difficult thing to show is that
eqA ⊗ eqB = eqA⊗B.

SupposeR is any admissible relation between any pair of domains. SinceR is itself simply a domain, we
have the following equivalences

HomAdmRel(Dom⊥)(eqA⊗B, R) ∼= HomDom⊥(A⊗B,R) ∼=
HomDom⊥(A,B (R) ∼= HomAdmRel(Dom⊥)(eqA,eqB (R) ∼=

HomAdmRel(Dom⊥)(eqA ⊗ eqB, R).

An easy check shows that this correspondence is given by the identity on the underlying pairs of maps, so by
the Yoneda LemmaeqA⊗B is isomorphic toeqA⊗eqB with isomorphism given by the pair(idA⊗B, idA⊗B).

Lemma 5.3. The categoryAdmRel(Dom⊥) has a linear category structure, commuting with the functors
of

AdmRel(Dom⊥)
//
// Dom⊥oo .

Proof. SupposeR : AdmRel(A,B). The relation can be considered as a jointly monic span

R

��3
33

����
�

A B

in Dom⊥. We define the lifting ofR to be the relation obtained by applying the functor! to each map in
the span. It is an easy exercise to show that the resulting span is jointly monic.

209

We need to check that this defines a comonad, and it suffices to check that the maps of the comonad on
Dom⊥ preserve relations, which follows from naturality as in the diagram forε:

!R
ε //

��7
77

����
�

R

��5
55

����
�

!A
ε

66!B
ε

66A B.

The same reasoning applies for the rest of the linear structure. For example, sinced is the composition of
!∆ with the isomorphism!((−) × (=)) ∼=!(−)⊗!(=), we see thatd preserves relations from the following
diagram

!R
!∆ //

��4
44

4

��

!(R×R)
∼= //

&&MMMMM
xxqqq

qq
!R⊗!R

$$IIIII

{{vvv
vv

!A

!∆

33!B

!∆

22!(A×A)
∼=

22!(B ×B)
∼=

33!A⊗!A !B⊗!B.

The span on the right actually represents the relation!R⊗!R, because it is jointly monic (it is isomorphic to
the span in the middle).

The proofs thatδ, e,m,mI preserve relations is done likewise. The commutative diagrams of [8, Defini-
tion 1.10, Lemma 1.11] commute since they commute inDom⊥.

We define the categoryPDom to have as objects natural numbers, and as morphisms fromn tom pairs of
functors making the diagram

AdmRel(Dom⊥)niso

����

// AdmRel(Dom⊥)miso

����
(Dom⊥)niso

OO

// (Dom⊥)miso

OO

commute.

We define the categoryPFam(Dom⊥) fibred overPDom to have as objects overn pairs of functors
making the diagram

AdmRel(Dom⊥)niso

����

fr // AdmRel(Dom⊥)

����
(Dom⊥)niso

OO

fd // Dom⊥

OO

commute. A vertical morphisms from(f r, fd) to (gr, gd) is a a pair of natural transformations(s : f r ⇒
gr, t : fd ⇒ gd) making the obvious diagrams commute, i.e., for all~R : AdmRel(~α, ~β),

dom(s~R) = t~α
codom(s~R) = t~β

seq~α = (t~α, t~α)

wheredom, codomdenote the domain and codomain maps respectively. Since maps inAdmRel(Dom⊥)
are given by pairs of maps inDom⊥, clearly the equations determines from t, so an alternative description

210

of vertical morphisms would be natural transformationst : fd ⇒ gd such that for all vectors of relations
~R : AdmRel(~α, ~β), (t~α, t~β) is a map of relationsf r(~R)→ gr(~R).

Reindexing in the fibrationPFam(Dom⊥)→ PDom is by composition.

Lemma 5.4. The fibrationPFam(Dom⊥)→ PDom has a fibred linear structure and fibred products.

Proof. The structure is defined pointwise, using Lemma 5.3, i.e., for example forf = (f r, fd), g = (gr, gd)
objects overn, we define

(f ⊗ g)r(~R) = f r(~R)⊗ gr(~R)
(f ⊗ g)d(~A) = fd(~A)⊗ gd(~A).

Of course, as in the proof of Lemma 4.1 since(−) ((=) is contravariant in the first variable, to define
f (g for covariant functorsf, g as a covariant functor, we must use that the domain of the functorsf, g
is a category in which all arrows are invertible, so that we can define(f (g)d(i) = fd(i−1) (gd(i) and
likewise for(f (g)r.

The needed natural transformations are defined using the corresponding natural transformations inDom⊥
andAdmRel(Dom⊥). For exampleε is defined as(ε : !f r (f r, ε : !fd (fd), and the equations needed
hold, since they hold inAdmRel(Dom⊥) andDom⊥. Since the requirement of(and⊗ being adjoint
can be expressed 2-categorically, the same argument can be used to show this.

Lemma 5.5. The fibrationPFam(Dom⊥)→ PDom has a generic object and simple products.

Proof. The generic object is the inclusion

AdmRel(Dom⊥)iso

����

// AdmRel(Dom⊥)

����
(Dom⊥)iso

OO

// Dom⊥

OO

For the simple products, we define forfd : (Dom⊥)n+1
iso → Dom⊥ the product(

∏
f)d : (Dom⊥)niso →

Dom⊥ by defining(
∏
f)d(~A) to be

{x ∈
∏
D∈D fd(~A,D) | ∀D,D′ ∈ D.∀R ∈ AdmRel(D,D′). f r(eq~A, R)(xD, xD′)}

where we writexD for πD(x). We define the relational interpretation as

(
∏
f)r(~R : AdmRel(~A, ~B))(x, y)

for x ∈ (
∏
f)d(~A), y ∈ (

∏
f)d(~B) iff

∀D,D′ ∈ D.∀R′ ∈ AdmRel(D,D′)f r(~R,R′)(xD, yD′).

Since this is an intersection of admissible relations it is admissible by Lemma 5.1.

We show that
∏
f r(eq~A) = eqfd(~A), proving that(

∏
f r,

∏
fd) actually defines an object ofPFam(Dom⊥).

Suppose first that(x, y) ∈
∏
f r(eq~A). By definition(xD, yD) ∈ f r(eq~A,eqD) = eqfd(~A,D) ,i.e.,xD = yD

and so we have proved
∏
f r(eq~A) ⊂ eqfd(~A). Suppose on the other handx ∈

∏
fd(~A). We must prove

that(x, x) ∈
∏
f r(eq~A), i.e. that for allD,D′ ∈ D, R ∈ AdmRel(D,D′) we have

(xD, xD′) ∈ f r(eq~A, R)

211

which is exactly the definition ofx ∈
∏
fd(~A).

We will define the bijective correspondence between maps(π∗g)d → fd and mapsgd → (
∏
f)d basically

as in the proof of Lemma 4.3. We need to show that in this correspondence maps preserving relations
correspond to maps preserving relations.

If t : (π∗g)d → fd such that(t, t) : (π∗g)r (f r we definet̂ : gd → (
∏
f)d as t̂ ~A(x) = (t ~A,D(x))D∈D.

We show that this defines an element in(
∏
f)d(~A). SupposeD,D′ ∈ D, R : AdmRel(D,D′). Since

x ∈ gd(~A), and(x, x) ∈ (π∗g)r(eq~A, R) = eqgd(~A), the fact thatt preserves relations show that

(t ~A,D(x), t ~A,D′(x)) ∈ f r(eq ~A, R)

as desired. It is clear that ift preserves relations, so doest̂.

Supposeu : gd → (
∏
f)d. We show that̂u : π∗gd → fd defined as in the proof of Lemma 4.2 also preserves

relations. So suppose we have admissible relations~R : AdmRel(~A, ~B) andR : AdmRel(A,B) and that
gr(~R)(x, y). PickD,D′ ∈ D and isomorphismsi : D (A, i′ : D′ (B, then by definition

û ~A,A(x) = fd(id ~A, i) ◦ πD ◦ u ~A(x) û ~B,B(y) = fd(id ~B, i
′) ◦ πD′ ◦ u ~B(y). (2)

Since(i, i′)∗R′ ∈ AdmRel(D,D′), and sinceu preserves relations, we must have

(πD ◦ u ~A(x), πD′ ◦ u ~B(y)) ∈ f r(~R, (i, i′)∗R′) (3)

by definition of(
∏
f)r(~R). Since(i, i′) : (i, i′)∗R (R preserve relations andf r is a functor,

(fd(id ~A, i), f
d(id ~B, i

′)) : f r(~R, (i, i′)∗R) (f r(~R,R)

preserve relations, which together with (2) and (3) means that

(û ~A,A(x), û ~B,B(y)) ∈ f r(~R,R)

as desired.

We define the categoryPFam(Dom) fibred overPDom to have the same objects asPFam(Dom⊥).
A vertical morphisms from(f r, fd) to (gr, gd) is a natural transformationt : fd ⇒ gd whose components
are not required to be strict as they are inPFam(Dom⊥), but still required to preserve relations, i.e.,
if ~R : AdmRel(~A, ~B), then the pair(t ~A, t ~B) is a map of relationsf r(~R) → gr(~R). Reindexing in the
fibrationPFam(Dom)→ PDom is given by composition.

Lemma 5.6. The fibrationPFam(Dom)→ PDom is equivalent to the fibration of finite products of free
coalgebras for the fibred comonad! onPFam(Dom⊥)→ PDom. The maps of the equivalence together
with the identity onPFam(Dom⊥) form a map of fibred adjunctions.

Proof. It is easy to see thatPFam(Dom)→ PDom is the fibred co-Kleisli category forPFam(Dom⊥)→
PDom, since maps preserving relations out of

R

��5
55

��		
	

A B

212

correspond to strict maps preserving relations out of

!R
��9

99
����

�

!A !B

SincePFam(Dom⊥)→ PDom has fibred products we may appeal to [8, Proposition 1.21].

Lemma 5.7. The model

PFam(Dom⊥)

((PPPPPPPPPPPP 00⊥ PFam(Dom)

wwoooooooooooo

pp

PDom

modelsY

Proof. We have aY -combinator in the fibration

DFam(Dom⊥)→ {((Dom⊥)iso)n | n}

given by the family(fixD)D∈D. We show that this element defines a term inPFam(Dom⊥) → PDom,
for which we basically need to show that(fixD)D∈D is in the relational interpretation of the type

∏
α. (α→

α)→ α.

So we need to show that
(fixD)D∈D(

∏
α. (α→ α)→ α)(fixD)D∈D,

i.e., that
∀D,D′ ∈ D.∀R : AdmRel(D,D′).∀f : D → D, g : D′ → D′.

(R→ R)(f, g) ⊃ R(fixDf, fixD′g).

So suppose we are givenD,D′ ∈ D. An admissible relation fromD to D′ is given by an inclusion of a
subdomain

R (D ×D′

and so(R→ R)(f, g) means that the restriction off×g toR factors throughR, i.e., we have a commutative
diagram

R
(f×g)|R //

◦

R

◦
D ×D′ f×g // D ×D′.

From uniformity of fixed points we deduce thatfixD×D′(f × g) = fixR(f × g)|R and thereforefixD×D′(f ×
g) ∈ R. But using naturality on the commutative square

D ×D′

◦

f×g // D ×D′

◦
D

f // D

(and likewise for the other projection) we see that

(fixDf, fixD′g) = fixD×D′(f × g)

213

and so(fixDf, fixD′g) ∈ R.

Proving that(fixD)D∈D satisfies the required equations is done as in the proof of Lemma 4.6.

Proposition 5.8.
PFam(Dom⊥)

((PPPPPPPPPPPP 00⊥ PFam(Dom)

wwoooooooooooo

pp

PDom

(4)

is a PILLY -model.

Proof. This is the collected statement of the above lemmas.

6 The LAPL-structure

In this section we show that the PILLY -model (4) is parametric by constructing a parametric LAPL-structure
around it. Even though types in this model are pairs(f r, fd), when reasoning about parametricity, we will
just consider thefd part of a type. We can considerf r as a relational interpretation of the type(f r, fd)
since for each vector of relations~R : AdmRel(~A, ~B) we havef r(~R) : AdmRel(fd(~A), fd(~B)). Notice
also, that since terms from(f r, fd) to (gr, gd) are natural transformationst : fd ⇒ gd, so forgetting the
f r-part of a type represents a faithful functor.

Since the category of contexts should contain all functorsfd : (Dom⊥)niso → Dom and types for all
relations between them, a natural choice is to have this category contain all functorsfd : (Dom⊥)niso →
Set. We will use set theoretic logic to reason about the model, so the categoryProp should contain
subfunctors of the functors inCtx.

The pre-LAPL-structure will be given by the diagram

DFam(Sub(Set))

��
PFam(Dom⊥) 00

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYY PFam(Dom)
pp

))SSSSSSSSSSSSSS
// DFam(Set)

��
PDom.

(5)

The categoryDFam(Set) is fibred overPDom. Its fibre overn has as objects functors

(Dom⊥)niso → Set,

and reindexing along a morphism fromm to n in PDom is by composition with the functor

((Dom⊥)iso)m → ((Dom⊥)iso)n.

The categoryDFam(Sub(Set)) is a fibred partial order overDFam(Set) and has as objects over

f : (Dom⊥)niso → Set

subfunctors off ordered by inclusion. The mapPFam(Dom) → DFam(Set) is given by the inclusion
of Dom into Set.

214

Lemma 6.1. The fibrationDFam(Set)→ PDom has fibred products and products in the base.

Proof. The fibred products are given pointwise.

Lemma 6.2. The fibred functor

PFam(Dom)

((RRRRRRRRRRRRR
// DFam(Set)

��
PDom

given by(f r, fd) 7→ i◦fd, wherei : Dom→ Set is the inclusion, preserves fibred products and is faithful.

Lemma 6.3. The composite fibrationDFam(Sub(Set))→ DFam(Set)→ PDom is a fibred first-order
logic fibration with products with respect to projections inPDom.

Proof. The fibred first-order logic structure is defined pointwise using the first-order logic structure of
Sub(Set)→ Set.

We should show that for any projectionπ : n + 1 → n in PDom and anyf ∈ DFam(Set)n we have a
right adjoint to

(π̄)∗ : DFam(Sub(Set))f → DFam(Sub(Set))π∗f .

To be more precise, supposef : (Dom⊥)niso → Set is an object ofDFam(Set)n andh : (Dom⊥)n+1
iso →

Set is a subfunctor ofπ∗f = f ◦ π. We must define(
∏
h) : (Dom⊥)niso → Set a subfunctor off and

prove that for any other subfunctorg of f

∀ ~A. g(~A) ⊆ (
∏
h)(~A) iff ∀ ~A,B. g(~A) ⊆ h(~A,B). (6)

Moreover, we must prove that
∏

is a functor, i.e. ifh′ ⊆ h′′ then
∏
h′ ⊆

∏
h′′, and that the Beck-Chevalley

conditions are satisfied.

Define
(
∏
h)(~A) =

⋂
D∈D

h(~A,D).

Clearly, the right to left implication of (6) holds. Suppose on the other hand that

∀ ~A. g(~A) ⊆ (
∏
h)(~A).

If ~A,B are domains, we must show thatg(~A) ⊆ h(~A,B). We know that there existsD ∈ D and isomor-
phismi : B ∼= D. Sinceh(~A, i) : h(~A,B) → h(~A,D) is an isomorphism of subobjects off(~A) we must
haveh(~A,B) = h(~A,D), so since clearlyg(~A) ⊆ h(~A,D), alsog(~A) ⊆ h(~A,B) as desired.

It is clear that
∏

(−) defines a functor, i.e. preserves order of subobjects off . Concerning the Beck-
Chevalley conditions, we must show that

∏
(−) commutes with reindexing inPDom, which holds since

reindexing commutes with taking intersections of indexed sets. For the other Beck-Chevalley condition
suppose we have a pullback diagram inDFam(Set):

π∗f
π̄ //

π∗t
��

f

t

��
π∗g

π̄ // g

215

for f, g : (Dom⊥)niso → Set andt vertical, and suppose also we have a subobjecth : (Dom⊥)n+1
iso → Set

of π∗g. We can then compute

(t∗(
∏
h)) ~A = (t∗~A(

⋂
D∈D h(~A,D))) ~A = ({x ∈ f(~A) | t ~A(x) ∈

⋂
D∈D h(~A,D)}) ~A

and on the other hand

(
∏

((π∗t)∗(h))) ~A = (
∏

({x ∈ f(~A) | t ~A(x) ∈ h(~A,B)}) ~A,B) ~A =
(
⋂
D∈D{x ∈ f(~A) | t ~A(x) ∈ h(~A,D)}) ~A

Since these two are clearly equal, the Beck-Chevalley condition is satisfied.

Lemma 6.4. The diagram (5) is a pre-LAPL-structure.

Proof. All that is missing in this proof is the definition of the fibred functorU

PFam(Dom⊥)×PDom PFam(Dom⊥)

++WWWWWWWWWWWWWWWWWWWWW
// DFam(Set)

��
PDom.

We define
U((f r, fd), (gr, gd))(~A) = Rel(fd(~A), gd(~A)).

We show thatU((f r, fd), (gr, gd)) defines a functor(Dom⊥)niso → Set by defining for~i : ~A → ~A′ the
action

U((f r, fd), (gr, gd))(~i) : U((f r, fd), (gr, gd))(~A)→ U((f r, fd), (gr, gd))(~A′)

asR ∈ U((f r, fd), (gr, gd))(~A) 7→ (fd(~i−1), gd(~i−1))∗R. The mapU defines a contravariant fibred func-
tor by reindexing, that is, ift : (f r, fd) → ((f ′)r, (f ′)d) andt : (gr, gd) → ((g′)r, (g′)d) are maps, then
U(t, u) is defined as

R : Rel((f ′)d(~A), (g′)d(~A)) 7→ (t ~A, u ~A)∗R.

It is easy to see thatU satisfies the requirements.

Lemma 6.5. The subfunctor ofU given by

V ((f r, fd), (gr, gd))(~A) = AdmRel(fd(~A), gd(~A))

defines a notion of admissible relations for the APL-structure (5).

Before we prove Lemma 6.5 we need a few lemmas. Recall that in the LAPL-logic [3], we have definedx ↓
as the proposition∃f : X (Σ. f(x) = >, for x : A andA a domain.

Lemma 6.6. The map∧ : Σ× Σ→ Σ given by∧(e, f) = e ∩ f is strict.

Proof. SupposeE ∈ (Σ× Σ)p. Then

∧ ◦ rΣ×Σ
p (E) = ∧(

⋃
(e,f)∈E

e,
⋃

(e,f)∈E

f) =
⋃

(e,f)∈E

e ∩ f = µp({∧(e, f) | (e, f) ∈ E}).

216

Lemma 6.7. Supposee : LX. The propositions

• e ↓

• ∃x : X. e = {x}

• L(!)(e) = >

are equivalent, where! is the unique mapX → 1.

Proof. ClearlyL(!)(e) = > impliese ↓. Since

L(!)(e) = {!x | x ∈ e} = {? | ∃x ∈ e}

the second and third proposition are equivalent.

For the last implication supposee ↓, i.e., that there exists a mapf : LX (Σ such thatf(e) = >. Define
the mapg : LX (Σ ase′ 7→ f(e′) ∩ {∅ | ∃x ∈ e′}. By Lemma 6.6g is composed of strict maps and so is
strict. But since pointed maps out ofLX are uniquely determined by their values on singletonsg = f , and
sof(e) = > implies∃x ∈ e.

Proof of Lemma 6.5.For readability, we will assume that everything here takes place in the fiber over0 ∈
PDom. The more general proof will be the same as below, with all sets replaced by indexed families of
sets. Since all constructions used below are pointwise, the proof generalizes.

An admissible relation from domainA to domainB is simply a subdomain ofA × B. Equality is an
admissible relation since it is given by the diagonal map, and reindexing preserves admissible relations
by Lemma 5.1. That admissible relations are closed under conjunction and universal quantification is a
consequence of the same lemma.

Supposeρ ⊆ A×B is a subdomain. By Lemma 6.7

!ρ = {(e, f) ∈ LA× LB | e ↓⊃⊂ f ↓ ∧e ↓⊃ (εe, εf) ∈ ρ}
= {(e, f) ∈ LA× LB | ∃x ∈ e ⊃⊂ ∃y ∈ f ∧ ∀x ∈ e, y ∈ f. (x, y) ∈ ρ}

So!ρ is given by the lift of the spanA← ρ→ B, and so is a subdomain ofLA× LB.

If φ is a proposition andρ is an admissible relation, then

{(x, y) | φ ⊃ ρ(x, y)} =
⋂

z∈{0|φ}

{(x, y) | ρ(x, y)}

which is an admissible relation by Lemma 5.1. So(x, y). φ ⊃ ρ(x, y) is an admissible relation.

Finally, we need to check that Rule 2.18 of [3] holds. Supposeρ : Rel(LA,LB) andρ′ : AdmRel(LA,LB).
We must show that if

∀x : A, y : B. ρ({x}, {y}) ⊃ ρ′({x}, {y}) (7)

then
∀e : LA, f : LB. (e ↓⊃⊂ f ↓) ⊃ ρ(e, f) ⊃ ρ′(e, f).

So assume (7) and thate : LA, f : LB are such thate ↓⊃⊂ f ↓ ∧ρ(e, f). Denote byp the truth valuee ↓.
Now,

{(e, f) | p} ∈ (ρ′)p

217

sincep impliese = {x} andf = {y} for somex, y and so the assumptionρ(e, f), impliesρ′(e, f) by (7).
Sinceρ′ is a pointed subset ofLA× LB we must have

rLA×LB
p ({(e, f) | p}) ∈ ρ′.

But rLA×LB
p ({(e, f) | p}) = (rLA

p ({e | p}), rLB
p ({f | p})) and

rLA
p ({e | p}) =

⋃
y∈{e|p}

y = {x ∈ A | ∃y ∈ {e | p}. x ∈ y} = e

and likewiserBp ({f | p}) = f , soρ′(e, f) as desired.

Finally, to show that we have a full LAPL-structure we must show that all types have a relational interpre-
tation. Of course, such a relational interpretation of a type(f r, fp) is f r. We must check, however, that
the linear structure on types defined in the model here agrees with the linear structure onLinAdmRel→
AdmRelCtx defined abstractly in the LAPL-logic.

Theorem 6.8. The pre-LAPL-structure (5) has a full LAPL-structure.

Proof. The categoryAdmRelCtx has as objects triples(n,m, f) wheren,m are natural numbers andf
is an object ofDFam(Set)n+m, i.e. a functor

(Dom⊥)n+m
iso → Set.

A morphisms from(n,m, f) to (n′,m′, f ′) is a pair of morphisms

(ar, ad) : n→ n′, (br, bd) : m→ m′

in PDom and a vertical morphismt : f → f ′ ◦ (ad × bd) in DFam(Set)n+m.

An object ofLinAdmRel over (n,m, f) is a pair of objects((gr, gd), (hr, hd)) ∈ PFam(Dom⊥)n ×
PFam(Dom⊥)m plus a natural transformation

(k ~A, ~B : fd(~A, ~B)→ AdmRel(gd(~A), hd(~B)))(~A, ~B)∈(Dom⊥)n+m
iso

.

A vertical morphism inLinAdmRel from ((gr, gd), (hr, hd), k) to

(((g′)r, (g′)d), ((h′)r, (h′)d), (k′))

is a pair of morphisms
t : (gr, gd)→ ((g′)r, (g′)d) in PFam(Dom⊥)n
s : (hr, hd)→ ((h′)r, (h′)d) in PFam(Dom⊥)m

such that for all~A, ~B, x ∈ fd(~A, ~B)

∀y, z. k ~A, ~B(x)(y, z) ⊃ k′~A, ~B(x)(t ~A(y), s ~B(z))

We have a pair of maps of PILLY -models:
PFam(Dom⊥)

��
PDom




LinAdmRel

��
AdmRelCtx

oo

oo

218

defined by mapping an object ofLinAdmRel, ((gr, gd), (hr, hd), k) to (gr, gd) and(hr, hd) respectively.
We define the mappingΦ going the other way by first defining the map

PDom→ AdmRelCtx

to map an objectn to (n, n,
∏
i≤n V (πi ◦ π, πi ◦ π′)) whereπ, π′ are the first and second projections re-

spectivelyn + n → n andπi : n → 1 is the i’th projection. One may also describe this object as the
family

(
∏
i≤nAdmRel(Ai, Bi)) ~A∈Domn, ~B∈Domn

in the fibreDFam(Set)n+n.

Since objects inPDom are products of the generic object, if we are to define a map of PILLY -models, the
action of the functor between the base categories on morphisms is completely determined by the action of
the functor on the total categories, so we will describe the latter.

Suppose(fd, f r) is an object ofPFam(Dom⊥)n. We map this to the object ofLinAdmRel given by
the pair of types((fd, f r), (fd, f r)) and the natural transformation

(~R ∈
∏
i≤nAdmRel(Ai, Bi) 7→ f r(~R) ∈ AdmRel(fd(~A), fd(~B))) ~A, ~B.

Given a mapt from (fd, f r) to (gd, gr), that is, a natural transformation

(t ~A : fd(~A) (gd(~A)) ~A

preserving relations, we map it to the pair(t, t). To see that this defines a map fromΦ(fd, f r) to Φ(gd, gr)
we need to see that it preserves relations , which writing it out is the exact same condition as fort to preserve
relations in the first place.

It is easy to see thatΦ commutes with reindexing and therefore defines a map of fibrations. It is also evident
thatΦ together with the domain and codomain maps constitute a reflexive graph.

The generic object inLinAdmRel→ AdmRelCtx is the object over

(1, 1, (AdmRel(A,B))A,B)

in AdmRelCtx given by the pair of types((id , id), (id , id)) and the natural transformation

(id : AdmRel(A,B)→ AdmRel(A,B))A,B.

It is clear thatΦ preserves generic object. It is also clear that it preserves products in the base.

Let us show thatΦ preserves!. Recall that applying! in PFam(Dom⊥) maps a relation to the relation
obtained by lifting both maps in the span. Logically this gives us thatΦ(!(f r, fd)) is

~R 7→ {(g, h) ∈ Lfd(~A)× Lfd(~B) | ∃z ∈ Lf r(~R).L(π)(z) = g ∧ L(π′)(z) = h}

But ∃z ∈ Lf r(~R).L(π)(z) = g ∧ L(π′)(z) = h is equivalent to

(∃x ∈ g ⊃⊂ ∃y ∈ h) ∧ ∀x, y . x ∈ g, y ∈ h ⊃ (x, y) ∈ f r(~R) (8)

If we apply the! in LinAdmRel to Φ(f r, fd) we obtain

~R 7→ {(g, h) ∈ Lfd(~A)× Lfd(~B) | (g ↓⊃⊂ h ↓) ∧ g ↓⊃ (εg, εh) ∈ f r(~R)}

219

But sinceg ↓⊃⊂ ∃x ∈ g by Lemma 6.7 andx ∈ g ⊃ εg = x, this is the same as (8).

To see that the simple products are preserved, an easy calculation shows that both combination of simple
products andΦ map(f r, fd) to the relation

~R 7→ {(x, y) ∈
∏
fd(~A)×

∏
fd(~B) | ∀D,D′ ∈ D.∀S : AdmRel(D,D′). (xD, xD′) ∈ f r(~R, S)}.

Likewise it is easily seen thatΦ preserves(.

Finally, we show thatΦ preserves⊗. Suppose(f r, fd), (gr, gd) are types. Maps out ofΦ((f r, fd) ⊗
(gr, gd)) in LinAdmRel are easily seen, using an argument as in Lemma 5.4, to correspond to pairs of
bistrict maps out offd × gd preservingf r × gr. Since maps out ofΦ(f r, fd)⊗ Φ(gr, gd) satisfy the same
universal property, we get thatΦ preserves tensor.

Theorem 6.9. The LAPL-structure (5) is a parametric LAPL-structure, i.e. satisfies identity extension,
extensionality and very strong equality.

Proof. Let us first prove that (5) satisfies identity extension. Suppose we are given a type(fd, f r). The
relational interpretation of this type is

(f r :
∏
i≤nAdmRel(Ai, Bi)→ AdmRel(fd(~A), fd(~B))) ~A, ~B.

Instantiating this at equality we obtain

[[~α | − | − ` (fd, f r)[eq~α] : AdmRel((fd, f r)(~α), (fd, f r)(~α))]]

which is the element of
(AdmRel(fd(~A), fd(~A))) ~A

given as
(f r(eq~A)) ~A = (eqfd(~A)) ~A

which is also
[[~α | − | − ` eq(fd,fr) : AdmRel((fd, f r)(~α), (fd, f r)(~α))]].

Very strong equality follows from very strong equality in the subobject fibration overSet. Extensionality is
a consequence of very strong equality.

7 Proving consequences of parametricity for Lilystrict

In [14] a language, which we shall call Lilystrict is introduced. This language is a modification of Lily
[1], where the function typeσ (τ is interpreted as strict rather than linear functions. The reason for
using strictness rather than linearity is that it is more general, i.e., gives types to more terms, and that it
is exactly what is needed for call-by-value and call-by-name to give the same notion of ground contextual
equivalence. This intuitively also corresponds more directly to strict functions in domain theory, since these
are the functions that diverge if their input does.

Simpson and Rosolini define an interpretation of Lilystrict into models of synthetic domain theory, and use
this to prove that call-by-value and call-by-name give the same notion of contextual equivalence. This has
been proved for Lily in [1] using operational methods, but Simpson and Rosolini give a different semantic
proof. In [1] operational methods are also used for proving simple consequences of parametricity for Lily,

220

and in this section, we show how to use the LAPL-structure (5) to prove more advanced parametricity results
for Lily strict.

The model of PILLY in (5) is based on the interpretation of Lilystrict given in [14]. In this section we show
that the two interpretations of PILLY and Lilystrict are basically the same. The two languages are of course
not the same, but since linear maps are strict, we can basically include PILLY into Lily strict, and show that
the interpretations agree up to this inclusion.

As mentioned earlier, the LAPL-structure we have constructed using synthetic domain theory is really a
family of LAPL-structures, since we have one LAPL-structure for each model of synthetic domain theory.

In this section we will assume that we have chosen one such model which is also 1-consistent in the sense of
[16, 18]: any sentence of the form∃n : N. φ(n), for φ a primitive recursive predicate,—aΣ0

1-sentence—is
true in the model iff there exists (in the external sense) a natural numbern such thatφ(n) is true. This is,
for example, the case for a realizability topos satisfying the strong completeness axiom [6] where one takes
predomains to be the well-complete objects. The reason for this assumption is that adequacy (Theorem 7.9
below), will be proved in the internal language of the model; it will hold in the real world only under the
assumption of 1-consistency (and precisely when 1-consistency holds), as explained also in Section 8 of
[14]. This technique was introduced in [16, 18].

We emphasize that the results about Lilystrict (Theorems 7.18, 7.19) hold in general and independently of
any model. Yet, to prove the results we need to refer to a model of SDT satisfying 1-consistency (which is
known to exist).

7.1 The language Lilystrict

This subsection sums up some definitions and results from [14]. In particular we recall the language Lilystrict
with two operational semantics, a call-by-value and a call-by-name semantics. Each of these semantics gives
rise to a concept of ground contextual equivalence corresponding to observing termination at!- types. We
also recall the interpretation of the Lilystrict into SDT defined in [14]. Inloc. cit. it is also shown that the
interpretation is adequate with respect to both notions of contextual equality, and using adequacy it is shown
that the two ground contextual equivalences coincide.

The types of Lilystrict are
σ, τ ::= α | σ (τ |!σ |

∏
α. σ

whereα ranges over an infinite set of type variables. Except for⊗, I these are exactly the types of PILLY .
The notatioǹ Ξ σ : Type means thatσ is a well formed type with free type variables contained inΞ.

Typing judgements of Lilystrict are of the form

Γ | δ `Ξ t : σ

whereΓ is the context of free variables, i.e., an assignment of types to a finite set of variables usually written
asx1 : σ1, . . . , xn : σn such that the free variables oft are contained in the domain ofΓ, i.e.,{x1, . . . , xn}.
Ξ is a finite set of free type variables containing the free type variables ofσ1, . . . , σn, σ. The notationΞ, α
meansΞ ∪ α andα /∈ Ξ. δ is a labeling of the variables in the domain ofΓ, i.e., a map from{x1, . . . , xn}
to {0, 1}. Intuitively δ(xi) = 1 means thatt is strict inxi.

The notatioǹ Ξ Γ means thatΓ is a well-formed context with free variables contained inΞ.

Figure 1 recalls the term formation rules as defined in [14]. The notationΓ | δ, x :i σ `Ξ t : τ for i = 0, 1
is short forΓ, x : σ | δ[x 7→ i] `Ξ t : τ , whereδ[x 7→ i] is the extension ofδ to dom(δ) ∪ {x} such that

221

δ(x) = i. The notationx :− σ means that eitherx :0 σ or x :1 σ. For δ, δ′ labellings of the same set of
variables, the notationδ ∨ δ′ is the labeling mappingx : dom(δ) to max(δ(x), δ′(x)). The constant zero
labeling is denoted0.

Γ | 0, x :1 σ `Ξ x : σ
Γ | δ, x :1 σ `Ξ t : τ

Γ | δ `Ξ λx :1 σ. t : σ (τ

Γ | δ `Ξ s : σ (τ Γ | δ′ `Ξ t : σ

Γ | δ ∨ δ′ `Ξ s(t) : τ

Γ | δ `Ξ t : σ

Γ | 0 `Ξ!t : !σ

Γ | δ `Ξ s : !σ Γ | δ′, x :− σ `Ξ t : τ

Γ | δ ∨ δ′ `Ξ let !x bes in t

Γ | δ `Ξ,α t : σ `Ξ Γ

Γ | δ `Ξ Λα. t :
∏
α. σ

Γ | δ `Ξ t :
∏
α. σ `Ξ τ : Type

Γ | δ `Ξ t(τ) : σ[τ/α]

Γ | δ, x :− σ `Ξ t : σ

Γ | δ `Ξ recx : σ. t : σ

Figure 1: Term formation rules for Lilystrict

Lemma 7.1. If bothΓ | δ `Ξ t : σ andΓ | δ′ `Ξ t : σ′ thenδ = δ′ andσ = σ′.

Lemma 7.2. SupposeΓ | δ `Ξ t : τ is typable in Lilystrict, and Ξ ` σ : Type is a type in Lilystrict and
x /∈ dom(Γ). ThenΓ | δ, x :0 σ `Ξ t : τ is typable in Lilystrict.

Figure 2 recalls the two operational semantics for Lilystrict as defined in [14]. Formally these are given as
relationst ⇓s v andt ⇓n v between closed termst of closed types and valuesv, where the set of values is
the set of closed terms of closed types of the form

v ::= λx : σ. t |!t | Λα. t.

λx : σ. t ⇓ λx : σ. t
s ⇓s λx : σ. s′ t ⇓s v′ s′[v′/x] ⇓s v

s(t) ⇓s v

s ⇓n λx : σ. s′ s′[t/x] ⇓n v

s(t) ⇓n v !t ⇓!t

s ⇓!s′ t[s′/x] ⇓ v

let !x bes in t ⇓ v Λα. t ⇓ Λα. t

t ⇓ Λα. t′ t′[σ/α] ⇓ v

t(σ) ⇓ v

t[recx : σ. t/x] ⇓ v

recx : σ. t ⇓ v

Figure 2: Operational semantics of Lilystrict

In Figure 2 the notationt ⇓ v is used in some rules. This means that each of these rules exist both in the
definition of the⇓n and the⇓s semantics. The notationt ⇓n is short for∃v. t ⇓n v and likewise fort ⇓s.

Lemma 7.3. If t ⇓n v andt ⇓n v′ thenv = v′. Likewise for⇓s.

222

Lemma 7.4. If t ⇓n v or t ⇓s v, thent, v have the same type.

A groundσ-context is a termx :− σ ` C : !τ for some typeτ , and for closedt : σ we writeC[t] for C[t/x].

Definition 7.5. For t, t′ : σ closed terms of closed types, we writet ≡s
gnd t

′ if for all groundσ-contextsC[−],
C[t] ⇓s iff C[t′] ⇓s. Likewiset ≡n

gnd t
′ if for all groundσ-contextsC[−], C[t] ⇓n iff C[t′] ⇓n

The idea of≡n
gnd,≡s

gnd is that terms are considered equal if one can be substituted for the other in larger
programs without observable difference in behavior of the resulting program. As in [14] and [1], here
observable behavior refers to termination at!-types.

Lemma 7.6. The relations≡s
gnd,≡n

gnd are equivalence relations and congruences. The latter means that if
x :− σ ` C : τ is some term, andt ≡s

gnd t
′ thenC[t/x] ≡s

gndC[t′/x] and likewise for≡n
gnd.

We now recall the interpretation of Lilystrict into SDT defined in [14]. Each typèα1,...αn σ has two inter-
pretations. The first([`~α σ])d is aDomn

0 indexed family of domains, whereDom0 is the class of domains.
We write the~D’th component of([`~α σ])d as([`~α σ])d~D. The second interpretation of a type is the relational
interpretation([`~α σ])r. This is a family of relations

(([`~α σ])r~R : AdmRel(([`~α σ])d~A, ([`~α σ])d~B))~R : AdmRel(~A, ~B)

indexed overAdmReln0 whereAdmRel0 is the class of admissible relations on domains. The interpreta-
tion of types is defined in Figure 3.

([`~α αi])d~D = (Di)
([`~α σ (τ])d~D = ([`~α σ])d~D (([`~α τ])d

([`~α!σ])d~D = L([`~α σ]) ~D
([`~α

∏
α. σ])d~D = {π ∈

∏
D∈D([`Ξ,α σ])d~D,D | ∀D,D

′ ∈ D.

∀R : AdmRel(D,D′). ([`Ξ,α σ])r~eq,R(πD, πD′)}

([`~α αi])r~R : AdmRel(~A, ~B)
= Ri

([`~α σ (τ])r~R : AdmRel(~A, ~B)
= {(f, g) ∈ ([`~α σ (τ])d~A × ([`~α σ (τ])d~B |
∀(x, y) ∈ ([`~α σ])r~R. (f(x), g(y)) ∈ ([`~α τ])r~R}

([`~α!σ])r~R : AdmRel(~A, ~B)
= {(e, f) : L([Ξ | σ])d(~A)× L([Ξ | σ])d(~A) |

(∀x : ([Ξ | σ])d(~A). x ∈ e ⊃ ∃y ∈ f ⊃ ([Ξ ` σ])r(~R)(x, y))∧
(∀y : ([Ξ | σ])d(~B). y ∈ f ⊃ ∃x ∈ e ⊃ ([Ξ ` σ])r(~R)(x, y))}

([`~α
∏
α. σ])r~R : AdmRel(~A, ~B)

= {(π, π′) ∈ ([`Ξ
∏
α. σ])d~A × ([`Ξ

∏
α. σ])d~B |

∀D,D′ ∈ D.∀R : AdmRel(D,D′). ([`Ξ,α σ])r~eq,R(πD, πD′)}

Figure 3: Interpretation of types

Supposef : A (B is a pointed map. We write〈f〉 : AdmRel(A,B) for the graph off .

Lemma 7.7 ([14]). Suppose(fi : Ai (Bi)i≤n are isomorphisms in(Dom⊥)iso and`α1,...αn σ : Type is
a type in Lilystrict. Then there exists an isomorphism([σ])d(~f) in Dom⊥ such that([`~α σ])r(〈fi〉)i is the graph

of ([σ])d(~f). Moreover the correspondence(fi)i 7→ ([σ])d(~f) is functorial.

223

To define the interpretation of terms
Γ | δ `Ξ t : σ

define first the interpretation of the contextΓ:

([`Ξ x1 : σ1, . . . , σn : σn])d = (
∏
i([`Ξ σi]) ~D) ~D.

Since the labeling does not play a role in the interpretation of terms and is uniquely determined byΞ,Γ, t,
we leave it out in the notation and write([Γ `Ξ t : σ]) in stead of([Γ | δ `Ξ t : σ]).

ForΞ = α1, . . . αn, the interpretation([Γ `Ξ t : τ]) is a family of maps

(([Γ `Ξ t : τ]) ~D : ([`Ξ Γ])d~D → ([τ])d~D) ~D

The interpretation of terms is defined in Figure 4. In the definition of the interpretation of the let-expression
the(−)∗-notation is used to denote the strict map

L([`Ξ σ]) (([`Ξ τ])

corresponding to the set theoretic map
([`Ξ σ])→ ([`Ξ τ])

described. The notation
([σ])d(id ~D, i)

refers to the morphism of Lemma 7.7.

([Γ `Ξ xi : σi]) ~D(~x) = xi
([Γ `Ξ λx : σ. t : σ (τ]) ~D(~x) = d : ([`Ξ σ])d~D 7→ ([Γ, x : σ `Ξ t : τ]) ~D(~x, d)

([Γ `Ξ s(t) : τ]) ~D(~x) = ([Γ `Ξ s : σ (τ]) ~D(~x)(([Γ `Ξ t : σ]) ~D(~x))
([Γ `Ξ!t]) ~D(~x) = {([Γ `Ξ t]) ~D(~x)}

([Γ `Ξ let !x bes in t]) ~D(~x) = (d : ([`Ξ σ]) 7→ ([Γ, x : σ `Ξ t]) ~D(~x, d))∗

(([Γ `Ξ s : !σ]) ~D(~x))
([Γ `Ξ Λα. t :

∏
α. σ]) ~D(~x) = (([Γ `Ξ,α t : σ]) ~D,D(~x))D∈D

([Γ `Ξ t(τ) : σ[τ/α]]) ~D(~x) = ([`Ξ σ])d(id ~D, i)(([Γ `Ξ t :
∏
α. σ]) ~D(~x))D

whereD ∈ D andi : D (([`Ξ τ])d~D is an iso
([Γ `Ξ recx : σ. t : σ]) ~D(~x) = fix(d : ([`Ξ σ]) 7→ ([Γ, x : σ `Ξ t : σ]) ~D(~x, d))

Figure 4: The interpretation of terms

The definition of the interpretation of type application involves a choice, and so should be checked to be
well-defined. This is the first condition of the next lemma. The proof of well-definedness can be done as in
the proof of Lemma 4.2.

Lemma 7.8 ([14]). SupposeΓ `Ξ t : τ . Then

• ([Γ `Ξ t : τ]) is well defined

• If Γ = x1 : σ1, . . . , xn : σn andδ(xi) = 1 then for each vector~D of domains, the function([Γ | δ `Ξ

t : τ]) ~D is strict in thei’th variable.

224

• If ~R : AdmRel(~D, ~D′) is a vector of admissible relations, andx1, . . . xn, x′1, . . . , x
′
n are elements

such that for alli,
(xi, x′i) ∈ ([`Ξ σi])r~R

then
(([Γ `Ξ t]) ~D(~x), ([Γ `Ξ t]) ~D′(~x′)) ∈ ([τ])r~R

The last property of Lemma 7.8 is the Logical Relations Lemma.

The following theorems are proved in [14].

Theorem 7.9 (Adequacy [14]).Supposet : τ, t′ : τ are closed terms of closed type. If([t]) = ([t′]) then
t ≡s

gnd t
′ andt ≡n

gnd t
′.

Theorem 7.10 (Strictness [14]).If t : !σ is a closed term of closed type, thent ⇓n iff t ⇓s. In particular
≡s

gnd and≡n
gnd coincide.

Since≡s
gnd and≡n

gnd coincide we introduce the notation≡gnd to stand for either of them.

Remark 7.11. The assumption that the given model of SDT is 1-consistent stated in the beginning of this
section is used in the proof of Theorem 7.9. In fact Theorem 7.9 is stated in [14] in a more general form,
since there it is formulated in the internal language of the model. This technique for proving computational
adequacy was developed in [16, 18], in which it is also proved that adequacy holds in the external sense
stated here if and only if the given model of SDT is 1-consistent.

7.2 Translating PILL Y into Lily

Consider the language PILLY \⊗ obtained by removing the type-constructors⊗, I from PILLY and remov-
ing the corresponding term constructors such as the corresponding let-expressions,?, and⊗ of terms.

The types of PILLY \ ⊗ and Lilystrict are the same, and the main difference between the two languages is
that (in Lily strict is interpreted as strict maps, and in PILLY \ ⊗ it is interpreted as linear maps. Since
linear maps are strict, we can basically include PILLY \ ⊗ into Lily strict. Up to this inclusion of languages
the interpretations([−]) of Lily strict and[[−]] of PILLY \ ⊗ agree.

Theorem 7.12.There exists an interpretationφ of PILLY \ ⊗ into Lilystrict such that for all closed termst
of PILLY , [[t]] = ([φ(t)]). This translation is the identity on types.

The translation is functorial in the following sense: Supposeu : σ (τ, t : τ (ω are closed terms of
closed types of PILLY \ ⊗. Thenφ(t ◦ u) = φ(t) ◦ φ(u).

Before proving Theorem 7.12 we need a lemma. Recall that for any type~α ` σ of PILLY \ ⊗, [[~α ` σ]]d

is a functor from(Dom⊥)niso to Dom⊥. Since([`~α σ]) is an indexed family of domains, it does not make
sense to ask if([`~α σ]) = [[~α ` σ]], but we can still compare the values of[[~α ` σ]] on objects with([`~α σ]).

Lemma 7.13. For all typesΞ ` σ of PILLY \ ⊗, the object parts of[[−]]d and [[−]]r agree with([−])d and
([−])r. Moreover, for~i a vector of strict isomorphism between domains,[[−]]d(~i) is equal to([−])d(~i) as
defined in Lemma 7.7.

Proof. The proof is by induction on the structure of types.

225

Type variables are interpreted as projections by both interpretations. It is easy to see that(is interpreted
the same way in both interpretations. Let us consider the interpretation of!. We clearly have

[[Ξ |!σ]]d(~A) = L([[Ξ | σ]]d(~A))
([Ξ |!σ])d(~A) = L(([Ξ | σ])d(~A))

For the relational interpretation, we have for~R : AdmRel(~A, ~B).

([Ξ `!σ])r(~R) = {(e, f) : L([Ξ | σ])d(~A)× L([Ξ | σ])d(~A) |
∀x : ([Ξ | σ])d(~A). x ∈ e ⊃ ∃y ∈ f ⊃ ([Ξ ` σ])r(~R)(x, y)∧
∀y : ([Ξ | σ])d(~B). y ∈ f ⊃ ∃x ∈ e ⊃ ([Ξ ` σ])r(~R)(x, y)}

= {(e, f) : L([Ξ | σ])d(~A)× L([Ξ | σ])d(~A) |
e ↓⊃⊂ f ↓ ∧(x ∈ e ∧ y ∈ f ⊃ (x, y) ∈ ([Ξ ` σ])r(~R))}.

On the other hand,[[Ξ `!σ]]r(~R) is the image of the span obtained by applying the lifting functorL to both
maps in the span

[[Ξ ` σ]]r(~R)

((QQQQQQ
vvnnnnnn

[[Ξ ` σ]]d(~A) [[Ξ ` σ]]d(~B).

So [[Ξ `!σ]]r(~R) consists of lifts of pairs from[[Ξ ` σ]]r(~R), i.e., pairs(e, f) such thate ↓⊃⊂ f ↓ and
x ∈ e, y ∈ f ⊃ (x, y) ∈ [[Ξ ` σ]]r(~R).

The interpretation of polymorphic types is the same in the two interpretations. This ends the induction proof.

For the last part of the lemma, suppose~i : ~A (~B is a vector of isomorphisms. Since for eachj the graph
of ij is (ij , idBj)

∗eqBj and so(ij , idBj) is an isomorphism from〈ij〉 to eqBj . Thus([[σ]]d(~i), id [[σ]]d(~B)) is

an isomorphism from[[σ]]r(〈~i〉) to eq[[σ]]d(~B), i.e.,

([[σ]]d(~i), id [[σ]]d(~B))
∗eq[[σ]]d(~B) = [[σ]]r(〈~i〉).

We can use this to prove

〈[[σ]]d(~i)〉 = ([[σ]]d(~i), id [[σ]]d(~B))
∗eq[[σ]]d(~B) = [[σ]]r(〈~i〉) = ([σ])r(〈~i〉) = 〈([σ])d(~i)〉,

and so since their graphs agree,[[σ]]d(~i) = ([σ])d(~i).

Proof of Theorem 7.12.The interpretationφ is defined to be the identity on types. The interpretation of
terms is defined inductively in Figure 5, where we have written the definition as rules. It is easily seen that
the following properties of the interpretation hold (this is part of the reason the definition makes sense): For
any termt of PILLY \ ⊗,

• the free type variables ofφ(t) are the same as fort

• the free variables ofφ(t) is the union of the free intuitionistic and linear variables oft and the types
are preserved.

• any free linear variablex in t is labeled1 in φ(t), free intuitionistic variables may be labeled either0
or 1.

226

φ(Ξ | Γ;− ` Y :
∏
α. !(!α (α) (α) =

Γ | 0 `Ξ Λα. λt : !(!α (α). recx : α. let !u bet in u(!x)

φ(Ξ | Γ, x : σ;− ` x : σ) = Γ | 0, x :1 σ `Ξ x : σ

φ(Ξ | Γ;x : σ ` x : σ) = Γ | 0, x :1 σ `Ξ x : σ

φ(Ξ | Γ;∆ ` t : σ (τ) = Γ,∆ | δ `Ξ φ(t) : σ (τ,
φ(Ξ | Γ;∆′ ` u : σ) = Γ,∆′ | δ′ `Ξ φ(u) : σ

φ(Ξ | Γ;∆,∆′ ` t u : τ) = Γ,∆,∆′ | δ ∨ δ′ `Ξ φ(t)φ(u) : τ

φ(Ξ | Γ;∆, x : σ ` t : τ) = Γ,∆ | δ, x :1 σ `Ξ φ(t) : τ

φ(Ξ | Γ;∆ ` λ◦x : σ. t : τ) = Γ,∆ | δ `Ξ λx : σ. φ(t) : σ (τ

φ(Ξ | Γ;− ` t : σ) = Γ | δ `Ξ φ(t) : σ

φ(Ξ | Γ;− `!t : !σ) = Γ | 0 `Ξ!φ(t) : σ

φ(Ξ, α | Γ;∆ ` t : σ) = Γ,∆ | δ `Ξ,α φ(t) : σ Ξ | Γ;∆

φ(Ξ | Γ;∆ ` Λα. t :
∏
α. σ) = Γ,∆ | δ `Ξ Λα. φ(t) :

∏
α . σ

φ(Ξ | Γ;∆ ` t :
∏
α. σ) = Γ,∆ | δ `Ξ φ(t) :

∏
α. σ Ξ ` τ : Type

φ(Ξ | Γ;∆ ` t(τ) : σ[τ/α]) = Γ,∆ | δ `Ξ φ(t)(τ) : σ[τ/α]

φ(Ξ | Γ;∆ ` s : !σ) = Γ,∆ | δ `Ξ φ(s) : !σ
φ(Ξ | Γ, x : σ;∆′ ` t : τ) = Γ,∆′, x : σ | δ′ `Ξ φ(t) : τ

φ(Ξ | Γ;∆,∆′ ` let !x bes in t : τ) = Γ,∆,∆′ | δ ∨ δ′ `Ξ let !x beφ(s) in φ(t) : τ

Figure 5: Inductive definition ofφ.

227

• φ(t) has the same type ast.

In the interpretation defined in Figure 5 we use weakening (as in Lemma 7.2) implicitly in the rules for
function application and let-expressions.

We need to show that([−]) = [[−]] ◦ φ on the closed terms. This is of course done by induction, and
for the induction we need to consider open terms. But open terms are interpreted differently in the two
interpretations. For an open termt of PILLY \ ⊗ with free variables

x1 : σ1, . . . , xn : σn;x′1 : σ′1, . . . , x
′
m : σ′m

[[t]] ~A is strict map from
⊗

i L[[σi]]d(~A) ⊗
⊗

j [[σ
′
j]]
d(~A) whereas([φ(t)]) ~A, is a map from

∏
i[[σi]]

d(~A) ×∏
j [[σ

′
j]]
d(~A), which may be strict in some variables and not in others. The induction hypothesis is that for

all domains~A, elementsxi : [[σi]]d(~A), x′j : [[σ′j]]
d(~A)

[[t]] ~A({x1} ⊗ . . .⊗ {xn} ⊗ x′1 ⊗ . . .⊗ x′m) = ([φ(t)]) ~A(x1, . . . xn, x
′
1, . . . , x

′
m),

wherex⊗ y is shorthand forη(x, y) whereη is the natural transformation from(−)× (=) to (−)⊗ (=).

We do the induction cases in the order of constructions of Figure 5, except for the case ofY which is the
most difficult and is therefore postponed. The case of free variables is trivial.

For function application, suppose the termt has free linear variablesx′1, . . . , x
′
i andu has free linear vari-

ablesx′i+1, . . . x
′
m. We have

[[t u]] ~A({x1} ⊗ . . .⊗ {xn} ⊗ x′1 ⊗ . . .⊗ x′m) =
[[t]] ~A({x1} ⊗ . . . {xn} ⊗ x′1 ⊗ . . . x′i)([[u]] ~A({x1} ⊗ . . . {xn} ⊗ x′i+1 ⊗ . . . x′m))

and
([t u]) ~A(~x, ~x′) = ([t]) ~A(~x, x′1 . . . , x

′
i)(([u]) ~A(~x, x′i+1, . . . , x

′
m))

and so the induction step follows.

For lifted terms, we have by definition([!t]) ~A(~x) = {([t]) ~A(~x)}. Let us for simplicity assume thatt has exactly

one free (intuitionistic) variable of typeσ. In the PILLY -model,[[t]] ~A is a mapL([[σ]]d(~A)) ([[τ]]d(~A) and
[[!t]] ~A is the composite

L([[σ]]d(~A))
δ ◦LL([[σ]]d(~A))

L[[t]] ~A◦L(τd(~A))

So sinceδ({x}) = {{x}}, [[!t]] ~A({x}) = {[[t]] ~A({x})} . By induction hypothesis[[t]] ~A({x}) = ([t]) ~A(x),
and so the induction step follows.

For the caset = Λα. t′ we have by induction for all~A, ~x, ~x′ and for allD ∈ D

[[t′]] ~A,D(
⊗
i

{xi} ⊗
⊗
j

x′j) = ([t′]) ~A,D(~x, ~x′)

and so

[[t]] ~A(
⊗

i{xi} ⊗
⊗

j x
′
j) = ([[t′]] ~A,D

⊗
i{xi} ⊗

⊗
j x

′
j)D∈D = (([t′]) ~A,D(~x, ~x′))D∈D = ([t]) ~A(~x, ~x′).

For the caset = t′(τ) : σ[τ/α], we have defined

[[t]] ~A(
⊗
i

{xi} ⊗
⊗
j

x′j) = [[σ]]d(id ~A, k)(([[t
′]] ~A(

⊗
i

{xi} ⊗
⊗
j

x′j))D)

228

for some isok : D ([[τ]]d(~A), and the([−]) interpretation is defined likewise, and so, using Lemma 7.13
we get the induction step.

For the case of terms of the form let!x bes in t we assume that we have

Ξ | Γ;∆ ` s : !σ Ξ | Γ, x : σ;∆′ ` t : τ

Assume for simplicity of notation thatΓ, ∆,∆′ consists of exactly one variable each. Then

([let !x bes in t]) ~A(x, y, z) = (̂[t]) ~A(x, ([s]) ~A(x, y), z)

where
(̂[t]) ~A : ([Γ])d(~A)× L(([σ])d(~A))× ([∆])d(~A))→ ([τ])d(~A)

is the unique extension of

([t]) ~A : ([Γ])d(~A)× ([σ])d(~A)× ([∆])d(~A))→ ([τ])d(~A)

which is strict in the second variable. Since by induction, for allu, v, w

[[t]] ~A({u} ⊗ {v} ⊗ w) = ([t]) ~A(u, v, w)

we get that also for allv′

[[t]] ~A({u} ⊗ v′ ⊗ w) = (̂[t]) ~A(u, v′, w),

since[[t]] ~A is strict. Thus

([let !x bes in t]) ~A(x, y, z) = [[t]] ~A({x} ⊗ ([s]) ~A(x, y)⊗ z) =
[[t]] ~A({x} ⊗ [[s]] ~A({x} ⊗ y)⊗ z) = [[let !x bes in t]] ~A({x} ⊗ y ⊗ z)

For fixed points, we have defined[[Y]] = (fixD)D∈D in Lemma 5.7. In this definition, we have identified
objects of!D (D with non-strict mapsD → D, and so strictly speaking, we should have defined
[[Y]] = (aD)D∈D, whereaD : !(!D (D) (D is the unique strict map such thataD({f}) = fixD(f̂)
wheref̂ is the set theoretic mapD → D corresponding tof : !D (D.

To compute([φ(Y)]), consider first

([f :1!(!α (α), x :0 α `α let !u bef in u(!x)])D

which is the unique extension of the map

(f : LD (D,x : D) 7→ f({x})

to a mapL(LD (D)×D → D which is strict in the first variable. So

([f :1!(!α (α) `α recx :0 α. let !u bef in u(!x)])D

is the unique extension off : LD (D 7→ fixD(f̂) to a strict mapL(LD (D) (D, and thus we conclude

([φ(Y)]) = ([Λα. λf : !(!α (α). recx :0!α. let !u bef in u(x)]) =
(aD)D = [[Y]]

For the last statement of the theorem, supposet : σ (τ , u : τ (ω are terms of PILLY \ ⊗. Then

φ(u ◦ t) = φ(λ◦x : σ. u(t(x))) = λx : σ. φ(u(t(x))) =
λx : σ. φ(u)φ(t)(x) = φ(u) ◦ φ(t).

229

The restriction of the translation to PILLY \ ⊗ in Theorem 7.12 is not essential.

Proposition 7.14. There exists a translationψ of PILLY into PILLY \ ⊗ such that for any parametric
PILLY -modelX the diagram

PILLY
ψ //

[[−]] ""FF
FF

FF
FF

F PILLY \ ⊗

[[−]]zztttttttttt

X

commutes up to natural isomorphism. To be more precise, there exists a family of isomorphismsfσ : [[σ]]→
[[ψ(σ)]] indexed by closed types of PILLY , such that for each closed termt : σ (τ of closed types, the
diagram

[[σ]]
fσ //

[[t]]

��

[[ψ(σ)]]

[[ψ(t)]]

��
[[τ]]

fτ // [[ψ(τ)]]

commutes. Furthermore, the restriction ofψ to PILLY \ ⊗ is the identity, and forα ` σ(α) a type in
PILLY \ ⊗, ψ(σ(τ)) = σ(ψ(τ)). The translation is functorial in the sense that ift : σ (τ ands : τ (ω
are closed terms of closed types, thenψ(s ◦ t) = ψ(s) ◦ ψ(t).

Of course, the core of the translation of Proposition 7.14 is the well known consequences of parametricity

σ ⊗ τ ∼=
∏
α. (σ (τ (α) (α,

I ∼=
∏
α. α (α.

The interesting part of the proposition is that it is a consequence of parametricity that alltermsof PILLY
expressible using⊗, I and let-expressions,? etc. can also be expressed in the smaller language PILLY \ ⊗.
For the proof of this proposition we refer to Appendix A.

Corollary 7.15. There exists a translation of PILLY into Lilystrict which commutes with interpretation up to
natural isomorphism. The translation is an extension of the translation of Theorem 7.12.

Proof. This follows from Theorem 7.12 and Proposition 7.14.

Recall that in [3] an equality theory on terms of PILLY called external equality is defined. External equality
is basically equality up toβ, η- conversion.

Lemma 7.16. The translation of PILLY into Lilystrict maps externally equivalent terms to ground contextu-
ally equivalent terms.

Proof. Externally equal terms of PILLY are interpreted as equal terms in the model. Since the translation
commutes with interpretation into the model, by adequacy (Theorem 7.9), the translated terms are ground
contextually equal.

230

7.3 Consequences of parametricity for Lilystrict

We end this section by showing how to use Theorem 7.12, computational adequacy of the interpretation
([−]) and the results of [3] to obtain consequences of parametricity for the language Lilystrict.

Consider the category whose objects are the closed types of Lilystrict and whose morphisms fromσ to τ are
closed terms of typeσ (τ of Lily strict identified up to ground contextual equivalence. We call this category
Lily.

Corollary 7.17. For all closed typesσ of Lilystrict, the objectsσ and
∏
α. (σ (α) (α are isomorphic

as objects ofLily.

Proof. The maps of the isomorphismσ ∼=
∏
α. (σ (α) (α are defined as in [3]. Applyingφ of

Theorem 7.12 to these maps, we obtain morphisms of the right types inLily. In [3] it is shown that the
interpretations of these maps into the parametric model are isomorphisms, and so by adequacy, we obtain
the desired result.

As always, type expressionsα ` σ(α) in Lily strict for whichα only appears positively inσ induce functors
onLily.

Theorem 7.18.All functorsLily → Lily induced by typesσ(α) in Lilystrict have initial algebras and final
coalgebras.

Proof. First we notice that it is easy to see that the functorial interpretation of types commutes withφ.

We define the initial algebra by applying the translation of Theorem 7.12 toin : σ(µα. σ(α)) (µα. σ(α).
To show that this defines a weak initial algebra, considerφ(fold), that is,φ applied to the term that takes an
algebra and produces a map from the initial algebra. Since

Λα. λ◦f : σ(α) (α. f ◦ σ(foldα !f) = Λα. λ◦f : σ(α) (α. (foldα !f) ◦ in

in PILLY , using Lemma 7.16 it is easy to see, that this defines a weak initial algebra.

Suppose we have two mapsg, h out of this initial algebra definable in Lilystrict. Then([g]), ([h]) are maps out
of [[in]] in the model. But since we know that[[in]] is an initial algebra in the model,([h]) = ([g]), and so by
adequacyh ≡gnd g.

The proof for final coalgebras is exactly the same.

Theorem 7.19.For all typesα ` σ(α) : Type of Lilystrict, there exists a closed typeτ of Lilystrict such that
τ andσ(τ) are isomorphic as objects ofLily.

Proof. We can defineτ and the isomorphismsτ ∼= σ(τ) in pure PILLY . Now, apply the translation of
Corollary 7.15 to this isomorphism. From this we get a typeτ ′ and morphismsσ(τ ′) (τ ′, τ ′ (σ(τ ′)
definable in Lilystrict. By functoriality of φ, the interpretations of both compositions of the two maps are
identities in the model. Thus, by adequacy, the two compositions are ground contextual equivalent to the
identity, and thusτ ′ andσ(τ ′) are isomorphic inLily.

231

8 Conclusion

We have constructed an LAPL-structure based on the interpretation of Lilystrict into models of synthetic
domain theory presented in [14]. Comparing this with the concrete domain theoretic LAPL-structure of
[8], the completion process for LAPL-structures of [7], and the LAPL-structure based on the operational
semantics of Lily [1] under development at the moment of writing, this shows that the notion of LAPL-
structure is general enough to handle very different kinds of parametric models.

The LAPL-structure also provides formal proof of the consequences of parametricity, such as the existence
of recursive types, for the interpretation of [14].

Using adequacy of the interpretation of Lilystrict, we have shown consequences of parametricity for Lilystrict
up to ground contextual equivalence. These consequences include encodings of inductive, coinductive and
recursive types.

232

A Tensor products in parametric LAPL-structures

In this appendix we prove the following Proposition.

Proposition A.1. There exists a translationψ of PILLY into PILLY \⊗ such that for any parametric PILLY -
modelX the diagram

PILLY
ψ //

[[−]] ""FF
FF

FF
FF

F PILLY \ ⊗

[[−]]zztttttttttt

X

commutes up to natural isomorphism. To be more precise, there exists a family of isomorphismsfσ : [[σ]]→
[[ψ(σ)]] indexed by closed types, such that for each closed termt : σ (τ of closed types, the diagram

[[σ]]
fσ //

[[t]]

��

[[ψ(σ)]]

[[ψ(t)]]

��
[[τ]]

fτ // [[ψ(τ)]]

commutes. Furthermore,ψ is the identity on PILLY \ ⊗ and forα ` σ(α) a type in PILLY \ ⊗, ψ(σ(τ)) =
σ(ψ(τ)). The translation is functorial in the sense, that ift : σ (τ and s : τ (ω are closed terms of
closed types, thenψ(s ◦ t) = ψ(s) ◦ ψ(t).

We will prove this Proposition working in Abadi & Plotkin’s logic, i.e., in stead of proving Proposition A.1
we prove the Proposition A.2 and Lemma A.7 below.

Proposition A.2. There exists a translationψ of PILLY into PILLY \ ⊗ and mapsfσ : σ (ψ(σ) indexed
by closed types, such that, assuming parametricity, for each closed termt : σ (τ of closed types, the
diagram

σ
fσ ◦

t

◦

ψ(σ)

ψ(t)

◦
τ

fτ ◦ψ(τ)

commutes up to internal equality.

We defineψ as a translation defined on all types and all terms of PILLY as described in Figure 6.

Lemma A.3. Suppose
Ξ | ~x : ~σ; ~y : ~σ′ ` t : τ

is a term of PILLY . Then
Ξ | ~x : ~ψ(σ); ~y : ~ψ(σ′) ` ψ(t) : ψ(τ)

is a typing judgement of PILLY \ ⊗.

Proof. Easy induction on the structure oft.

233

ψ(α) = α ψ(σ (τ) = ψ(σ) (ψ(τ) ψ(
∏
α. σ) =

∏
α. ψ(σ)

ψ(!σ) =!ψ(σ) ψ(I) =
∏
α. α (α (for α fresh variable)

ψ(σ ⊗ τ) =
∏
α. (ψ(σ) (ψ(τ) (α) (α (for α fresh variable)

ψ(x) = x, for x variable ψ(?) = Λα. λ◦x : α. x ψ(Y) = Y

ψ(t u) = ψ(t) ψ(u) ψ(λ◦x : σ. t) = λ◦x : ψ(σ). ψ(t)

ψ(t⊗ u : σ ⊗ τ) = Λα. λ◦h : ψ(σ) (ψ(τ) (α. h ψ(t) ψ(u) ψ(!t) =!ψ(t)

ψ(Λα. t) = Λα. ψ(t) ψ(t(σ)) = ψ(t)(ψ(σ))

ψ(let x⊗ y : σ ⊗ σ′ bet in u : τ) = ψ(t) ψ(τ) (λ◦x : ψ(σ). λ◦y : ψ(σ′). ψ(u))

ψ(let !x bet in u) = let !x beψ(t) in ψ(u) ψ(let ? bet in u : τ) = ψ(t) ψ(τ) ψ(u)

Figure 6: Inductive definition ofψ.

Lemma A.4. Supposeσ, τ are types of PILLY . The map

iσ,τ : σ ⊗ τ (
∏
α. (σ (τ (α) (α

defined as
λ◦y : σ ⊗ τ.Λα. λ◦h : σ (τ (α. let x⊗ x′ bey in h x x′.

is natural inσ, τ , i.e, if k : σ (σ′, l : τ (τ ′ then

iσ′,τ ′ ◦ k ⊗ l = (
∏
α. (k (l (α) (α) ◦ iσ,τ .

Using parametrictiy, one can show thatiσ,τ is an isomorphism up to internal equality. The terms

λ◦x :
∏
α. α (α. x I ? : (

∏
α. α (α) (I

λ◦x : I.Λα. λ◦y : α. let ? bex in y : I ((
∏
α. α (α)

can be shown to be each others inverses up to internal equality using parametricity.

Proof. We show thatiσ,τ is natural inσ, τ . The rest of the proof can be found in [3].

Supposek : σ (σ′, l : τ (τ ′. Then fory : σ ⊗ τ ,

(k ⊗ l)(y) = let z ⊗ w bey in k(z)⊗ l(w).

Soiσ′,τ ′((k ⊗ l)(y)) is

Λα. λ◦h : σ′ (τ ′ (α. let x⊗ x′ be(k ⊗ l)(y) in h x x′ =
Λα. λ◦h : σ′ (τ ′ (α. let z ⊗ w bey in (let x⊗ x′ bek(z)⊗ l(w) in h x x′) =

Λα. λ◦h : σ′ (τ ′ (α. let z ⊗ w bey in h (k(z)) (l(w))

On the other hand

(
∏
α. (k (h (α) (α)(iσ,τ (y)) =

Λα. λ◦h : σ′ (τ ′ (α. (iσ,τ (y)) α ((k (l (α)(h)) =
Λα. λ◦h : σ′ (τ ′ (α. let x⊗ x′ bey in (k (l (α)(h) x x′ =

Λα. λ◦h : σ′ (τ ′ (α. let x⊗ x′ bey in h (k(x)) (l(x′)).

234

We define termsfσ : σ (ψ(σ) andgσ : ψ(σ) (σ of PILLY for all types (not just the closed types)
σ of PILLY as described in Figure 7. Basicallyfσ, gσ are defined inductively, by using the functorial
interpretations of type constructors(, !,

∏
α. (−). The induction step forσ ⊗ τ is obtained using the

isomorphism of Lemma A.4.

fα = idα fσ(τ = λ◦t : σ (τ. fτ ◦ t ◦ gσ f!σ =!fσ

f∏
α.σ

= λ◦t : (
∏
α. σ).Λα. fσ(t α)

fI = λ◦t : I.Λα. λ◦u : α. let ? bet in u.

fσ⊗τ = iψ(σ),ψ(τ) ◦ fσ ⊗ fτ
gα = idα gσ(τ = λ◦t : ψ(σ) (ψ(τ). gτ ◦ t ◦ fσ g!σ =!gσ

g∏
α.σ

= λ◦t : (
∏
α. σ).Λα. gσ(t α)

gI = λ◦t :
∏
α. α (α. t I ?

gσ⊗τ = gσ ⊗ gτ ◦ i−1
ψ(σ),ψ(τ)

Figure 7: Inductive definitions off, g.

Before we prove Lemma A.2 we need to prove a series of lemmas.

Lemma A.5. For all types~α ` σ the mapsfσ, gσ are each others inverses.

Proof. Simple induction over the structure ofσ.

Lemma A.6. SupposeΞ, α ` σ : Type andΞ ` τ : Type. Thenψ(σ[τ/α]) = ψ(σ)[ψ(τ)/α] .

Proof. Easy induction on the structure ofσ.

Lemma A.7. ψ is the identity on PILLY \⊗. If α ` σ(α) is a type in PILLY \⊗ andτ is any type of PILLY ,
thenψ(σ(τ)) = σ(ψ(τ)).

Proof. Easy induction onσ.

Lemma A.8. If Ξ ` σ is a type in PILLY \ ⊗ thenfσ is the identity.

Proof. Easy induction on the structure ofσ.

The next few pages until Lemma A.12 we prove a series of lemmas describing the behavior offσ with
respect to reindexing. Basically what makes this difficult is that sincefα = idα if α is a type variable, we
cannot havefσ[τ/α] = fσ[τ/α].

SupposeΞ, α, β ` σ(α, β) is a type in PILLY in whichα occurs only negatively andβ only positively. For
Ξ ` f : τ ′ (τ, g : ω (ω′ we write

Ξ ` σ(f, g) : σ(τ, ω) (σ(τ ′, ω′)

235

for the well known functorial interpretation ofσ. Recall that this functorial interpretation of types is given
by a term

M :
∏
α, β, α′, β′. (α′ (α)→ (β (β′)→ (σ(α, β) (σ(α′, β′)).

For details, see [3].

Lemma A.9. [Groupoid-action Lemma] SupposeΞ, α, β ` σ(α, β) is a type in PILLY in whichα occurs
only negatively andβ only possitively. Suppose further thatf : τ (τ ′ is an isomorphism, i.e., there exists
a termf−1 which is an inverse tof up to internal equality. Then

Ξ | − | − ` σ[eqΞ, 〈f〉, 〈f〉] ≡ 〈σ(f−1, f)〉

Proof. Supposef : τ (τ ′. Consider first the two commutative diagrams

τ
idτ ◦

f

◦

τ

idτ

◦
τ ′

f−1

◦τ

τ
idτ ◦

idτ

◦

τ

f

◦
τ

f
◦τ ′.

These diagrams imply that
(idτ , f−1) : 〈f〉(eqτ ,
(idτ , f) : eqτ (〈f〉.

Instantiating the parametricity schema for the term

M :
∏
α, β, α′, β′. (α′ (α)→ (β (β′)→ (σ(α, β) (σ(α′, β′))

giving the functorial interpretation of the typeσ in the case

α′ = 〈f〉, α = eqτ , β = eqτ , β′ = 〈f〉

we get
σ(idτ , idτ)(σ[eqτ ,eqτ] (σ[〈f〉, 〈f〉])σ(f−1, f).

which using identity extension and functoriality ofσ gives

(idσ(τ,τ), σ(f−1, f)) : eqσ(τ,τ) (σ[〈f〉, 〈f〉].

Since∀x : σ(τ, τ). x(eqσ(τ,τ))x we have∀x : σ(τ, τ). xσ[〈f〉, 〈f〉]σ(f−1, f)x. Sox〈σ(f−1, f)〉y implies
xσ[〈f〉, 〈f〉]y, proving the first direction of the lemma.

To show the other direction, we proceed as before. Consider first the two commutative diagrams

τ ′
f−1

◦

idτ ′

◦

τ

f

◦
τ ′

idτ ′ ◦τ ′

τ
f

◦

f

◦

τ

idτ ′

◦
τ ′

idτ ′ ◦τ ′.

Thus,
(f−1, idτ ′) : eqτ ′ (〈f〉,
(f, idτ ′) : 〈f〉(eqτ ′ .

So by parametricity
(σ(f−1, f), idτ ′) : σ[〈f〉, 〈f〉] (eqτ ′ .

Suppose nowxσ[〈f〉, 〈f〉]y. Thenσ(f−1, f)(x) = y, i.e.,x〈σ(f−1, f)〉y as desired.

236

Lemma A.10. SupposeΞ, α, β ` σ(Ξ, α, β) is a type in PILLY \ ⊗ in whichα occurs only negatively and
β only positively. Suppose further thatΞ ` τ : Type is any type. Then

fσ[τ/α,τ/β] = σ(gτ , fτ)

Proof. The lemma is proved simultaneously with the statement

gσ[τ/α,τ/β] = σ(fτ , gτ)

by structural induction onσ. The base cases ofσ being a variable are trivial. The caseσ =!σ′ is clear from
the fact thatf!σ =!fσ and likewise forg. The case ofσ =

∏
α′. σ′ is proved likewise.

The case ofσ = σ′ (σ′′ is the most interesting. The calculation is

f(σ′(σ′′)[τ/α,τ/β] = λ◦h : (σ′ (σ′′)[τ/α, τ/β]. fσ′′[τ/α,τ/β] ◦ h ◦ gσ′[τ/α,τ/β]

which by induction is equal to

λ◦h : (σ′ (σ′′)[τ/α, τ/β]. σ′′(gτ , fτ) ◦ h ◦ σ′(fτ , gτ) = (σ′ (σ′′)(gτ , fτ).

Lemma A.11. SupposeΞ, α ` σ is a type in PILLY \⊗ andΞ ` τ is any type. Then the relationσ[eqΞ, 〈fτ 〉]
is equivalent to the graph offσ[τ/α]. In particular, for any typeΞ, α ` σ, the relationψ(σ)[eqΞ, 〈fτ 〉] is
equivalent to the graph offψ(σ)[τ/α]

Proof. We first writeσ asΞ, α, β ` σ(Ξ, α, β) where we have split the appearences ofα in σ into negative
(α’s) and positive (β’s). By Lemma A.9 we know that

σ[eqΞ, 〈fτ 〉, 〈fτ 〉] ≡ 〈σ(idΞ, gτ , fτ)〉

which by Lemma A.10 is equivalent to the graph offσ[τ/α,τ/β] as desired.

Lemma A.12. SupposeΞ, α ` σ : Type andΞ ` τ : Type. Thenfσ[τ/α] = fψ(σ)[τ/α] ◦ fσ[τ/α].

Proof. We prove this by induction on the structure ofσ. The base cases ofσ = α andσ = β for β ∈ Ξ are
trivial. The case ofσ = I is also trivial sincefψ(I) is the identity by Lemma A.8.

The induction step forσ =!σ′ is simply using the fact thatf!σ′ =!fσ′ andψ(!σ′) =!ψ(σ′). We get

f!σ′[τ/α] =!fσ′[τ/α] =!fψ(σ′)[τ/α]◦!fσ′ [τ/α] = fψ(!σ′)[τ/α] ◦ f!σ′ [τ/α]

The induction step forσ =
∏
β. σ′ is proved likewise.

Supposeσ = σ′ (σ′′. Notice first, that sincef andg are each others inverses, the induction hypothesis
implies that

gσ′[τ/α] = gσ′ [τ/α] ◦ gψ(σ′)[τ/α]

and so ifx : σ′[τ/α] (σ′′[τ/α],

f(σ′(σ′′)[τ/α](x) = fσ′′[τ/α] ◦ x ◦ gσ′[τ/α]

which by the induction hypothesis equals

fψ(σ′′)[τ/α] ◦ fσ′′ [τ/α] ◦ x ◦ gσ′ [τ/α] ◦ gψ(σ′)[τ/α] = fψ(σ′)[τ/α](ψ(σ′′)[τ/α] ◦ fσ′(σ′′ [τ/α](x)

237

and we conclude that
f(ψ(σ′)(ψ(σ′′))[τ/α] ◦ fσ′(σ′′ [τ/α] = f(σ′(σ′′)[τ/α].

Finally we consider the case ofσ = σ′ ⊗ σ′′. Denoting as usual, for any pair of typesω, ω′ by iω,ω′ the
isomorphism

ω ⊗ ω′ ((
∏
β. (ω (ω′ (β) (β)

we have, using Lemma A.4

fσ⊗σ′[τ/α] = (
∏
β. (fσ[τ/α] (fσ′[τ/α] (β) (β) ◦ iσ[τ/α],σ′[τ/α]

which by induction is equal to

(
∏
β. (fψ(σ)[τ/α] (fψ(σ′)[τ/α] (β) (β)◦

(
∏
β. (fσ[τ/α] (fσ′ [τ/α] (β) (β) ◦ iσ[τ/α],σ′[τ/α] =

(
∏
β. (fψ(σ)[τ/α] (fψ(σ′)[τ/α] (β) (β) ◦ fσ⊗σ′ [τ/α] =

fψ(σ⊗σ′)[τ/α] ◦ fσ⊗σ′ [τ/α]

as desired.

The next lemma is basically the induction step for type application for the proof of Proposition A.2. Notice
that for this proof parametricity is crucial.

Lemma A.13. SupposeΞ, α ` σ : Type andΞ ` τ : Type. Then∏
α. σ

appτ ◦

f∏
α.σ

◦

σ[τ/α]

fσ[τ/α]

◦∏
α. ψ(σ)

appψ(τ)
◦ψ(σ[τ/α])

commutes, where appτ is the mapλ◦x :
∏
α. σ. x τ and appψ[τ/α] defined likewise.

Proof. Since
appτ ◦ f∏

α.σ(x) = appτ (Λα. fσ(x α)) = fσ[τ/α](x τ)

we haveappτ ◦ f∏
α.σ = fσ[τ/α] ◦ appτ . Parametricity tells us that for allx :

∏
α. ψ(σ),

ψ(σ)[eqΞ, 〈fτ 〉](appτ (x),appψ(τ)(x))

By Lemma A.11 we thus conclude

fψ(σ)[τ/α] ◦ appτ = appψ(τ)

Now, using Lemma A.12 we get

appψ(τ) ◦ f∏
α.σ = fψ(σ)[τ/α] ◦ appτ ◦ f∏

α.σ = fψ(σ)[τ/α] ◦ fσ[τ/α] ◦ appτ = fσ[τ/α] ◦ appτ

as desired.

238

Proof of Proposition A.2.The proof is by induction on the termt, but for that to go through, we need
a stronger induction hypothesis, considering open terms as well. The induction hypothesis will be the
following. Suppose we have an open term

Ξ | ~x : ~σ, ~y : ~σ′ ` t(~x, ~y) : τ

then
Ξ | ~x : ~σ, ~y : ~σ′ ` fτ (t(~x, ~y)) =ψ(τ) ψ(t)(f~σ(~x), f~σ′(~y)).

wheref~σ(~x) means the vectorfσ1(x1), . . . , fσn(xn) and so on.

We proceed to prove this by induction ont.

Case t a variable:

The base cases oft a variable are trivial sinceψ acts on variables as the identity.

Case t = ?:

fI(?) = Λα. λ◦x : α. x = ψ(?).

Case t = Y :

Since Lemma A.8 tells us thatf∏
α.α(α is the identity andψ(Y) = Y , both sides of the equation are

equal toY .

Case t = λ◦yn+1 : σ′n+1. t
′:

We assume for notational simplicity that the lambda-abstraction is over the last variable oft′ such that
we writet′(~x, ~y, yn+1). By definition

ψ(λ◦yn+1 : σ′n+1. t
′)(f~σ(~x), f~σ′(~y)) = λ◦yn+1 : ψ(σ′n+1). ψ(t′)(f~σ(~x), f~σ′(~y), yn+1)

and
fσ′n+1(τ (λ

◦yn+1 : σ′n+1. t
′)(~x, ~y) = λ◦yn+1 : ψ(σ′n+1). fτ (t

′(~x, ~y, gσ′n+1
(yn+1)))

By induction hypothesis, we know that for anyyn+1 : σ′n+1 we have

fτ (t′(~x, ~y, yn+1)) = ψ(t′)(f~σ(~x), f~σ′(~y), fσ′n+1
(yn+1))

In particular this holds if we setyn+1 to begσ′n+1
(yn+1) and sinceg andf are inverses, we get the

desired equality.

Case t = t′ t′′:

We have
ψ(t′ t′′)(f~σ(~x), f~σ′(~y)) = ψ(t′)(f~σ(~x), f~σ′(~y)) ψ(t′′)(f~σ(~x), f~σ′(~y))

which by induction hypothesis is equal to

fτ ′(τ (t′(~x, ~y)) fτ ′(t′′(~x, ~y)) = fτ ◦ t′(~x, ~y) ◦ gτ ′(fτ ′(t′′(~x, ~y))) = fτ (t′(~x, ~y)(t′′(~x, ~y)))

proving the induction case.

239

Case t = t′ ⊗ t′′:
Supposet′ : τ ′, t′′ : τ ′′. By definition, we have

ψ(t′ ⊗ t′′)(f~σ(~x), f~σ′(~y)) =
Λα. λ◦h : ψ(τ ′) (ψ(τ ′′) (α. h (ψ(t′)(f~σ(~x), f~σ′(~y))) (ψ(t′′)(f~σ(~x), f~σ′(~y)))

by induction hypothesis this equals

Λα. λ◦h : ψ(τ ′) (ψ(τ ′′) (α. h fτ ′(t′(~x, ~y)) fτ ′′(t′′(~x, ~y))

which is equal to
fτ ′⊗τ ′′(t′ ⊗ t′′(~x, ~y))

Case t = Λα. t′:

ψ(Λα. t′(~x, ~y)) = Λα. ψ(t′(~x, ~y)).

By induction this equals

Λα. fσ(t′(~f~σ(~x), ~f~σ′(~y))) = f∏
α.σ(Λα. t

′(~f~σ(~x), ~f~σ′(~y))).

Case t = t′(ω):

Supposet′ :
∏
α. τ . Now,

ψ(t′ ω)(f~σ(~x), f~σ′(~y)) = ψ(t′)(f~σ(~x), f~σ′(~y)) ψ(ω)

By induction hypothesis this is equal to

f∏
α.τ (t

′(~x, ~y)) ψ(ω)

which by Lemma A.13 is equal to
fτ [ω/α](t

′(~x, ~y) ω)

which proves the induction step.

Case t =!t′:

f!τ ′(!t′(~x, ~y)) =!(fτ ′(t′(~x, ~y)))

and since
ψ(!t′(f~σ(~x), f~σ′(~y))) =!ψ(t′(f~σ(~x), f~σ′(~y)))

the case follows from the induction hypothesis.

Case t = let z ⊗ z′ bet′ in t′′:

Suppose in this case thatt′ : τ ′ ⊗ τ ′′ andt′′ : τ . Now,

ψ(let z ⊗ z′ bet′ in t′′)(f~σ(~x), f~σ′(~y)) =
ψ(t′)(f~σ(~x), f~σ′(~y)) ψ(τ) (λ◦x : ψ(τ ′). λ◦y : ψ(τ ′′). ψ(t′′)(f~σ(~x), f~σ′(~y), x, y))

(9)

240

Now, by induction

ψ(t′′)(f~σ(~x), f~σ′(~y), x, y) = ψ(t′′)(f~σ(~x), f~σ′(~y), fτ ′gτ ′(x), fτ ′′gτ ′′(y)) =
fτ (t′′(~x, ~y, gτ ′(x), gτ ′′(y)))

And so by using the induction hypothesis ont′ (9) reduces to

fτ ′⊗τ ′′(t′(~x, ~y)) ψ(τ) (λ◦x : ψ(τ ′). λ◦y : ψ(τ ′′). fτ (t′′(~x, ~y, gτ ′(x), gτ ′′(y))) =
let z ⊗ z′ bet′(~x, ~y) in fτ (t′′(~x, ~y, gτ ′fτ ′(z), gτ ′′fτ ′′(z′))) = fτ (t(~x, ~y)).

Case t = let !y bet′ in t′′:

In this case, supposet′ has type!τ ′ andt′′ : τ .

ψ(let !x bet′ in t′′)(f~σ(~x), f~σ′(~y)) = let !x beψ(t′)(f~σ(~x), f~σ′(~y)) in ψ(t′′)(f~σ(~x), f~σ′(~y), x).

Using the induction hypothesis, this is equal to

let !x bef!τ ′(t′(~x, ~y)) in fτ (t′′(~x, ~y, gτ ′(x))).

Sincef!τ ′ =!fτ ′ , this is equal to

let !x bet′(~x, ~y) in fτ (t′′(~x, ~y, gτ ′(fτ ′(x)))) = fτ (t(~x, ~y)).

Case t = let ? bet′ in t′′:

In this caset′′ has typeτ . Now,

ψ(let ? bet′ in t′′)(f~σ(~x), f~σ′(~y)) = (ψ(t′)(f~σ(~x), f~σ′(~y))) ψ(τ) (ψ(t′′)(f~σ(~x), f~σ′(~y)))

Using the induction hypothesis, this is equal to

fI(t′(~x, ~y)) ψ(τ) fτ (t′′(~x, ~y)) = let ? bet′(~x, ~y) in fτ (t′′(~x, ~y)) = fτ (t(~x, ~y))

Finally, Proposition A.1 is the collected statement of Proposition A.2 and Lemma A.7.

241

References

[1] G. M. Bierman, A. M. Pitts, and C. V. Russo. Operational properties of Lily, a polymorphic lin-
ear lambda calculus with recursion. InFourth International Workshop on Higher Order Operational
Techniques in Semantics, Montréal, volume 41 ofElectronic Notes in Theoretical Computer Science.
Elsevier, September 2000. 1, 7, 7.1, 8

[2] L. Birkedal and R. E. Møgelberg. Categorical models of Abadi-Plotkin’s logic for parametricity.Math-
ematical Structures in Computer Science. To appear. 5

[3] L. Birkedal, R. E. Møgelberg, and R. L. Petersen. Parametric domain-theoretic models of linear Abadi
& Plotkin logic. Technical Report TR-2005-57, IT University of Copenhagen, February 2005. (docu-
ment), 1, 6, 6, 7.2, 7.3, 7.3, A, A

[4] L. Birkedal, R. E. Møgelberg, and R. L. Petersen. Parametric domain-theoretic models of polymorphic
intuitionistic / linear lambda calculus. Submitted, 2005. (document), 1

[5] André Joyal and Ieke Moerdijk.Algebraic Set Theory. Number 220 in London Mathematical Society
Lecture Notes in Mathematics. Cambridge University Press, 1995. 4

[6] J.R. Longley and A.K. Simpson. A uniform approach to domain theory in realizability models.Math.
Struct. in Comp. Science, 11, 1996. 2, 7

[7] R. E. Møgelberg. Parametric completion for models of polymorphic intuitionistic / linear lambda
calculus. Technical Report TR-2005-60, IT University of Copenhagen, February 2005. 1, 8

[8] R. E. Møgelberg, L. Birkedal, and R. L. Petersen. Categorical models of PILL. Technical Report
TR-2005-58, IT University of Copenhagen, February 2005. 3, 3, 3, 3, 4, 5, 5, 8

[9] G. D. Plotkin. Type theory and recursion (extended abstract). InProceedings, Eighth Annual IEEE
Symposium on Logic in Computer Science, page 374, Montreal, Canada, 19–23 June 1993. IEEE
Computer Society Press. 1

[10] G.D. Plotkin. Second order type theory and recursion. Notes for a talk at the Scott Fest, February
1993. 1

[11] Gordon Plotkin and Martı́n Abadi. A logic for parametric polymorphism. InTyped lambda calculi and
applications (Utrecht, 1993), volume 664 ofLecture Notes in Comput. Sci., pages 361–375. Springer,
Berlin, 1993. 1

[12] E.P. Robinson and G. Rosolini. Reflexive graphs and parametric polymorphism. In S. Abramsky,
editor,Proc. 9th Symposium in Logic in Computer Science, pages 364–371, Paris, 1994. I.E.E.E. Com-
puter Society. 1, 5

[13] G. Rosolini.Continuity and Effectiveness in Topoi. PhD thesis, University of Oxford, 1986. 2.1

[14] G. Rosolini and A. Simpson. Using synthetic domain theory to prove operational properties of a
polymorphic programming language based on strictness. Manuscript, 2004. (document), 1, 2, 2.2,
2.3, 2.1, 2.13, 3, 3.5, 4, 5, 7, 7.1, 7.1, 7.1, 7.1, 7.7, 7.8, 7.1, 7.9, 7.10, 7.11, 8

[15] Andrej Ščedrov. Intuitionistic set theory. InHarvey Friedman’s research on the foundations of math-
ematics, volume 117 ofStud. Logic Found. Math., pages 257–284. North-Holland, Amsterdam, 1985.
2

242

[16] A. Simpson. Computational adequacy in an elementary topos. InCSL: 12th Workshop on Computer
Science Logic. LNCS, Springer-Verlag, 1998. 7, 7.11

[17] A. Simpson. Elementary axioms for categories of classes. In14th Symposium on Logic in Computer
Science (LICS’99), pages 77–87, Washington - Brussels - Tokyo, July 1999. IEEE. 4

[18] A. Simpson. Computational adequacy for recursive types in models of intuitionistic set theory.Annals
of Pure and Applied Logic, 130, 2004. 4, 7, 7.11

243

Parametric Completion for Models of Polymorphic Linear /
Intuitionistic Lambda Calculus

Rasmus Ejlers Møgelberg

Abstract

We show how the externalization of an internal PILLY -model in a quasi-topos gives rise to a canon-
ical pre-LAPL-structure in which the logic is the internal logic of the quasi-topos. This corresponds to
how one intuitively would think of parametricity for such internal models.

We describe a parametric completion process based on [10, 1] which takes an internal model of
PILLY in a quasi-topos and builds a new internal PILLY -model in a presheaf topos over the original
quasi-topos. The externalization of this PILLY -model extends to a full parametric LAPL-structure.
However, this LAPL-structure is different from the canonical one, since the logic comes from the original
quasi-topos.

The concrete LAPL-structure of [2] is basically an example of this parametric completion process,
although it is presented a bit different inloc. cit.. The PILLY -model constructed using synthetic domain
theory in [11, 8, 9] is an example of an application of the parametric completion process, but the LAPL-
structure provided for it in [8, 9] is different from the one presented here.

Contents

1 Introduction 246

2 Internal structures in quasi-toposes 246

2.1 Internal Fibrations . 247

2.2 Internal linear categories . 251

3 Internal PILL Y -models 254

4 Parametric completion 256

5 Examples 269

5.1 The LAPL-structure from synthetic domain theory . 269

6 Conclusion 270

245

1 Introduction

In this paper we study the parametric parametric completion process of [10, 1] in the setting of PILLY -
models. We assume that the reader is familiar with the concept of LAPL-structure [2, 3], and we show that
the parametric completion process produces parametric LAPL-structures, thus providing a rich family of
these. In earlier papers we have constructed a domain theoretic parametric LAPL-structure [2, 3] and shown
how to construct parametric LAPL-structures using synthetic domain theory [8]. These LAPL-structures
seem to be examples of a parametric completion process, and so the motivation for this work was to describe
this process in general.

An internal PILLY -model in a finitely complete category is an internal linear category with products which
is complete enough to model polymorphism, such that the co-Kleisli category is an internalsub-category of
the ambient category. Of course the externalization of the adjunction between an internal PILLY -model and
the co-Kleisli category is a PILLY -model in the sense of [7]. If the ambient category is a quasi-topos, the
internal logic is sufficiently rich for reasoning about parametricity, and thus we can construct a canonical
pre-LAPL-structure around the externalization of the internal PILLY -model.

A notion of admissible relations for an internal PILLY -model is an internal logic fibration giving a sublogic
of the regular subobject fibration, such that relations in the logic give a notion of admissible relations in the
sense of [2]. The parametric completion process takes an internal PILLY -model with a notion of admissible
relations in a quasi-topos and produces a PILLY -model in the category of reflexive graphs over the original
quasi-topos. Basically, the types in the externalization of this PILLY -model are types in the original PILLY -
model with a relational interpretation based on the given notion of admissible relations satisfying identity
extension, and so the externalization extends to a parametric LAPL-structure. The LAPL-structure, however,
is not the canonical LAPL-structure of the completed PILLY -model inside the quasitopos of reflexive graphs
as described above. Instead it is build from the logic of the original quasi-topos. This is due to the relational
interpretations of types being in terms of the logic of the original topos.

The concrete LAPL-structure considered in [2] is a result of the parametric completion process applied
to admissible pers over a reflexive domain seen as an internal subcategory of the category of assemblies,
although the presentation in [2] is slightly different. This example motivates the generalization to quasi-
toposes instead of toposes. We could have also considered admissible pers as an internal category in the
effective topos, but that would have given us a different logic. The PILLY -model constructed using synthetic
domain theory in [11, 8, 9] is an example of an application of the parametric completion process, but the
LAPL-structure provided for it in [8, 9] is different from the one presented here.

The paper is organized as follows: In Section 2 we review some internal category theory needed for the
rest of the paper. Section 3 defines internal PILLY -models in quasi-toposes and the canonical pre-LAPL-
structure associated to one such. We describe the parametric completion process in Section 4 and Section 5
discusses the LAPL-structures of [2, 8] as examples of the parametric completion process.

2 Internal structures in quasi-toposes

We start by recalling a bit of internal category theory. In particular we will discuss internal fibrations and
internal linear categories. For a general introduction to internal category theory (in particular the definition
of internal categories and externalization of internal categories), however, the reader is referred to text books
on the subject such as [4].

246

2.1 Internal Fibrations

We define an internal fibration in a quasi-topos to be an internal functorE → B satisfying the proposition
stating that all maps inB have cartesian liftings in the internal language of the quasi-topos. A cleavage for
an internal fibrationp : E → B is a map from the pullback

E0 ×B0 B1 //

��

B1

dom
��

E0
p // B0

into B1 such that any element(X, f : Y → pX) ∈ E0 ×B0 B1 is mapped to a cartesian lift̄f of f , i.e., the
proposition

∀Y : E0.∀f : B1. codomf = pY ⊃ ∀g : E1.∀u : B1. f ◦ u = p(g)∧
codom(g) = Y ⊃ ∃!v : E1. p(v) = u ∧ f̄ ◦ v = g

(1)

holds in the internal logic. We will continue to write the cleavage function as(X, f) 7→ f̄ . We say thatp is
cloven if there exists (externally) a cleavage.

Lemma 2.1. An internal functorp : E → B is a cloven internal fibration in a quasi-topos iff

Fam(p) : Fam(E) → Fam(B)

is a fibration.

For the proof we need the following lemma

Lemma 2.2. SupposeD → C, B → C are fibrations, and

D

��?
??

??
??

p // B

����
��

��
�

C

is a fibred map. If each restriction to a fibre:

pc : Dc → Bc

for c ∈ C0 is a fibration and reindexing along maps inC preserve cartesian lifts, thenp is a fibration.

Proof. This is an easy exercise.

Proof of Lemma 2.1.Suppose firstp : E → B is an internal fibration with cleavage denotedf 7→ f̄ . Using
Lemma 2.2 it suffices to show that each fibre ofFam(p) is a cloven fibration with cleavage preserved under
reindexing.

SupposeX : Ξ → E0 is an object ofFam(E) andf : Ξ → B1 is a vertical map inFam(B) with codomain
p ◦X. By composing with the cleavage forp we get a lift off :

f̄ : Ξ → E1.

247

Suppose now that we are giveng : Ξ → E1 such that codom◦ g = X andu : Ξ → B1 such that expressed
internally

f ◦ u = p(g).

By assumption the statement (1) holds in the internal logic ofE. Thus by description in a quasi-topos there
exists a map from

K = {(X, f, g, u) ∈ E0 ×B1 ×E1 ×B1 | codomf = pX ∧ f ◦ u = p(g) ∧ codom(g) = X}

to E1 providing the uniquev of (1). We may now compose the pairing of the given(X, f, g, u) above with
this map, to obtain the uniquev needed. This proves that each fibre of the externalization is a fibration,
and clearly the cleavage is preserved by reindexing because it is given by composing with the cleavage map
f 7→ f̄ .

For the other direction, consider the projectionsX : E0 ×B0 B1 → E0 and

f : E0 ×B0 B1 → B1.

Since these present respectively an object ofFam(E) and a morphism ofFam(B) we can consider the
cartesian lift of(X, f), which is a morphism̄f satisfying

B1

E0 ×B0 B1

f
99ssssssssss f̄ //

X %%KKKKKKKKKK
E1

p

OO

codom
��

E0

Consider now the mapg : K → E1 given by the third projection considered as a map inFam(E) from
dom◦ g to X over the projectionK → E0 ×B0 B1 in E. Consider also the mapu : K → B1 given by
the fourth projection considered as a map inFam(B) with codomain dom◦ f over the projectionK →
E0 ×B0 B1 in E. Now,f ◦ u = Fam(p)(g) in Fam(B) by definition ofK and so there exists a unique map
in Fam(B) over the projectionK → E0 ×B0 B1 in E given byv : K → E1 such thatFam(p)(v) = u and
f̄ ◦ v = g. This mapv proves the proposition

∀X : E0.∀f : B1. codomf = pX ⊃ ∀g : E1.∀u : B1. f ◦ u = p(g)∧
codom(g) = X ⊃ ∃v : E1. p(v) = u ∧ f̄ ◦ v = g

in the internal logic ofE.

Finally, for uniqueness ofv, we setg to be the third projection from

K ′ = {(X, f, g, u, v, v′) ∈ E0 ×B1 ×E1 ×B1 ×E1 ×E1 |
codomf = pX ∧ f ◦ u = p(g) ∧ p(v) = p(v′) = u ∧ f̄ ◦ v = f̄ ◦ v = g}

considered as a map inFam(E) into X over the projectionK ′ → E0 ×B0 B1 in E. We defineu to be
the fourth projection out ofK ′ considered as a map inFam(B) into dom◦ f over the projectionK ′ →
E0 ×B0 B1. Definev, v′ to be the obvious projections out ofK ′ considered as maps ofFam(E) into
dom◦ f̄ overK ′ → E0 ×B0 B1. Since we still havef ◦ u = Fam(p)(g) and f̄ ◦ v = g = f̄ ◦ v′, by
Fam(E) → Fam(B) being a fibration, we conclude that the projections onto thev andv′ coordinates are
equal, which proves the uniqueness ofv in (1) in the internal logic ofE.

248

Lemma 2.3. For p : Q → E an internal cloven fibration andf : F → E a functor in a quasi-toposE, the
pullback ofp alongf is a cloven internal fibration.

For the next two examples we assume thatC is an internalsub-category ofE, that is, there exists a faithful
fibred map

Fam(C)
φ //

$$IIIIIIIIII E→

codom
��

E
with codom denoting the codomain fibration. We also assume that this map preserves monos.

Below, we will need to do a few calculations in the codomain fibration, and so we establish some notation
first. An objectE → X of E→ will be denoted

∐
x∈X Ex → X. Recall that a quasi-topos is locally

cartesian closed, and so the fibrewise products and exponents of
∐

x∈X Ex → X and
∐

x∈X E′
x → X are

denoted ∐
x∈X E′

x × Ex → X,
∐

x∈X E′Ex
x → X

respectively. Iff : Y → X is a map inE we may reindex
∐

x∈X Ex → X alongf , and we write the
resulting object as

∐
y∈Y Ef(y) → Y .

SinceidC0 is an object inFam(C) overC0, φ(idC0) is a map inE with codomainC0. We will denote the
codomain ofφ(idC0) by

∐
c∈C0

c. For any objectf : X → C0 in Fam(C) we must have

φ(f) = φ(f∗(idC0)) = f∗φ(idC0) =
∐

x∈X f(x).

We can reindexing
∐

c∈C0
c along either of the two projectionsπ, π′ : C2

0 → C0 and take the fibrewise
exponent yielding ∐

x∈C2
0
π(x)π′(x) → C2

0

which we usually simply denote ∐
c,c′ ∈C0

cc
′ → C2

0.

Now, for any objectX ∈ E, vertical maps inFam(C) from f : X → C0 to g : X → C0 are mapshmaking
the diagram

X
h //

〈f,g〉 ��@
@@

@@
@@

@ C1

〈dom,codom〉~~}}
}}

}}
}}

C2
0

commute. The functorφ takes these maps to vertical maps inE→ from φ(f) to φ(g), which using thatidX

is the terminal object ofE→X correspond to maps

X //

idX ��>
>>

>>
>>

>
∐

x∈X g(x)f(x)

xxrrrrrrrrrrr

X

This correspondence is natural inX and therefore there must be a map

C1
//

〈dom,codom〉 ��@
@@

@@
@@

@

∐
c,c′∈C0

c′c

zztttttttttt

C2
0

(2)

249

inducing the functorial part ofφ. We will often denote the objectC1 → C2
0 by

∐
c′,c∈C0

C(c′, c).

Recall also that the pullback of the regular subobject fibrationRegSubE → E along dom: E→ → E gives
an indexed higher order logic fibration [1, Lemma A.8]

Q // E→ codom // E .

The indexed generic object for this indexed higher order logic fibration is the family of projections(Σ×Ξ →
Ξ)Ξ∈E, whereΣ is the regular subobject classifier ofE. Using the notation introduced above, we will denote
the subobject classifier ∐

x∈Ξ Σ → Ξ.

Example 2.4. In this example we construct an internal fibrationRegSubE → C such that we have a
pullback

Fam(RegSubE(C))

��

// Q

��
Fam(C)

φ // E→.

(3)

Thus we can think ofRegSubE(C) → C as the internalization of the restriction ofRegSubE → E to C.

We define the object of objectsRegSubE(C)0 to be
∐

c∈C0
Σc. Using the ordering onΣ and the inclusion

(2), we can form the fibred subobject∐
c,c′∈C0

{(f, g, h, x) : Σc × Σc′ ×C(c, c′)× c | f(x) ≤ g(h(x))}

of ∐
c,c′∈C0

Σc × Σc′ ×C(c, c′)× c

in the fibre overC2
0. Using the fibred first-order logic onE→ → E, we can form the subobject∐

c,c′∈C0
{(f, g, h) : Σc × Σc′ ×C(c, c′) | ∀x : c. f(x) ≤ g(h(x))} (4)

of ∐
c,c′∈C0

Σc × Σc′ ×C(c, c′).

We defineRegSubE(C)1 to be (4) with domain and codomain projections mapping(f, g, h) to f and g
respectively. Composition is given by composing theh-component, and the mapf : Σc 7→ (f, f, id c) maps
an object ofRegSubE(C)0 to the identity onf .

Finally, the internal fibrationRegSubE(C) → C maps(f, g, h) to h. The cleavage maps(f, a) in
RegSubE(C)0 ×C0 C1 to (f ◦ a, a, f).

For the pullback diagram (3), notice that an object ofFam(RegSubE(C)) overf : X → C0 in Fam(C)
is a mapg making the diagram ∐

c∈C0
Σc

��
X

f //

g
::vvvvvvvvvv
C0

commute. Such maps correspond to diagrams

X

id ��>
>>

>>
>>

>
//∐

x∈X Σf(x)

yytttttttttt

X

250

which correspond to diagrams ∐
x∈X f(x) //

%%JJJJJJJJJJ

∐
x∈X Σ

{{wwwwwwwww

X,

i.e., subobjects of
∐

x∈X f(x) → X in Q → E→.

Example 2.5. There are a few canonical subfibrations ofRegSubE → C. For example, the subobjects in
RegSubE are represented by regular monos inE, but one could also consider regular monos inC. In this
example, we consider the monos fromC, that are regular inE, but may not be so insideC (the equalizer
diagram may live inE, but not in the subcategoryC). We call this fibrationSub(C) ∩RegSubE.

First define the object of monos inC0 as

MonosC =
∐

c,c′∈C0
{f : C(c, c′) | ∀x, y : c. f(x) = f(y) ⊃ x = y}

We assume thatC is closed under pullbacks of monos, i.e., for every monog and maph both inC with the
same codomain there exists a monog′ in C such thatg′ is the pullback ofg alongh as seen fromE. This
can be expressed in the internal logic ofE, but notice that a diagram inC which is a pullback inE need not
necessarily be a pullback inC, sinceC is not required to be afull subcategory ofE.

The object of objects(Sub(C) ∩RegSubE)0 is∐
c∈C0

{f : Σc | ∃c′ : C0.∃g : MonosC(c′, c).∀x : c. f(x) ⊃ ∃y : c′. g(y) = x}

and we consider this as a full subcategory ofRegSubE. The assumption of closure under pullbacks of
monos is what makes this a subfibration ofRegSubE → E.

Remark 2.6. Example 2.5 would have been simpler, if the internal categoryC had been afull internal
subcategory. In the cases we consider, however, this will very often not be the case, since we will consider
internal categories with comonads, such that the co-Kleisli category is an internal subcategory of the ambi-
ent category. In these casesC being a subcategory of the co-Kleisli category is a subcategory of the ambient
category, but it is only full if the comonad is trivial.

2.2 Internal linear categories

An internal linear category is an internal category with internal functors⊗,(, ! and the usual internal natural
transformations such that the usual equations hold in the internal language (see [7, Definition 1.10]). Since
the concept of internal categories and internal linear categories can be expressed in any finitely complete
category, the standard assumption of this section will be that the ambient categoryE is simply a finitely
complete category (and not necessarily a quasi-topos).

Lemma 2.7. SupposeC is an internal category in a finitely complete categoryE. There is a bijective
correspondence between internal linear category structures onC and fibred linear structures onFam(C) →
E.

Proof. This is a consequence of the externalization functor being a locally full and faithful 2-functor pre-
serving products [4, Proposition 7.3.8].

251

For any finitely complete categoryE we defineCat(E) to be the category of internal categories and internal
functors inE. Likewise, we defineLinCat(E) to be the category of internal linear categories and internal
functors preserving the linear structure on the nose inE. We write internal categories as

C1
//
// C0

oo

whereC1 is the object of morphisms andC0 is the object of objects. Strictly speaking, the composition
map should be mentioned in the description of the internal category, but we will often leave it implicit or
denote it by comp.

For categoriesE,C we denote byEC the category of functors and natural transformations. The rest of this
section is devoted to proving the following (well-known) lemma:

Lemma 2.8. SupposeE is a finitely complete category andC is any category. Then

Cat(EC) ∼= Cat(E)C.

In one direction, the isomorphism associates to an internal categoryF1
//
// F0

oo in EC the functor that to

eachc ∈ C0 associates the internal categoryF1(c)
//
// F0(c)oo in E. Likewise there is an isomorphism

LinCat(EC) ∼= LinCat(E)C.

ForCat(EC) to even make sense, we need the following lemma.

Lemma 2.9. If E is a finitely complete category andC is any category, the categoryEC is finitely complete,
and limits are computed pointwise.

Proof. This is well-known, see for example [6, p. 22] or [5, p. 116].

Lemma 2.10. SupposeE,F are finitely complete categories andF : E → F is a functor preserving finite
limits. ThenF induces a functorCat(F) : Cat(E) → Cat(F).

If G : E → F is another finite limit preserving functor then any natural transformationµ : F ⇒ G induces
a natural transformationCat(µ) : Cat(F) ⇒ Cat(G).

Moreover,F induces a functor

LinCat(F) : LinCat(E) → LinCat(F)

andµ induces a natural transformation.

LinCat(F) ⇒ LinCat(G)

Proof. The functorCat(F) maps an internal category

C1
//
// C0

oo to F (C1)
//
// F (C0)oo .

For this to be an internal category inCat(F) we also need a composition map. SinceF preserves finite
limits, we have a pullback

F (C1 ×C0 C1) //

��

F (C1)

F (dom)

��
F (C1)

F (codom) // F (C0).

252

Thus we can define the composition map by applyingF to the composition map ofC1
//
// C0

oo . Clearly
we can also applyF to internal functors ofE (or internal natural transformations) and obtain internal functors
(or internal natural transformations) inF.

The natural transformationCat(µ) has as component atC1
//
// C0

oo the pair(µC0 , µC1), which defines
an internal functor by naturality ofµ. Naturality ofµ also implies naturality ofCat(µ).

We defineLinCat(F) asCat(F) by applyingF to all structure of the internal linear category. Again,
it is crucial thatF preserves finite limits, since for exampleF of the object part of the tensor functor is a
mapF (C0 × C0) → F (C0) in F, and we need a map with domainF (C0) × F (C0). The definition of
an internal linear category requires a number of diagrams to commute (using [7, Lemma 1.11] to modify
the last condition of [7, Definition 1.10]). ApplyingF to all these commutative diagrams of course yield
commutative diagrams, and thus applyingF to all the internal linear category structure does give an internal
linear category structure.

If H is an internal functor between internal linear categories commuting with the linear structure of these,
thenF (H) also commutes with the internal linear structure which proves thatLinCat(F) does in fact
define a functor.

For natural transformationsµ, the naturality ofµ implies that it commutes with all linear category structure,
which proves thatLinCat(µ) is a natural transformation.

Proof of Lemma 2.8.For eachc ∈ C, the functor evc : EC → E given by evaluation atc preserves limits.
By Lemma 2.10 we get an induced functor

Cat(EC) → Cat(E).

Forf : c→ c′ in C, we have a natural transformation from evc to evc′ . This induces a functor

Cat(EC)× C → Cat(E).

The functorφ of the lemma is the adjoint of this map. This proves thatφ in fact is a well defined functor.

We call the inverse ofφ for ψ. To define it, notice that we have two functors

(−)0, (−)1 : Cat(E) → E

mapping an internal category to its object of objects and morphisms respectively. We have natural transfor-
mations dom, codom, id between these corresponding to domain and codomain maps and identity, and we
have a natural transformation

comp: (−)1 ×(−)0 (−)1 ⇒ (−)1

given by the composition map in internal categories. These induce functors

(−)C
0 , (−)C

1 : Cat(E)C → EC

and natural transformations domC, codomC, idC. Since

(−)C
1 ×(−)C

0
(−)C

1
∼= ((−)1 ×(−)0 (−)1)C.

we also have a natural transformation compC : (−)C
1 ×(−)C

0
(−)C

1 → (−)C
1 .

The mapψ mapsF : Cat(E)C to the diagram

(−)C
1 (F)

//
// (−)C

0 (F)oo

253

which is clearly an internal category. ForH : F ⇒ G a morphism inCat(E)C the natural transformations

(−)C
0 (H) : (−)C

0 (F) → (−)C
0 (G), (−)C

1 (H) : (−)C
1 (F) → (−)C

1 (G)

are morphisms inEC. To check that this defines an internal functor inEC we must check that it commutes
with dom, codom, id, comp, which it does, since these are natural transformations.

It is easy to see thatφ, ψ are each others inverses.

By Lemma 2.10 we can define the map

LinCat(EC) → LinCat(E)C.

as we definedφ.

Finally, to define the mapψ : LinCat(E)C → LinCat(EC), notice that as above, we can define functors

(−)0, (−)1 : LinCat(E) → E

and proceed as before. But this time we have many other natural transformations:

!0 : (−)0 ⇒ (−)0
!1 : (−)1 ⇒ (−)1

⊗0 : (−)0 × (−)0 ⇒ (−)0
. . .

ε : (−)0 ⇒ (−)1
. . .

satisfying the usual equations. If we proceed as above we can thus define the functor

ψ : LinCat(E)C → LinCat(EC)

as desired. As before, clearlyφ, ψ are each others inverses.

3 Internal PILL Y -models

Definition 3.1. Suppose we are given a quasi-toposE. An internal PILLY -modelin E is an internal linear
categoryC with products such that

1. C is complete enough to model polymorphism, i.e., for all objectsΞ in E there exists right Kan
extensions of all functorsΞ × C0 → C along the projectionΞ × C0 → Ξ. HereΞ and C0 are
considered as discrete categories.

2. The co-Kleisli category for! : C → C denotedC! is an internal subcategory ofE

3. The products ofC! coincide with the products ofE.

4. C 44 C!
uu

models the fixed point combinatorY , i.e., there exists a termY : 1 → C1 such that

C0

1

I
>>~~~~~~~~

[[
∏

α.(α→α)→α]] @
@@

@@
@@

@ Y // C1

dom

OO

codom
��

C0

254

commutes, where[[
∏
α. (α→ α) → α]] is interpreted using Item 1, and such that it holds in the

internal logic ofE that
∀c : C0.∀f : !c (c. f(!(Y c !f)) = Y c !f.

Remark 3.2. One can always constructC! as an internal category inE, but in Definition 3.1 we ask for it
to be an internalsubcategory ofE as defined in Section 2.1. Using the embedding ofC into C! we see that
C is also an internal subcategory ofE by the composite map

Fam(C) //

&&MMMMMMMMMMMM
Fam(C!) //

��

E→

zzttttttttttt

E

which also preserves fibred products.

We now describe how an internal PILLY -model gives rise to a pre-LAPL-structure in a canonical way in
which the internal logic ofE gives the logic of the pre-LAPL-structure.

The regular subobject fibrationRegSub(E) → E induces a fibrationQ → E→ given as

Q

��

// RegSub(E)

��
E→ dom // E

Proposition 3.3. Given an internal model of PILLY , the schema

Q

��
Fam(C) 11

##H
HHHHHHHH ⊥ Fam(C!)

qq //

zzvvvvvvvvv
E→

uujjjjjjjjjjjjjjjjjjjjj

E

is a pre-LAPL-structure.

Proof. By [1, Lemma A.4] we have a fibred first order logic fibration.

The only non-trivial part of the proof is the construction of the map

Fam(C)×E Fam(C) U //

''PPPPPPPPPPPPP E→

~~||
||

||
||

E.

We defineU to be
(f : Ξ → C0, g : Ξ → C0) 7→

∐
x∈Ξ(RegSubE)f(x)×g(x),

i.e., the pullback of(RegSubE)0 → C0 along the composite

Ξ
〈f,g〉 // C2

0
× // C0.

255

Maps in the fibre from any objectX → Ξ to U(f, g) correspond to maps from the fibrewise product of
X → Ξ andφ(f × g : Ξ → C0) to the subobject classifier

∐
x∈Ξ Σ of Q → E→. Clearly the functorU

satisfies the requirements for LAPL-structures [2, Definition 3.1].

Definition 3.4. A subfibration
Q

p
&&LLLLLLLLLLLL

� � // RegSubE(C)

��
C.

gives an internal notion of admissible relations ifQ is closed under the rules for admissible relations as
expressed in LAPL (Figure 3 and Axiom 2.18 of [7]).

An internal notion of admissible relations gives rise to a subfunctor ofU by:

V (f : Ξ → C0, g : Ξ → C0) =
∐

x∈Ξ Qf(x)×g(x)

which gives a notion of admissible relation for the LAPL-structure given by Proposition 3.3.

Remark 3.5. In many situations the fibrationp : Q → C will be the fibration of regular subobjects on
objects ofC represented by monos inC as in Example 2.5. In such cases the fibration will be closed under
some constructions such as equality and reindexing along maps fromC, but one will need to check some of
the other conditions in the concrete case.

4 Parametric completion

In this section we assume

• E is a quasi-topos

• C is an internal PILLY -model inE which has pullbacks of monos and these are preserved by the
inclusion intoE.

• Q → C is a cloven internal subfibration ofSub(C)∩RegSubE → C giving a notion of admissible
relations

• the proposition
Y ((∀α, β,R : AdmRel(α, β)). (R→ R) → R)Y

holds in the pre-LAPL-structure associated to the internal PILLY -modelC as in Proposition 3.3 with
admissible relations given byQ → C.

We show how to construct a parametric internal PILLY -model from this. However, we stress that the inter-
nal PILLY -model is not exactly parametric with respect to the LAPL-structure constructed in the previous
section, but with respect to an LAPL-structure with a different logic. Since the PILLY -model is just the
externalization of the internal PILLY -model, we still get proofs of the consequences of parametricity for
this.

256

Consider the internal categoryLRQ(C) whose objects are pairs of objects ofC plus a relation on their
product (relations in sense of the logic fromQ → C and morphisms are pairs of morphisms preserving
relations, i.e.,LRQ(C) is given by the pull-back

LRQ(C) //

��

Q

p

��
C×C

× // C

of internal categories inE.

Notice that we clearly have a reflexive graph of functors

LRQ(C)
//
// Coo (5)

where the two maps fromLRQ(C) to C are the domain and codomain map respectively, and the map going
the other way is the map that mapsd ∈ C to the equality relation ond.

LetG denote the small category
· //

// ·oo .

Lemma 2.8 states that internal categories inEG are reflexive graphs of internal categories inE, and so
the reflexive graph (5) is an internal category inEG. We aim to show that this internal category has the
Kan-extensions needed to model polymorphism. We proceed exactly as in [1] but include the proofs for
completeness. Consider first the internal category

LRQ(C)
??? �������
CC

in the quasi-toposEΛ, whereΛ is the obvious diagram. Consider further the fibration

LinAdmRelationsC → AdmRelCtxC

constructed as usual from the pre-LAPL-structure associated toC with admissible relations fromQ.

Lemma 4.1. The fibrations

LinAdmRelationsC → AdmRelCtxC

and

Fam
(

LRQ(C)
??? �������
CC

)
→ EΛ

are isomorphic.

Proof. Unwinding the definition ofAdmRelCtxC, we find that the objects are triples(Ξ0,Ξ1,Ξ) together
with mapsΞ → Ξ0 × Ξ1 in E. A map fromΞ → Ξ0 × Ξ1 to Ξ′ → Ξ′0 × Ξ′1 is a triple

ρ : Ξ → Ξ′, f : Ξ0 → Ξ′0, g : Ξ1 → Ξ′1

making the obvious diagram commute. ThusAdmRelCtxC
∼= EΛ.

Objects inLinAdmRelationsC are given as morphism inAdmRelCtxC into the interpretation of
α, β | R ⊂ α× β which is

∐
α,β∈C0

(RegSubC(C))α×β → C0 ×C0, and since

LRQ(C)0 =
∐

α,β∈C0
(RegSubC(C))α×β

257

we get a bijective correspondence between the objects ofFam
(

LRQ(C)
??? �������
CC

)
andLinAdmRelationsD.

For morphisms, a vertical morphism inFam
(

LRQ(C)
??? �������
CC

)
from (f, g, ρ) to (f ′, g′, ρ′) is by the above dis-

cussion a pair of morphismst : f → f ′, s : g → g′ satisfyingρ ⊃ (t× s)∗ρ′, which is exactly the same as a
vertical morphism inLinAdmRelationsC.

Lemma 4.2. The fibration

Fam
(

LRQ(C)
??? �������
CC

)
→ EΛ

has simple products, i.e., models polymorphism.

Proof. This is a consequence of Lemma 4.1.

Let us now consider the case that we are really interested in. We shall assume that we are given a functor
(f0, f1) in EG:

Ξ′ × LRQ(C)0
π //

∂1

��
∂0

��

f1

$$I
IIIIIIIIIIIIIIIIIIIIII Ξ′

∂1

��
∂0

��
Ξ×C0

f0

$$I
IIIIIIIIIIIIIIIIIIIIIII

I

OO

π // Ξ

I

OO

LRQ(C)

∂1

��
∂0

��
C,

I

OO

(6)

(considering the sets mentioned above as discrete categories) and we would like to find a right Kan extension
of (f0, f1) along(π, π) (notice that we have used the notation∂0, ∂1, I for the structure maps of all objects of
EG - this should not cause any confusion, since it will be clear from the context which map is referred to). Let
us call this extension((

∏
par f)0, (

∏
par f)1). An obvious idea is to try the pair((

∏
f)0, (

∏
f)1) provided

by Lemma 4.2. However,(
∏

par f)1 should commute withI, and we cannot know that(
∏
f)1 will do that.

Consider(
∏
f)1(I(A)) for someA ∈ Ξ:

(
∏
f)1(I(A))
��

��
(
∏
f)0(A)× (

∏
f)0(A).

If we pull this relation back along the diagonal on(
∏
f)0(A) we get a subobject

|(
∏
f)1(I(A))| // // (

∏
f)0(A)

(called thefield of (
∏
f)1(I(A))). Logically, |(

∏
f)1(I(A))| is the set{x ∈ (

∏
f)0(A) | (x, x) ∈∏

f1(I(A))}, so if we restrict(
∏
f)1(I(A)) to this subobject, we get a relation relation containing the

identity relation. The other inclusion will be easy to prove. Thus the idea is to let(
∏

par f)0 be the map
that mapsA to |

∏
f1(I(A))|, and let

∏
par f1(R) be the relation obtained by restricting(

∏
f)1(R) to∏

par f0(∂0(R))×
∏

par f0(∂1(R)).

258

Notice that in the above sketch and the proof below, sinceQ consist of subobjects inC, all objects and
morphisms are in the categoryC. However, by pullbacks we mean pullbacks in the greater categoryE,
since these give the reindexing inQ → C. A pullback inE need not be a pullback inC even if all maps in
the diagram are inC, sinceC is not required to be afull subcategory ofE.

Lemma 4.3. The fibration

Fam
(

LRQ(C)OO
����

C

)
→ EG

models polymorphism.

Proof. We define(
∏

par f)0(A) as the pullback

(
∏

par f)0(A)
��

��

// (
∏
f)1(I(A))
��

��
(
∏
f)0(A) ∆ // (

∏
f)0(A)× (

∏
f)0(A)

where∆ is the diagonal map. We define(
∏

par f)1(R) for R ∈ Ξ′, to be the pullback

(
∏

par f)1(R)
��

��

// (
∏
f)1(R)
��

��
(
∏

par f)0(∂0R)× (
∏

par f)0(∂1R) // // (
∏
f)0(∂0R)× (

∏
f)0(∂1R).

We first show that(
∏

par f)1(I(A)) = I((
∏

par f)0(A)) for all A. Logically

(
∏

par f)1(I(A)) = {(x, y) ∈ (
∏
f)1(I(A)) | (y, y), (x, x) ∈ (

∏
f)1(I(A))} ⊇

{(x, x) | x ∈ (
∏

par f)0(A)} = I((
∏

par f)0(A))

To prove the other inclusion suppose(x, y) ∈ (
∏

par f)1(I(A)) ⊆ (
∏
f)1(I(A)). Then for anyσn+1 ∈ C0,

(x, y) ∈ π∗((
∏
f)1)(I(A), I(σn+1)) = (

∏
f)1(I(A)).

Let εA,σn+1 denote the appropriate component of the counit forπ∗ a
∏

. Then

(εA,σn+1x, εA,σn+1y) ∈ f1(I(A), I(σn+1)) = I(f0(A, σn+1)),

soεA,σn+1x = εA,σn+1y. Since(
∏
f)0(A) is the product off0(A, σn+1) overσn+1 in C0, andεA,σn+1 is

simply the projection onto theσn+1-component,εA,σn+1x = εA,σn+1y for all σn+1 impliesx = y as desired.

Finally we will show that
∏

par provides the desired right adjoint. A morphism from(g0, g1) to (h0, h1),
where

Ξ′
g1 //

∂1

��
∂0

��

LRQ(C)0

∂1

��
∂0

��
Ξ

I

OO

g0 // C0

I

OO

and likewise(h0, h1) is a morphisms : g0 → h0 preserving relations (see Remark 4.4 below). In the
internal language this means that for eachA ∈ Ξ we have a mapsA : g0(A) → h0(A) such that forR with
∂0(R) = A, ∂1(R) = B, (x, y) ∈ g1(R) implies(sA(x), sB(y)) ∈ h1(R).

259

Now, from Lemma 4.2 we easily derive a bijection between maps(g0, g1) → ((
∏
f)0, (

∏
f)1) and maps

(g0 ◦ π, g1 ◦ π) → (f0, f1). Since
∏

par f0(A) ⊆ (
∏
f)0(A), if s : (g0, g1) → ((

∏
par f)0, (

∏
par f)1) is

a map then clearly the correspondence gives a maps̃ : (g0 ◦ π, g1 ◦ π) → (f0, f1). On the other hand, if
we have a maps : (g0 ◦ π, g1 ◦ π) → (f0, f1) then a prioris̃ : (g0, g1) → ((

∏
f)0, (

∏
f)1) and we need

to show that for eachA, the image of̃sA is contained in(
∏

par f)0(A). So supposex ∈ g0(A). Since
(x, x) ∈ g1(I(A)) = I(g0(A)), we must have(s̃(x), s̃(x)) ∈ (

∏
f)1(I(A)), so s̃(x) ∈

∏
par f0(A) as

desired.

Remark 4.4. Consider a morphismξ between typesf = (f0, f1) andg = (g0, g1) in the model

Fam
(

LRQ(C)OO
����

C

)
→ EG.

At first sight, such a morphism is a pair of morphism(ξ0, ξ1) with ξi : fi → gi. But morphisms inLRQ(C)
are given by pairs of maps inC, and commutativity of

LRQ(C)n
0

ξ1 //

∂i

��

LRQ(C)1

∂i

��
Cn

0
ξ0 // C1

tells us thatξ1 must be given by(ξ0, ξ0). Thusmorphisms between types are morphisms between the usual
interpretations of types preserving the relational interpretations.

Lemma 4.5. The categoryLRQ(C) is an internal linear category with products and this structure com-
mutes with the maps of (5).

Proof. The fibred linear structure on

LinAdmRelationsC → AdmRelCtxC

gives a fibred linear structure on

Fam
(

LRQ(C)
??? �������
CC

)
→ EΛ

using Lemma 4.1. By Lemma 2.7 and Lemma 2.8 we get linear structures onLRQ(C) andC commuting
with the domain and codomain functors.

To see that⊗,(, ! all preserve identities we first notice that these constructions can be written out in the
internal logic ofE. Supposeρ : AdmRel(σ, τ), ρ′ : AdmRel(σ′, τ ′) then

!ρ = (x : !σ, y : !τ). x ↓⊃⊂ y ↓ ∧x ↓⊃ ρ(εx, εy)
ρ (ρ′ = (f : σ (σ′, g : τ (τ ′).∀x : σ.∀y : τ. ρ(x, y) ⊃ ρ′(f(x), g(y))
ρ⊗ ρ′ = (fσ,σ′ , fτ,τ ′)∗(∀(α, β,R : AdmRel(α, β)). (ρ (ρ′ (R) (R)

for the natural transformation

fσ,τ : σ ⊗ τ (
∏
α. (σ (τ (α) (α

defined as
fσ,τ x = let x′ ⊗ x′′ : σ ⊗ τ bex in Λα. λ◦h : σ (τ (α. h x′ x′′.

260

Now, one can easily prove that! and(preserve equalities, using Axiom 2.18 of [2] for the case of!.

We proceed to show thateqσ ⊗ eqτ is the equality onσ⊗ τ using the Yoneda lemma. Suppose we are given
an admissible relationR : AdmRel(ω, ω′). Maps

(f, g) : eqσ ⊗ eqτ (R

in LRQ(C) correspond to maps
(f̂ , ĝ) : eqσ (eqτ (R.

SinceR is simply a subobject ofω × ω′ in the categoryC, such maps correspond to

〈f̂ , ĝ〉 : σ (τ (R

in C. Such maps correspond to maps

〈̂f̂ , ĝ〉 : σ ⊗ τ (R

still in C, which correspond to maps
(f, g) : eqσ⊗τ (R

in LRQ(C). By the Yoneda Lemma,eqσ ⊗ eqτ is isomorphic toeqσ⊗τ in LRQ(C), and by inspection of
the correspondence provided above, this isomorphism is given by(idσ⊗τ , idσ⊗τ), which means that the two
relations are equivalent.

The products are defined as

ρ× ρ′ = (x : σ × σ′, y : τ × τ ′). ρ(π(x), π(y)) ∧ ρ′(π′(x), π′(y)),

whereπ, π′ denote first and second projection respectively. This product clearly also commutes with domain
and codomain maps and preserves equalities.

It is interesting to notice that in the above proof, the argument for⊗ preserving identities was not purely
logical, but used the fact that admissible relations corresponded to subobjects inC.

Combining Lemmas 2.8,4.5 we get the following lemma.

Lemma 4.6. The reflexive graph of internal categories inE

LRQ(C)
//
// Coo

constitutes an internal linear category inEG.

Remark 4.7. Lemmas 4.3,4.6 together prove that the fibration

Fam
(

LRQ(C)
//
// Coo

)
→ EG

models all of PILLY exceptY (we show thatY is modeled in Lemma 4.9 below). Types withn free variables
are modeled as pairs of maps([[~α ` σ]]1, [[~α ` σ]]0):

LRQ(C)n
0

�� ��

[[~α`σ]]1 // LRQ(C)0

�� ��
C0

[[~α`σ]]0 //

OO

C0

OO

261

making the obvious 3 squares commute. Let us denote by[[~α ` σ]] the interpretation of~α ` σ in the fibration
Fam(C) → E and compare this to[[−]]0. From the definitions above, it is clear that the constructions
(, !,⊗ are modeled the same way in[[−]]0 and [[−]], but the interpretation of

∏
α. (−) is different in the

two. For example
[[α ` (α→ α) → α]]0 = [[α ` (α→ α) → α]]

but

[[
∏
α. (α→ α) → α]]0 = {x : [[

∏
α. (α→ α) → α]] | x(∀α, β,R : AdmRel(α, β). (R→ R) → R)x}

corresponding to our intuition that the parametric completion process should restrict polymorphic types to
parametric elements. From the proof of Lemma 4.3 we see that type application is modeled the same way in
[[−]] and[[−]]0.

Notice also that closed types in the model

Fam
(

LRQ(C)
//
// Coo

)
→ EG

are given by theirσ0 component, since we have requiredσ1 = I(σ0).

Lemma 4.6 shows in particular that we have a comonad! onLRQ(C), and so we can form the co-Kleisli cat-
egoryLRQ(C)! as the internal category withLRQ(C)0 as object of objects and with object of morphisms
defined by the pull-back:

(LRQ(C)!)1

��

// LRQ(C)1

��
LRQ(C)0 × LRQ(C)0

!×id // LRQ(C)0 × LRQ(C)0

Lemma 4.8. The co-Kleisli category for the comonad! on LRQ(C)
//
// Coo insideEG is isomorphic to

LRQ(C)!
//
// C!

oo

Proof. The co-Kleisli category is constructed pointwise.

Lemma 4.9. The schema

Fam
(

LRQ(C)OO
����

C

)
00

%%JJJJJJJJJJ
⊥ Fam

(
LRQ(C)!OO

����
C!

)
pp

yytttttttttt

EG

is a PILLY -model.

Proof. The only thing still to prove is that it modelsY . Recall the computation of the interpretation of∏
α. (α → α) → α from Remark 4.7. Since[[

∏
α. (α→ α) → α]]0 is a subtype of[[

∏
α. (α→ α) → α]]

we may ask ifY ∈ [[
∏
α. (α→ α) → α]]0. This is true, since we have required that

Y (∀α, β,R : AdmRel(α, β). (R→ R) → R)Y.

262

From the proof of Lemma 4.3 we see that type instantiation is interpreted the same way in[[−]] and[[−]]0,
and so the term

α | f : α→ α ` Y α !f

is interpreted equally in the two interpretations. Validity of

α | f : α→ α ` f !(Y α !f) = (Y α !f)

in the model
Fam(LRQ(C)

//
// Coo) → EG

thus follows from validity of the same in
Fam(C) → E.

Consider the functor(−)0 : EG → E defined by mapping

Ξ1
//
// Ξ0

oo

to Ξ0. We define the categoriesC andP by the pullbacks

P //

��

Q

��
C

��

// E→

��
EG

(−)0 // E

Lemma 4.10. The composable fibrationP → C → EG is an indexed first-order logic fibration with an in-
dexed family of generic objects. Moreover, the composable fibration has simple products, simple coproducts
and very strong equality.

Proof. The composable fibrationP → C → EG is a pullback ofQ → E→ → E which has the desired
properties. All of this structure is always preserved under pullback, except simple products and coproducts.
These are preserved since the map(−)0 preserves products.

Consider the map into the pullback

Fam
(

LRQ(C)!OO
����

C!

)

((PPPPPPPPPPPPPP

// (−)∗0(Fam (C!)) //

��

Fam(C!)

��
EG

(−)0 // E

given by the map, that maps

(
Ξ1OO
����

Ξ0

)
→

(
LRQ(C)!OO

����
C!

)
in Fam

(
LRQ(C)!OO

����
C!

)
to Ξ0 → C! in Fam(C!). We define

the mapI:

Fam
(

LRQ(C)!OO
����

C!

)

%%JJJJJJJJJJ

I // C

��
EG

263

to be the composition of this map with the pullback of the inclusion ofFam(C!) into E→. One could also
express this definition as the map that maps

Ξ1
f1 //

����

LRQ(C)!

����
X0

OO

f0 // C!

OO

to φ(f0), whereφ is the inclusion ofFam(C!) into E→.

Lemma 4.11. The diagram

P

��
Fam

(
LRQ(C)OO

����
C

)

++VVVVVVVVVVVVVVVVVVVVVVVVVVV 00 Fam
(

LRQ(C)!OO
����

C!

)

%%JJJJJJJJJJ

I //
pp

C

��
EG

is a pre-LAPL-structure.

Proof. Using Lemma 4.10 we see that all we need to prove is thatC → EG has fibred products, thatI is
faithful and product preserving and that the functorU exists. The first follows fromE→ → E having fibred
products.

Recall from Remark 4.4 that a map inFam
(

LRQ(C)!OO
����

C!

)
is a natural transformation preserving relations

and the functor fromFam
(

LRQ(C)!OO
����

C!

)
into (−)∗0(Fam (C!)) is simply the identity on maps. Since also the

inclusion ofFam (C!) into E→ is assumed faithful,I is faithful. Since the inclusion ofC! into E is required
to preserve products for all internal PILLY -models,I preserves products.

The functorU is defined using the functorU of Proposition 3.3 as the composition

Fam
(

LRQ(C)OO
����

C

)2

((PPPPPPPPPPPPP

// (−)∗0(Fam(C))2

��

(−)∗0U
// C

zzuuuuuuuuuuuuu

EG .

In words,U maps an object ofFam
(

LRQ(C)OO
����

C

)2

(square taken fibrewise) given by the maps

Ξ1

�� ��

f1 // LRQ(C)

�� ��
Ξ0

OO

f0 // C

OO
, Ξ1

�� ��

g1 // LRQ(C)

�� ��
Ξ0

OO

g0 // C

OO

to
∐

x∈Ξ0
(RegSubE)f0(x)×g0(x) → Ξ0.

264

Consider the subfunctorV of U defined by mapping an object((f0, f1), (g0, g1)) in Fam
(

LRQ(C)OO
����

C

)2

to∐
x∈Ξ0

Q′
f0(x)×g0(x) → Ξ0.

Lemma 4.12.The functorV defines a notion of admissible relations for the pre-LAPL-structure of Lemma 4.11.

Proof. All terms occurring in the rules for admissible relations and in Axiom 2.18 are constructed without
use of type abstraction. Thus the terms are interpreted exactly as in the pre-LAPL-structure of Proposi-
tion 3.3. Since the logic in the models of Proposition 3.3 and Lemma 4.11 are the same, all relations
occurring in the rules and Axiom 2.18 are interpreted equally. Since also the notion of admissible relations
is the same in the two models, the Lemma follows since we have assumed that the model of Proposition 3.3
models admissible relations.

Consider the graphW :
·
OO

����
·

·
OO

����
·

·
mmmmm
vv QQQQQ

((

where we assume that the two graphs included are reflexive graphs. The graphW:

LRQ(C)
OO

����
C

LRQ(C)
OO

����
C

LRQ(C)
mmmmm
vv QQQQQ

((

defines an internal category inEW . By Lemma 2.8W is an internal linear category with structure computed
pointwise.

We denote by
LinAdmRelations → AdmRelCtx

the fibration of admissible relations based on the pre-LAPL-structure constructed in Lemma 4.11.

Proposition 4.13. There is an isomorphism of fibrations:
Fam(W)

��
EW

 ∼= //


LinAdmRelations

��
AdmRelCtx


preserving the fibred linear category structure.

Proof. An object ofAdmRelCtx is a pair of objects ofEG:

Ξ1
//
// Ξ0

oo , Ξ′1
//
// Ξ′0oo

plus an object ofE→ with domainΞ0 × Ξ′0, i.e. a mapΞ2 → Ξ0 × Ξ′0 in E. A map inAdmRelCtx from

(Ξ1
//
// Ξ0

oo , Ξ′1
//
// Ξ′0oo , a : Ξ2 → Ξ0 × Ξ′0)

to
(Ξ4

//
// Ξ3

oo , Ξ′4
//
// Ξ′3oo , b : Ξ5 → Ξ3 × Ξ′3)

265

is a pair of maps inEG, i.e., a quadruple of maps(f0, f1, f
′
0, f

′
1) such that

Ξ1

����

f1 // Ξ4

����
Ξ0

OO

f0 // Ξ3

OO , Ξ′1

����

f ′1 // Ξ′4

����
Ξ′0

OO

f ′0 // Ξ′3

OO

both commute, plus a vertical map inE→ → E overΞ0 × Ξ1:

Ξ2
h //

a
##H

HHHHHHHH (f0 × f ′0)
∗Ξ5

(f0×f ′0)∗bwwppppppppppp

Ξ0 × Ξ′0.

Since the maph corresponds to a maph′ making

Ξ5

����
��
��
�

��.
..

..
.

Ξ2

��.
..

..
..

����
��
��
�

h′ 22eeeeeeeeeeeeeeee

Ξ3 Ξ′3
Ξ0

f0
22ffffffffffffffff Ξ′0 f ′0

22ffffffffffffffff

commute, we get the isomorphismAdmRelCtx ∼= EW .

An object ofLinAdmRelations over

(Ξ1
//
// Ξ0

oo , Ξ′1
//
// Ξ′0oo , a : Ξ2 → Ξ0 × Ξ′0)

is a pair of types, i.e., maps(f0, f1, f
′
0, f

′
1) such that

Ξ1

����

f1 // LRQ(C)0

����
Ξ0

OO

f0 // C0

OO
Ξ′1

����

f ′1 // LRQ(C)0

����
Ξ′0

OO

f ′0 // C

OO

commute, plus a mapρ:

Ξ2
ρ //

a
##F

FFFFFFFF

∐
x∈Ξ0,y∈Ξ′

0
(RegSubE)f0(x)×f ′0(x)

ttjjjjjjjjjjjjjjjj

Ξ0 × Ξ′0

Sinceρ corresponds to a mapρ′:

LRQ(C)0

����
��

��
��

��;
;;

;;
;;

;
Ξ2

��/
//

//
//

����
��
��
�

ρ′ 22dddddddddddddddd

C0 C0

Ξ0

f0
22eeeeeeeeeeeeeeee Ξ′0 f ′0

11ddddddddddddddddddddddd

266

we get the bijective correspondence between objects ofLinAdmRelations and objects ofFam(W).
This correspondence extends to morphisms, since vertical morphism in both fibrations correspond to pairs
of morphisms preserving relations.

The isomorphism preserves the fibred linear structure on the nose, since in both fibrations, the fibred linear
structure is defined using the internal linear structure onC andLRQ(C) respectively.

Lemma 4.14. The graphW models polymorphism.

Proof. This is a consequence of Proposition 4.13.

Proposition 4.15. There is a reflexive graph of fibred linear categories
Fam

(
LRQ(C)OO

����
C

)
��

EG

 //


Fam(W)

��
EW

oo

oo
.

The3 maps preserve products in the base, generic object and simple products.

Comparing with Proposition 2.9 of [7] the maps of Proposition 4.15 give rise to a reflexive graph of maps
between the corresponding PILLY -models.

Remark 4.16. The reflexive graph in [10] arises this way, although the setup of [10] is slightly different.

Proof. An object ofFam(W) is a map inEW


Ξ1OO

����
Ξ2

Ξ4OO

����
Ξ5

Ξ3

mmmmm
vv QQQQQ

((

 →


LRQ(C)0OO

����
C0

LRQ(C)0OO

����
C0

LRQ(C)0
mmmmm
vv QQQQQ

((

 .

Let us denote such objects as triples(f, g, ρ) where

f = (f0, f1) :
(

Ξ1OO
����

Ξ2

)
→

(
LRQ(C)0OO

����
C0

)
, g = (g0, g1) :

(
Ξ4OO
����

Ξ5

)
→

(
LRQ(C)0OO

����
C0

)
andρ : Ξ3 → LRQ(C)0. The domain and codomain maps of the postulated reflexive graph map(f, g, ρ)
to f andg respectively, and the last map mapsf to (f, f, f1). Clearly generic objects and products in the
basecategories are preserved, and since the linear category structure is computed pointwise in both fibrations,
it is clearly preserved by all maps.

We now show that all maps preserve simple products. The domain and codomain maps preserve simple
products since from the viewpoint of Proposition 4.13 these are just the domain and codomain maps out of

LinAdmRelations → AdmRelCtx.

Consider the map going the other way. Mappingf along this map and then taking products gives us the map
that — described in the internal language of the toposE — maps~R : AdmRel(~A, ~B) to

{(x, y) ∈ (
∏
f)0(~A)× (

∏
f)0(~B) | ∀A,B : C0.∀R : AdmRel(A,B). f1(~R,R)(xA, yB)}

267

where(
∏
f)0 denotes the type-component of the simple product

∏
f (called

∏
par f in the proof of Lemma 4.3)

taken inFam(LRQ(C)
//
// LRQ(C)oo) → EG. This map coincides with(

∏
f)1, the relational interpre-

tation of
∏
f as desired.

Proposition 4.17. The pre-LAPL-structure of Lemma 4.11 has relational interpretation of all types.

Proof. This follows from Proposition 4.15 and Proposition 4.13.

Lemma 4.18. The LAPL-structure of Lemma 4.11 satisfies extensionality.

Proof. The model has very strong equality, which implies extensionality.

Lemma 4.19. The LAPL-structure of Lemma 4.11 satisfies the identity extension axiom.

Proof. Consider a typef = (f1, f0):

LRQ(C)n
0

����

f1 // LRQ(C)0

����
Cn

0

OO

f0 // C0

OO
(7)

with n free variables. We need to show that

〈idΩn , idΩn〉∗J(f) ◦ [[~α | − | − ` eq~α]] = [[~α ` eqf(~α)]].

The mapJ is defined as the composition of two maps. The first map mapsf to (f, f, f1) :
LRQ(C)n

0OO

����
Cn

0

LRQ(C)n
0OO

����
Cn

0

LRQ(C)n
0

mmmmm
vv QQQQQ

((

 →


LRQ(C)0OO

����
C0

LRQ(C)0OO

����
C0

LRQ(C)0
mmmmm
vv QQQQQ

((


and the second identifies this with an element ofLinAdmRelations, which in the internal language of
the LAPL-structure may be written as

[[~α, ~β | − | ~R : AdmRel(~α, ~β) ` f1(~R) : AdmRel(f(~α), f(~β))]]

Sincef makes the diagram (7) commute we conclude that

〈idΩn , idΩn〉∗J(f) ◦ [[~α | − | − ` eq~α]] =
[[~α | − | ~R : AdmRel(~α, ~α) ` f1(~R) : AdmRel(f(~α), f(~α))]] ◦ [[~α | − | − ` eq~α]] = [[~α ` eqf(~α)]].

Summing up we have:

Theorem 4.20.The pre-LAPL-structure of Lemma 4.11 is a parametric LAPL-structure.

268

5 Examples

For any reflexive domainD, one can form the category of admissible persAP(D) and the category of
admissible pers with maps tracked by strict trackersAP(D)⊥ as in [2]. As is well-known, the category
of pers is an internal subcategory of the category of assembliesAsm(D) overD, and using the same
construction one may easily show thatAP(D) andAP(D)⊥ are internal subcategories ofAsm(D). In
factAP(D)⊥ is an internal PILLY - model in the quasi-toposAsm(D) with co-Kleisli categoryAP(D).

The category of regular subobjects of admissible pers internalizes to an internal fibration

RegSubAP(D)⊥ → AP(D)⊥

which we may use for a notion of admissible relations. Applying the completion process to this structure,
we obtain the LAPL-structure:

UFam(RegSubAsm(D))

��
PFam(AP(D)⊥) 00

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
PFam(AP(D))

pp

**TTTTTTTTTTTTTTT
// UFam(Asm(D))

��
PAP(D).

(8)

The PILLY -model on the left is the PILLY model of [2]. The fibre of

UFam(Asm(D)) → PAP(D)

over an objectn has as objects mapsAP(D)n → Asm(D) and as morphisms uniformly tracked morphisms
between assemblies. The logic

UFam(RegSubAsm(D)) → UFam(Asm(D))

is the fibration of families of regular subobjects of assemblies, i.e., a subobject off : AP(D)n → Asm(D)
is a family of subsetsA~R ⊆| f(~R) |, where| − | is the forgetful functor fromAsm(D) to Set.

The LAPL-structure (8) is the LAPL-structure of [2] with the category of sets replaced by assemblies. The
logic of the two are the same since we have a pullback

UFam(RegSubAsm(D)) //

��

Sub(Set)

��
UFam(Asm(D)) // Fam(Set).

Therefore, even though the presentation is different, the LAPL-structure of [2] is basically the LAPL-
structure obtained from parametric completion as presented in this paper.

5.1 The LAPL-structure from synthetic domain theory

The LAPL-structure from [11, 8, 9] is not directly an application of the parametric completion process
presented in this paper. The logic is given by sets, and the PILLY -model is constructed using the category
of domains, which is not small.

269

A natural way to view the LAPL-structure from SDT is to view it as coming fromDom⊥ as seen as an
internal category in the category of (not necessarily small) groupoids via the following construction:

Consider the functor(·)iso from the category of categories to the category of groupoids mapping a category
to its restriction to isomorphisms. SupposeC is a category, then the diagram

C→
iso

//
// Ciso

oo (9)

is an internal category in the category of groupoids. The categoryC→
iso has as objects arrows ofC and as

morphisms pairs of isomorphisms making the obvious square commute. The two left to right going maps
map an arrow to its domain and codomain respectively and the last map maps an object to the identity on
that object. This construction extends to a functor from the category of categories to the category of internal
categories in the category of groupoids.

The externalization of (9) has as object overCn
iso functorsCn

iso → C (since these are the same as functors
Cn

iso → Ciso) and as morphisms natural transformations.

Using the above construction on the categoryDom⊥ of domains with strict morphisms, we obtain an in-
ternal PILLY -model in the category of groupoids. We may further apply the construction to the fibration
of regular subobjects onDom⊥. Using this as our notion of admissible relations, the PILLY -model con-
structed as in the parametric completion process is the model presented in [11, 8, 9].

The LAPL-structure of [9], however, is not derived from the internal logic in the category of groupoids. In-
stead, the category of contexts and the logic fibration in the LAPL-structure ofloc. cit. is the externalization
of

Sub(Set) → Set

seen as an internal fibration in the category of groupoids using the construction above.

6 Conclusion

We have defined a notion of internal PILLY -model in a quasi-topos and shown how the externalization of
an internal PILLY -model can be extended to a pre-LAPL-structure in which the logic is given by the regular
subobject logic of the quasi-topos. This corresponds to the way one would usually think of parametricity for
such internal models.

We have described a parametric completion process based on the parametric completion process of [10]
which takes an internal PILLY -model in a quasi-topos and returns an internal PILLY - model in a presheaf-
category over the original quasi-topos. The externalization of the resulting PILLY -model extends to a para-
metric LAPL-structure. This LAPL-structure is different from the canonical LAPL-structure associated to
internal PILLY -models as mentioned above, and in fact the logic of the LAPL-structure is the logic of the
original quasi-topos.

The concrete LAPL-structure of [2] is an example of this parametric completion process, although it is
presented a bit different inloc. cit.. The PILLY -model constructed using synthetic domain theory in [11, 8,
9] is an example of an application of the parametric completion process, but the LAPL-structure provided
for it in [8, 9] is different from the one presented here.

270

References

[1] L. Birkedal and R. E. Møgelberg. Categorical models of Abadi-Plotkin’s logic for parametricity.Math-
ematical Structures in Computer Science. To appear. (document), 1, 2.1, 3, 4

[2] L. Birkedal, R. E. Møgelberg, and R. L. Petersen. Parametric domain-theoretic models of linear Abadi
& Plotkin logic. Technical Report TR-2005-57, IT University of Copenhagen, February 2005. (docu-
ment), 1, 3, 4, 5, 5, 6

[3] L. Birkedal, R. E. Møgelberg, and R. L. Petersen. Parametric domain-theoretic models of polymorphic
intuitionistic / linear lambda calculus. Submitted, 2005. 1

[4] B. Jacobs.Categorical Logic and Type Theory, volume 141 ofStudies in Logic and the Foundations
of Mathematics. Elsevier Science Publishers B.V., 1999. 2, 2.2

[5] S. Mac Lane.Categories for the Working Mathematician. Springer-Verlag, 1971. 2.2

[6] S. Mac Lane and I. Moerdijk.Sheaves in Geometry and Logic. A First Introduction to Topos Theory.
Springer, New York, 1992. 2.2

[7] R. E. Møgelberg, L. Birkedal, and R. L. Petersen. Categorical models of PILL. Technical Report
TR-2005-58, IT University of Copenhagen, February 2005. 1, 2.2, 2.2, 3.4, 4

[8] R. E. Møgelberg, L. Birkedal, and G. Rosolini. Synthetic domain theory and models of linear Abadi
& Plotkin logic. Technical Report TR-2005-59, IT University of Copenhagen, February 2005. (docu-
ment), 1, 5.1, 5.1, 6

[9] R. E. Møgelberg, L. Birkedal, and G. Rosolini. Synthetic domain theory and models of linear Abadi
& Plotkin logic. Submitted, 2005. (document), 1, 5.1, 5.1, 6

[10] E.P. Robinson and G. Rosolini. Reflexive graphs and parametric polymorphism. In S. Abramsky,
editor,Proc. 9th Symposium in Logic in Computer Science, pages 364–371, Paris, 1994. I.E.E.E. Com-
puter Society. (document), 1, 4.16, 6

[11] G. Rosolini and A. Simpson. Using synthetic domain theory to prove operational properties of a
polymorphic programming language based on strictness. Manuscript, 2004. (document), 1, 5.1, 5.1,
6

271

	intro.pdf
	Parametric Polymorphism
	Encoding of inductive and coinductive types
	Data abstraction
	Relational parametricity

	Models of Polymorphism
	The second-order lambda calculus
	Adding fixed points

	Models of Parametric Polymorphism
	Models of Abadi & Plotkin's logic

	Contributions of this dissertation
	Abadi & Plotkin's logic
	APL-structures
	LAPL-structures
	Completion Processes
	An LAPL-structure from Synthetic Domain Theory

	Related Work
	Ma & Reynolds notion of parametricity
	Parametricity graphs
	Parametricity in operational semantics
	More related research

	Structure of the dissertation
	Conclusion
	Future work

	abadiplotkin.pdf
	Introduction
	Abadi & Plotkin's logic
	Second-order -calculus
	Equality

	The logic
	Definable relations
	The axioms

	APL-structures
	Soundness
	Completeness

	Parametric APL-structures
	Consequences of parametricity
	Dinaturality
	Products
	Coproducts
	Initial algebras
	Final coalgebras
	Generalizing to strong fibred functors

	Concrete APL-structures
	A parametric non-well-pointed APL-structure

	Comparing with Ma & Reynolds notion of parametricity
	A parametric completion process
	Internal models for 2
	Input for the parametric completion process
	The completion process
	The APL-structure

	Parametric Internal Models
	Conclusion
	Composable Fibrations

	lapl.pdf
	Introduction
	Outline

	Linear Abadi-Plotkin Logic
	PILLY
	Equality
	Ordinary lambda abstraction

	The logic
	Definable relations
	Constructions on definable relations
	Admissible relations
	Axioms and Rules
	Admissible relations preserved by structure maps
	Extensionality and Identity Extension Schemes

	Proofs in LAPL
	Logical Relations Lemma
	A category of linear functions
	Tensor types
	Unit object
	Initial objects and coproducts
	Terminal objects and products
	Natural Numbers
	Induction principle

	Types as functors
	Existential types
	Initial algebras
	Final Coalgebras
	Recursive type equations
	Parametrized initial algebras
	Dialgebras
	Compactness

	Recursive type equations with parameters

	LAPL-structures
	Soundness
	Completeness

	Parametric LAPL-structures
	Solving recursive domain equations in parametric LAPL-structures
	Parametrized recursive type equations

	Concrete Models
	The connection to CUPERs
	Lifting
	Going fibred
	A domain-theoretic model of PILL
	A parametric domain-theoretic model of PILL

	pillmodeldef.pdf
	Models of DILL
	The 2-category of symmetric monoidal categories
	The co-Kleisli category and the Eilenberg-Moore category of a comonad
	The category of products of free coalgebras

	PILL models

	pinoalexmodel.pdf
	Introduction
	Synthetic Domain Theory
	Pointed sets
	Domains and predomains

	The category of domains
	The domains fibration
	The parametric fibration
	The LAPL-structure
	Proving consequences of parametricity for Lilystrict
	The language Lilystrict
	Translating PILLY into Lily
	Consequences of parametricity for Lilystrict

	Conclusion
	Tensor products in parametric LAPL-structures

	laplcompletion.pdf
	Introduction
	Internal structures in quasi-toposes
	Internal Fibrations
	Internal linear categories

	Internal PILLY-models
	Parametric completion
	Examples
	The LAPL-structure from synthetic domain theory

	Conclusion

