.-ﬁ
=

The IT University

of Copenhagen

Categorical and domain theoretic models of
parametric polymor phism

Rasmus Ejlers Mggelberg

PhD Dissertation

Abstract

Parametric polymorphism in functional programming languages with explicit polymorphism is the property
that polymorphic programs behave the same way at all type instantiations. This can be formulated more
precisely using Reynold’s notion of relational parametricity, which states that polymorphic functions should
preserve relations. It has been known for a long time that parametric polymorphism can be used to encode
inductive and coinductive data types, and this has been shown in a logic for parametricity suggested by
Abadi and Plotkin.

In this dissertation we propose new category theoretic formulations of parametricity for models of the
second-order lambda-calculus and models of a polymorphic lambda-calculus with linear function types and
fixed points. These parametric models are models of Abadi and Plotkin’s logic for parametricity, called para-
metric APL-structures and LAPL-structures, respectively. We show how that the encodings of inductive and
coinductive types using parametric polymorphism give rise to initial algebras and final coalgebras in APL-
and LAPL-structures and, using Plotkin’s encodings, we show how to solve recursive domain equations in
LAPL-structures.

Moreover, we show that the notions of APL- and LAPL-structures are general by constructing different
examples. We construct a parametric APL-structure based on the per-model and a domain-theoretic para-
metric LAPL-structure. Based on recent work by Simpson and Rosolini we show how to construct paramet-
ric LAPL-structures using synthetic domain theory, and we device general ways of constructing parametric
LAPL- and APL-structures using parametric completion processes.

Using the LAPL-structure constructed using synthetic domain theory we prove consequences of parametric-
ity for a variant of the Lily programming language.

Acknowledgments

I would like to thank my supervisor Lars Birkedal for participating actively in my research over the past
three years, and in particular for (almost) always finding time to see me even though he is a busy man.
Also thanks to Alex Simpson, whom | visited in Edinburgh for the spring of 2004, for his help with both
practical and mathematical matters and for many interesting discussions, and to Pino Rosolini for many
helpful discussions and for inviting me to come to Genoa for a short visit.

I would also like to thank the following people for helpful discussions: Carsten Butz, Martin Hyland, Milly
Maietti, Andy Pitts, John Reynolds, Ivar Rummelhoff, Thomas Streicher and Phil Wadler.

Finally thanks to everyone at the Department of Theoretical Computer Science at ITU, in particular Rasmus
Lerchedahl Petersen for valuable collaboration. Also thanks to Noah Torp-Smith and Bodil Biering for
proof-reading, and to everyone who participated in the topos theory seminar.

Contents

Introduction 1

Paper 1: L. Birkedal and R. E. Mggelberg. 27
Categorical models of Abadi-Plotkin’s logic for parametricity.

Paper 2: L. Birkedal, R. E. Mggelberg, and R. L. Petersen. 91
Parametric domain-theoretic models of linear Abadi & Plotkin logic.

Paper 3: R. E. Mggelberg, L. Birkedal, and R. L. Petersen. 175
Categorical models of PILL.

Paper 4: R. E. Mggelberg, L. Birkedal, and G. Rosolini. 191
Synthetic domain theory and models of linear Abadi & Plotkin logic.

Paper 5: R. E. Mggelberg. 245
Parametric completion for models of polymorphic intuitionistic / linear lambda calculus.

Introduction

This PhD dissertation is a collection of five papers on models of parametric polymorphism, which we shall
refer to as Paper 1, etc. in this introduction. The introduction at hand is organized as follows: $é¢tjons 1, 2
contain background material on parametric polymorphism, Section 3 discusses models of parametric poly-
morphism, Sectioh]4 gives a summary of the results of this dissertation, Sejction 5 discusses related work,
Section § contains an overview of the papers in this dissertation, and Section 7 concludes and discusses
future work.

1 Parametric Polymorphism

Polymorphism in typed programming languages enables the programmer to write functions that can act on
input of many types. Consider for example the functien that reverses a list. This function can act on
integer-lists, string-lists or lists of any type. In languages with explicit polymorphism, such as ML and the
second-order lambda calculus, the functien will have the type (in the syntax of the second-order lambda
calculus)

[]o: Type. lists(a) — lists(av),

to be read as “for all types, lists(«) to lists(«)”. An element of this type is a family, indexed over types
A, of functions takingA-lists and returningd-lists.

Christopher Strachey [37] identified two types of polymorphism. The first, caliedoc polymorphism

allows the behavior of a polymorphic function to depend on the type of in-data. The second type, called
parametric polymorphisponly includes functions based on a common algorithm for all input types. For
examplerev is parametric, whereas the function that adds one to each element of an integer list, but is the
identity on lists of all other types is ad-hoc.

A programming language is said to haparametric polymorphisnif it has explicit polymorphism and

all polymorphic programs are parametric. In the following we sketch two reasons why such programming
languages are interesting. We argue informally and use the syntax of the second order lambda calculus, but
the arguments are not limited to the second-order lambda calculus.

1.1 Encoding of inductive and coinductive types

Consider the type
[Ta: Type. (@ — a) — (a —)

in a language with parametric polymorphism. A function of this type takes for anydypinctionf: A —
A and produces a new functioh— A. For each natural number, we can define the function that maps
to f (f is the identity onA), and this way we can think of the tyj¢ o.: Type. (a« — a) — (o — a) as
containing a copy of the natural numbers.

Since a parametric function of the typ¢a: Type. (¢ — a) — (o — «) is not allowed to use specific
information about the typd, the only access it has té is the functionf, and so intuitively all it can do is

map f to f”ﬂ Since parametric functions should use the same algorithm for all types of input,ghauld
be the same for all typed, and all functionsf.

The above establishes the intuition why the tfger: Type. (@« — a) — (o — «) in a language with
parametric polymorphism can be used as a reasonable type of natural numbers. Of course we have not given
a formal argument for this, and we have not defined what we mean by a reasonable type of natural numbers.
Notice that the natural numbers were always present in the type, and we used parametricity to argue that no
other elements of the type could exist. In general, encoding of all inductive and coinductive types such as
finite lists, potentially infinite lists, trees etc. exist.

1.2 Data abstraction

In this section we will assume we are working in a language with parametric polymorphism and data types
for natural number®at, products and lists. This is not an unreasonable assumption as these data types can
be encoded in languages with parametric polymorphism as described in $edtion 1.1.

Suppose that a programmer is writing a program for which he needs to use a data type for stacks of natural
numbers, which should be implemented by another programmer. Such a data type would have operations

new: Stack
push: Nat x Stack — Stack
pop: Stack — Stack
top: Stack — Nat

wherenew creates a new stackush pushes numbers onto the stapkp pops the number on top of the
stack, andop returns the number on top of the stack. A concrete implementation of theéStypk could
for example implement it using lists, witkew being the empty listpush adding a new element to the first
position of the listpop taking the first element out of the list, angb returning the first number in a list.

Even though the programmer may not have the implementation of thestyipk yet, he can still write his
program as a functio® taking as input a concrete implementationSofick. If for example the program
should return a natural numbé?,would have the type

[] Stack: Type. Stack — (Nat x Stack — Stack) — (Stack — Stack) — (Stack — Nat) — Nat.

P then takes as input a concrete type and concrete operations.

Since the progran® is parametric, it should only be able to access the 8tpek through the operations
new, pop, push, top provided, since this is the only available information about the §tpek, and it should
never be able to use information about a specific implementation of the type it is instantiated with.

We can use this to prove that if two concrete implementations of theStypéd behave the same way with
respect to the interface operatiomsw, push, pop, top then the result of° instantiated with either of the
two concrete implementations will be the same. This is a way of ensuring robust modularized programming.

Existential types present a different approach to data abstracCtion [20]. Existential types can be encoded
using parametric polymorphism.

Data abstraction can be seen as a sort of information hiding; we hide information about the specific im-
plementation of a data type from the programmer using the data type. Parametricity has also been used
to implement other forms of information hiding such as hiding local variables from called procedures in
imperative languages (see Secfior 5.4).

1In this example, we have assumed that the polymorphic language does not have fixed points. If the language has fixed points,
the situation is different, as we describe in Se 2.2

1.3 Relational parametricity

Of course the arguments above are quite informal, since we have not formulated the concept of parametric
polymorphism very precisely. John Reynolds has given a precise formulation of parametricityrekaied

tional parametricity[30]. The basic idea is that the parametric elements of a polymorphic type are those
that preserve relations. For example, a polymorphic funcfiofitype [[«: Type. @« — « is parametric if

for all pairs of typesA, B and all relations? between them: if:: A, y: B are related irRk, then so arg (z)

andf(y).

Let me sketch how this captures data abstraction. We can express the notion of two implementations of
Stack behaving the same way with respect to the interface operations using relations as follows: There
should be a relation relating elements of the first implementatiéGnaatk to elements of the other, such that

the interface operations preserve the relations. This means that the stacks created by¢hedparations

should be related, pushing the same number onto related stacks should produce related stacks, popping
related stacks should produce related stackstapdmaps related stacks to equal numbers. Relational
parametricity states that the prografnof Sectior] 1.R applied to related implementation$tfck should

produce related results, which, since the typ&tafck does not occur in the result type 6fshould mean

that the results are equal.

Martin Abadi and Gordon Plotkin have devised a logic for reasoning about parametricity for the second-
order lambda calculus [29]. In this logic one can prove correctness of encoding of inductive and coinductive
types from parametricity.

Of course, to use relational parametricity in practice for a specific programming language, one will have to
specify what is meant by relations.

2 Models of Polymorphism

In this section we sketch the two polymorphic languages we consider in this dissertation, namely the second-
order lambda calculus and PIkL(Polymorphic Intuitionistic / Linear Lambda calculus with fixed point
combinatorY’). We also sketch the categorical notions of models for these languages. The purpose of this
section is not to give precise definitions, but to give an idea of the models used, to prepare for the discussion
of parametric models of these calculi.

2.1 The second-order lambda calculus

The second-order lambda calculus)is the simply typed lambda calculus (with products) extended with
(impredicative) polymorphism. Types are given by the grammar

cu=alo—o|loxo|l|][]ao

wherea ranges over an infinite set of type variables. The construgtjen o binds the type variable. We
useo, 7, w to range over types. Terms are given by the grammar

to=ax | dz:ot|tl)| tt) | nt|n't] Aa: Type.t|t(o) | .
Terms exist in contexts of free type variables and ordinary variables written as

QlyeeyQp | T1: 01,00 T O BT

where the free type variables of theand+ are amongyy, . .., a,. We will often write=Z for a4, ..., a,
andl' for zy: o1,...,2y: o, and we shall often omit the Type in types and terms. Most of the typing
rules are as in the simple typed lambda calculus, so we just mention the two related to polymorphism.

If

Qlyeney Oy Qg] | T1: 01,y o oy Tt O EE0 T

is a term andv,, 1 is not free in any of the types,, . .. o, then
Qlyeeos O | T1: 01,00 Tt O F Aapg.t: [] g T

IfZ|TFt: [[]a. 7, ando is atype with all free variables &, we may form= | I' + ¢(0): 7[o/«a], where
T[o/a] denotes capture free substitutioncofor free appearances ofin defined as usual.

We notice two properties of,. First, for every collection of free type variablgswe have a simple typed
lambda calculus of terms with free type variablegirSecond s has a very strong notion of polymorphism
called impredicative polymorphism, meaning that terms of polymorphic types may be instantiated at all
types. If for examplé is a term of type] [a.. o, thent(]] ..) also has typd [«v. «, and so applying a
polymorphic term to a type need not result in a term with a simpler type. Impredicativity is what has made
models of)\, difficult to find.

For a long time it was hoped that one could find set-theoretic models. @y this we mean models based

on a set or class of seté such that one can model types withree variables as mag@s™ — U, and model

product types and exponent types pointwise using set theoretic products and exponents. In fact Reynolds
defined parametric polymorphisin_|30] hoping that such set theoretic models could be constructed using
parametric polymorphism in the interpretation of polymorphic types.

In 1984 Reynolds [31] (see also [32]) showed that set theoretic models adn not exist unless they are
trivial. However, if one replaces set theory with other more constructive universes, such as certain toposes,
models as described above may exist [26, 24].

The most famous example of such a model is the per-model, which can be seen as a set-theoretic model
living inside the effective topos, or the quasi-topos of assemblies. The per-model is based orPiae set

of partial equivalence relations on the natural numbers (symmetric, transitive, but not necessarily reflexive
relations). A type withn free variables is modeled by a map

Per” — Per.
Exponents are modeled pointwise by defining for each pair of Refsa perR — S relatingn, m if
Ve,y: NR(x,y) Dn-z | Am-y | AS(n-x,m-y)

wheren - x denotes Kleene application, i.e., application oftfth partial recursive function ta. Finally, if
f: Per"t! — Per is a type, we model the polymorphic type obtained by abstracting the last type variable
by intersection, i.e., iRy, .., R, are perstheq[[f)(Ri,. .. Rn)(n, m) holds iff

VR,+1 € Per. f(Rl, ce ,Rn_H)(n, m)

holds.

Terms of the form
Ay 0 ot T

are modeled as families of morphisms

([@ | z: o+ t: 7)(R): N/[@+ o](R) — N/[@ F 7)(R)) jepepns

4

whereN/[a I o] (R) denotes the set of equivalence classes of the partial equivalence réfation], such

that[t] is uniformly tracked, i.e., there exists a natural numbsuch that for allR, [@ | z: o - ¢: 7](R)

is given by[m] [a-ol(R) [n - m] [G-] ()"

In general, second-order lambda calculus is modelegd-iibrations These are defined to be fibred cartesian
closed fibrations, with cartesian base and a generic object and simple products. We sketch what this means,
but choose for simplicity to describe split fibrations and split generic objects. The reader interested in further
details should consult [15].

Suppose: E — Bis a functor. For each objegt € B we can consider the fibfié= of E over=, defined to

be the subcategory @ on objects mapped 6 via p and morphisms mapped to the identity®nA (split)
fibration is a functop: E — B satisfying a technical condition basically ensuring that every morphism
f: 2 — Z'in B induces a functorf*: Ez» — Ez, and further(f o g)* = ¢* o f* andid* = id. The
categorie€ andB are called theotal categoryandbase categoryespectively and a functor of the forjit

is called areindexing functor

A fibred cartesian closefibration has cartesian closed fibres, and this structure is preserved by reindexing
functors. A)s-fibration further has products in the base category and a (gplitric objecti.e., an object

Q2 € B such that for any2 € B there exists a bijective correspondence between rBaps 2 in B and
objects ofEgz. This correspondence should be naturaEiim the sense that if : = — € corresponds to

X € Ez andg: =’ — Z, thenfg corresponds tg* X € Ez.

Finally a,-fibration is required to have&mple productsvith respect to projections of the form =x Q2 —
=. This means that for each sughthe reindexing functor

T EE —>EE><Q

is required to have a right adjoif{_...

We model)s in As-fibrations as follows. Types with free variables are modeled in the fibre categbgy:
and terms with. free type variables

Ay ey | X1 01,0 T O E E2 T

are modeled as maps &y from [[,[&@ F o;] to [@ - 7], where]], denotes product in the fibre. Since
the generic object induces a correspondence between faps (2 in B and objectsEg~» we can model
a1,. ..oy Fa; asthe object corresponding to il projection. The simple type constructions are modeled
using the cartesian closed structureéfgf., and polymorphic type& - [] a,+1. 0 are modeled as

Hﬂ— [[0_27 On+1 - O-H

wherer: Q" x Q0 — Q™ is the projection.

The per-model can be seen aa-afibration as follows. The base category has as objects natural numbers,
and as morphisms from to m set theoretic mapPer” — Per™. The total category has as objects maps
f: Per™ — Per for somen, and a morphism fronf: Per” — Per to g: Per™ — Per is a pair(h, k)

such thati: Per” — Per™ is a map, and is an indexed family of maps

(k(R): N/f(R) = N/g o h(R)) sepepn

with a uniform tracker as defined above. The fibration maps an opjeBer™ — Per ton and a morphism
(h, k) to h.

Modeling X2 in this fibration gives the per-model described above. Since types and terms \vitle
variables are modeled in the fibre ovettypes are modeled as maper™” — Per andtermsy | z: o Ft: 7
are modeled as vertical maps, i.e., families of maps of the form

([@F2: ok t: 7)(R): N/[@ F o](R) — N/[@ - 7](R)) 5

with a uniform tracker.

2.2 Adding fixed points

The second-order lambda calculus is a strongly normalizing language, and so does not have very strong
computational power. To study a more expressive language we would like to add fixed points to the language,
but since parametricity should give encodings of sum types, one can show, using a general result from [14],
that adding fixed points to parametpig causes inconsistencies.

One way to deal with this problem is to think of the domain theoretic models. The category of cpos with
continuous maps has a fixed point combinator, and is cartesian closed. It does not have coproducts, but
the category of cpos with strict continuous maps does. Based on this observation, Gordon [Plotkinh [28, 27]
suggested to study a polymorphic calculus in which one could distinguish between strict and non-strict
maps. The encoding of sum types using parametricity would then work in the category of strict maps.

Gordon Plotkin also realized that in this language the encoding of inductive and coinductive types using
parametricity could be generalized to an encoding of recursive types, such as types satistyjig— A],

where the isomorphism is in the category of strict maps. This means that this language can be considered an
alternative approach to axiomatic domain theory, where the mentioned encoding of recursive types replaces
the well-known limit-colimit construction.

We now sketch the language suggested by Plotkin. The language is calleg Bid_is an extension of
DILL [3] with polymorphism and a fixed point combinator.

The grammar for types of PILk is
ocu=al|l|lo®c|o—ool|lo|]]ao

whereq ranges over an infinite set of type variables. The type construetgives linear function types.
The grammar for terms is

t = x| x|Y | XNzrot|tt|t®t|lt] Aa: Type.t|t(o) |
letx: c®@y: Thetint|letlz: o betint |let x betint.

Terms of PILL- are written as
Q| T1: 01, Ty Oy YL Tl e ey Ym: Tm E L0 w.

Thea’'s are type variables as iy, thez;’s are intuitionistic variables and thg’s are linear variables which
can only occur linearly in. The A-abstractiom\°z: . ¢ produces terms of linear function type— =, and
since linear variables of tyde behave as intuitionistic variables of typewe may define a type of ordinary
functionsc — 7 =lo — 7. The fixed point combinatdr” has type[[a: Type. (o — o) — a.

The encoding of inductive and coinductive data types in Rili& different from that of\,. For example
the type of natural numbers can be encoded as

[[a. (@ —a) = (o — a).

6

For further details on PILL: we refer to Paper 2.

We derive the notion of models of PlkLfrom the models of DILL[[3, 1/7]. A model of DILL is a symmetric
monoidal adjunction

C<_ 1 =D
such thatC is symmetric monoidal closedl is cartesian, antd is the category of finite products of coalge-

bras for the comonad o@i induced by the adjunction (see Paper 3 for an explanation of these concepts).
A PILLy-model is a fibred symmetric monoidal adjunction

(basically a family of symmetric monoidal adjunctions between fibre categories, with all structure com-
muting with reindexing) such th&t is fibored symmetric monoidal closef), is fibred cartesian, ang is

the category of finite products of coalgebras for the comona@ oxuced by the adjunction. We further
require thatB is cartesian, and that the fibrati@h— B has a generic object, ovérin B say, and simple
products with respect to projectioisx (2 — = for = € B. Finally, we require that there is a term modeling
the fixed point combinator.

The language PILL: is modeled in the fibratio® — B using the fibred symmetric monoidal structure to
model®, —o, I. The type constructdris modeled by the fibred comondd= onC — B. Polymorphism is
modeled using the simple product as was the casg.foA term

|70t
is modeled as a vertical morphism

[1]: (QFGEF o) @ (QIEF o)) — [EF 7]
i J

in C.
The reader may be wondering why a Pitdmodel is an adjunction and not just a fibred comonad satisfying

certain conditions. Of course we might as well have given the definition this way, but we like to keep the
category of finite products of algebras for the comonad in the picture for the following reason.

Suppose
Elda -kt

is aterm. Thert is modeled as a map
[t]: @ FGIEF o] — [EF 7]

One can prove that for any symmetric monoidal adjunction the left adjoint is strond;'{4),® F(B) =
F(A x B), and so using the adjunctidn 4 G, [t] corresponds to a map

—

Itl: 1L, GIE+F 0i] — G[E+ 7].

in D. Thus, the fibratio® — B models the part of the calculus consisting of terms with purely intuitionistic
variable contexts.

3 Models of Parametric Polymorphism

Having seen what models of polymorphism are, a natural question to ask is “What does it mean-for a
fibration or a PILLy-model to modeparametricpolymorphism?”. This dissertation proposes an answer to
this question, but before presenting it we discuss what a good notion of parametric model should be.

General requirement. A good notion of parametricity for models of polymorphism should be such that all
parametric models satisfy the consequences of parametricity described in Sectjon$ 1.1,1.2. This means that
we should be able to prove correctness of the encoding of inductive / coinductive types and data abstraction
results.

Recall the example of thi-type
Nat = [[a: Type. (@ — a) — (@ — «)

from Sectioff 1.1. The interpretation of this type inafibration modeling parametric polymorphism should

be a type of natural numbers, which in the language of category theory means that it should be a natural
numbers object. Since terms are interpreted as maps in the fibre categories\gffithration, the inter-
pretation ofNat should be a natural numbers object in the fibres. For)anfjbration one can prove that

[@ F Nat] =!%.[— - Nat] wherelg» : Q" — 1 is the unique map into the terminal object of the base cate-
gory. We require that for each object in the base categofy[— + Nat] is a natural numbers object in the

fibre over=. Notice that the family!X[— - Nat])= is closed under reindexing.

In general — since the category theoretic correspondent to inductive types is initial algebras — the inter-
pretations of the encodings of inductive types should induce families of initial algebras in any parametric
Ao-fibration. Likewise the interpretation of coinductive types should induce families of final coalgebras. In
parametric models of PILi- the interpretations of the encodings of recursive types should produce solutions
to recursive domain equations in the model.

To my knowledge no definitive categorical formulation of data abstraction has emerged. One approach is
to ask for the existence of a logic to reason about the internal language of the model, in which one can
formulate data abstraction properties. Another approach is to require existential types to exist in the fibres
of the model, in which case this requirement resembles that of inductive and coinductive data types. In this
dissertation | have focused on the requirements for encoding of data types.

3.1 Models of Abadi & Plotkin’s logic

Our notion of parametricity for models of polymorphism will be based on relational parametricity. As
mentioned, to formulate relational parametricity one must specify what is meant by relations. Some models
may be parametric with respect to one notion of relations but not with respect to other (as is the case for the
domain theoretic model of Paper 2).

Many models considered in the literature (such as the per-model) exist inside an ambient set theory (such
as the internal language of a topos) and thus have a natural notion of relations available. In such cases a
natural definition of parametric model is obtained by formulating the parametricity schema in the set theory
available. Basically, having modeled the parametricity schema in the ambient logic, one should be able to
do the proofs as presented in Abadi & Plotkin’s logic (or variants of it) in the ambient logic and use this to
prove correctness of the encoding of data types of Sectipn 1.1.

Often, however, only a subset of the relations available in the set theory is used in the formulation of
parametricity. Examples includé T- closed relations as in_[25] 5] and relations given by subdomains
as in [35].

Generalizing the cases mentioned above, in this dissertation a parametric magdetiifbe a model of
Abadi & Plotkin’s logic for parametricity satisfying the parametricity schema.

The interest in working out the details of such a definition is two-fold. First, we will be able to unify the
proofs of consequences of parametricity worked out in specific models (such/as [35, 5]). These consequences
should not be worked out in each specific model, but be consequences of the parametric structure on the
model, proved once and for all. We should also be able to use these results on models obtained from
parametric completion [33]. To my knowledge the proofs of correctness of encoding of data types for these
in general do not exist in the literature.

Second, we should be able to identify what exactly is needed to model the logic for parametricity and
reasoning with it. For example, models of Abadi & Plotkin’s logic often come from some ambient logic of

a model, but exactly how close to set theory does this logic have to be? It has also been unclear whether
parametricity only implied correctness of encoding of data types for well-pointed models [7] (the answer is
negative). Finally, as mentioned, some models use only a subset of the relations available in the logic when
reasoning about parametricity. What exactly is required for such a subset to be usable for reasoning about
parametricity?

4 Contributions of this dissertation

In this section we list the main contributions of this dissertation. The discussion here will be a bit more
precise than the text above, but still the results will not always be described in full detail, and so we refer to
the full papers.

4.1 Abadi & Plotkin’s logic

As said, we define models of parametric polymorphism to be models of Abadi & Plotkin’s logic for para-
metricity. Before discussing the models however, we sketch Abadi & Plotkin’s logic. A full description of
the logic can be found in Paper 1.

Abadi & Plotkin’s logic is a logic for reasoning about parametricity fgr We need to be able to formulate
propositions quantifying over types and terms\inand relations on types ih,. Therefore propositions
of the logic live in contexts of free type variables, free ordinary variables and free relational variables. We
write

alxy:on,...,xn: on | Ri: RellTy, 7),..., Ry Rel(Ty,, 7)) F ¢: Prop.

The vectord is a vector of type variables and eaehy7;, 7} is a type of), with free variables inv. The
x;'s are the free variables and tifg’s are the free relational variables. Atomic propositions can be formed
using equality: ift, u are terms of\, of typew in the context

alxy:o1,...,Tp: oy

thent =, u is a proposition.

In the logic, we also have a notion of definable relations. Any relaiignRel(7;, 77) in the context is a
definable relation. I is a proposition in the logic with free variables o,y: 7 then we can form the
relation(z: o,y: 7). ¢: Rel(o, 7). As an example, we mention the equality relatiap on a types defined

by

(x:0,y:0).2=4y.

If p: Rel(o, 7) is a definable relation and o, u: T are terms, thep(¢, u) is a proposition. In particular, if
R;: Rel(r;, 7}) is a relation in the context, andu are terms of type;, 7; respectively ther; (¢, u) is a
proposition.

Further constructions in the logic include the constructions of propositional logic and quantification over
type variables, ordinary variables and relational variables.

Finally, there is arelational interpretationof types: If o(&@) is a type withn free type variables and
p1: Rel(ri,77), ...pn: Rel(r,, 7)) are definable relations, therip, ... p,]: Rel(o(7), (7)) is a defin-
able relation.

The relational interpretation of types is used to formulate relational parametricity (as Reynolds did) as the
identity extension schenstating thatr[eq;] is the equality relation oa(&). The intuition is that for any

type of the form[[. o (let us assume that this type is closed) and any elemefthat type(z, x) is in

the relational interpretation gf] «. o, which by axioms of the logic should be equivalent to requiring that

Va, B: Type.VR: Rella, B). o[R](z(a), z(5)).

In words, for all pairs of typesa, 8 and all relations between the®: Rel(«, 5) the a- and3-components
of x are related in the relational interpretationoof

The definition of the relational interpretation of types differs from the original presentation of the logic [29],
whereq[p] is defined by induction over the structureaf What we require is basically a relational inter-
pretation of all type constants in the language as well. Suppose for instance that some type construction
between pairs of types is addedXe. To talk about parametricity for the new language, we should add a
relational interpretation of, i.e., for each pair of relationg8: Rel(o, o), S: Rel(r,7") we must define the
relationR¢ S: Rel(oc o7, 0’ o7'). This means that we may reason about parametricity at types formed using
also these type constructors.

The inductive definition of the relational interpretation of types of [29] is captured in axioms of the logic.

The correctness of the encodings of data types can be expressed in Abadi & Plotkin’s logic, and can be
proved to follow from parametricity. This was stated in theorems in [29], but the proofs were not included
in the paper. Some arguments of this sort appear in [39] and some proofs are written out for a specific model
in [12]. However, even with these references at hand, the proofs are non-trivial to construct, and so we have
included them in this dissertation.

4.2 APL-structures

An APL-structure is a model of Abadi & Plotkin’s logic. To define the notion of APL-structure we first
define a notion of pre-APL-structure. gke-APL-structurds a diagram

Prop

|

Type L. Ctx

N

Kind

whereType — Kind is a A,-fibration (the model we reason about) ahds a fibred faithful product-
preserving inclusion offype into a larger category containing for each pair of objects of the same

10

fibre of Type an objectl (o, 7) of all relations between, 7. Prop — Ctx is a logic fibration in which
we interpret the formulas of Abadi & Plotkin’s logic. dtx we can model the full contexts of propositions

as
lee | z1: 01, .. xn: on | Ri: Rel(Ty,7]),..., Ry Rel(Tm, 7)) =

[L; I(loal) < I1; U([75]; [750)

using the inclusion/ and modeling Rét;, 7/) as the object of all relations from to 7/ in Ctx. The
products in this definition are the products of the fibre category.

From a pre-APL-structure we can defingafibration of relations denoted
Relations — RelCtx.

Basically the objects of each fibre are relations, and\thstructure is defined using the same constructions
that give the inductive definition of relational interpretation of types_in [29]. For example, for relations
p: Rel(o,), p': Rel(o’, 7") the relationp — p’ is defined as the relation

(fro—dg:7— 7). Veioy: 7.p(z,y) Do (f(2), 9(y)).

There exists a pair of maps af-fibrations

Relations Type
o
01

RelCtx Kind

mapping a relation to its domain and codomain respectively. An APL-structure is a pre-APL-structure such
that there is a map ofy-fibrationsJ going the other way satisfying, c J = 91 o J = id. The functorJ
models the relational interpretation of types.

We show that the interpretation of Abadi & Plotkin’s logic in an APL-structure is sound. Moreover, the
class of APL-structures is complete with respect to Abadi & Plotkin’s logic, i.e., any sentence of Abadi &
Plotkin’s logic that holds in all APL-structures is provable in the logic.

We can reason about APL-structures using Abadi & Plotkin’s logic. Thus, if the parametricity schema
holds in the internal logic of the APL-structure, we can prove correctness of the encoding of inductive and
coinductive types in the internal logic. However, to conclude from the statement in the internal logic to the
structure of the fibres d'ype, we need to know that morphismsType that can be proved equal in the
internal logic of the APL-structure in fact are equal in the catedbBype. This property is a well-known
property of logic fibrations calledery strong equality

A key ingredient in the proofs isxtensionalityor functions and polymorphic elements, i.e. the logical rules

Vr:o. f(x) =r g(x) D f =o—r g
Va: Type.ta =; ua Dt =[] q.5 U-

We thus define parametric APL-structuréo be an APL-structure with very strong equality in which para-
metricity and extensionality holds in the internal language.

The main theorem of APL-structures states that they model inductive and coinductive types. Before we state
it, we should be more precise about what we mean by inductive types. First we introduce the distinction
betweerpure A, and)\, calculi in general. Pur@s has no extra type or term constants. We may also talk

11

about),-calculi in general. These have added type and term constants, and include for example the internal
language of a\,-fibration.

A type o F o(«) defined in pure\s in which a occurs only positively (see for example Paper 1 or [29])
induces a functor in the sense that there exists a term

M: [Ta,B: Type.(a — B) — (o(a) — o(B))

preserving identities and composition. The interpretationsafid A/ induce a fibred functor

Type Type

~

Kind

and we shall be interested in initial algebras and final coalgebras for the restrictions of this functor to the
fibres of Type — Kind.

In general we define polymorphically strondibred functor to be a functor with a corresponding typend
term M existingin the modebut not necessarily in pur®,. This is clearly a generalization of the above
construction.

The main theorem is the following.

Theorem 4.1. Every polymorphically strong fibred functor has families of initial algebras and final coal-
gebras, i.e., there exists a family of initial algebras / final coalgebras for each restriction of the functor to a
fibre overKind and these families are closed under reindexing along map&iind.

For example, we can show that each fibre has coproducts and the initial algebra corresponding to the type
a F a+1is anatural numbers object. This natural numbers object is the interpretafipnofe — o) —
o — .

Thus the notion of parametric APL-structure gives a categorical notion of models of parametric polymor-
phism satisfying our requirements.

As an example of a model we consider a well-known parametric variant of the per-mbdel [2]. This model
has as types paifg’?, /) of maps such thaf?: Per™ — Per and for each vector

Ry: RE|(A1, Bl), . ,Rni REKAH, Bn),

of relations on pers . . B

fT(R): Rel(fP(A), f*(B)),
where by relationg: Rel(A, B) for persA, B we mean subsets 8f/A x N/B. We require thaf” applied
to a vector of equality relations gives an equality relation. We show that this model can be embedded into
a parametric APL-structure, such that Theofenj 4.1 applies. A variant of this construction in relative real-
izability [6] gives usnon-wellpointecharametric APL-structures (the fibresB§pe are not well-pointed).
This shows that well-pointedness is not necessary for correctness of the encodings of data types to hold.

It is also worth noticing that the construction of models of Abadi & Plotkin’s logic has proved consistency
of the logic.

I have not studied morphisms between APL-structures, since it is not clear to me why these could be inter-
esting. One weakness of APL-structures as models of Abadi & Plotkins logic, which would probably show
up when giving such a definition of morphisms, is that Abadi & Plotkin’s logic only gives notation for the

12

objects inCtx of the form (o) or U(o, 1) for o, T objects ofT'ype. Thus, there would not be a bijective
correspondence between maps between APL-structures and translations between the internal languages of
the APL-structures. However, this is of no concern to us as long as we are only interested in using the
APL-structure for reasoning about the includedfibration.

4.3 LAPL-structures

The language PIL}: was first sketched by Plotkin in [28] in which he also sketched a version of the logic
for parametricity for PILL-, and gave a rough sketch of a concrete parametric model ofyRILA this
dissertation we give a full presentation of the logic and a notion of LAPL-structures (Linear Abadi-Plotkin
Logic) which model the logic. We have also worked out the details of the concrete model.

As mentioned, many of the concrete parametric domain theoretic models we consider have a canonical logic,
but are only parametric with respect to a subset of the relations in the logic. To handle these cases, our logic
for parametricity will have to include a notion of admissible relations. For reasoning about parametricity
one needs a good supply of these relations, in particular graphs of linear functions should be admissible
relations. We state a number of rules that the set of admissible relations should be closed under.

Even though the language Pli:Lis combined linear and intuitionistic, the logic we present is purely intu-
itionistic, i.e., it only has intuitionistic variables. Expressions in the logic are written as

a|%:¢| R:Rell?,7),5: AdmRels, ') b ¢: Prop.
The propositiony can contain termssuch that
ald:a;—Ft:1

is a term of PILLy. The constructions in the logic are much as in the logic Xprexcept that we also
have admissible relations. We omit the details here, but mention that for &yyéth n free variables, the
relational interpretation[5] is only defined fors a vector of admissible relations.

As with the APL-structures, to define the notion of LAPL-structure, we must first define the notion of pre-
LAPL-structure. Roughly, a pre-LAPL-structure is a diagram

Prop

|

LinType Type L. Ctx

\\)J{

Kind
The left hand side of the diagram is the model of PiLthat we reason about. The functbis a fibred
product preserving faithful functor, and as usRabp — Ctx is a logic fibration andCtx contains objects
of relations for all pairs of types, 7 in the same fibre oLinType. A notion of admissible relations for
a pre-LAPL-structure is a family of subobjects of the objects of relatiorStir closed under the rules for
admissible relations in the logic.

From a pre-LAPL-structure with a notion of admissible relations, one can construct a model of PILL (it does
not necessarily model the fixed point combinatQr The model is denoted

LinAdmRelations 1 > AdmRelations
AdmRelCtx.

13

The objects ofLinAdmRelations are admissible relations, and the morphisms are pairs of strict mor-
phisms preserving relations.

As for the APL-structures there exists two majgso; of PILL-models out of the constructed PILL-model
mapping an admissible relation to its domain and codomain respectively. An LAPL-structure is a pre-LAPL-
structure such that there exists a map of PILL-modai®ing the other way satisfyingyoJ = 0;0J = id.

Again J gives a relational interpretation of types.

We show soundness of the interpretation of Abadi & Plotkin’s logic in LAPL-structures and we show a
completeness result as for APL-structures.

As in the case of APL-structures a parametric LAPL-structure should be an LAPL-structure with very strong
equality such that parametricity and extensionality holds in the internal logic.

We can define a notion of polymorphically strong fibred functor and show that these have initial algebras and
final coalgebras as we did with APL-structures, but as mentioned the new setting here should also enable us
to solve recursive domain equations.

Supposex - o is a type inpure PILLy. A solution to the recursive domain equation inducedsbig a

closed typer such that (7) is isomorphic tor. If o had all its occurrences of as positive, it would define

a functor, and the initial algebra as well as the final coalgebra would be solutions to the domain equation
o(t) =T.

We may split the occurrences afin o into positive and negative obtaining a types - o(«a, 3) such that

« occurs only negatively and only positively. Such a type induces a functor which is contravariant in the
first variable and covariant in the second, in the sense that there exists a term

M: e, o, 8,6 (o) —a) = (8 —) = (0(a,) — o (c, 7))

preserving composition and identities. Such a term induces a fibred functor

LinType®? Xkinq LinType LinType

T

Kind.

The categonLinType® xking LinType is the fibrewise product of the category obtained by taking
fibrewise opposite category dfinType andLinType. In general, such fibred functors gselymorphi-
cally strongif there exists a corresponding typeand term as above in the internal language of the model
(i.e. not necessarily in pure PlLl).

A solution to a domain equation induced by such a funétas a family (=)= indexed ovel= in Kind

closed under reindexing such thatr=, 7=) = 7=, i.e., a family of fixed points for the functor.

Theorem 4.2. For parametric LAPL-structures

e every polymorphically strong fibred endofunctorbinType — Kind has a family of initial alge-
bras and a family of final coalgebras.

e every polymorphically strong fibred functor

LinType®? Xkina LinType LinType

T

Kind
has a family of fixed points closed under reindexing.

14

The logical part of the proof of Theorém 4.2 was sketched by Plotkin in [28]. Our contribution has been to
write out the details and to show how this could be applied to LAPL-structures.

As mentioned, we also construct a concrete LAPL-structure based on the one sketched by Plotkin. This
model of PILLy involves admissible pers over a reflexive domain, i.e., a domain (a cpo with a least element
1) such tha{D — D] is a retract ofD. An admissible per is a partial equivalence relation which is closed
under lub’s of chains and which relatégo itself. The concrete model is then constructed as the parametric
variant of the per-model, where we only consider admissible pers.

4.4 Completion Processes

Recall from Sectiop|2 that even though no classical set theoretic models of polymorphism exist, set theoretic
models of polymorphism might still exist in intuitionistic set theories. The examples we have in mind are
internal cartesian closed subcategofiem quasi-toposes. I is sufficiently complete, we can construct a
model of Ay in which types withn free variables are modeled as morphisms

Ci — Co

in the topos, wher€ is the object of objects fo€ (i.e. the model is the externalization @f). We call
such internal categories interngl-models.

In this dissertation we show how the ambient set theory of the model gives rise to a canonical pre-APL-
structure corresponding to the interpretation of Abadi & Plotkin’s logic in the internal logic of the quasi-
topos.

For this restricted class of modelsof there exists a parametric completion process constructing parametric
models based on the original model. This process was originally described in [33]. Our contribution has
been to show that this process can be extended to construct parametric APL-structures.

The completion process described[inl[33] goes as follows: Since the quasiHapodels an intuitionistic

set theory, we may construct an internal catedaR/(C) whose objects are logical relations on object€of

from the quasi-topos, and whose morphisms are pairs of morphis@graserving relations (i.e. mapping

related elements to related elements). There exists a diagram of internal functors in the quasi-topos
LR(C)=——C

—_—

mapping a relation to its domain and codomain respectively, and mapping an obf8dibathe identity
relation on the same object. This graph is reflexive, meaning that the two compositions starting and ending
in C are the identity.

The diagramLR(C) =<— C makes up an internal category in the quasi-topos of reflexive gragBs in

We denote this quasi-topos Bf*. We can now apply the construction above to this internal category and
obtain a\y-fibration.

We can describe this model more explicitly. A type in the parametrically completed modehite
variables is a type in the original model C;j — C, plus a mapp that takesn-vectors of relations
(R1: Rel(Ay, By), ..., Ry: Rel(A,, By,)) and produces a new relation

— -,

p(R): Rello(4),(B))

such thap(eqy,,...,eqqa,) = €d, () Terms are terms in the old model preserving relations.

A type in the parametrically completed model has a built-in relational interpretatjo8ifice this relational
interpretation satisfies identity extension, the model should be parametric.

15

In this dissertation, we show that the parametric completion process produces models that fit into a para-
metric APL-structure. This provides formal proofs of the correctness of the encodings of inductive and
coinductive types in these models. This result is of course expected, but to our knowledge it has not been
formally proved before in this generality. The APL-structure is also interesting, because we clarify with
respect to which logic the completed category is parametric. The parametrically completed model is not
parametric with respect to the internal logic of the quasi-tdgfosbut with respect to a related logic corre-
sponding to the internal logic .

The concrete APL-structure mentioned in Secfior} 4.2 arises as the result of a completion process, when
considering the category of pers as an internal category in the category of assemblies. Since the category
of assemblies is a quasi-topos, this provides the motivation for using quasi-toposes instead of toposes. Of
course, the category of pers is also an internal category in the effective topos, but this viewpoint gives a
different logic.

We also construct a parametric completion process for LAPL-structures. First we describe which kind
of data is needed for an internal model of PiLIlto give rise to an LAPL-structure as above. Next we
describe the parametric completion process. This is basically the same as for APL-structures, but still some
constructions in this process are new and so the construction is non-trivial.

The parametric LAPL-structure mentioned in Secfion 4.3 can be seen as a result of the parametric completion
process for LAPL-structures.

4.5 An LAPL-structure from Synthetic Domain Theory

In recent work[[35] Alex Simpson and Pino Rosolini have studied a language which we shall cgll.Lily

This language is basically PILwith linear functions replaced by strict functions. Ldly, is equipped with

two operational semantics: a call-by-name semantics and a call-by-value semantics (with these operational
semantics, Lily;.; is simply Lily [5] with linearity replaced by strictness).

Simpson and Rosolini give an interpretation of this language using Synthetic Domain Theory (SDT), and
prove this interpretation to be adequate with respect to the two notions of contextual equivalence obtained
from each of the operational semantics. Using this they show that the two contextual equivalence relations
coincide. Since Lily,;; and Lily are almost the same language, this result was basically proved in [5] using
operational tools.

The interpretation lives inside an intuitionistic set theory. The construction resembles that of the paramet-
ric completion process, and so all types in the interpretation are equipped with a relational interpretation
satisfying an identity extension condition. Thus the interpretation is parametric with respect to the interpre-
tation of parametricity in the ambient set theory and we would expect that the encoding of the inductive and
coinductive data types is correct, but[35] does not formally prove this.

We construct a parametric LAPL-structure based on the interpretation Qf;Lilysing SDT. Since linear
functions are strict we may translate PHlinto Lily i, and up to this translation, the interpretation of
PILLy in the parametric LAPL-structure we construct agrees with the interpretation QfLilgiven by
Simpson and Rosolini.

The construction of this LAPL-structure serves two purposes: first it helps to show that the notion of LAPL-
structures is general enough to handle different types of models. In this case, it strengthens the idea that
parametric PILL- is a good language for domain theoretic models of parametric polymorphism. Second,
using adequacy of the interpretation of L}y, we can use the parametric model to show consequences

of parametricity (i.e. correctness of the encodings of data types) ig,|.lup to operational equivalence.

16

This is very much in the spirit of Simpson and Rosolini’s proof of coincidence of the contextual equivalence
relations using the adequate interpretation [35].

5 Related Work

In this section we focus on three related directions of research, Ma & Reynold’s categorical definition
of parametricity, Dunphy’s parametricity graphs and the work on consequences of parametricity for the
programming language Lily by Bierman Pitts and Russo. Finally, we sketch some of the other directions of
research related to parametricity.

5.1 Ma & Reynolds notion of parametricity

QingMing Ma and John Reynolds [30] have proposed a category-theoretic definition of parametricity for
models of\; [16]. The definition can basically be restated as follows: SupfioseB is a\ fibration, and
suppose we are given a logic fibratibn— E; on the fibre off over the terminal object (this is the category

of closedtypes).

Ma & Reynolds defindl — B to be parametric if there exists a reflexive graphgfibrations

E F
B C

(i.e. a graph, where the two compositions starting at- B are the identity) whose restriction to the fibres
over the terminal objects is isomorphic to

LR(E|) =—E,

whereLR(E,) is a category of relations di; formed using the logi® — E; and the morphisms map a
relation to its domain and codomain respectively and a closed type to the equality relation on that type.

An APL-structure is parametric in the sense of Ma & Reynolds, since the fibrRiédations — RelCtx

can play the role o — C, and in general the intuition of the reflexive graph)atfibrations is that the
fibrationF — C is a fibration of relations. But since this is only formulated for the closed types, we cannot
use it to prove consequences of parametricity for open types. See Paper 1 for a further discussion of the
relation to Ma & Reynolds definition.

5.2 Parametricity graphs

In arecent PhD dissertation Brian Dunphyi[7, 8] together with his adviser Uday Reddy, has studied a class of
models of polymorphism based on reflexive graphs of categc(Elgs;E)> G, . Under certain conditions

on such a reflexive graph one can build a model of polymorphism where types:\fi¢le variables are
modeled as pairs of functors making the diagram

|Ge’n4>Ge

ol

‘GV|n4>Gv

17

commute, wheréG,, | denotes the discrete category on the object&ef Dunphy states conditions under
which the categoryz, can be considered a category of relationg@g|. Reflexive graphs satisfying these
conditions are calleparametricity graphsand correctness of the encoding of data types can be shown for
these using a logic resembling a logic called System R [1] for reasoning about parametricity.

One technical issue worth mentioning is that Dunphy can only in general prove correctness of the encoding
of data types fowell-pointedparametricity graphs. Dunphy even gives an example of a non-wellpointed
parametricity graphs in which the encodings are not correct. Since we give an example of a non-wellpointed
parametric APL-structure, we show that parametricity is in fact useful in a setting without well-pointedness.

The main difference between Dunphy’s work and this dissertation is that Dunphy does not give a general
notion of parametricity for\o-fibrations. He only considers models given by reflexive graphs. So, for
example the question of whether the standard per-model (as described in §egtion 2.1) is parametric does
not make sense in Dunphy’s setting. In this sense APL-structures may be more general than parametricity
graphs. It should be mentioned that tp@rametricmodels considered in this dissertation all come from
reflexive graphs and so are probably all parametricity graphs. But, as mentioned, some of these models
are not well-pointed and so cannot be shown to satisfy consequences of parametricity using the tools of
parametricity graphs, but only using the tools of APL-structures.

On the other hand, parametricity graphs model a logic that is different from Abadi & Plotkin’s logic and so
may incorporate some models that cannot fit into an APL-structure.

Finally, we mention that Dunphy also considers models of predicative polymorphism, which is not covered
in this dissertation. It should however be easy to find a variant of the definition of APL-structures that would

handle predicative polymorphism. However, most of our arguments for correctness of encoding of inductive
and coinductive types use impredicativity, and so Dunphy’s proofs would have to be adopted for this to work
out.

In his dissertation Dunphy also considers parametricity graphs modeling FIké& languages.
Claudio Hermida and Robert Tennent study a related framework of parametric models in [13].

5.3 Parametricity in operational semantics

Parametric polymorphism has also been used in a more syntactic setting by Andrew PRitis in [25] and by
Gavin Bierman, Andrew Pitts and Claudio Russd_in [5] to prove properties of programming languages with
operational semantics up to contextual equivalence.! In [5] for example, the language Lily which is basically
PILLy equipped with two operational semantics: a call-by-name and a call-by-value operational semantics
is considered. For each of these operational semantics a notion of contextual equivalence is defined by
observing termination at types of the folm Using operational methods the two notions of equivalence

are shown to coincide.

Because there is a set of closed terms of Lily, one can use set theoretic relations to reason aboutithem. In [5]
a particular subset of these relations called-closed relations are used to reason about these terms, and

it is shown that up to contextual equivalence Lily is parametric with respectiteclosed relations. This
parametricity result is then used to show correctness of an encoding of coproducts for closed types of Lily
up to contextual equivalence.

It would be interesting to see if the language Lily with terms considered up to contextual equivalence gives
rise to a parametric LAPL-structure. To show this, we need to checKTthatelations give a notion of
admissible relations as defined in this dissertation. We do believe this is the case, and it is on the schedule
for future work.

18

Showing that Lily gives rise to an LAPL-structure would formally prove that the encodings of inductive,
coinductive and recursive types are correct. In fact we have almost done this already, as we have shown a
similar result for Lily,., using the LAPL-structure obtained from SDT (see Sedtioh 4.5).

5.4 More related research

Ryu Hasegawa has studied a specific family of models for polymorphism and shown that for these para-
metricity of encoding of inductive and coinductive types is equivalent to correctness of these encodings
[12]. The proofs in[[12] inspired some of the proofs of the consequences of parametricity used in this
dissertation. Ryu Hasegawa is also working on a model of a polymorphic linear type theory [11].

Parametric polymorphism has also been used to model local variables [22, 21]. The idea is to use para-
metricity to hide local variables from called procedures, the same way parametricity can be used to hide
information about specific implementations of data types.[In [22] models of an Algol-like language are
given using reflexive graphs and it is shown how these models model hiding of local variables using para-
metricity. In [21] two versions of Algol are translated into a predicative version of polymorphic linear
lambda-calculus (basically a predicative version of BH.LModels of polymorphic linear lambda calculus

can then give models of the Algol-like languages. The idea behind using linearity is that it can be used
to rule out nonimperative behavior in the model such as functions restoring the old state after running an
expression with side effects, since this requires copying the old state before running the expression. Many
of the same ideas are used|inl[23] to construct fully abstract translations of PCF and an idealized version of
Algol into a language with parametric polymorphism.

Other logics for reasoning about parametricity exist. Before Abadi & Plotkin’s logic appeared a different
logic had been proposed!|[1]. As mentioned Dunphy and Relddy [7, 8] use a variant of this logic. Izumi
Takeuti has constructed a variant of Abadi & Plotkin’s logic, in which one can also discuss other arities of
parametricity (such as unary parametricity involving predicates instead of relations).

Ivar Rummelhoff[[36] has studied the encoding of natural numbers in per-models over different PCA's, and
showed that in some of these models, the encoding contains more than natural numbers. So these models
cannot be parametric. Even though he does not mention it, this shows that unary parametricity is different
from binary (relational) parametricity, since one can easily show that the encoding of the natural numbers
in any per-model is unary parametric. Other studies of parametric polymorphism for per-models include
[34,Q].

Philip Wadler [40] presents a viewpoint, where the abstraction property of [30] corresponds to the existence
of a map mapping terms of second-order lambda calculus to expressions in a logic. On the other hand, a
representation result of Girard’s corresponds to a map going the other way.

6 Structure of the dissertation
This dissertation consists of five papers. Here follows a description of each paper.

Paper 1: L. Birkedal and R. E. Mggelberg. Categorical models of Abadi-Plotkin’s logic for parametricity.
Mathematical Structures in Computer Scien2@05. To Appear (Accepted for publication).

We give a detailed description of Abadi & Plotkin’s logic for parametricity, the definition of APL-
structures and the interpretation of the logic in these. This is followed by proofs of soundness and

19

completeness for the interpretation. We define parametric APL-structures and proceed to show The-
orem[4.] above. This involves proving the logical versions of these results as stated in [29]. We
compare our notion of parametricity to that of Ma & Reynolds [16]. The parametric completion pro-
cess is described for APL-structures and in connection with this we discuss parametricity for internal
models of), in quasi-toposes.

Paper 2: L. Birkedal, R. E. Mggelberg, and R. L. Petersen. Parametric domain-theoretic models of linear
Abadi & Plotkin logic. Technical Report TR-2005-57, IT University of Copenhagen, February 2005.

In this article we describe the language PiLhAnd the variant of Abadi & Plotkin’s logic used for it.

We show how to reason in this logic and in particular we prove correctness of encoding of inductive,
coinductive and recursive data types in the logic. As in the first article, we define LAPL-structures,
show how to interpret the logic in these and show that the interpretation is sound and complete. Para-
metric LAPL-structures are introduced, and we show how to use the logical proofs of the correctness
of the encoding of data types to solve recursive domain equations in parametric LAPL-structures
(Theorenj 4.p). Finally we construct the parametric domain theoretic per-model, show that it fits into
a natural parametric LAPL-structure and describe the interpretation of the encoding of the natural
numbers in this.

Paper 3: R. E. Mggelberg, L. Birkedal, and R. L. Petersen. Categorical models of PILL. Technical Report
TR-2005-58, IT University of Copenhagen, February 2005.

This paper contains mostly well-known material on models of PILL, based on in particular [3, 4, 10,
17,18/19]. Since none of the above mentioned present all the material needed for this dissertation, we
have included an exposition of the theory. The material covered includes the 2-category of symmetric
monoidal categories, linear categories, models of LNL and DILL, and a fibrational account of these
concepts ending with models of PILL and PH:L

Paper 4: R. E. Mggelberg, L. Birkedal, and G. Rosolini. Synthetic domain theory and models of linear
Abadi & Plotkin logic. Technical Report TR-2005-59, IT University of Copenhagen, February 2005.

Here we present the LAPL-structure constructed from synthetic domain theory and use it to show con-
sequences of parametricity for the operational semantics og,|.jlyFor readability we have included

a full description of the setup of synthetic domain theory as presentedlin [35], the languagg,Lily
and a formulation of the adequacy result for the interpretation of.jlyas shown by Simpson and
Rosolini. The presentation of the setup of synthetic domain theory follows the presentafioh in [35]
closely.

Paper 5: R. E. Mggelberg. Parametric completion for models of polymorphic intuitionistic / linear lambda
calculus. Technical Report TR-2005-60, IT University of Copenhagen, February 2005.

The main result of this article is the description of the parametric completion process for LAPL-
structures. Before this however, we review some theory of internal categories including internal fibra-
tions and internal linear categories. We define a notion of internal yitlodel in a quasi-topos, and
show that the externalization of an internal Pitimodel gives rise to an LAPL-structure.

Dependencies are as follows. It is not necessary to read Paper 1 before Paper 2, except that Paper 2 uses a
few definitions of Appendix A in Paper 1, but, for readers unfamiliar with parametricity, it may be helpful

to start with Paper 1, since the proofs of consequences of parametricity given in Paper 2 are slightly more
sophisticated than the ones in Paper 1 due to the use of linearity.

20

The material in Paper 2 depends on Paper 3, but since we think of the latter as a (long) appendix to Paper 2,
we have placed it after Paper 2. Paper 3 can be read independently of all other papers in this dissertation.
Paper 4 and Paper 5 can be read independently of each other, but they both depend on Paper 2.

7 Conclusion

We have introduced a notion of parametric APL structures which can be taken as definition of parametric
models of second-ordercalculus. These structures can be shown to have initial algebras and final coalge-
bras for a large class of fibred endofunctors, which means that parametric APL-structures give a good notion
of parametric models as discussed in Segtion 3.

Likewise we have defined a notion of parametric LAPL-structures. These give a good notion of domain
theoretic models of parametric polymorphism, since we can solve recursive domain equations in LAPL-
structures, as we would expect to be able to in parametric domain theoretic models.

The definition of APL-structure ask for quite a lot of structure — besides\thdibration in question we

ask for another fibration with a fibration on top, etc. But in the concrete case providing such extra structure
to show that a\o-fibration is parametric just corresponds to answering the question “with respect to which
logic is the model parametric”.

This becomes even more apparent in the case of LAPL-structures. Concrete models considered in the
literature, have often been parametric with respect to some logic, and a relational interpretation of types
defined only on a subset of the relations of the logic: the ones we call admissible. Providing a full parametric
LAPL-structure to a model corresponds to answering the question “with respect to which logic and which
set of admissible relations is the model parametric?”.

In both cases the APL- and LAPL-structures provide a check-list for what kind of structure is needed to
reason about parametricity. In particular, for the LAPL-structures, we have a set of axioms that a notion of
admissible relations should satisfy for it to be strong enough for reasoning about parametricity.

We have shown that parametric APL- and LAPL-structures provide a general and usable framework by
showing that very different parametric models known from the literature are of this form. These involve
parametric versions of per-models, and a family of models constructed using synthetic domain theory. We
even have a very general way of constructing these models, namely using parametric completion processes.

Of the models presented in this dissertation, most were known as models of polymorphism, but for most
of them, the correctness of the encodings of data types had not been shown formally. These proofs are
presented in all details in this dissertation.

Another contribution of this dissertation is to sort out the details of the PtMersion of Abadi & Plotkin’s
logic. In fact, for both versions of the logic considered here, we have worked out the details of models for
them, thereby showing them to be consistent.

This dissertation has also provided detailed proofs of theorems that have been known to the community for
long, but whose proofs have never appeared in print. These proofs are the proofs of correctness of encoding
of initial algebras, final coalgebras and recursive types. These proofs are non-trivial, and it is my hope that
making the details available will contribute to the accessibility of parametricity as a research area.

21

7.1 Future work

As said, we have provided a couple of very different parametric LAPL-structures showing that the notion
is quite general. It would be interesting to see if Lily with terms identified up to contextual equivalence
and T T-closed relations as admissible relations gives rise to a parametric LAPL-structure. This would
imply that the correctness of the encodings of inductive and coinductive data types as sketched in [5] would
be consequences of the same results for parametric LAPL-structures in a more direct way than the results
proved in this dissertation using the SDT-model. This work is already under way.

We have shown how parametric polymorphism allows us to encode certain types with the right category
theoretic properties. Parametricity also gives us reasoning principles for these types, but it is unclear whether
these are the principles one will want to use in practice for reasoning about the language. In particular, for the
LAPL-structures the reasoning principles only apply to admissible relations, which may not be a sufficiently
large class of relations.

This dissertation is an abstract study of parametricity, and it would be interesting to show that these results
can be used in the theory of programming languages in general. In this dissertation we have only once
applied the abstract theory to show results about a programming language with an operational semantics,
namely for the parametricity results for Lily.; up to operational equivalence. Can we use these models to
show for example data abstraction results for real programming languages? How does our work relate to
that of O’'Hearn, Reynolds and Tennentl[22, 21, 23] as briefly mentioned in Sgctjon 5.4.

The second-order lambda-calculus is a programming language (or an equational theory) suitable for studying
parametricity, since it has few constructions. The language Plhaving fixed points is closer to a “real

life” programming language. To be able to apply the theory of parametric polymorphism to programming
languages used in practice, it needs to be studied in connection with effects.

Finally | do not think that the concept of parametricity is fully understood at this point. Parametric models
contain less “junk” than other models at polymorphic types, so parametricity seems to provide a way of
constructing better models. But how good are these models, and what are the connections to other good
properties of models such as adequacy, universality and full abstraction? Not much work has been done in
that area,[[38] is an exception.

References

[1] Martin Abadi, Luca Cardelli, and Pierre-Louis Curien. Formal parametric polymorpHiteoretical
Computer Sciencd 21(1-2):9-58, December 1993. 5.2 5.4

[2] E.S. Bainbridge, P.J. Freyd, A. Scedrov, and P.J. Scott. Functorial polymorphiseeretical Com-
puter Science70:35-64, 1990 4|2

[3] A. Barber. Linear Type Theories, Semantics and Action Calc&hD thesis, Edinburgh University,
1997.[2.2(b

[4] P.N. Benton. A mixed linear and non-linear logic: Proofs, terms and models (preliminary report).
Technical report, University of Cambridge, 1995. 6

[5] G. M. Bierman, A. M. Pitts, and C. V. Russo. Operational properties of Lily, a polymorphic lin-
ear lambda calculus with recursion. Fourth International Workshop on Higher Order Operational
Techniques in Semantics, Mogdl, volume 41 ofElectronic Notes in Theoretical Computer Science

Elsevier, September 2000. B.1,]4.5)5.3] 7.1

22

[6] Lars Birkedal and Jaap van Oosten. Relative and modified relative realizafitity.Pure Appl. Logic
118(1-2):115-132, 2002. 4.2

[7] B.P. Dunphy.Parametricity as a notion of uniformity in reflexive grapihD thesis, 2004[3., 5.2,
5.4

[8] Brian Dunphy and Uday S. Reddy. Parametric limitsPhoceedings of the 19th IEEE Symposium on
Logic in Computer Science (LICS-04pages 242-251, 2004. 5 2,/5.4

[9] P.J. Freyd, E.P. Robinson, and G. Rosolini. Dinaturality for free. In M. P. Fourman, P.T. Johnstone,
and A. M. Pitts, editorsApplications of Categories in Computer Science. Proceedings of the LMS
Symposium, Durham 199%olume 177 ofLondon Mathematical Society Lecture Note Serneges
107-118. Cambridge University Press, 1991.] 5.4

[10] Masahito Hasegawa. Categorical glueing and logical predicates for models of linear logic[]1999. 6
[11] R. Hasegawa. The theory of twiners and linear parametrifity. 5.4

[12] R. Hasegawa. Categorical data types in parametric polymorpi&athematical Structures in Com-
puter Science4:71-109, 1994[4.[, 5.4

[13] C. Hermida and R.D. Tennent. A fibrational framework for possible-world semantics of algol-like
languages. 2004. §.2

[14] H. Huwig and A. Poig@. A note on inconsistencies caused by fixpoints in a cartesian closed category.
Theoretical Computer Sciencg3:101-112, 1990[3.2

[15] B. Jacobs.Categorical Logic and Type Theqryolume 141 ofStudies in Logic and the Foundations
of Mathematics Elsevier Science Publishers B.V., 1999.]2.1

[16] Q. Ma and J.C. Reynolds. Types, abstraction, and parametric polymorphism, part 2. In S. Brookes,
M. Main, A. Melton, M. Mislove, and D. Schmidt, editofglathematical Foundations of Programming
Semanticsvolume 598 of_ecture Notes in Computer Scienpages 1-40. Springer-Verlag, 1992.]5.1,

(&

[17] Maria E Maietti, Paola Maneggia, Valeria de Paiva, and Eike Ritter. Relating categorical semantics for
intuitionistic linear logic. Technical Report CSR-01-7, University of Birmingham, School of Computer
Science, August 2001. 2[2, 6

[18] Paola ManeggiaModels of Linear PolymorphisnPhD thesis, University of Birmingham, Feb. 2004.
[§

[19] Paul-Andé Mellies. Categorical models of linear logic revisitétheoretical Computer Sciencéo
appear.[b

[20] J.C. Mitchell and G.D. Plotkin. Abstract types have existential typ&M Transactions on Program-
ming Languages and Syster§(3):470-502, July 198§. 1.2

[21] P. W. O’Hearn and J. C. Reynolds. From algol to polymorphic linear lambda-calciruis A.C.M,
47(1):167-223, January 2000. §.4,]7.1

[22] P. W. O’'Hearn and R. D. Tennent. Parametricity and local variallestnal of the ACM42(3):658—
709, May 1995 54, 7|1

23

[23] P.W. O’Hearn and J.G. Riecke. Fully abstract translations and parametric polymorphism. In D. Sanella,
editor, Programming Languages and Systems, ESOR/®me 788 ofLecture Notes in Computer
Sciencepages 454-468. Springer, 1994.15.4] 7.1

[24] A. M. Pitts. Non-trivial power types can't be subtypes of polymorphic typedthrAnnual Symposium
on Logic in Computer Sciencpages 6—-13. IEEE Computer Society Press, Washington, 1989. 2.1

[25] A. M. Pitts. Parametric polymorphism and operational equivaleMaghematical Structures in com-
puter Sciencel0:321-359, 2000[3., 5.3

[26] A.M. Pitts. Polymorphism is set theoretic, constructively. In D. H. Pitt, A. Pejgnd D. E. Ryde-
heard, editorsCategory Theory and Computer Science, Proc. Edinburgh 1@8idme 283 ol_ecture
Notes in Computer Sciengeages 12—-39. Springer-Verlag, 1987.]2.1

[27] G. D. Plotkin. Type theory and recursion (extended abstractPréceedings, Eighth Annual IEEE
Symposium on Logic in Computer Scienpage 374, Montreal, Canada, 19-23 June 1993. IEEE
Computer Society Pres§. .2

[28] G.D. Plotkin. Second order type theory and recursion. Notes for a talk at the Scott Fest, February
1993.[2.2{ 44, 413

[29] Gordon Plotkin and Mam Abadi. A logic for parametric polymorphism. Tryped lambda calculi and
applications (Utrecht, 1993)Volume 664 of_ecture Notes in Comput. Sghages 361-375. Springer,

Berlin, 1993.[1.B, 411, 412) 6

[30] J.C. Reynolds. Types, abstraction, and parametric polymorphiisformation Processing83:513—
523,1983.[113, 2]1,5L, 5.4

[31] J.C. Reynolds. Polymorphism is not set-theoretic. In G. Kahn, D. B. MacQueen, and G. D. Plotkin,
editors,Semantics of Data Typegolume 173 ofLecture Notes in Computer Scienpages 145-156.
Springer-Verlag, 1984[2.1

[32] J.C. Reynolds and G.D. Plotkin. On functors expressible in the polymorphic typed lambda calculus.
In Gérard Huet, editor.ogical Foundations of Functional Programminghapter 7, pages 127-151.
Addison-Wesley, 1990] 2.1

[33] E.P. Robinson and G. Rosolini. Reflexive graphs and parametric polymorphism. In S. Abramsky,
editor,Proc. 9th Symposium in Logic in Computer Sciempames 364-371, Paris, 1994. |.E.E.E. Com-

puter Society| 3|1, 44

[34] J.M.E. Hyland E.M. Robinson and G. Rosolini. Algebraic types in PER models. In M. Main,
A. Melton, M. Mislove, and D. Schmidt, editor®athematical Foundations of Programming Seman-
tics. 5th Interational Conferengc&olume 442 ofLecture Notes in Computer Sciengages 333-350,
Tulane University, New Orleans, Louisiana, USA, March/April 1989. Spinger-Veflad. 5.4

[35] G. Rosolini and A. Simpson. Using synthetic domain theory to prove operational properties of a
polymorphic programming language based on strictness. Manuscript, 2004. B.1, 4.5, 6

[36] I. Rummelhoff. Polynat in PER-modelsTheoretical Computer Scienc816(1-3):215-224, May
2004.[5.4

[37] C. Strachey. Fundamental concepts in programming languages. Lecture Notes, International Summer
School in Computer Programming, Copenhagen, August 19p7. 1

24

[38] T. Streicher. A relational characterisation of syntactic definability in models of system f. Unpublished
Manuscript, 1998] 7]1

[39] P. Wadler. Theorems for free! Hith Symposium on Functional Programming Languages and Com-
puter Architecture, ACM, LondoiSeptember 1989, 4.1

[40] P. Wadler. The Girard-Reynolds isomorphism (second edition). Manuscript, March P004. 5.4

25

Categorical Models for Abadi-Plotkin’s Logic for Parametricity

Lars Birkedal
Rasmus Ejlers Mggelberg

Abstract

We propose a new category-theoretic formulation of relational parametricity based on a logic for
reasoning about parametricity given by Abadi and Plotkin [12]. The logic can be used to reason about
parametric models, such that we may prove consequences of parametricity that to our knowledge have
not been proved before for existing category-theoretic notions of relational parametricity. We provide
examples of parametric models and we describe a way of constructing parametric models from given

models of the second-order lambda calculus.

Contents

(1 Introduction]|

[2

Abadi & Plotkin’s Togic]

0.3 Coproducts
[°.4 Initialalgebras oo

6.5 Finalcoalgebras

6.6 Generalizing to strong fibredfunciors

o _Concrete APL-structures 65

[6.1 A parametric non-well-pointed APL-structbre 67
[/ Comparing with Ma & Reynolds notion of parametricity | 68
[8 A parametric completion process 70
8.1 Internalmodelstoks|. 70
[8.2 Inputtor the parametric completion progess 72
[8.3 Thecompletionprocgss e e 73
8.4 The APL-structue e 77
Parametric Internal M | 82
[10 Conclusion 83
[A Composable Fibrations 83

28

1 Introduction

The notion of parametricity for models of polymorphic type theories intuitively states that a function of
polymorphic type behaves the same way on all type instances. Reynalds [13] discovered that parametricity
is central for modeling data abstraction and proving representation independence results. The idea is that
a client of an abstract data type is modeled as a polymorphic function; parametricity then guarantees that
the client cannot distinguish between different implementations of the abstract data type. Reynolds also
observed that parametricity can be used for encoding (inductive and coinductive) data types! [See [20, 8] for
expository introductions.

In 1983 Reynolds gave a precise formulation of parametricity called relational parametricity for set-theoretic
models[13]. It basically states that a term of polymorphic type preserves relations between typesuif term
has type] [a: Type.o andR: Rel(r, ') is a relation between and7’, then

u(7) (e [R)u(r"),

whereco[R] is a relational interpretation of the typedefined inductively over the structure of Equiva-
lently, parametricity could be defined as the identity extension property: for all termsf type o (a),

u(oled,))v <= u=n.

However, Reynolds himself later proved that set-theoretic models do notlexist [14] in classical set-theory (it
was later discovered that set theoretic models do exist in some models of intuitionistic setlthgary [10, 9]). In
1992 Ma and Reynold$§][6] then gave a new formulation of parametricity phrased in terms of more general
models (PL-categories of Seely [18]). One may formulate Ma and Reynolds’ notion in the langugage of
fibrationﬁ as follows. The fibratiorEE — B is parametric with respect to a given logic énhif there exist a
reflexive graph of\,-fibrations, whose restriction to the fibres over the terminal object is the reflexive graph

E; —=LR(FE1)

of logical relations with domain, codomain maps and the middle map mapping a type to the identity on that
type. (See]6,/5] for more details.)

In recent work by Birkedal and Rosolini on parametric domain-theoretic models it became clear that this

is not the right categorical formulation of parametricity: it appears that the definition does not allow one to
prove the expected consequences of parametricity such as data abstraction and the encoding of data types.
Indeed, these consequences have only been proved for specific models, see,le.g., [20, 3], using specific
properties of the models.

In this article we propose a new category-theoretic formulation of parametricity, cgtlachenetric APL-
structure whichdoesallow one to prove the expected properties of parametricity in general. We build upon

a logic for reasoning about parametricity given by Abadi and Ploikin [12]. In this logic one can formulate
parametricity as a schema and prove the expected consequences of parametricity. An APL-structure is a
category-theoretic model of Abadi and Plotkin’s logic, for which we prove soundness and completeness,
thereby answering a question posed.in [12, Page 5]. Each APL-structure contains a model of the second-
order lambda calculus, which we may reason about using the logic.

We also provide a completion process that given an internal model @ee [4| 15]) produces a parametric
APL-structure. In special cases, the-fibration of this APL-structure is the one obtained[inl[15] and thus

1A X.-fibration is a fibration with enough properties to model second-order lambda calculus, seé, e.g., [5].

29

we prove that the models obtained[in[[15] in fact satisfy the consequences of parametricity (as expected, but
not shown in the literature before).

The consequences of parametricity proved earlier for specific mddels |[3,) 20, 1] all seem to use well-

pointedness, i.e., the property, that morphigmsA — B are determined by their values on global elements

a: 1 — A. For parametric APL-structures, we do not need to use well-pointedness to prove the expected
consequences of parametricity. Loosely speaking, the point is that our notion of parametric APL-structure
includes an appropriate extensional logic to reason withlodn cit,, the ambient world of set theory is

used as the logic and thus extensionality there amounts to asking for well-pointedness. We provide a family
of concrete parametric APL-structures, including non-well pointed ones. Thus paramésricsigful for

proving consequences also for non-well-pointed models.

In subsequent papers we will show how to modify the parametric completion process to produce domain-
theoretic parametric models and how to extend the notion of APL-structure to include models of polymor-
phiclinear lambda calculus [11].

The remainder of the paper is organized as follows. In Seftion 2, we recall Abadi and Plotkin’s logic. The
reader is warned that our version of the logic is slightly different from the one descrided in [12]. In Section
we define the notion of an APL-structure. We prove soundness and completeness with respect to Abadi
and Plotkin’s logic in sections 3.1 afd B.2. Secfi¢pn 4 defines the internal language of an APL-structure
and we define the notion ofgarametricAPL-structure. We also demonstrate in Secfibn 5 how to use the
internal language to show consequences of parametricity in parametric APL-structures. [Section 5 mainly
contain proofs of well-known results in Abadi & Plotkin’s logic. However, since these proofs are by no
means trivial, and to our knowledge do not appear in the literature, and since we think they are of general
interest, we include them here.

Section 6 contains a definition of a concrete parametric APL-structure, and we also mention a non-well-
pointed parametric APL-structure. Sectjdn 7 contains a comparison of our notion of parametricity with the
one defined by Ma & Reynold5|[6]. The parametric completion process is described in $éction 8. Since an
internal model of\, in a quasitopos has ambient logic corresponding to most of the constructions in Abadi
& Plotkin’s logic, there exists a natural APL-structure incorporating it, so we may formulate the question if
this model is parametric. This is done in Secfidn 9.

AppendixA contains definitions and theory concerning composable fibrations, i.e., pairs of fibrations such
that the codomain of the first is the domain of the second. In particular, we study the case of fibrations
F — E — B whereF — E is a logic fibration, and we study what is needed for it to model quantification
along vertical maps ift and quantification along maps ik The definitions of this appendix are used in

the definition of an APL-structure.

Acknowledgments. We would like to acknowledge helpful discussions with Alex Simpson and Martin
Hyland and the constructive comments of the two anonymous referees.

2 Abadi & Plotkin’s logic

We first recall Abadi & Plotkin’s logic for reasoning about parametricity, originally defined in [12]. We will
use a slightly modified version of the logic.

Abadi & Plotkin's logic is basically a second-order logic on the second-okdealculus §.). Thus we
begin by calling to mind the second ordercalculus (a more formal presentation can be found in glg. [5]).

30

2.1 Second-orderi-calculus
Well-formed type expressions in second-orderalculus are expressions of the form:
ay: Type,...,ay: Typet o: Type

whereo is built up from thew;’s using productsl o x 7), arrows ¢ — 7) and quantification over types.
The latter means that if we have a type

ay: Type,...,an: Typel o: Type,
then we may form the type
ar: Type, ..., ci—1: Type,aiir1: Type, ..., Typet [[ay: Type.o: Type
We do not allow repetitions in the list of's, and we call this list the kind context. It is often denoted simply

= or &. We user, T, w to range over the set of types.
The terms in\, are of the form:

Elxy:io,.. o Fti T
where ther; andr are well-formed types in the kind context The list ofz’s is called the type context and
is often denoted'. As for kind contexts we do not accept repetition in type contexts.

The grammar for raw terms is:
to=a|Ax:ot|tt)| | ({tt) | nt| 7't | Aa: Type.t | t(o)

corresponding to variablea;abstraction, function applications, an element of unit type, pairing and projec-
tions on product types and second-ordeaibstractions and type applications. We dse u to range over

the set of terms, and as usual we consigderquivalent terms equal. Most of the formation rules are well
known from the simply-typed-calculus; here we just recall the two additional rules for type abstraction
and type application:

Ea:Type|'FHt:o
E|TF Aa: Type.t: [Ja: Type.o

= | T'is well-formed

E|TFt: [[a: Type.o ZEF 7: Type
E|TFtr): o[r/a]
What we have described above is called phue second-orden-calculus. In general we will consider
second-orden-calculi based on polymorphic signaturés [5, 8.1.1]. Informally one may think of such a
calculus as the pure second-ordecalculus with added type-constants and term-constants. For instance
one may have a constant type for integers or a constant type forlistslists(a): Type. We will be

particularly interested in the internal language ofsafibration (see Sectign 3) which in general will be a
non-pure calculus.

2.1.1 Equality

We consider an equality theory on second-orderlculus callegxternalequality. Itis the least equivalence
relation given by the rules in Figuré 1.

31

E|Nz:obt:T EllTFu:o
EITE (Az: 0.t)u = tlu/x]
Ea|TkHt: 7 ZF o: Type = | T'well-formed
E|TF (Aa: Type.t)o =t[o/q]
E|lFt:oc—7
E|TFXe:o.(tx) =t
E|THt: [Ja: Type.o
E|TF Aa: Type. (ta) =t
E|TkHt:0o EITFu:r E|TFHt:0 E|TFu:T
E|TFn{t,u)y=t E|ITFA(tu) =u
E|THt:oxT E|TFt:1
E|ITH(rt,n'ty=t Z|Tkt=%
E|THt=t:0 Elz:obFu:
E|TFult/z] = ult' /]
ElNz:obt=s:7 Ea|l'Ft=s Z|T well-formed
EITFAXz:0.t=Az: 0.5 E|TFAat=Aa.s

(B-reduction

(B-reduction

n-reduction

n-reduction

I

replacement

Figure 1: Rules for external equality

2.2 The logic

Abadi & Plotkin’s logic can be built on top of any second-order lambda calculus (based on any polymorphic
signature), so in the following we will assume that we are given one such.

Formulas of Abadi & Plotkin’s logic live in contexts of elements)af and relations on types of;. The
contexts look like
Z| | Ry: Rel(r,7),...,Ry: Rel(ry,, 7)),

where= | ' is a context of second-ordercalculus and the; andr/ are well-formed types in conte®,

for all i. The list of R's is called the relational context and is often dendtedn this context as in the other
contexts we do not accept repetitions of variable names. It is important to notice that the relational and type
contexts are independent of each other in the sense that one does not affect whether the other is well-formed.

Formulas are given by the syntax:

¢u= (t=ou)|plt,u)| 6D |L[T|oANY |V |Va: Type. ¢ |
Vr:o0.¢|VR: Rel(o,7). ¢ | Ja: Type. ¢ | Jz: 0. ¢ | IR: Rel(o, 7). ¢,

wherep is a definable relation (to be discussed below).
In the following we give formation rules for the above. First we have internal equality
E|TkHt:0o ETFu:o
E|IT|O©F (t=5u): Prop

32

Notice here the notational difference between v andt =, u. The former denotesxternalequality and
the latter is a formula in the logic. The rules for vV and A are the usual onesl, L are formulas in any
context.

We have the formation rules for universal quantification:
Z|l,z:0,1" | ©F ¢: Prop
E|0T | ©FVr: 0.¢: Prop

E|T'|©,R: Rel(o,7),0" I ¢: Prop
E|T|0,0 +VR: Rel(a,7). ¢: Prop
E,0,Z |T|OF ¢: Prop
2,2 |T'| ©F Va: Type.¢: Prop

[1]

,E'|T'| ©is well-formed
The same formation rules apply to the existential quantifier.

2.3 Definable relations
Definable relations are given by the grammar:
pu=R|(x:0,y:7).0|0p]

A definable relatioy always has a domain and a codomain, and we ritBel(o, 7) to denote thap has
domaincs and codomain. There are 3 rules for this judgement. The first two are

E|T|6,R: Rel(o,7),0" F R: Rel(o,7)

E|T,z:0,y: 7| OF ¢: Prop
EIT|OF (z:0,y: 7).¢: Rel(o, 7).

In the second rule above the variables become bound iw. For example, we have the equality relation
eq, defined agz: 0,y: o).z =, y and the graph relation of a functiqif) = (x: o,y: 7). fr =, y if
fio—T.

The last rule for definable relations is

at,...,an o Type E|T|OF p1:Rel(r1,7]),...,pn: Rel(tn, 7))
E|T|OFolp: Rel(o(7),a(7)).

The notation is a bit ambiguous, since &jp] we mean to substitute eaghfor «; in o, and so the order
of thea’s and thep’s is important. A more precise notation would have beén /a1, . . ., pn/a,], but we
choose to use the more convenief.

Observe that[p] is a syntactic construction and is not obtained by substitution|_In §12] is defined
inductively from the structure of, but in our case this is not enough, since we will need to fafa for

type constants in Sectior] 4. The inductive definition of [12] is reflected in the rufes (L2)-(15) below. We
call o[p] therelational interpretation of the type.

33

If p: Rel(o,7) is a definable relation, we may apply it to terms of the right types. This gives the last
formation rule for formulas

E|IT|OFp:Rello,7) Z|TFt:ou:r
E|T|OF p(t,u): Prop.

We will also writetpu for p(t, u).

Lemma 2.1. Supposé& | T' - ©, R: Rel(o,7) F ¢: PropandZ | T' | © - p: Rel(o, 7) are well-formed.
Then
E|T|©F ¢lp/R]: Prop

is well-formed.
Proof. Easy induction on the structure ¢f O

Remark 2.2. Abadi & Plotkin’s logic is designed for reasoning about binary relational parametricity. For
reasoning about other arities of parametricity (such as unary parametricity), one can easily replace binary
relations in the logic by relations of other arities. In the case of unary parametricity, for example, one would
then have an interpretation of types as predicates. Seelal$o [19, 21]

We introduce the short notatign= p’ for definable relationg: Rel(c, 1), p’': Rel(o, 7) as

Vo o,y 7 p(e,y) 3 P, y).

Notice that we usex for biimplication.

We can take exponents, products and universal quantification of relations. These constructions will turn out
to define categorical exponents, products and quantification in a category of relations (se Lgmma 3.7). For
now, the reader should just consider the next three definitions as shorthand notation.

If p: Rel(o,7) andp’: Rel(¢’, 7") we may define a definable relation:
(p—p): Rel((c = o'), (T — 7))

as
p—p=(fro—d,g:7— 1) Voo Vy: 1. (zpy O (fr)p'(9y))
We may also take the product pfandy’:

pxp:Rel((oxa),(rx71))
as
pxp =(x:0xo,y:7x7) (7x)p(my) A ('x)p (7'y)
Za,0|T| ©,R: Rel(a, B) F p: Rel(o, 7)
is well-formed andE | ' | © and=Z, a - o: Type andZ=, 5 - 7: Type we may define:
E|IT|OFY(a,5,R: Rel(a, 8)). p: Rel((J] av: Type. o), ([15: Type. 7))
as

(t: [[a: Type.o,u: [[B: Type. 7).V, 3: Type.VR: Rel(e, 3). (ta)) p(uf).

34

=: Ctx EF o: Type =T Cix
=1 0: Ctx E|l'Ft:o EITHt=u
Z|T|OF¢:Prop E|L|OFp:Rel(o,7r) Z|T|O|b1,...,énb 2

Figure 2: Types of judgements

2.4 The axioms

Figure[2 sums up the types of judgements we have in the logic. The last judgement in the figure says that in
the given context, the conjunction of the formulas. . . , ¢,, implies.

Having specified the language of Abadi & Plotkin’s logic, it is time to specify the axioms and the rules of
the logic. We have all the axioms of propositional logic plus the rules specified below.

We have rules fo¥/-quantification:
Ea|l'|O|dFy
EIT|O]®FVa: Type.y

ZIT|OF® 1)

E|Tz:0|O|PF1
EIT|O|®FVr: o0
=T |O,R: Rel(r,7) | & ¢
E|T|O|®+VR: Rel(r, 7).

The double bars mean that these are double rules, i.e., the condition on the bottom implies the one on top
and vice versa.

ZIT|OF®)

Z|Il'|OF® 3)

Rules for3-quantification:
E, |0k
E|IT| 0| 3a: Type.gp 9

Z|T|OFY (4)

E|Tz:0|O©|0F0
EIT|O©|3z:09pk
Z|T|O6,R:Rel(r,7) | p -
E|T|O|3R: Rel(r,7').¢ F v

ZE|IT |0k (5)

Z|T |0k (6)

We have substitution rules
Ea|ll|O|YEe¢ Zko: Type

= (7)
E[L[o/a] | Blo/a] | ¥[o/a] - ¢lo/al
ElNz:o|O|VE¢ =|l'Ft:o @)
E|T[O[V]t/z] - lt/z]
=T |O,R:Rel(o,7) | W ¢ =|T|OFp: Rel(o,7) o

E|T O] Yp/RI+ ¢lp/R]

35

The substitutionaxiom:

E|IT|O|TkEVa,[: TypeVr,a': aVy,y': VR: Rel(a,).

Rz, y) N =a 2 Ny=3y' D R(,y) (10)

External equality implies internal equality:
E|ITFt=u:0o
EIT|O|THt=u

(11)

We omit the obvious rules stating that internal equality is an equivalence relation. The following rules
concern the interpretation of types as relations.

EITO|TkEVYz,y: 1L.aly (12)
at o Z|T|OF5: Rel(?, 7
i [T'|©F p: Rel(7,7) (13)
EIT|O|TEpl =pi
atk ! =|OF p: Rel(?, 7
_ oc—o0o \/ P (7 7'), (14)
EIT[O[TFE (0 —a)pl = (olp] — o'[A)
atl[p.od,p) E| O+ p: Rel(7,7) (15)
E|IT|O|TkFNB.0(@B3)pl=v05,6,R: Rel(3,3)).0[p, R])
Finally we have
2l z:oy:7|OF¢:Prop Z|TFHt:ou:T
| y:7|OF ¢: Prop E| (16)

EITE(z:o,y: 7). 6)(t,u) 3T P[t,u/x,yl.

Using this rule, we may prove a bijective correspondence between definable relations and propositions with
two free variables considered up to provable equivalence. The bijection maps a definable paiatiba
formula p(z, y) with free variablest, y and a formulap with free variablest, y to the definable relation

(2,y). ¢
Lemma 2.3. Suppos& | T' | O p: Rel(o,7) and= | T',z: o,y: 7 | © - ¢: Prop. Then

El T zioy: 7|0 | TE¢ I ((x: 0,y: 7). 0)(x,y)

and
EIT|O|TEp=(z:0,y: 7). p(x,y).

Proof. The first statement above is just a reformulatior of (16), and for the second we need to prove that

Vae: o,y: 7. ((x: o,y: 7). p(x,y)(x,y) 3C p(x,y)

which is also an easy consequence of (16). O

36

We would also like to mention the extensionality schemes:

(Vz:otzx=ruzx) Dt =57 u
(Va: Type.t a =; ua) Dt =[]a: Type.r U-

These are taken as axioms|(in[12], but we shall not take these as axioms as we would like to be able to talk
about models that are not necessarily extensional.

Lemma 2.4. The substitution axiom above implies tieplacementule:
ZIT|O|dFt=,1t | z:obu:r
E|T|O|®F ult/z] = ult'/x]

Proof. Instantiate the substitution axiom with the definable relation

p=(y:0,2:0).uly/z] =r ulz/x].
Clearly® I- p(t,t), so since =, ', we haved |- p(t,t") as desired. O
Lemma 2.5 (Weakening, Exchange)lf = | I' | © | ¥ F ¢ is provable in the logic, and if further
= | I | © is a context obtained frofd | " | © by permuting the order of the variables in the contexts, and

possibly adding variables, then
e |V ¢

is also provable in the logic.

3 APL-structures

In this section we define the notion of an APL-structure, which is basically a category-theoretic formulation
of a model of Abadi & Plotkin’s logic. We also show how to interpret the logic in an APL-structure. We use
the definitions and results of Appendiix A.

But first we recall the notion of a,-fibration, which is basically a model 0.

Definition 3.1. A fibration Type — Kind is a \o-fibrationif it is fibred cartesian closed, has a generic
object € Kind, products inKind, and simpleQ2-products, i.e., right adjoint§ [to the reindexing
functorsz™ for projectionsr: = x 2 — =.

Remark 3.2. Ina A; fibration, fora mapf: = — Qin Kind, we will use the notatiogf to denote the object
of Typez corresponding tgf, and likewise for € Typez we writeg: = — 2 for the map corresponding
too.

Definition 3.3. A pre-APL-structureconsists of

1. Fibrations:

Prop

,

Type L. cix

|

q

Kind
where

37

e pis al2-fibration.
e ¢ is afibration with fibred products

e (7,q) is an indexed first-order logic fibration (Definiti@A) which has products and coproducts
with respect t&€ x 2 — = in Kind (Definition[A.5) where is the generic object qf.

e [is a faithful product preserving map of fibrations.
2. acontravariant morphism of fibrations:

Type Xkina Type v Ctx

T~

Kind

3. afamily of bijections
U= : Homeexs (§,U(0, 7)) — ODj (Pr0p§><l(o><r))
for o and in Type= and¢ in Ctxz=, which

e is natural intheg, o, 7

e commutes with reindexing functors; that ispif = — = is a morphism irKind andu : £ —
U(o,) is a morphism irCtxz, then

W= (p*(u) = (p) (P=(u))
whereg is the cartesian lift op.

Notice that¥ is only defined on vertical morphisms.

By a contravariant functor of fibrations, we mean a functor of fibrations, which is contravariant in each fibre.

Remark 3.4. Item[3 implies tha{U (1=, 1=))zckina is an indexed family of generic objects. If, on the
other hand, we have an indexed family of generic objéCts)=ckina and Ctx is cartesian closed, then
we may definé/ to be>~*~ and thereby get iten@ 2 aEt]JI 3 for free. In general, howavex will not be
cartesian closed. In particular, in the syntactic model described below in the proof of complet&ness

not cartesian closed.

Remark 3.5. Below we will describe how th€ (o, 7) is used to model the object of relations frento 7.

To model a version of Abadi & Plotkin’s logic for unary or any other arity of parametricity as in Remdrk 2.2,
the functorU should have corresponding arity and the domain and codomain of the bijektghould be
changed accordingly.

We now explain how to interpret all of Abadi & Plotkin’s logic, except for the relational interpretation of
types, in a pre-APL-structure. First we recall the interpretatioh.dh a A.-fibration.

Atypeos ...a, b oy is interpreted as the object @fype over Q™ corresponding to thé&th projection

Q" — Q. Foratypen ...a, - o, we have][[[;. 0] = [[.[@ - o], wherer is the projection forgetting
theid’'th coordinate. Since each fibre of the-fibration is cartesian closed, we may interpret the constructions
of the simply typed\-calculus using fibrewise constructions.

38

If =, | 'Ft: Tisatermanc + I'is well-formed, then we may interpretthe teeirj I' - Aa.t: [Ja. 7
as the morphism corresponding[t, « | I" - ¢: 7] under the adjunction* <. .

Tointerpret= | T' F ¢ o, notice thaf= I- o] corresponds to a map

The morphisn= | I" - ¢t: [] . 7] corresponds by the adjunctiari <[] to a morphism in the fibre over
[Z] x Q. We reindex this morphism along

<id[[5]], [EFa]): [E] — [E] x Q
toget[Z | T+ to].
Relational contexts are interpreted@hitx as:

[Z | Ri: Rel(o1,71),...,Rn: Rel(on,)] = U([o1], [11]) x .. x U([on], [m]),

where[o;], [;] are the interpretations of the typesTiype as described above.
We aim to defind= | I" | © |- ¢] as an object oProp over[= | I' | O], which we define to be
I([E[T]) < [E]6].
We proceed by induction on the structurefof\We use the short notatidE | I' | © I ¢: 7] for the compo-
sition
- T - I([ETFt:7]) o
EIT[O] —I[E|T]) ———=I([E+-7]),
and we will in the following leave obvious isomorphisms involving products implicit.
If we defineAx: X — X x X to be the diagonal map, then

[Z|x:0,y:0|—Fax=4y: Prop] = HA]([[U]])(T)

and _
[EIT]©[t=5u] =
(1Tt [E|IT|O0Fu)[E|x: 0,y: 0| —F x=4y: Prop].

Vx: A.¢ andVR: Rel(o, 7).¢ are interpreted using right adjoints to reindexing functors related to the ap-
propriate projections iCtx. Likewisedz: A.¢ and3R: Rel(o, 7).¢ are interpreted using left adjoints to
the same reindexing functors.

Ya.¢ and Ja.¢ are interpreted using respectively right and left adjoint&tovherer is the lift of the
projectionr : [, a: Type] — [Z] in Kind to Ctx. To be more precise, one may easily show that for
= | T | ©wellformed[Z,a |T'| ©] = 7*[Z | I' | ©] using the corresponding result for the interpretation
of A\, and so the cartesian lift af is a map:

7 [E,a|T 0] = [2|T]6O]

and we define
[EIT|OFVa.¢] =[[:[E a|T'|OF ¢],

where] [is the right adjoint tar™.

39

Definable relations are interpreted as map€itx. To be more precise, a definable relation
Z|T|OF p:Rel(o,7)
is interpreted as a morphism frof& | I' | ©] to U([o], [7]). The definable relation
Z|T|6,R: Rel(o,7),0 F R: Rel(o, 7)
is interpreted as the projection. We define

[E|T|OF (z:0,y:7).6: Rel(o,7)] = ¥ HE | T, z: 0,y: 7| O F ¢].

We define the interpretation of application of definable relations to terms as follows:
[Z|T,z:0,y: 7|OF plz,y)] =V([Z|T | OF p: Rel(o,7)]).

Finally

u)] =

[EIT]OF p(t,
™V E|T,z:0,y: 7| O F p(x,y)]
[

(mid, [E|T[OFI[E|T[OFu],

whererr: [E| T |©] — I[= |T]andr’: [E|T | O] —
left out some obvious isomorphisms here.

= | — | ©] are the projections. As usual, we have

To interpret the relational interpretation of types we need a little more structure. First we consider a fibration
Relations — RelCtx,
that can be defined for every pre-APL-structuRelCtx is defined as the pullback
RelCtx Ctx
-

Kind x Kind —— Kind

If © is an object oRelCtx projecting to(Z, Z') € Kind x Kind, we will write itas=, =’ | ©. The fibre
of Relations over=,Z' | O is

objects Triples (o, 7, p), whereo is an object inTypez, 7 is an object inTypez, andp is a map
p: © = U(r*o, (7')*1), wherer, 7’ are the projections out & x ='.

morphisms A morphism from(o, 7, p) to (¢/, 7/, p’) is a pair of morphismss, t), such that: ¢ — ¢’
andt: 7 — 7/, and
U(U(rt, (7')"s) o p') < ¥(p)

where the ordering refers to the fibrewise orderindPatop.
Reindexing(o, T, p) along a vertical ma@’ — O in RelCtx (vertical with respect t&ind x Kind) is

given by composition. Reindexing with respect to lifts of mépsw’): (21,2)) — (E2,Z}) is given by
reindexing inCtx — Kind.

40

Remark 3.6. In the internal language, objects Belations are simply relations
2,2 0F p: Rel(o(2), 7(Z)),

and a morphism from: Rel(c(Z2),7(2')) top': Rel(¢’(Z), 7/(Z)) is simply a pair of morphisms ¢ — ¢
in Typez ands: 7 — 7’ in Typez, such that

Va,y. p(z,y) D p'(tz, s y).

We clearly have two functorRelCtx — Kind defined by mapping=, =’, ©) to = and=’ respectively,
and we also have two functoBRselations — Type defined by mappinge, o, 7) to o andr respectively.

Lemma 3.7. The fibrationRelations — RelCtx is a As-fibration, and the maps mentioned above define
a pair of maps of\,, fibrations
o
Type 2 Relations

01
‘L 9o l
Kind ~ RelCtx.
1

Proof. The categornRelCtx has products:

(El,E/l,) X (EQ,EIQ, /) = (El X EQ,Ell X E’/27 (7‘(,7‘()*(") X (WI,W,)*@/).

where(m,) : (21 x 29,2} x E}) — (21, Z)) is the projection, andr’, 7') is the other evident projection.

The fibration has a generic obj€él, 2, U(@, @)), since morphism into this frortg, E’,A(a) in RelCtx
consists of pairs of typelsf : = — Q,¢ : & — Q) and vertical morphisms from® to U(f,). These are
exactly the objects dRelations.

The constructions for fibred products, fibred exponents and siftypleducts are simply the rules for prod-

ucts, exponents and universal quantification of relations in Abadi & Plotkin’s logic formulated in the internal
language of the model, which we will describe in Secfipn 4. One can either interpret these constructions
in the pre-APL-structure, and prove directly that these constructions have the desired properties, or one can
use the fact that pre-APL-structures interpret these constructions soundly (THeorpm 3.10) and reason in the
internal logic.

Here we give the rest of the proof reasoning in the internal logic. SuppoRel(s, 7) andp’: Rel(o’, ')
andw: Rel(c”, 7") are objects in some fibre #&elations. Then a vertical morphism from to

pxpiRel((oc xd),(rxT)),

defined as
(z,2")p x p'(y,y') = zpy N a'p'y/,
is a pairof maps : ¢’ — o x ¢’ andu : 7" — 7 x 7/ such that

Vz,y. zwy D w(tx)pr(uy) A 7' (tx) '’ (uy),

which is the same as a pair of maps frannto p andp’ respectively.

Likewise maps fronw into
(p—)i Rel((c — o'), (T — 7)),

41

defined as

flp—p)g=Va: aVy: T(xpy O (f2)p'(9y)),
are in one-to-one correspondence with maps from p to p’.
Given new relation&,Z’' | © - w: Rel(c,0’) and

E,;Z,810,R: Rel(a, B) F p: Rel(r,7),
we have defined

2,2 | ©OFVY(a,B,R: Rel(a, 8)). p: Rel((J] vz Type. 7), ([]18: Type. 7))
as
(t: TJa.7,[18.7"). Vo, B: Type.VR: Rel(a, B). (ta) p(us3).

We need to show that this defines a right adjoint to weakening. The idea is that the correspondence between
maps will be the same as'iiype — Kind. In this fibration, the correspondence is given as follows, a map
E,a|—Ft:o0— 7withZF o: Type correspondst& | — - t: o — [[a. 7 wheret = \z: 0. Aa. (tz).

We will show, that(t, u) preserves relations ifft, @) does. It is clear that

E,a;E Bl wro,y:0’ | O, R: Rel(a, B) | zwy = (tx)p(uy)
iff
2,2 |x:0,y:0 | O |zwyt Vo, B: Type.VR: Rel(a, B). (tz a)p(ty (),
which establishes the bijective correspondence. O

Definition 3.8. An APL-structureis a pre-APL-structure for which the graph[of B.7 can be extended to a
reflexive graph oA2-fibrations
do
Type ——J> Relations

01 l
J« %
Kind —J RelCtx,
01

i.e., there exists a map of \o-fibrations such thadyJ = id = 01 J.

Remark 3.9. There is a functor fronRelations to Prop mapping an objecto, 7, p) to ¥(p). In the
following we often use that functor implicitly.

We need to show how to interpret the rule

ay,...,an Fo(d): Type E|T|OF p1:Rel(r,7),...,pn: Rel(ty,)
E|T|OF olp: Rel(a(7),a (7))

in an APL-structure.
SinceJ preserves products and generic objegt§a - o(d)]) is a definable relation of the form

-,

[6;5 | — | B: Rel(@, B) - J(0): Rel(0/(),a(5))].
It thus makes sense to define

-, -,

[@ 3| —| R: Rel(@,3) F o[R]: Rel(o(&), 0(5))]

42

to beJ([@ F o(a): Type]), so now all we need to do is reindex this object. Given types7, 7': Type,
we define
[Z] - | R: Rel(7,7) F o[R]: Rel(o(7),0(7))]

to be
(EFFLEF 7D [a: 5| - | B: Rel(@, 5) b ol R): Rel(o(d), o(5))]-
Finally, given definable relatiorS | " | © - p: Rel(7, 7') we define

[2]T | O+ olp]: Rel(o(), 0 ()
[£| — | R: Rel(7.7) F o[R]: Rel(0(7),0(7)] o [E| T | © F- 2 Rel(7.7)].

3.1 Soundness

We have now completed showing how to interpret all constructions of the language of Abadi and Plotkin’s
logic in APL-structures. We consider an implicatin I" | © | ¢1, ..., ¢, - ¢ to hold in the model if

/\[[E|F\@I—¢4]F[[E\F]®I—zp}],

%
wheret above refers to the fibrewise orderingitrop.

Theorem 3.10 (Soundness)in any APL-structure the interpretation defined above is sound with respect
to the axioms and rules specified in Secfior] 2.4, i.e., all axioms hold in the model, and for all rules, if the
hypothesis holds in the model, then so does the conclusion. In any pre-APL structure the interpretation of
the part of the logic excluding the relational interpretation of terms is sound.

We will only prove the first part of Theorem 3]10, i.e., soundness for APL-structures. The proof of soundness
for pre-APL structures is basically the same. For the proof we need the following lemmas:

Lemma3.11.If = | ' ¢: o then
[ET[OF¢t/z]] = (I(idzry, [i]) % id[zie)) " [E | T,2: 0 | O F ¢]
Proof. We will prove the statement of the lemma and the statement

[Z|T|OF p[t/z]: Rel(r,7")] =
[E]|T,2: 0|0k p: Rel(r,)] o (I{id[zry, [t]) % id[=zje);

for all definable relationg, by simultaneous induction on the structurepadndp. We only do a few cases
and leave the rest to the reader.

Case p=o[p']:

[EITOFoldit/2)]l = [EIT|OFolf[t/a]ll = [E| - | B+ o[R]] o [lt/]]

Since by inductiorig[t/z]] = [4] o (I{id[zry, [t]) X id[=jey)), we are done.

43

Case p=(y: 7,2: 7). ¢

[EIT |0k plt/a]l = ¢ H[E| Ty: 720 7' | © F ¢[t/2]]),
which by induction is equal to
\Il_l(<7r[[l“]]7 [[t]]77T[y: T,2: T’I@]]>*[[E ‘ F,J): 0,y T,z T | O ¢]])
By naturality of ¥ this is equal to

UV-Y[E|T,z:0,y: T,2: T | O F ¢]) 0 (mrps [t mpep) =
[[E ‘ F,Z‘Z o ‘ Chs p]]) o <7T[[F]]7 [[t]]vﬂ-[[@w

as desired.

Case ¢ = p(u,s)
Using naturality ofl as before, one can prove that

[ETy:72: 7 [OF ply, 2)[t/x]] =
(I<id[[E|F,y: Tz: T [[t]]> X ZdﬂE|@ﬂ)*[[E | Ly: 7 2: 7-/733: o | Chn p(ya Z)]]

The general case follows from the fact that inafibration
[E|THuft/z]] =[Z| T Fu]o (id,[E]|T Ft]).
Case ¢ = Va: Type.:
We need to show that

[Z]T]0OFVYa: Type.¢[t/x]] =
((idzry; [t]) x idzep)*[E [T, 2: 0 [© | Va: Type.¥].

Let 7 denote the cartesian lift of the projectifii, «] — [Z]. Then by induction we have that the left
hand side of the equation is

HF(I<idF7 [[t]]> X 7;d@)*[[5705 | Ia:o | Che ¢]]
Consider the square
[Ea|T|6] ———=[=|T|6]
I<id[‘,[[t]]>><id@i l](id[‘,[t]DXid@
[, |T,2: 0| 0] =—=[2|[,z: 0| O].

This square commutes sin@eis a natural transformation from* to id, and it is a pullback by |5,
Exercise 1.4.4]. The Beck-Chevalley condition relative to this square gives the desired result.

O
Lemma3.12.1f = |I' | © F ¢: Prop, then
[E|T,z:0|0F¢]=7"[Z|T|OF ¢],

whererr: [Z | T,z: 0 | ©] — [Z | T' | ©] is the projection.

44

Lemma 3.13.If =+ o: Type then
[2| T[o/a] | Olo/a] - élo/al] = (idpz), [0]) [E, a: Type | T | © 1],
where the vertical line ifid =y, [0]) denotes the cartesian lift.

Proof. Notice first that a corresponding reindexing lemma for interpretatiok, oh \--fibrations tells us
that
(idz, [o])*[E, e | T | ©] = [E | To/e] | Olo/a]].

The rest of the proof is by induction over the structur@péind since it resembles the proof of Lenima B.11
closely we leave it to the reader. O

Lemma3.14.1f = | T | © F ¢ then

[EIT[OF¢] =724 z[Ea[T|OF¢]
Proof. The proof is almost the same as for Lenjma B.13. O

Lemma3.15.1f Z | T' | © F p: Rel(r, 7’) is a definable relation, then
[E1T[©F ¢lp/RI] = ((idgrier: [PD)[E T | ©,R: Rel(r,7') -]
Proof. The lemma should be proved simultaneously with the statement
[EIT[OFp/RI=[E|T]06,R: Rel(r,7) I '] o ((id[zirjey [P]))

for all definable relationg’, by structural induction o andp’. We leave the proof to the reader, as it
closely resembles the proof ¢f (3]11).

O]

Lemma3.16.1f = | ' | © - ¢: Prop, then

[EIT|O,R:Rel(o,7)F o] =n"[E|T|©F ¢],
wherer: [Z|T' | ©,R: Rel(o,7)] — [| T' | ©] is the projection.
We are now ready to prove soundness.

Proof of Theorerp 3.10The rules for quantificatior [1)F|(6) follow directly from the fact that the interpreta-
tion of V and3 are given by right, respectively left adjoints to weakening functors. The substitution rules

(7) - (9) are sound by Lemmas 3|11, 3.13 and [3.15.

For thesubstitutionaxiom [10) we will only prove

le, B| 2’ a,y: B| R: Rel(er, B) b & =4 2] <
[0, | 7.2": @, y: 5 | B: Rel(a, 6) - Rz, y) > R('y)]

Once this is done, the rest of the proof amounts to doing the same thing in the second variable. We will for
readability write simply[«], [5], [R] for [, 5+ o], [e, BF B], [e, B | — | R: Rel(ex, 5)].

45

If we let 7y, w9, w3, 4 denote the projections out of

[ﬁlwx a,y: B R: Re'(O] =
[or, 1= a]? x [a, B+ 8] x U([ev, B = o], [er, B+ 5])

we can formulate what we aim to prove as
(1, m2)" (L Ay, (T)) < {1, ma)" W (idpgy) O (2, m3)" ¥ (idgy),

whereA denotes the diagonal map.
Using the Beck-Chevalley condition on the square

Apgpxid
MXij MHTMMH
Ust (m1,m2)
[o] Sl [o]?

we get

Now the result follows from using the adjunction and the fact that
<7T1,7T3> o (A[[aﬂ X id[[/BHXHR]]) = <7T2,7T3> o (A[[a]] X id[[ﬁ]]x[[Rﬂ)-

External equality implies internal equalify (11) since the modekdhcluded in the model is sound. Internal
equality is clearly an equivalence relation.

The axioms concerning types as relatigng (1) } (15) follow from the factitisatequired to be a morphism
of \s fibrations and that th&, structure inRRelations — RelCtx is given by the interpretation of products
and quantification of relations. For instance soundness of the (15) is proved as follows:

[@,d" | —| R: Rel(d@, ') - (T 8. 0)[R]] =
J([@+T18.0]) = .
[&,6" | R: Rel(&, d") b (Vy,7/,S: Rel(v,7)). o[R, S]]
where the second equality holds sintepreserves simpl@-products.
Finally, to prove soundness of rufe {16), it suffices to prove soundness of
ElNzoy:7|0|TkF(z:0,y: 7).0)(x,y) 3T ¢,
but
[EIT,z:00y: 7 [OF (2:0,y: 7). 9)(2,y)] =

V([EIT|OF (z: 0,y: 7). 9])
VoUN[Z|T,z:0,y:7|OF¢])=[E]|T,2: 0,y: 7| O F ¢].

46

3.2 Completeness

The Soundness Theorein (3.10) allows us to reason about APL-structures using Abadi & Plotkin’s logic.
The Completeness Theorem below states that any formula that holds in all APL-structures, is provable
in the logic. This allows us to reason about the logic using the class of APL-structures. However, since
the APL-structure below is constructed from the logic, this does not say much. Instead, one should view
the Completeness Theorem as stating that the class of APL-structures is not too restrictive; it completely
describes the logic.

Theorem 3.17 (Completeness)There exists an APL-structure with the property that any formula of Abadi
& Plotkin’s logic based on pure that holds in the structure may be proved in the logic.

Proof. We construct the APL-structure syntactically, giving the categories in question the same names as in
the diagram of iterp|1 in Definition 3.3.

e The categorKind has sequences of the foum : Type, ..., a,: Type as objects, where we identify
these contexts up to renaming (in other words, we may think of objects as natural numbers). A
morphism from= into oy : Type, ..., a,: Type is a sequence of typ€s, ..., 0,) such that alb;
are well-formed in contexE.

e Objects in the fibre oType over= are well-formed types in this context, where we identify types
up to renaming of free type variables. Morphisms in this fibre feoto = are equivalence classes of
termst such tha& | — - ¢: ¢ — 7 where we identify terms up to external equality. Reindexing with
respect to morphisms iKind is by substitution.

e The categoryCtx has as objects in the fibre ovemwell-formed contexts of Abadi & Plotkin’s logic:
= | I' | ©, where we again identify such contexts up to renaming of free type-variables. A vertical
morphism fromZ | I' | ©to = | I | Ry: Rel(o1,71), ..., Ryt Rel(on, 7,) is a pair, consisting of a
morphism= | I' — = | I in the sense of morphisms Hype and a sequence of definable relations
(p1,--.,pn) such that= | T' | © + p;: Rel(oy, 7). We identify two such morphisms represented
by the same type morphism and the definable relatipns. . ., p,) and(p}, ..., p,) if, for eachi,
pi = p), is provable in the logic. one. Reindexing is by substitution.

e The fibre of the catego®rop over acontexE | I' | © has as objects formulas in that context, where
we identify two formulas if they are provably equivalent. These are ordered by entailment in the logic.
Reindexing is done by substitution, that is, reindexing with respect to lifts of morphismdKiard
is done by substitution in Kind-variables, whereas reindexing with respect to vertical m@jppx iis
by substitution in type variables and relational variables.

It is straightforward to verify that this structure satisfies ifgm 1 of Definifioh 3.3. The only non-obvious
thing to verify here is existence of products and coproducRriap with respect to vertical maps Gtx.

Supposet, p) represents a morphism frol | #: & | Rto= | g: 7| S. Then we can define the product
functor inProp by:

| j: 7| SEVZ.VR(Z = ¢

We define coproduct as:

(1]

The functorU of item[2 is defined as
U(o,7) = R: Rel(o,)

and
Ult:oc—od,u:7—71)==Z|R:Rel(o/,7") F (x: 0,y: 7). R(tz,uy)

The map¥ maps a definable relatiah | I | © F p: Rel(o, 7) to the proposition
E|lz:oy:7|0OF p(z,y): Prop,

which is a bijection by Lemmfa 2.3.

We have defined a pre-APL-structure. The cated@elCtx obtained from this pre-APL structure has as
objectsa, 3 | T' | ©. The fibre ofRelations over an objecty, 5 | T | © in RelCtx is:

Objects Equivalence classes of definable relations

-,

@G| T | OF p: Rel(o(a), 7(3)).

=, =,

Morphisms A morphism fromp: Rel(o (&), 7(8)) to p’: Rel(o’(&),7'(5)) is a pair of morphisms :
o — o',u: 7 — 7’ such that it is provable that

Vao: o.Vy: 7.p(x,y) D p'(tx,uy).
In the reflexive graph of Lemnja 3.7, the functor fr@Gind to RelCtx acts on objects as

Ay ooy Q= 1y ooy Qs B1y oo, B | Ri: Rel(aq, B1), ..., Ry Rel(an, Br)

and it takes a morphisi : @ — @ to the triple(d(a), #(3), 7[E]). Notice that this defines a morphism
since . . .
a,[| R: Rel(a, B) F o;[R]: Rel(o;(d), 0:(5))

This really defines the object part of the functor frafiype to Relations since it must preserva2-
structure. So this functor takes a tyge- o to

-,

a; 3 | R: Rel(@, §) b o[R]: Rel(c(&), o (f)).

The functor maps a morphist | z: o t: 7 to the pair(\z: o.t, \x: o.t). This defines a morphism in
Relations since the Logical Relations Lemmia [12, Lemma 2] implies that

@G| R: Rel(@, B) | w: 0(@),y: o(B) b o[R)(x,y) D 7[E|(t, t[3/a]ly/x]).
One may easily verify that the functors above define a reflexive grapB-fibrations.
Now, by definition, a formula holds in this APL-structure iff it is provable in Abadi & Plotkin’s logic]
Remark 3.18. The Completeness Theorem only states completeness for Abadi & Plotkin’s logic based on
thepures. The reason for this is that the proof uses the Logical Relations Lemma, which is proved in [12]

by structural induction on terms. In the case of general calculi, one must know that the Logical Relations
Lemma holds for term-constants in the language to be able to prove completeness.

48

4 Parametric APL-structures

Given an APL-structure, we may consider the internal logic of the model (to be defined precisely below),
and formulate parametricity as a schema in this logic. For technical reasons we will define parametric APL-
structures as APL-structures not only satisfying the parametricity schema, but also extensionality and very
strong equality[(A.J7). For parametric APL-structures, we can derive consequences of parametricity using
Abadi & Plotkin’s logic, as in[[12]. For many of these proofs extensionality is needed, and we need very
strong equality to deduce from theorems in Abadi & Plotkin’s logic to category theoretic theorems, as we
will see in Sectiof p. This is the reason why we propose parametric APL-structures as a category-theoretic
definition of parametricity.

The internal language of an APL-structure is simply Abadi & Plotkin’s logic on the internal language of the
Ao-fibration (seel[5]), with the ordering relation in a fibreBfop defined as + ¢ iff [¢] F [«] holds in

the model. Using the internal language we may express properties of the APL-structure, and ask whether
these properties hold in the logic.

Definition 4.1. The extensionality schemes in the internal language of an APL-structure are the schemes

—| = | = FVa,B: Type.Vt,u: o« — B. (Vo: a.te =g ux) Dt =43 u, a7)
E|—|-FVf,g: Ma: Type.o). (Va: Type.fa =5 g) O f =t1a: Type.s 95 (18)

where in [(18) ranges over all types such thata - o: Type.

Lemma 4.2. For any APL-structure, very strong equality (Definitjon]A.7) implies extensionality.

Proof. We can formulate extensionality equivalently as the rules

EllNz:o|OFt=ru
EIT|OF Az 0t =57 Ax: 0.1

E,a:Type |[T'|OF f=59

E|T|OF Aa. Type. f =a: Type.o Acv. Type. g

If internal equality is the same as external equality then these rules hold by the rules for external equality in
Figure[]. O

Definition 4.3. The schema
Va: Type.Vu,v: 0. (u(oledy])v 3¢ u =4 v)
is called theldentity Extension Schema&lereo ranges over all types such that- o: Type.

Definition 4.4. A parametric APL-structureis an APL-structure with very strong equality — and hence
extensionality — satisfying the Identity Extension Schema.

Remark 4.5. If we write out the interpretation of the Identity Extension Schema, we get a category-
theoretical formulation of the notion of parametric APL-structure. It is an APL-structure with very strong
equality, extensionality and in which for all typ&s- o : Type,

(idigrop2 X [@ | = | = Feq])*J([aFo]) =[d]z: 0,y: 0| = Fz=5y].

49

Definition 4.6. For any types, d - o(3, @) we can form the parametricity schema:
va: Type.Vu: ([[B.0).V8,5": Type.VR: Rel(8,3). (u B)o[R, eqy](u 3)
in the empty context.

Proposition 4.7. The Identity Extension Schema implies the parametricity schema. Thus the parametricity
schema holds in any parametric APL-structure.

Proof. Since
alu: [[B: Type.o(B,d) | —Fu ~I15: Types ©

always holds in the model, by the Identity Extension Schema, we know that
G| u: [18: Type.o(8,d) | — F u([] B Type. o)[egs)u
holds, but by the Axiom (15) this means that
a | u: T18: Type.o(B,&) V3, B'VR: Rel(8, 8). (u 8)(o[R, edg])(u §)

holds as desired. O

Without assuming parametricity we can prove the logical relations lemma:

Lemma 4.8 (Logical Relations Lemma).For any APL-structure the Logical Relations Schema
—| =] —Ftot

holds, where ranges over altlosedterms of closed type, i.es; | — - t: 0.

Proof. The lemma is really just a restatement of the requirement that
J : Type — Relations

is a functor. Let us write out the details.

A closed termt of closed typer corresponds in the model to a mapl — o in Type;, and by definition
of the interpretation
I-|z:0,y:0|—Fzxoy] = J(0).

The fact thatJ is required to be a functor, means exactly that the pait) should define a map in
Relations, i.e., the formula
—| = | —=FVa,y: 1.21ly D tot

should hold in the model. Since the relational interpretatioh isf simply the constantly true relation, we
get the statement of the lemma. O

Remark 4.9. The Logical Relations Lemma suspiciously resembles the Identity Extension Schema. For a
closed term of open typél | — |- t: o, the Logical Relations Lemma implié§a. t) [[&. o (Aa.), so that
to[eq;]t. However, since this only holds folosedtermst, we do not have the formula

Vi: o.tolegglt,

which is the formula that we will need to prove consequences of parametricity.

50

5 Consequences of parametricity

As mentioned in the introduction to Sectiph 4 we may use Abadi & Plotkin’s logic to derive consequences
of parametricity in parametric APL-structures. In this section we exemplify how to do so. Through our
examples, it should become apparent how extensionality and very strong equality play important roles in the
proofs of the consequences.

The proofs of the consequences are based on theorems about Abadi & Plotkin’s logic statéd in [12]. For
completeness, we have written out proofs of these theorems, often inspited by [3]. What is new here, is just
that we show how to conclude from the logic to the APL-structures.

5.1 Dinaturality

We shall use the following definition very often.

Definition 5.1. We say thati - o: Type is an inductively constructed type, if it can be constructed from
free variablesy and closed types using the type constructorsgf.e., x, — and]] c..

For example, itr is a closed type thejy| . o x v is an inductively constructed type. However, some models
may contain types that are not inductively constructed! For example, in syntactical models, any basic open
type, such as the typet- lists(«) is not inductively constructed.

We define the notion of positive and negative occurrences of a type vatiablen inductively constructed
type o inductively over the structure af as follows. The type variable occurs positively ino. The
positive occurrences af in o x 7 are the positive occurrences®in o and the positive occurrences®in

7. Likewise for negative occurrences. The positive occurrencesinfr — 7 are the positive occurrences
of a in 7 and the negative occurrences®in o. The negative occurrences are the negative and the
positive ino. The positive and negative occurrenceswaf [5. o are the same as far, if o # 5. There
are no positive or negative occurrencesxoin [[. o since we only consider free occurrences of a type
variable.

Supposer(«,) is an inductively constructed type with all free variablesvirg such thatw occurs only
negatively ang? occurs only positively ir. We may then forf : a« — o’ andg: 3 — 3’ define a morphism

o(f.9) o, 8) — o(a,)

inductively over the structure ef as in [12].

It is well-known that Dinaturality is a consequence of parametricity, but we include the proof for complete-
ness.

Lemma 5.2 (Dinaturality). In a parametric APL-structure, the dinaturality schema
Va,B.Vf:a — B.o(ida, f)o ()a :H . (o(a,a))—o(a,B) o(f, idﬁ) © ()ﬂ

holds. Here(-),, denotes the termyu: ([a. o(a, a)). u(«).

Proof. Supposef: a — (3. By extensionality it suffices to prove that, for aay [. o(, @),

O—(idaa f)u(a) —o(a,f) o'(f, @dﬂ)u(ﬁ)

51

Instantiating the Logical Relations Lemma with the types

a,B,7,6 - (a— B)x (v —9)
05757776'_0-(ﬂ77) —>O'(Oé,(5)

and
t=Aa,3,7,0. \w: (a« —) x (y = 9).0(rw, 7'w):

[Ta,8,7,0.(a = B) x (y = §) = o(B,7) = o(a,0)
we get
a,B,7,6,0/,0,9,8" | z: (a = B) x (y = 0),y: (&/ = F) x (7 = &) |
Ry: Rel(a, '), Ry: Rel(8, '), Rs: Rel(v,v'), Ry: Rel(4,4") |
z(R1 — R2) X (R3 — R4)y b o(mx, n'z)(0[Ra, R3] — o[R1, R4])o(my, 'y).

Recall the notation(f) for the graph of the functiorf defined as(z: «,y: 3). f(z) =5 y. If we set
a, 3,7,a’ toa and seb, #',+',4' to B and letR; = eq,, Ry = R3 = (f) and R4 = eqy, then we get

z(eq, — (f)) x ({(f) — etg)y - o(mz, 7'z)(0[(f), {f)] — oleq,, eqs))o(my, n'y).
If we setr = (ida, f) andy = (f, idg) then sinceid,(eq, — (f))f andf((f) — eqs)idg we obtain
o(ida, [)(o[(f), (f)] = oleq,,eqp])o(f, ids).
Since the parametricity schema tells us that

u(@)a(f), (f)lu(B),

it follows that
o(ida, f)(u(a))(o[eq,, eq])o(f, idg)u(B),

but by the Identity Extension Schema this is just

0 (ida, [)(u()) =o(a,p) o (f; idg)u().

5.2 Products

Consider the typ& = [[@. @« — «a. The termA«. Az : «. x inhabitsT. Thus
Proposition 5.3. In any model of\; the typeT” defines a fibred weak terminal object.
Theorem 5.4. In a parametric APL-structure, the proposition
Vu: T. (u=7 Aa. A\z: a.x)

holds in the internal logic.
Proof. By extensionality it suffices to prove that

a: Type | u: T)z: at (ua)x =4 x.
Consider the relation

a:Type |u: T)z:akp=(y: a,z: @).y =4 x : Rel(a,).

52

By parametricity we have
a: Type | u: T)x: ab (va)(p — p)(ua),

but this means that
a: Type|u: T)z: atby=q4 2D (ua)y =4 .

Theorem 5.5. In a parametric APL-structure]” defines a fibred terminal object @fype — Kind.

Proof. Supposeu: ¢ — T is a morphism in the fibre. By the above theorem and extensionalitis
internally equal to\y: 0. Aa. Az: a. z. By very strong equality we have external equality betweeand
Ay: 0. Aa. \x: a.z. SOT is a terminal object. O

For two typess andr in the same fibre, consider
oxt=[]a.((c =7 — a) — a).

We usex to distinguish this definition from the usual fibrewise product denotedVe will show thatx
defines a weak product in the fibre, and that in parametric APL-structures it defines a genuine product.

Let projectionsr : o x7 — o andn’ : ox7 — 7 be defined by

mr=x0 (Ar: 0. \y: T.x)
mr=x71(A\r: o \y: 7.y)

and letpair : 0 — 7 — o x7 be defined by
parzry =Aa.A\f:0—>7—a. fzy
If f:a— ocandg:a— G, wewillwrite (f, g) for \x: «. pair (f z) (g x) . Then
mo(f,g)=Xx:a.(pair(fz)(gz))o(Az: o y: 7.x)=Ax:a. fe=f

and likewise
o (f,9) =g
This proves:
Proposition 5.6. In any model of\, the construction< defines a fibrewise weak product.
Theorem 5.7. For any parametric APL-structure the proposition
Vo, 7. (m, 7'y =5 id

0'>A<T 0'>A<T

holds in the internal logic.

Proof. For anyf: o — 7 — a definef*: oxt — a as

ffr=xzalf.

Suppose: : o x7. By parametricity, for any relatio®: Rel(«, 3),
(za)((eq, — eq. — R) — R)(z).

53

Now, foranyf: o — 7 — «,
f*(pairz y) = pairzya f = f oy,

i.e.,
pair(eq, — eq. — (f*))f,
which means that

(zoxTpair){f*)(za f).

In other words,
f(z oxTpair) =, z a f.

Since the left hand side of this equation simply is
(z oxT pair) a f,
we get by extensionality sinee, f were arbitrary,

zoXTpar=_;_z.

Suppose now that we are givgn o — 7 — «. We construcl: ox7 — «o by
gz=f(rz) ()
Thenpair(eq, — eq, — (g))f since
g(pairzy) = f (roparzy)(r opairry) = fry
Parametricity now states that for any o x
(zox7)((eq, — e — (g)) = (9))(z @)
Thus(z ox7 pair){(g)(z o f) and sincegz o x7 pair) =, ;. =z we have
f(r2)(n'2)=gz=qzaf.

By extensionality
ANeioxT. A ANfro—T—a f(rz)(n'2) =4 -
Aot oXxT. A \fro—T o azaf=id,g,.
But the left hand side of this equation is jyst 7). O

Theorem 5.8. In any parametric APL-structures defines a fibrewise product ffiype — Kind.

Proof. Since clearly(w o f, 7’ o f) = (m, ') o f any map intar x 7 is uniquely determined by its compo-
sition with7 and=’ by Theorenj 57 and very strong equality. O

54

5.3 Coproducts

For the empty sum we define
I=]]aa.

Proposition 5.9. In any model of\, I defines a fibred weak initial object.

Proof. Supposer is a type over som&ind object=. The interpretation of the term: I + zo is a
morphism from/ to ¢ in the fibre ovef=. O

Theorem 5.10. In a parametric APL-structure, the proposition
Yu: I. L

holds in the internal logic of the model.

Proof. Parametricity says
Vu: [[o.a.Va,3: Type.VR: Rel(a, 3). u(a) Ru(5)
Instantiate this with the definable relation

(x:1,y:1). L: Rel(1,1)

O
Theorem 5.11.1n a parametric APL-structurel defines a fibred initial object dfype — Kind.
Proof. Given two morphisms, v: I — o we have
(Va: I.L)F (Va: [.ux =5 vz) F (u =14 v),
so, by very strong equality, we haue= v. O

Given two typesr andr we define
c+7=]la.(c—a)—(T—a)—a«a
and introduce combinatorsl, .: ¢ — o + 7,inr, ,: 7 — o + 7 and
cases,: [[a.((c—a) = (T—a) = (0+7T) — a)

by
iNly47(a) = Aa. A\f: 0 = a. Ag: 7 — a. f(a),
iNfy4-(a) =Aa. A\f: 0 — a. \g: 7 — a.g(a),
casesirafgw=wafyg.

Now, suppose we are given two morphisms ¢ — « andu : 7 — «. Then we may defin¢u, t] =
casesr atu: o+ 17— aand we then have

[u,t]oinly (x) =inly; z atu=1t(x)

and likewise
[u,t]oinry (y) =iNfo -z atu = u(y)

so we have proved the following proposition.

55

Proposition 5.12. For any model of\y, the operationt+ defines a fibred weak coproduct.
We will prove that in a parametric APL-structure;+ 7 is in fact a coproduct.
Theorem 5.13.In a parametric APL-structure, the proposition

Va,o,7: Type.Vh: 0 + T — a.h =g 474 [hoiNlgyr, hoinry ;]

holds.

Proof. We will first prove that
[inla+77 inra—i—T] o+t ida—&—'r-

Instantiating the parametricity schema for. o + 7 with the relation(f) we get that, for anyf : « — 3
andalla:o0c — aandg: v — a,

flwaab)=gwp(foa)(fob)
Now considerany’ : ¢ — aandb’ : 7 — cand setf : 0 + 7 — a to
flu)=uadl.
If we seta above tanl andb to inr we get
(w(o+7)inlinr)ad V' =gwa (foinl) (foinr). (19)

Since
foinl(z) =inl(x) ad' V' = d (),

forall z: o, and likewisef o inr(y) = ¥'(y), fory : 7, (19) reduces to
(w(o+7)inlinr)ad b =gwadb.

By extensionality this implies
(w(o 4+ n)inlinr) =,4- w,

and using extensionality again we obtain
[iNlg 7, iNMo 7] =047 —otr idoyr (20)
Finally, by the parametricity condition araseswe have for any: : 0 + 7 — « that
h(case$o + 7) inlinr w) =, casesy (hoinl) (hoinr) w,

so by extensionality andl (R0),
h =o4r—q [Roinl, hoinr].

Theorem 5.14.In any parametric APL-structure- defines a fibred coproduct @fype — Kind.

Proof. Using very strong equality, Theorém 5|13 tells us that maps omtiof are uniquely determined by
their compositions witlinl andinr. O

56

5.4 Initial algebras

Definition 5.15. Consider a fibred functor

An indexed family of initial algebras for the functor is a family
(inz: T(o=) — 0=)=cobjB

such that each s an initial algebra for the restriction of" to the fibre ove= and the family is closed
under reindexing. If each inis only a weak initial algebra we call it a family of weak initial algebras.

Supposex - o: Type is an inductively constructed type (see Definitjon]5.1) in whictoccurs only
positively. Theno(a) can be considered a functor in each fibre [12]. Actually/in [12] Abadi & Plotkin
construct a term

t:[]a,B: Type. (o —) — o(a) — o (f),
which internalizes the morphism part of the functor
The typeos induces a fibred functor

Type Type

~ 7

Kind
mapping= - 7 to Z - o (7). In this section we study families of initial algebras for such functors.
First we prove the graph lemma:

Lemma 5.16. If o I o is an inductively constructed type in a parametric APL-structure in whidtcurs
only positively, interpreted as a fibred functor aslinl[12], then the formula

Va,B: Type.Vf: a — B.0[(f)] = (o(f))
holds in the internal language of the model, where, as usual,p’ is short for
Va,y. p(x,y) 3T (2, y).

Proof. Since the polymorphic strengtimentioned above is parametric, we have, for any pair of relations
p: Rel(a, /) andp’: Rel(8,3'),

tapB((p—p')— (olp] = alp)ta 5. (21)
If we instantiate this witlp = eq,, p’ = (f) for some mapf : « — 3, we get
taa((eq, — (f)) — (€4 — a[(f)])ta b,

using the Identity Extension Schema. Sindg(eq, — (f))f, and sinc& a 5 f = o(f) andt a o id, =
o(ida) = idy (o) WE get
Z.da(oz) (e%(a) - O'[<f>])0’(f),

57

that is,
Va: o(a). z(o[(f))o(f)z.
Thus we have prove@(f)) implieso[(f)].
To prove the other direction, instantia@(Zl) with the relatiors (f) andp’ = eqg for f: a — (. Since
F({f) — eq)idg,
o (/) el{F)] — €tys))ids(g)-
So for anyz: o(a) andy: o(3) we havex(c[(f)])y implieso(f)z = y. In other wordsg[(f)] implies

(o (f))- =

We shall now define a family of initial algebras for the functor induced bin each fibréI'ype- we may
define the type

po.o(a) =[] ((o(a) — a) — @)
with combinators
fold: [Ja. ((o(a) =) — pp.o(B) — «)

and
in:o(pa.o(a)) — pa.o(a)
given by
folda fz=zaf
and

inz=Aa.\f: o(a) = a. f(o(folda f)z).
Theorem 5.17.1n any model of second-ordercalculus the family
(EFin: o(pa.o(@)) — pa.o(a))=
is a family of weak initial algebras far.

Proof. Given any algebrg: o(a) — «a in any fibre, the diagram

o(pa.o(a)) n pe. o)

o(foldaf)l lfoldozf

f

ola) ——«a

is commutative since
(folda f)oinz=inzaf = f(o(folda f) 2)

and
foo(folda f) z = f(o(fold « f) z).
O

We will show that in a parametric APL-structur&; I~ in)z actually is a family of initial algebras. First we
prove a lemma.

58

Lemma 5.18. In a parametric APL-structure, the formula

fold pav. o (@) IN =0 0 (a)—pa.o(a) ua.o(a)

holds in the internal logic.
Proof. Consider an arbitrary element pa.o(a) and a mapf: « — (3. The parametricity condition then
gives
(wa)((e[(/)] = (f) = () w B).
Since Lemma 5.36 tells us thaf(f)] = (c(f)), this means that, if: o(a) — a andb: o(3) — 3 have
the property that
Vo:o(a). flax) =5 blo(f) x)
(thatis, if f is a morphism of algebras), then
flwaa) =gwpBb.

Consider now an arbitrary algeb¥a o («) — « and instantiate the above with the algebra morpHadu &
frominto k, to get
fold a k(w pa. o(@) in) =4 w a k.

Since the left hand side of this equatior{dsua. o(«) in) a k, we get by extensionality that
w per o (@) IN =0 0(a) W
and therefore, using extensionality again,
fold pav. o(@) IN =0 0(a)—pa.o(a) ua.o(a);
as required. O

Theorem 5.19. Supposey: na.o(a) — « induces a map between algebras from inftoo(a) — «in a
parametric APL-structure. Then

9 =pa.o(a)—a folda f
holds in the internal logic.

Proof. Sinceg is a map of algebras, the parametricity condition on an arbitrary«. o(«) entails as in
the proof of Lemm@ 5.18 that

gwpa.o(la)in) =qwa f

and therefore the result follows from extensionality since, by Lefjnmg 5.18,
w pa.o(a) in = (fold pa. o(a) in) w =4 6(a) W
and, moreover,
waf=(foda f)w.
Theorem 5.20.In a parametric APL-structurg[= F in)= is a family of initial algebras fow.

Proof. Using very strong equality Thin 5.]19 gives uniqueness of algebra morphismsiout of O

59

Remark 5.21. Consider the case of an inductively constructed typé - o(«, 3) in whicha and 3 occur
only positively. For each closed typewve may consider the typel o(«, 7) and the analysis above gives
us a family of initial algebras for this functor. Moreover, for each morphismr — 7’ between closed
types we get a morphism of algebras induced by initiality:

o(pa.o(a,7),7) = = =o(pa.o(a, 1), 7)
s
in, o(pa.o(a,7),7")
in,.
po.o(a,7)———— — > pov. o (o, ')

For example, if we consider the type3 - 1 + « x 3, then for anyr, we get listér) = pa. (1 4+ « x 1)
and, for anyf : = — 7/, the induced morphism is the familiar morphism nfaplists(r) — lists(7’), which
appliesf to each element in a list.

5.5 Final coalgebras

In this section we consider the same setup as in Sectign 5.4, thatisy: Type is an inductively con-
structed type in whichx occurs only positively. As before defines a fibred endofunctor diiype —
Kind.

Definition 5.22. Consider a fibred functor

An indexed family of final coalgebras for the funcioris a family
(outz: o= — T'(0=))zcobjB

such that each ogtis a final coalgebra for the restriction df to the fibre ove= and the family is closed
under reindexing. If each ogtis only a weak final coalgebra we call it a family of weak final coalgebras.

In this section we define a family of weak final coalgebrasfand prove that for parametric APL-structures
itis in fact a family of final coalgebras. First we need to define existential quantification in each fibre as

[[e.o(a) =Ila.(I[B.(¢(B) = a)) — «
and the combinatguack: [] a. (o(a) — [5.o(8)) by
packa z = ABAf: [[e (o(a) — B). f a .
In each fibre we define the type
va.o(a) = [Ja. ((a = (@) x a) =[[a. ([18- (B = 0(B) x B — a) - «

60

with combinators
unfold: [Ja. ((a — o(a)) —» a — (va.o(a)))

and

out: va. o(a) — o(va. o(a))
defined as

unfolda f = = packa (f, x)
and

outlz) = zo(ra.o(a)) (AaX(f,z): ((a — o(a)) x a).o(unfolda f)(f x)).

Theorem 5.23. In any model of second-ordercalculus(Z F out)z is a family of weak final coalgebras
foro.

Proof. Consider a coalgebrf: @ — o(«) in any fibre. Then

o ——0(a)

unfolda fl la(unfolda f)

va.o(a) oL o(va.o(a))

commutes since

out(unfolde f z) = out(packa (f, z)) =
(packa (f, z)) (o(va. o(a))) (AaX(f,z): ((« — o(a)) x a).o(unfolda f)(f z)) =
o(unfolda f)(f 2)

Lemma 5.24. In a parametric APL-structure,
unfoldva. o(«) out

is internally equal to the identity oma. o(«).

Proof. Seth = unfoldva. o(«) outin the following.
By parametricity, for any : o — £,

unfolda((k) — o[(k)]) — ((k) — €Q,4.,(4))unfoldg.
Hence, since’[(k)] = (o (k)) by Lemmd 5.1, if
ki(fra—o(@)—(g:6—0(0)
is a morphism of coalgebras, then
unfolda f =, q.0(a) (Unfold3 g) o k.

So sinceh is a morphism of coalgebras froout to outwe haveh = h2. Intuitively, all we need to prove
now is thath is “surjective”.

61

Consider any : [T . ((a — o(a)) x a — [3). By parametricity and Lemnja 516, for any coalgebra map
k:(f:a—o0@)—(f:ad — o(a)), we must have

Vo:a.ga(f,x) = g (f k(z)).
Using this on the coalgebra mapfolda f from f to outwe obtain

Vo: o.galf,z) =g gva.o(a)(out unfolda f).

In other words, if we define
E: [Ja. (0 — o(a)) xa— 1),

wherer = (va.o(a) — o(va.o(a))) X va.o(a), to be
kE=Aa. Xf,z): (o — o(a)) x a. (out unfolda f x),

then
Va. g a =(—o(a))xamp (gra.o(a)) o (k). (22)
Now, suppose we are given o/, R: Rel(a, o) and termsf, f’ such that

f(R—o[R) x R—p)f".

Then, by [22) and parametricity of
gaf=ggd [=5 (gva.o(a))(ka f),
from which we conclude
9(V(a, B, R: Rel(a, 8)). (R — o[R]) x R — (gva.o(a))))k.

This implies that for any:: va. o(«) by parametricity we have

xfg=pggraoc(a)(zTk).
Thus, sincey was arbitrary, we may apply the abovegte= k£ and get

7k =; kva.o(a) (z 7 k) = (out unfoldva. o(a) m(x 7 k) 7' (x 7 k)).

If we write
I = \z: va.o(a).unfoldva. o(a) n(x 7 k) 7' (z 7 k),

then sincek is a closed term, so is and from the above calculations we conclude that we have
VB.Vg: [[a. (@ = o(a)) xa— B.2 89 =p gra.o(a) (outl x).

Now, finally

h(l) = unfoldva. o(a) out(l z) =
packva. o(a) (outl z) =
AB.Ag : Ha' ((a - U<a)) X o — B)g l/Oz.O’(Oé) (OULZZE> “ra.o(a)
AB.Ag: J]a.((a = o(a) xa— B).aBg=x

where we have used extensionality. Thisa right inverse td, and we conclude

hx —va.o(a) h2(l (L‘) —rva.o(a) h(l [E) =va.o(a) L

62

Theorem 5.25.1n a parametric APL-structurg= - out)z is a family of final coalgebras far.

Proof. Consider a map of coalgebras irdot

By parametricity ofunfoldwe have
unfolda f =, a.0(a) (Unfoldva. o(a) out) o g =4 a.0(a) 9-

Very strong equality then implies uniqueness of coalgebra morphismeunés desired. O

5.6 Generalizing to strong fibred functors

In this section, our aim is to generalize the results of Secfiorjs 5.4 ahd 5.5 to initial algebras and final
coalgebras for a more general class of fibred functors, than the ones defined by inductively constructed
types. These functor are called strong fibred functors.

Definition 5.26. An endofunctofl’ : B — B on a cartesian closed category is callsttongif there exists
a natural transformatiort, . : 7° — T'717 preserving identity and composition:

ido comp

o1 o2 o1
1 > O'o. 0'2 X 0-3 —> 03
A itw ltm lt
10T o
To comp
To TJ2T 9 % Tcrga2 Tagol.

The natural transformation is called thestrengthof the functorT.

One should note thatin the definition above represents the morphism part of the fuficioithe sense that
it makes the diagram

1*>f nd

x ltw
Tf

Tr1le

commute, for any morphisrfi: ¢ — 7. This follows from the commutative diagram

1 -

t
07 —>To'"

N

t
77— 1770,

63

Definition 5.27. A strong fibred functoris a fibred endofunctor

T

E———E

NS

B

on a fibred ccc, for which there exists a fibred natural transformatidrom the fibred functor(—))
to T'(—)7(+) satisfying commutativity of the two diagrams of Definition 5.26 in each fibre. The natural
transformatiort is called thestrengthof the functor?'.

In this definition, one should of course check that the two fundterg™) and7'(—)”+) — a priori only
defined on the fibres — in fact define fibred functors

EP xpE ———F
B.

But this is easily seen. Notice also tHatis not required to preserve the fibred ccc-structure and that the
components of are preserved under reindexing sirces a fibred natural transformation.

Example 5.28. An inductively constructed type with one free variable o: Type, wherea occurs only
positively, defines a strong fibred functor: see Segtioh 5.4.

But in many situations one may want to reason about other strong fibred functors. For example\.if the
fibration of the APL-structure models other type constructions than the ones\frdor which there are
natural functorial interpretations, one may want to prove existence of initial algebras for functors induced
by types in this extended language.

All fibred endofunctors on\,-fibrations are in a sense given by types.
Lemma 5.29. For any strong fibred functor

F

Type Type

N

Kind
on a\q-fibration there exists, in the internal languageBype — Kind a typea F ¢ and a term
—Fs: [[a,B.(a— B) = o(a) — o(B)
inducingF'.

Proof. Denote byl € Type(, the generic object of th&,-fibration and for any type € Type= denote
by 7: E — Q the map satisfying = 7*(T"). Seto = F(T'). Then for any type : Typexz,

F(r) = F(#T) = o

which is the interpretation aof (7) in the internal language.

64

Now suppose the fibred natural transformatiesa strength fof”. Consider the compone(ty:)[a, -a],[o, 53]
Thisisamap irCypeq: from[a, 5+ a — G]to[a, B+ o(a) — o(8)], i.e. atermy, B t': (a —) —
(o(a) — o(p)) in the internal language. Set= Aa. AS.t'.

To check that, s induce the functo” we only need to check that for any pair of types’ € Typex,
E + s7 7' is interpreted astz), . But[EF st 7] = (r,7)*(¢') = (t=),., sincet is preserved by
reindexing. O

Lemmé&[5.2p tells us that we can reason about strong fibred functors in the internal language. For instance,
denoting the strong fibred functor lbywe may write

a,fB|lfra—BFa(f): ola) — a(f)

for s a B f wheres is the polymorphic term inducing’s action on morphisms.

Furthermore, since the morphism part of the functor is representedpmyyenorphicterm, we can use
parametricity to reason about it. For instance, we may prove the following generalization of [Llemna 5.16.

Lemma 5.30 (Graph Lemma). For any parametric APL-structure, i is a strong fibred endofunctor
Type — Type, then the formula

Vo, 3: Type. Vf: o — B.o[(f)] = (o(f))
holds in the internal language of the APL-structure, where p’ is short for
Vo, y. p(z,y) 3 0'(2,y).

The proof of this lemma is the same as the proof of Lefima 5.16.

Corollary 5.31. For any parametric APL-structure, the morphism part of a strong fibred endofuaci®r
uniguely determined by the object part.

Proof. By Lemmd5.3Dy = o(f)(z) iff zo[(f)]y. O

Theorem 5.32.1n a parametric APL-structure, any strong fibred funcior Type — Type has

o A family of initial algebras defined as in Sectfon|5.4
e A family of final coalgebras defined as in Secfior] 5.5

Proof. The proofs work exactly as in Sectigns|5.4 5.5 since we may express the firiottite internal
language, as described above.

The fact that these initial algebras and final coalgebras are preserved by reindexing follows from the fact
that the strengthsare preserved. O

6 Concrete APL-structures

In this section we define a concrete parametric APL-structure based on a well-known variant of the per-
model (see, for instance,![5, Section 8.4]).

65

The diagram of Definitioh 3]3 in the concrete model is:
UFam(RegSub(Asm)) (23)
PFam(Per) —— - UFam(Asm)
\ iq
PPer

The fibrationp is the fibration of [[5, Def. 8.4.9]; we repeat the definition here. In the followiRgy
and Asm, will denote the sets of partial equivalence relations and assemblies respectively on the natural
numbers (see [5]).

The categoryPPer is defined as

Objects Natural numbers.

Morphisms A morphismf : n — 1 is a pair(f?, f") wheref? : Per"” — Per is any map and
I € 7 gepern |Ticn PON/Ri X N/Si) = PON/f7(R) x N/ £7(S)]

is a map that satisfighe identity extension conditiorf’"(ﬁ}) = Eq. A morphism fromn
to m is anm-vector of morphism from to 1.

We can now defin®Fam(Per) as the indexed category with fibre ovedefined as

Objects morphismsy — 1 of PPer.

Morphisms a morphism fromyf to g is an indexed family of mapgx ;) » Where

RePer
ag:N/fP(R) — N/g?(R)

are tracked uniformly, i.e., there exists a cadsuch that, for all? and[n] € N/f?(R),
aj([n]) = [e - n]. Further, the morphisna should respect relations, that is, 4; C

—,

N/R; x N/S; and(a,b) € f7(A) then(az(a), ag(h)) € g (A).

Reindexing is by composition.
Next we define the fibratiog. The fibre categorfyFam(Asm),, is defined as

Objects all mapsf : Per” — Asm.

Morphisms a morphism fromy to g is an indexed family of map&y ;) where

RePer™
ag: f(R) — g(R)

are maps between the underlying sets of the assemblies that are tracked uniformly, i.e.
there exists a code such that for allR and alli € f(R) and alla € Ef(ﬁ)(i) we have

e-a€ Eg(ﬁ)(aﬁ(i)).

66

Reindexing is again by composition.
Finally we can define the categotyFam(RegSub(Asm)) as

Objects An object overf is any family of subsetgA ; C f(}?))ﬁ, where by subset we mean subset
of the underlying set of the assembly.

Morphisms In each fibre the morphisms are just subset inclusions.

Reindexing is defined as follows: Suppogse f — g is a morphism inUFam(Asm) projecting to
q¢ : n — min PPer. By definition this is a map in the fibre & Fam(Asm) overn from f to (¢¢)*(g).
Such morphisms are given by indexed families of maps

651 [(R) — go(q9)(R)
ranging overR € Per” so we can define
* g -1
¢ (A§ C g(S))gePerm = (¢R' (Ago(q¢)P(ﬁ)))ﬁ€Per"

The inclusion! is obtained by projectingf?, f”) to f? using the inclusion oPer into Asm.

Lemma 6.1. p is a A2-fibration.

Proof. This is [5, Prop. 8.4.10]. The ccc-structure is given by a pointwise construction, snclearly a
generic object. Foratypg: n+ 1 — 1 we define[[f:n — 1as

ITHP(E) = {(a,a') | VU,V € Per.¥B C N/U x N/V.a € |{7(R,U)| and
a e |fP(R,V)land((a],[@]) € flz) 51y (Edz B}

and

I1H%, A = {Uag s, [@lggpE) | YUV € Per.VB C N/U x N/V
(

R)’
[a]f P(RU) [a]fpsv)ef)(A,B)}
for ACRxS. O

Theorem 6.2. The diagram[(2B) defines a parametric APL-structure.

We do not prove Lemnia §.2 directly. Instead, we will show in RerparK 8.27[that (23) is a special case of the
parametric completion process of Secfipn 8.

Remark 6.3. In the above model we use nothing special about the RC#% the same construction applies
to pers and assemblies over any PCA. All the lemmas above generalize, so that in the general case we also
obtain a parametric APL-structure.

6.1 A parametric non-well-pointed APL-structure

We may generalize the construction above even further to the case of relative realizability. Suppose we are
given a PCAA and a sub-PCAd;. We can then define the APL-structure as above with pers and assemblies
over A, with the only exception that morphisms BFam(Per) and UFam(Asm) should be uniformly
tracked by codes inl;. All the proofs of sectiof|6 generalize so that we obtain:

67

Proposition 6.4. For any PCAA and sub-PCAA; the diagram

UFam(RegSub(Asm(A, Ay)))
PFam(Per(A, A;)) '~ UFam(Asm(A, A;))
e
q
PPer(A, Ay)
defines a parametric APL-structure.

However, one may also prove:

Proposition 6.5. The fibrePFam(Per(A, A;)), is in general not well-pointed.

Proof. Consider a per of the forfi(a, a)}, fora € A\ A;. There may be several maps out of this per, but
it does not have any global points. O

Propositior} 6.)4 tells us that all the theorems of Segtjon 5 apply, such thafiferation
PFam(Per(A,A;)) — PPer(A, Ay)

has all the properties that we consider consequences of parametricity. This should be compared to [1] in
which a family of parametric models is presented (with another definition of “parametric model”) and the
consequences of parametricity are proved only fomibl-pointedparametric models.

7 Comparing with Ma & Reynolds notion of parametricity

In this section we compare the notion of parametricity presented above with Ma & Reynolds’ notion of
parametricity [6] (see alsd [5]). This latter notion was the first proposal for a general category theoretic
formulation of parametricity and is perhaps the most well-known.

To define parametricity in the sense Ma & Reynolds, consider first a situation where we are given a
fibration F —— B and a logic on the types given by an indexed first-order logic fibration

D—F—B.
Consider the category of relations on closed typ&% F) defined as
LR(E)) —= D, —>D
L]
EixE~—>FE “—>F
where byl we mean the terminal object &f. In this case we have a reflexive graph of categories
E1 P LR(El) 5

where the functor going left to right maps a type to the identity on that type. By reflexive graph we mean
that the two compositions starting and endindiin are identities.

68

Definition 7.1. The\,-fibration
E

;

is parametric in the sense of Ma & Reynolds with respedbte~ E if there exists a\,-fibration F* — C'
and a reflexive graph of; fibrations

E F
B C

such that the restriction to the fibres over the terminal objects becomes

E1 P LR(El) .

Given an APL-structure, we have a logic over types given by the pullbaBkop along/. We also have a
reflexive graph giving the relational interpretation of all types. It is natural to ask what kind of parametricity
we obtain by requiring that the reflexive graph giving the relational interpretation of types satisfies the
requirements of Definition 7].1.

First we notice thaRelations; = LR(FE7), and that the two maps going froRelations to £; are in
fact the domain and codomain maps, as required, so the requirements of Definjtion 7.1 only effect the nature
of the mapJ.

The last requirement of Definitign 7.1 says exactly that, for all closed types
J([o]) = [eq,].

Consider now an open type - o: Type and a vector of closed types Then, since/ is a map of
fibrations, we have

J([o(P)]) = J([T*[a+ o]) = J([@ F+ o]) o [eq:] = [o[eq:]].
In other words, the model satisfies a weak form of Identity Extension Schema:

Definition 7.2. The schema
Yu,v: (7). (uo[ed:|v) 3C u =47 v

whered + o ranges over all types and ranges over all closed types is called theak identity extension
schema

We will briefly mention which of the consequences of parametricity mentioned in S¢¢tion 5 that hold under
assumption of the weak Identity Extension Schema.

First we notice that the weak Identity Extension Schema implies the parametricity schema

Vu: ([]3: Type.o(B,72,...,m)). u(V3.0[3,€q,,,...,eq, |Ju

in the case where the are closed types.

69

Using only this weak version of the parametricity schema, we can still prove existence of terminal and initial
types, since in these cases we only need to use parametricity on the closefl guks

The proofs of existence of products and coproducts, however, fail whand+ are open types, since we
need to use the parametricity condition on the open typesando + 7.

The case of initial algebras goes through, since the proof only uses parametrigity ®of«), which is a
closed type. The proof of Lemrha 5|24, however, uses parametricity of th§ fypé(a — o(a)) xa —)
where(is a type variable, so this proof does not go through with only the weak parametricity schema. In
other words, in the setting of reflexive graphs as in Definifion 7.1, we do not have a proof of existence of
final coalgebras.

See alsd [15] for a related discussion.

8 A parametric completion process

In this section we give a description of a parametric completion process that given a modehtdrnal

to some category satisfying certain requirements produces a parametric APL-structure. The construction
is related to the parametric completion process of [15] in the sense that the process that constigets the
fibration contained in the APL-structure generated by our completion process is basically the parametric
completion process of [15] (only the setup varies slightly). This means that if the ambient category is a
topos, then the parametric completion process$ of [15] produces models parametric in our new sense which
then satisfies the consequences of parametricity of S¢dtion 5. This fact is no surprise, but, to our knowledge,
it has not been proved in the literature.

The concrete model of Sectiph 6 is a result of the parametric completion process described in this section.
Before describing the completion process we recall the theory of internal models of

8.1 Internal models for A\,

Suppose we are given a locally cartesian closed catdgofyiven a full internal categord of E we may
consider the externalizatidD
Fam(D) .

|

E

We shall denote by, the object of objects, and Y, the object of morphisms dD. The fibre oveE € E
is the internal functor category fro@ considered as a discrete categonipi.e., objects are morphisms
= — Dy and morphism are morphismsBf = — D;.

Proposition 8.1. SupposeaD is a full internally cartesian closed category that has right Kan extensions

for internal functorsF’ : = — D along projections= x Dy — Z. Then the externalization dD is a
Xo-fibration.

Proof. SinceD is internally cartesian closed, its externalization has cartesian closed fibres preserved under
reindexing [5, Corollary 7.3.9]. Clearl, is a generic object for the fibration.

Polymorphism is modeled using the Kan extensions, since for anystypg x Dy — D the right Kan

70

extension ot alongr : = x Dy — = is the functor] | a.. o in the diagram

ExDyZ—=D
7

The universality condition for the right Kan extension then gives the bijective correspondence
Nat(7 o m,0) = Nat(7,[[a. 0)

between the sets of natural transformations. Sititce= 7 o 7, for 7 : £ — D, this states exactly that the
right Kan extension provides the right adjointit, as required.

To show that the Beck-Chevalley condition is satisfied, we need to show that f§r— = we have

u([Ja.o) Z[]a. ((ux id) o),

that is,
([Ja.o)ocu=] (o0 (ux id)).

By Lemmd 8.2 below, we may write out the values of these two functors on objeet&’ as limits:

(ITe.o)ou)(4) = lim o(A) (24)
w(A)—m(A)
([Ta.(couxid)(4) = lm o(ux id(A")). (25)
A Al

In (24) we take the limit over all maps: u(4) — 7(A’) in the discrete category. But since this is a
discrete category, such maps only exist in the e&s€) = u(A4), so [24) can be rewritten as

HD’GDO o(u(A), D/)~

Likewise [25) can be rewritten as
[Iprep, o(u(A), D),
proving that the Beck-Chevalley condition is satisfied. O

Lemma 8.2. Suppose the Kan extensiBK (') in the diagram

L—2m

F /
RKp (F)

F

exists. IfL, H are discrete, the®RKy (F') is given as a pointwise limit construction (as In [7, Theorem 1,
p.237]).

Propositiorj 8.]1 justifies the following definition.

Definition 8.3. An internal categonD of a locally cartesian closed categofy is called aninternal model
of \y if it satisfies the assumptions of Propositjon]8.1.

71

8.2 Input for the parametric completion process
The parametric completion process takes the following ingredients as input:

1. A quasitopo¥

2. Aninternal modeD of Ay in E.

We will further assume that the inclusion

Fam(D) E~
N

E

which we have already assumed is full and faithful, preserves products and is closed under regular subob-
jects. The latter means that for each objéct E, the fibre categorfam(D)g is closed under regular
subobjects as a subcategory®fE.

The logicRegSuby, — E of regular subobjects induces a logicBn by
Q —— RegSubg

]

E~ ——E,

which, by Lemméa A.B, makes the composable fibration

Q E— cod E,
an indexed first-order logic fibration with an indexed family of generic objects, simple products and simple
coproducts.

Let ¥ be the regular subobject classifier Bf We can now form an internal fibratrby using the
Grothendieck construction on the functet € D) — %4, with ¢ ordered pointwise. We think of this
fibration as the internalization dtegSubp — E restricted toD and write it asa: Q — D. Notice
that sinceD is closed under regular subobjedf¥,— D is a subfibration of the subobject fibration Bn
and since its externalization is simply the restrictior{Qof— E, it is closed under the logical operations
T, A, D,V, = from the regular subobject fibration.

Associated to the model given Y there is a canonical pre-APL- structure

Q (26)

To this we can associate, as usual, the fibration of relations denofBélagtionsp — RelCtxp.

2By internal fibration, we mean an internal functor, whose externalization is a fibration. By an internal fibration having structure
such as\, D,V, = we mean that the externalization has the same (indexed) structure

72

8.3 The completion process

We define the categolyR (D) to have as objects logical relationsIof in the logic ofQ and as morphisms
pairs of morphisms i that preserve relations.

Lemma 8.4. The categonLR(D) is an internal cartesian closed categorylof

Proof. We set
LR(D)o = {(X,Y,¢) e Dg x Dy x Qo | a(¢) = X x Y}

e LR(D): = [lxve).xy.e)eLrm),{(f;9) € D1 x Dy |
FiX—X'Ng:Y =Y No<(fxg)d}.
For the cartesian closed structure we define:
(X,Y,0) x (X",)Y',¢') = (X x X', Y xY' ¢ x¢),
whereg x ¢/((z,2'), (y,4')) = ¢(z,y) A ¢'(2",3'), and

(X,Y,¢) = (X", Y, ¢) = (X = XY =Y, ¢ —¢),

where
¢ — ¢'(f,g9) =VYreXVyecY(o(x,y) D¢ (f(x),9(y)).
O]
Let
G = E

be the generic reflexive graph category, and consider the functor catBgorgince it is well known that
Cat(E%) = Cat(E)® andCCCat(E%) = CCCat(E)¢ it follows that

Lemma 8.5. D =—= LR(D) is an internal cartesian closed categorylof .

We now aim to prove thatb == LR(D) is an internal model of,. By the lemma, all that remains
is to prove that there are right Kan extensions for internal functors fiom Dy —— =’ x LR(Dy) to
D =—=LR(D) along projections tc= = =’ . This is the same a saying that the fibration

Fam(D® —=LR(D)") — E¢

has right adjoints to reindexing functors along projections.

We first consider the simpler case with spans in stead of reflexive graph® (2} denote the internal
category
LR

(D)
a0 o
\
D D

insideE®, whereA is the obvious category.

73

An object of Fam(R(D)) is a triple of maps f, g, p) such that

p (27)

I LR (D)o
o \
g Do

Eo =

commutes. Sinc&R(D)y is the object of all relations on objects B, the idea is that we can consider
such a triple as a definable relation

[Z0,Z1 | © F p: Rel(f(Z0), 9(E1))];
i.e., an object oRelationsp. We will make this intuition precise in Lemnpa 8.6.

A vertical morphism in the categoBam(R.(D)) from (f, g, p) to (f', ¢, p’) is by definition a triple consist-

ing of a morphism frony to f/, a morphism frony to ¢’ and a morphism from to p’. But since morphisms

in LR(D) are pairs of morphisms preserving relations, and since the triple of morphisms is required to
make the obvious diagram commute, we can consider such a morphism ag & pai~ f',t: g — ¢')

such that

VA € ©.Vx: f(9(A)),y: 9(01(A)). p(z,y) D p'(585(4) (@), 1oy () (W),
as interpreted in the internal language of the quasi-topos, wheegers to the internal ordering iQ.

Lemma 8.6. There is an isomorphism of fibrations

Fam(R(D)) Relationsp

EA RelCtxp

Proof. Unwinding the definition oRelCtxp, we find that the objects are tripl€S,, =1, =) together with
mapsz — =y x Z; in E. Amap from= — ¢ x £1 toZ' — =), x =) is a triple

—/

.= = .= =/ .= =/
p:E2— =, f:Ey—E&), ¢g:Z21—Z%

making the obvious diagram commute. THRislCtxp = EA.

Objects inRelationsp are given as morphism RelCtxp into the interpretation oft, 5 | R: Rel(a, 3)
in (26). But the interpretation of this is easily seen to be

1o sen, 2% — Dy x Dy,

and sincelLR(D)o = [, gep, Y.ox8 we get a bijective correspondence between objecRalationsp
and objects oFam(R(D)). For morphisms, a vertical morphismiam (R.(D)) from (f, g, p) to (', ¢, p')
is by the above discussion a pair of morphismg — f/,s: ¢ — ¢’ satisfyingp D (t x s)*p/, which is
exactly the same as a vertical morphisnRelationsp. O

Lemma 8.7. All internal functors y \ x R(D)y — R(D) have right Kan extensions along the projection

Zo =1

oy
=0

=1

74

Proof. The statement to be proved is equivalent to the statement that the fibration on the left hand side of
the isomorphism of Lemnija 8.6 has simple products. Since we know that the fibration on the right of the
isomorphism has simple products, we are done. O

Let us now consider the case that we are really interested in. We shall assume that we are given a functor

(f', f7) InES:
= x LR(D)g —= 4 (28)

BOJ/%& 8%%81
= x Dy d =
\

and we would like to find a right Kan extension of’, f7) along(w,) (notice that we have used the
notationdy, 01, I for the structure maps of all objects Bf - this should not cause any confusion, since it
will be clear from the context which map is referred to). Let us call this exter(ﬁmr 1t Hpm, f7). An
obvious idea is to try the paif] /¢, [] f") provided by Lemm 7. Howeveﬂpar f7 should commute
with 7, and we cannot know thf /" will do that. Considef [f"(I(A)) for someA € =:

[1f7(1(A))

|

[11(A) < TT(A).
If we pull this relation back along the diagonal phf?(A) we get a subobject
TN =TI f(4)
(called thefield of [T f7(I(A))). Logically, | T f7(1(A))|is the se{z € T[] f4(A) | (z,z) € [[f7(I(A)},
so if we restrict[[/" (I(A)) to this subobject, we get a relation relation containing the identity relation.
The other inclusion will be easy to prove. Thus the idea is td [gf, f* be the map that mapd to

|T1f"(I(A))|, and let[[,,,, f"(R) be the relation obtained by restrictiig f"(R) to [, f*(o(R)) x
[Tpar ££(01(R)).

Theorem 8.8. For (f*, f"), (w,) as in [28), the right Kan extension 6f’, f7) along (r, 7) exists.

Proof. We will define[],,, f*(A) as the pullback

(Ipar F1)(A) (1) (A))
- |

[1/1(A) —=—=TI F1(A) x [T f1(A)

75

whereA is the diagonal map. We defilﬁlm fT(R) for R € Z/, to be the pullback

(Ipar if Z(R) (I fi")(R)

Hpar ft(aoR) X Hpar ft(alR) e H ft(aoR) X H ft(alR)

First we will show thaf [.. f"(1(A)) = I(IL,,, f*(A)) for all A. Logically
[Lar fTU(A)) ={(z,y) € [T/"((A) | (,9), (z,2) € [Tf7(I(A))} 2
{(z,2) [z € [TTf"TANI} = I(TTpe f(A))
To prove the other inclusion suppoge y) € [, f"(1(A)) € [f"(1(A)). Then for anyo,,+1 € Dy,
(z,y) € 7" (I1/")I(A), I(ont1))-
Letea s, , denote the appropriate component of the counitfor! []. Then
(6A70n+1x7 EA,Un+1y> e ([IfM)U(A), I(0ns1)) = I(ft(A, Ont1)),

SO€A 6, T = €A0,,,y- Since[] f1(A) is the product off*(A, oy,11) Overo, 1 in Dy, andea,, ,, is
simply the projection onto the,, , ;-components 4 .., = = €4,y forall 0,1 impliesz = y as desired.

Finally we will show thaf] [,,,. provides the desired right adjoint. Recall that a morphism ftofng”) to
' LR(D)
il il

(ht,h"), where
Dy

and likewise(h!, h") is @ morphisms: g — h! preserving relations. In the internal language this means
that for eachA € = we have a map: g‘(4) — h'(A) such that forR with 9y(R) = A,01(R) = B,
(z,y) € ¢"(R) implies(sa(x),sp(y)) € h"(R).

Now, from Lemm we easily derive a one-to-one correspondence betweetymaps— ([T 4 [1/7)

and mapsg‘ o m,g" o) — (f4, f7). Since[],,,, ft{(A) C T] f1(A), for this correspondence to carry
over, we only need to check thatdfdenotes a map frorty! o 7, ¢g" o) to (f%, f7), and3 the adjoint
correspondent ta, then s preserves relations, andif € g'(4), thens(x) € [Toar ft(A). But since
(z.7) € g"(I(A)) = I(g'(A)), we must have(3(x),5(z)) € [[f7(I(4)), $05(z) € [, f/(A) as

desired. For the preservation of relations, supfesg) € ¢"(R). Then

(3(2),5(1)) € ITf"(R) N TTpar F1(O0R) X [Tyar [/ (D1 R) = [Lpar f7(R).

— 1]

[1]

Corollary 8.9. The fibrationFam(LR(D) =—= D) — E¢ is a \,-fibration.

Remark 8.10. If E is a topos therQ is the subobject fibration ob, andT — K is in fact the model ok,

that Robinson and Rosolini prove to be parametric in the sense of reflexive graphs (Definition [7.1) in [15].
One interesting difference however, is that/[15] considered only models tifat satisfied a “suitability

for polymorphism” condition stating that the model is closed unl&(D),-products. In our setup, this
condition is replaced by the condition that the regular subobject fibration madedsd that the internal
categoryD is closed under regular subobijects.

76

Remark 8.11. Consider a morphismd between typeg andg in the modell' — K. At first sight, such a
morphism is a pair of morphisifty, &) with &; : f; — g¢;. But morphisms ilLR.(D) are given by pairs of
maps inD, and commutativity of

LR(D)? -~ LR(D),
dql l&
Dy 2 D,

tells us thatt; must be given b€y, £y). Thusmorphisms between types are morphisms between the usual
interpretations of types preserving the relational interpretations

8.4 The APL-structure

In this section we embed the fibration of Corollary 8.p into a full parametric APL-structure.
Consider the functof-)o : E¢ — E that maps a diagranky —— X to X, and consider the pullback of

(26) along(-)o

(29)

T

-~ O<— =

O
E
Lemma 8.12. The functor(-), extends to a morphlsm of fibrations:

Q

LR(D) (Do
Fam < VA > —— Fam(D)
D

Proof. The required map maps an object

X LR(D)o
() — ()
Xo Dy
LR(D)o
of Fam(Mv > to the object Xy —— Dy of Fam(D). Likewise for morphisms. O

As a consequence of Lemina 8.12 we can extend (29) to
P (30)

LR(D)o
Fam(w >HT;><C

If we erasel from (30) we obtain the diagram

P (31)

Theorem 8.13. The diagram[(3]1) defines a parametric APL-structure.

We will prove Theorem 8.13 in a series of lemmas.

Corollary 8.14. If D is an internal model ol in a topos, which is closed under subobjects, then the para-
metric completion process df [15] providesha-fibration that satisfies the consequences of parametricity
provable in Abadi & Plotkin’s logic.

Proof. This follows from Remark 8.0. O

LR(D)
Remark 8.15. The types (the objects Bim < VAY >) in the APL- structurl) are morphisms

LR(D)o LR(D)o
(VY) (VW)
Do

in E¢. Thus types contain both the usual interpretation (the nfap D — Dy) and a relational
LR(D)
interpretation (the magf; : LR(D)j — LR(D)p). But since the mapam MV " — T forgets the

relational interpretation, the logic on types, givenlByis given only by the logic on the usual interpretation
of the types. To be more precise, a logical relation in the modél ¢f (31) betweenftyaredg is a relation
in the sense of the logi@ betweerﬂdeDn fo(d) — Dg and[[;. go(d) — Dg.

0

Notice also that the relational interpretation of a type (given fay is in a sense parametric since the
diagram

LR(D); "~ LR(D),

1

Dg Dy

is required to commute. This is basically the reason why the APL-structure is parametric.

Remark 8.16. One may restrict the APL-structure 31) to the full subcategor©fon powers of the
generic object. This way one obtains.gfibration in whichType is the only kind. To prove that this defines

a parametric APL-structure, one will need to change the proof presented here slightly to obtain the reflexive
graph.

Lemma 8.17.C — K is fibred cartesian closed and is a faithful product-preserving functor.

78

Proof. The first statement follows from the fact tHat” — E is a fibred cartesian closed fibration.
I is arestriction of the composition

LR(D)
Fam(YA) — T~ .

NS

EG

The mapT — C' is the pullback of the inclusion of the externalization of a full internal cartesian closed
category intdE™. This is faithful and product preserving by assumption.

LR(D)
The mapFam (VA) — T is the map that maps

LR(D)o LR(D);
E (w) <W)

to fo : D — D; (for i = 0,1 denoting objects and morphisms respectively). Since product structure of
internal categories of graph categories is given pointwise, this map clearly preserves fibred products.

As mentioned in Remafk 8.1, a morphism frghto g with

LR (D)o LR(D)o
fvg:(WW > < w)
is just a map frony, to go preserving relations. Thus the first map is also faithful. O

Lemma 8.18. The composable fibratiofh — C — K is an indexed first-order logic fibration with an in-
dexed family of generic objects. Moreover, the composable fibration has simple products, simple coproducts
and very strong equality.

Proof. The composable fibratioR — C — K is a pullback of@ — E~ — E which has the desired
properties according to Lemrpa A.8. All of this structure is always preserved under pullback, except simple
products and coproducts. These are preserved since th&mafE preserves products. O

As in Remarl3.4 we can now construct the fundtoas needed in Definitidn 3.3. Thus we have:

Proposition 8.19. The diagram[(3]L) defines a pre-APL-structure with very strong equality.
Consider the graph’:

M~
where we assume that the two graphs included are reflexive graphs. ThéWjraph

LR(D) LR(D)
I
D D

79

defines an internal category &1V .
An object of Fam(W) can be denoted by a triple, g, p), wheref andg are types in the same fibre (that
LR(D)
is, objects offam < VA) in the same fibre) angd is a morphismLR (D) — LR(D), such that the
D

diagram

) LR(D)o (32)
LR(D); /7 \
/ fo Do g4 Do

commutes.

Now, as noted in Remafk 8]15 types in the pre-APL strucfure (31) are given by both an ordinary interpreta-
tion of types and a relational interpretation of types, but relations between types are just given by relations
between the ordinary interpretation of types. Thus we may think of such triples as objects of the form

[@, 5| R: Rel(@, B) - ¢(R): Rel(f(a),g(8))]

in the categoryRelations as formed from the pre-APL structufe {31), in the same way as in L§mrpa 8.6.

Note that since we have proved that the diagran (31) defines a pre-APL-structure, we can reason about
it using the parts of Abadi & Plotkin’s logic not involving the relational interpretation of types. In the
following we shall use this to work in the internal language of the pre-APL-structure.

Proposition 8.20. There is an isomorphism of fibrations:

Fam(W) Relations
EW RelCtx
Proof. The argument is essentially the same as the proof of Lemma 8.6. O

Lemma 8.21. The graphW is an internal model of\, in EV.

Proof. This is a consequence of Propositjon .20. O

Proposition 8.22. There is a reflexive graph of;-fibrations

LR(D)
Fam (v}gv > Fam(W)
E¢ EW

Remark 8.23. The reflexive graph in [15] arises this way, although the setup_of [15] is slightly different.

80

Proof. An object of Fam(W) is a map inE"’

=) h LR(D), LR(D),
M=l =1 1=
=5 Es Dy Dy

=5

= LR(D)o 24 LR(D)o
Let us denote such objects as triplgsg, p) wheref : <¢ V) — (VDM),g: (Mv) — < ¢DM) and
0 =5 0

5]

p: 23 — LR(D)o . The domain and codomain maps of the postulated reflexive graph fmnayp) to f
andg respectively, and the last map mapgo (f, f, f1)-

The domain and codomain map preserve simple products since from the viewpoint of Proposition 8.22 these
are just the domain and codomain map of Lemima 3.7. The middle map component of the simple products in
Fam(W) — E" is computed by computing the simple products as in Le@a 8.7 and then restricting the

the right domain and codomain. Since this is the same as the computation of the relational part of the simple
LR(D)
products offam (VA > , the last map of the reflexive graph also commutes with simple product$.]
D

Proposition 8.24. The pre-APL-structurg (31) has a full APL-structure.

Proof. This follows from Propositiof 8.22 and Proposit[on §.20. O

Lemma 8.25. The APL-structure (31) satisfies extensionality.

Proof. The model has very strong equality, which implies extensionélity (4.2). O

Lemma 8.26. The APL-structurg (31) satisfies the identity extension axiom.

Proof. Consider a typg with n free variables. We need to show that
(idan,idan)*J(f) o [d | — | — Fegal = [@ F eqya]-

The mapJ is defined as the composition of two maps. The first map nfapg f, f, f1) :

LR(D)j) LR(D)g LR(D)o LR(D)o
[P N el I e |
D! Dy D Dy

Sincef makes the diagram

LR(D)? '~ LR(D),

o,

Dg Doy

commute we know thaf; (ed;) = edy, (4)- O

Theoreni 8.113 is now the collected statement of|B.198.24] 8.25 and 8.26.

81

Remark 8.27. As mentioned in the introduction to this section, the concrete APL-structure of 9gction 6 can
be considered as a result of the parametric completion process. If we consider the internal c&egdry

the categoryAsm of assemblies, then using the parametric completion process on this data we obtain the
APL-structure of Sectidr] 6. To see this, we need to use the fact that there exists an isomorphism of fibrations

UFam(Asm) = Asm™

~

Asm.

This proves Theorem 6.2.

9 Parametric Internal Models

The definition of APL-structure admittedly asks for a substantial amount of structure. In this section we
sketch how much of that structure may be derived in the case of internal models of

Let E be a quasi-topos and lgtbe a local operator (also known as closure operator or Lawvere-Tierney
topology) onE. We writeE; for the full subcategory of-sheavesa for the associated sheaf functérfor
the inclusion ofj-sheaves, ang for the natural transformatiofii — I a.

Let C be an internal model of, E. Thena C is an internal category i; andn : C — aC is an internal
functor.

Consider the following diagram:

T_l T N RegZUbEJ (33)
Fam(C) AN Fam(% EJJ/ E;
\ l o

J

wherel is the functor induced by the composition of the internal fungtolC — a C and the inclusion of
the externalization o€ into E; ™ is faithful.

Suppose that

e the internal functor) : C — a C is faithful,

e the internal category C is a subcategory dE; (i.e., the inclusion of the externalization f into
E;™ is faithful).

Then the functor in the above diagram is faithful and the leftmost part of the diagfain (33) (the part going
down and left fronP) is a pre-APL-structure, and we can thus define thatinternal A, model C in E is
parametric with respect to j if this pre-APL-structure is a parametric APL-structure.

One should, of course, think gfas specifying the logic with respect to which the model is parametric.

The completion process presented in the previous section takes a full ikgnmaldel in a quasi-topoB
and produces an internal modellh= FS with j on E such thatf = E; (the associated sheaf functor

82

X1
a takes)+yto X;) and which satisfies the two items above ensuring fhiatfaithful. The results in the
X

previous section then show that the internal modd ia parametric with respect to thjs

This description of parametric internal models allows us to state precisely the (still) open problem of whether
there exists parametric models that are inherently parametric (not constructed though a completion process):

Problem 9.1. Does there exist a full internal, model in a quasi-topoR that is parametric with respect to
the trivial topology; (such thafE; = E) ?

10 Conclusion

We have defined the notion of an APL-structure and proved that it provides sound and complete models for
Abadi and Plotkin’s logic for parametricity, thereby answering a question poséd!in [12, page 5]. We have
also defined a notion of parametric APL-structures, for which we can prove the expected consequences of
parametricity using the internal logic. The consequences proved in this document are existence of inductive
and coinductive datatypes. These consequences have, to our knowledge not been proved in general for
models parametric in the sense of Ma & Reynolds, but only for specific models.

We have presented a family of parametric models, some of which are not well-pointed. This means that our
notion of parametricity is useful also in the absence of well-pointedness.

We have provided an extension of the parametric completion procesd of [15] that produces parametric APL-
structures. This means that for a large class of models, we have proved that the parametric completion of
Robinson and Rosolini produce models that satisfy the consequences of parametricity.

In subsequent papers we will show how to modify the parametric completion process to produce domain-
theoretic parametric models and how to extend the notion of APL-structure to include models of polymor-
phic linear lambda calculus [1L1].

A Composable Fibrations

This appendix is concerned with the theory of composable fibrations, by which we simply mean pairs of
fibrations such that the codomain of the first is the domain of the second fibration. This appendix contains
definitions referred to in the text.

Suppose we are given a composable fibration:

F—L2>E—1-B

We observe that

e The compositep is a fibration. This is easily seen from the definition.

e If p andq are cloven, we may choose a cleavage by liftingvice tow for eachl in ObjF and
u: X — qpl.

ou=71v0

£l

e If p, ¢ are split the composite fibration will be split since =

Thus in the case above we may consider the composable fibration as a doubly indexed category, and rein-
dexing inF with respect ta; in B is given byu*

83

The lemmas below refer to the fibrationsg above.

Definition A.1. We say thatQ24) acon;s is an indexed family of generic objects for the composable pair of
fibrations(p, ¢) ifforall A, Q4 € ObjE,4 is a generic object for the restriction pfto E 4 and if the family
is closed under reindexing, ie., for all morphisms A — B in B, u*(Qp) = Q4.

Before we define the concept of an indexed first-order logic fibration, we recall the definition of first-order
logic fibration from [5] .

Definition A.2. A fibrationp : F — E is called afirst-order logic fibrationf

e p is afibred preorder that is fibred bicartesian closed.
¢ [E has products.

e p has simple products and coproducts, i.e., right, respectively left adjoints to reindexing functors
induced by projections, and these satisfy the Beck-Chevalley condition.

¢ p has fibred equality, i.e., left adjoints to reindexing functors inducedibyA : I x J — I x J x J,
satisfying the Beck-Chevalley condition.

Readers worried about the Frobenius condition should note that this comes for free in fibred cartesian closed
categories.

Definition A.3. We say thatp, ¢) has indexed (simple) products/coproducts/equality if each restriction of

p to a fibre ofg has the same satisfying the Beck-Chevalley condition, and these commute with reindexing,
e, ifuisa map inB then there is a natural is_o_morphism* [I; & [l urora*[[; = [1,.,u" (this

can also be viewed as a Beck-Chevalley condition).

Definition A.4. We say tha{p, ¢q) is anindexed first order logic fibratioif p is a fibrewise bicartesian
closed preorder, andp, q) has indexed simple products, indexed simple coproducts and indexed equality.

We can also talk about composable fibratidpsg) simply having products, coproducts, etc. This should
be the case if the composite has (co-)products, but we should also require the right Beck-Chevalley
conditions to hold. Notice that sineg in gp is the same ag* in p we can write the product as eithgf,

ingpor[[,inp.

Definition A.5. We say that the composable fibratin ¢) has products / coproducts if for each map

w: I — J in B, and each objectX € E; the reindexing functo*: Fxy — [F,«x has a right / left
adjoint. Moreover, these (co)-products must satisfy the Beck-Chevalley condition for two sorts of diagram
corresponding to reindexing iB andE respectively. First if

H——~K
7
a b
I——J
is a pullback diagram irB, then by [5, Exercise 1.4.4]

a*u* X BUENS b* X

wX ———= X

84

is a pullback diagram ifE, and we require that the Beck-Chevalley condition is satisfied with respect to this
diagram. Second, if : Y — X is a vertical map irE, then the Beck-Chevalley condition should be satisfied
with respect to the diagram

WY =Y (34)

A

u*XL>X

which by the way is a pullback by |5, Exercise 1.4.4].

The composable fibratiofp, ¢) has simple (co-)products if it has (co-)products with respect to projections
as defined above.

In the case of the APL-structures, the logical content of the Beck-Chevalley condition for diagrams of the
form (34) will be that
(Va: Type. ¢)[t/x] = Ya: Type. (¢[t/z]).

Definition A.6. We say that a first-order logic fibration hagry strong equalityf internal equality in the
fibration implies external equality.

Definition A.7. We say that the indexed first order logic fibratign ¢) hasvery strong equalityf each
restriction ofp to a fibre ofg has.

The next lemma gives a way of obtaining indexed first-order logic fibrations.

Lemma A.8. Suppos&)’ — E is a first-order logic fibration with a generic object on a locally cartesian
closed categorE. Suppose further, th&)’ — E has products and coproducts with respect to mdps
A’ — A from pullback diagrams
AxpA ——A
-]
B,

A/

and coproducts with respect to maps
idc XBAA: CXB ><A—>C><BA><BA,

all satisfying the Beck-Chevalley condition. Then the composable fibration

Q E_>c0d E,

whereQQ — E~ is the pullback
Q——0Q

]

E~- ——E,

is an indexed first-order logic fibration with an indexed family of generic objects, simple products and simple
coproducts. Moreover, if)) — E has very strong equality, so does the composable fibration.

85

Proof. The fibred bicartesian structure exists since the fibre® ef E— are the fibres of)) — E. This
structure is clearly preserved by reindexing.

The fibrewise product off — B andA’ — BinE~ is A xg A’ — B with projection
AxgA z A.

~

B

The indexed (co-)product along this map@ — E™ is the (co-)product along in E, which exists by
assumption. For the Beck-Chevalley condition for vertical pullbacks, recall that the domain fEncter
E preserves pullbacks, so for a vertical map

ar—t g
B
taking the pullback ofr along f in the categorfe—, and then applying the domain functor gives the pullback
A" XBAIHA XBA/
I,
ar—L 4
in IE, so that the Beck-Chevalley condition in this case reduces to Beck-Chevalley for the filipatiorE.

To prove that these indexed simple (co-)products commute with reindexing, considena map- B in
E. We need to prove that for the diagram

u*(A) X B! u*(A’) = AXp A

A
~ O\

B B,

we have, for products* [[= []_«* and for coproducts* []_ = [[.«* . But this follows from the
Beck-Chevalley condition i)/ — E.

u*A

Indexed fibred equality is given by coproduct along maps
ido XA : CxgA—CxgAxgA,

which are required to exists. As with indexed (co-)products, the Beck-Chevalley conditions reduce to the
Beck-Chevalley conditions fd@’ — E.

We define the family of generic objects to be the projectidhs B — B)pcg in E~ whereX is the generic
object ofQ — [E. This family is clearly closed under reindexing, and maps

h Y x B
x /

B

86

correspond to mapd — X in E, which correspond to objects @f, = Q.
We shall prove that we have simple products; simple coproducts are proved similarly. SupposeD’ —
D is a projection ifE. Forf : A — DinE~, 7 is the map

AxD =—=A
_

indl if

D x D' = D.

Reindexing along this map i corresponds to reindexing @@ alongr : A x D’ — A, so by existence of
simple products i)/ — E we have a right adjoint* <]._..

We need to prove Beck-Chevalley first for pullback#inin this case a pullback iR

idD XU

DxD'"——Dx D'

Pl

D" u D

lifts to the pullback

Dl/ o D

in E~. The Beck-Chevalley condition for this pullback reduces to the Beck-Chevalley condition for the
upper square i)’ — E which is known to hold.

We should also check that the Beck-Chevalley condition holds in the case of the pullback.

A ' x D'

Any z A/
N\

But again this reduces to the Beck-Chevalley conditior{for— [E becauser is a projection.

A/

™

DxD D

Very strong equality is clearly preserved. O

References

[1] B.P. Dunphy.Parametricity as a notion of uniformity in reflexive graptihD thesis, 2004[] [, §.1

[2] Brian Dunphy and Uday S. Reddy. Parametric limitsPhoceedings of the 19th IEEE Symposium on
Logic in Computer Science (LICS-04pages 242—-251, 2004.

87

[3] R. Hasegawa. Categorical data types in parametric polymorphisathematical Structures in Com-
puter Science4:71-109, 1994115

[4] J.M.E. Hyland, E.P. Robinson, and G. Rosolini. The discrete objects in the effective tépos.
London Math. So¢3(60):1-36, 1990 |1

[5] B. Jacobs.Categorical Logic and Type Theqryolume 141 ofStudies in Logic and the Foundations

of Mathematics Elsevier Science Publishers B.V., 19991, 2] 2.1,[3/1,[4.[6,/6[6.]7.H.1, K, A.5, A

[6] Q. Ma and J.C. Reynolds. Types, abstraction, and parametric polymorphism, part 2. In S. Brookes,
M. Main, A. Melton, M. Mislove, and D. Schmidt, editofglathematical Foundations of Programming
Semanticsvolume 598 olecture Notes in Computer Scienpages 1-40. Springer-Verlag, 1992. 1,

Ky
[7] S. Mac Lane.Categories for the Working MathematiciaBpringer-Verlag, 1971 8.2
[8] J.C. Mitchell. Foundations for Programming LanguagedIT Press, 1996/ |1

[9] A. M. Pitts. Non-trivial power types can't be subtypes of polymorphic typeditmAnnual Symposium
on Logic in Computer Sciencpages 6—-13. IEEE Computer Society Press, Washington, 1989. 1

[10] A.M. Pitts. Polymorphism is set theoretic, constructively. In D. H. Pitt, A. Pejgnd D. E. Ryde-
heard, editorsCategory Theory and Computer Science, Proc. Edinburgh 188idme 283 ol ecture
Notes in Computer Sciengeages 12—-39. Springer-Verlag, 1947. 1

[11] G.D. Plotkin. Second order type theory and recursion. Notes for a talk at the Scott Fest, February
1993.[1[1ID

[12] Gordon Plotkin and Mam Abadi. A logic for parametric polymorphism. Tiyped lambda calculi and
applications (Utrecht, 1993)olume 664 ofLecture Notes in Comput. Sgpages 361-375. Springer,

Berlin, 1993. [(document)] L] P, 2[3, P14,13.2, 3[18,/4.5,[5.1{5.4]5.16, 10

[13] J.C. Reynolds. Types, abstraction, and parametric polymorphiisformation Processing83:513—
523, 1983.[1L

[14] J.C. Reynolds. Polymorphism is not set-theoretic. In G. Kahn, D. B. MacQueen, and G. D. Plotkin,
editors,Semantics of Data Typegolume 173 ol_ecture Notes in Computer Sciengages 145-156.
Springer-Verlag, 1984[|1

[15] E.P. Robinson and G. Rosolini. Reflexive graphs and parametric polymorphism. In S. Abramsky,
editor,Proc. 9th Symposium in Logic in Computer Sciepaes 364-371, Paris, 1994. |.E.E.E. Com-

puter Society[[1,]7,]$, 8.10, 8114, 8.£3] 10

[16] G. Rosolini. Notes on synthetic domain theory. Draft, 1995.

[17] I. Rummelhoff. Polynat in PER-modelsTheoretical Computer Scienc816(1-3):215-224, May
2004.

[18] R.A.G. Seely. Categorical semantics of higher-order polymorphic lambda calclihesJournal of
Symbolic Logic52(4):969-989, December 1987 1

[19] Izumi Takeuti. An axiomatic system of parametricittyund. Inform, 33(4):397-432, 1998. Typed
lambda-calculi and applications (Nancy, 199f).] 2.2

88

[20] P. Wadler. Theorems for free! Hith Symposium on Functional Programming Languages and Com-
puter Architecture, ACM, Londoseptember 1989.| [} 1

[21] P. Wadler. The Girard-Reynolds isomorphism (second edition). Manuscript, March 004. 2.2

89

Parametric Domain-theoretic models of Linear Abadi & Plotkin
Logic

Lars Birkedal
Rasmus Ejlers Mggelberg
Rasmus Lerchedahl Petersen

Abstract

We present a formalization of a linear version of Abadi and Plotkin’s logic for parametricity for
a polymorphic dual intuitionistic / linear type theory with fixed points, and show, following Plotkin’s
suggestions, that it can be used to define a wide collection of types, including solutions to recursive
domain equations. We further define a notion of parametric LAPL-structure and prove that it provides a
sound and complete class of models for the logic. Finally, we present a concrete parametric parametric
LAPL-structure based on suitable categories of partial equivalence relations over a universal model of
the untyped lambda calculus.

Contents
1 Inir Ion 93
1.1 Outling e 95
[2 Linear Abadi-Plotkin Logic| 95
225 R | 95
[2.1.1 Equality e e 96
[2.1.2 Ordinary lambda abstractjon 99
.. 100
221 Definablerelafiohs 101
[2.2.2 Constructions on definable relations 101
2.2.3 Admissible relations e e e e 103
224 AxiomsandRuleés 105
[2.2.5 Admissible relations preserved by structuremaps 108
[2.2.6 Extensionality and Identity Extension Schemes 109
[3__Proofs in LAPL] 110
[3.1 Logical RelationslLemma 110
[3.2 Acategoryoflineartunctions e e e e 113
[3.3 Tensortypes e e e e e e 115

[3.4 Unitobjedt e 116

[3.5 Initial objects and coprodu¢ts L 117
[3.6 Terminalobjectsand products e 118
B7 NaturalNumbels 120
[3.7.1 Induction principle 121
[3.8 Typesasfunctdrs e e e 121
[3.9 Existentialtypes e 123
[3.10 Iniialalgebras 125
[3.11 Final Coalgebras e 126
[3.12 Recursive type equatidns e e e e e 129
[3.12.1 Parametrized Iinitial algebras L oL o 130
. lalgebras e 131
[3.12.3 Compactngss e e e e e e 132
[3.13 Recursive type equations with paraméters 135
4__LAPL-structures| 136
M1 Soundness 146
4.2 Completenebs e e e e e e 149
__Parametric LAPL-structures| 152
[5.1 Solving recursive domain equations in parametric LAPL-strugtures 152
[5.2 Parametrized recursive type equations e e e 155
lo__Concrete Models 156
6.1 Theconnectionto CUPERS 159
B2 LITUNG . « . o o o v oo e e e e e e 159
[6.3 Goingfibrefl e e 161
6.4 A domain-theorefic modelof PTIL 162
[6.5 A parametric domain-theoretic modelof PJLL 163

92

1 Introduction

In this paper we show how to define parametric domain-theoretic models of polymorphic intuitionistic /
linear lambda calculus. The work is motivated by two different observations, due to Reynolds and Plotkin.

In 1983 Reynolds argued that parametric models of the second-order lambda calculus are very useful for
modeling data abstraction in programmingl[25] (see alsd [20] for a recent textbook description). For real
programming, one is of course not just interested in a strongly terminating calculus such as the second-
order lambda calculus, but also in a language with full recursion. Thiscirncit. Reynolds also asked

for a parametricdomain-theoretiomodel of polymorphism. Informally, what is meant [26] by this is a
model of an extension of the polymorphic lambda calculus[24, 10], with a polymorphic fixed-point operator
Y: Va. (o — a) — «a such that

1. types are modeled as domains, the sublanguage without polymorphism is modeled in the standard
way andY ¢ is the least fixed-point operator for the domain

2. the logical relations theorem (also known as the abstraction theorem) is satisfied when the logical
relations are admissible, i.e., strict and closed under limits of chains;

3. every value in the domain representing some polymorphic type is parametric in the sense that it satis-
fies the logical relations theorem (even if it is not the interpretation of any expression of that type).

Of course, this informal description leaves room for different formalizations of the problem. Even so, it
has proved to be a non-trivial problem. Unpublished work of Plotkin [22] indicates one way to solve the
problem model-theoretically by using strict, admissible partial equivalence relations over a domain model
of the untyped lambda calculus but, as far as we know, the details of this relationally parametric model have
not been worked out in detail before. (We do that here.lpén cit. Plotkin also suggested that one should
consider parametric domain-theoretic models not only of polymorphic lambda calculus but of polymorphic
intuitionistic / linear lambda calculus, since this would give a way to distinguish, in the calculus, between
strict and possibly non-strict continuous functions, and since some type constructions, e.g., coproducts,
should not be modeled in a cartesian closed category with fixed points [11]. Indeed Plotkin argued that such
a calculus could serve as a very powerful metalanguage for domain theory in which one could also encode
recursive types, using parametricity. To prove such consequences of parametricity, Plotkin suggested to use
a linear version of Abadi and Plotkin’s logic for parametricity|[23] with fixed points.

Thus parametric domain-theoretic models of polymorphic intuitionistic / linear lambda calculus are of im-
port both from a programming language perspective (for modeling data abstraction) and from a purely
domain-theoretic perspective.

Recently, Pitts and coworkeris |21, 4] have presented a syntactic approach to Reynolds’ challenge, where
the notion of domain is essentially taken to be equivalence classes of terms modulo a particular notion of
contextual equivalence derived from an operational semantics for a language called Lily, which is essentially
polymorphic intuitionistic / linear lambda calculus endowed with an operational semantics.

In parallel with the work presented here, Rosolini and Simpson [27] have shown how to construct parametric
domain-theoretic models using synthetic domain-theory in intuitionistic set-theory. Moreover, they have
shown how to give a computationally adequate denotational semantics of Lily.

In the present paper we make the following contributions to the study of parametric domain-theoretic models
of intuitionistic / linear lambda calculus:

93

e We present a formalization of Linear Abadi-Plotkin Logic with fixed points (LAPL). The term lan-
guage, called PILL for polymorphic intuitionistic / linear logic, is a simple extension of Barber and
Plotkin’s calculus for dual intuitionistic / linear lambda calculus (DILL) with polymorphism and fixed
points and the logic is an extension of Abadi-Plotkin’s logic for parametricity with rules for forming
admissible relations. The logic allows for intuitionistic reasoning over Rlttérms;i.e., the terms
can be linear but the reasoning about terms is always done intuitionistically.

e We give detailed proofs in LAPL of consequences of parametricity, including the solution of recursive
domain equations; these results and proofs have not been presented formally in the literature before.

e \We give a definition of gparametric LAPL-structurewhich is a categorical notion of a parametric
model of LAPL, with associated soundness and completeness theorems.

¢ We show how to solve recursive domain equations in parametric LAPL-structures by a simple use of
the internal language and the earlier proofs in LAPL.

e We present a detailed definition of a concrete parametric LAPL-structure based on suitable categories
of partial equivalence relations over a universal model of the untyped lambda calculus, thus confirming
the folklore idea that one should be able to get a parametric domain-theoretic model using partial
equivalence relations over a universal model of the untyped lambda calculus.

We remark that one can see our notion of parametric LAPL-structure as a suitable categorical axiomatization
of a good category of domains. In Axiomatic Domain Theory much of the earlier work has focused on
axiomatizing the adjunction between the category of predomains and continuous functions and the category
of predomains and partial continuous functions [6, Page 7] — here we axiomatize the adjunction between
the category of domains and strict functions and the category of domains and all continuous functions and
extend it with parametric polymorphism, which then suffices to also model recursive types.

In the technical development, we make use of a notion of admissible relations, which we axiomatize, since
admissible may mean different things in different models. We believe our axiomatization is reasonable in
that it accommodates several different kinds of models, such as the classical one described here and models
based on synthetic domain theory[[18].

The work presented here builds upon our previous work on categorical models of Abadi-Plotkin’s logic for
parametricity([5], which includes detailed proofs of consequences of parametricity for polymorphic lamdba
calculus and also includes a description of a parametric completion process that given an internal model of
polymorphic lambda calculus produces a parametric model. It is not necessary to be familiar with the details
of [5] to read the present paper (except for Appendix ALof [5], which contains some definitions and theory
concerning composable fibrations), but, for readers unfamiliar with parametricity, it may be helpful to start
with [5], since the proofs of consequences of parametricity given here are slightly more sophisticated than
the ones in([b] because of the use of linearity.

In subsequent papers we intend to show how one can define a computationally adequate model of Lily and
how to produce parametric LAPL-structures from Rosolini and Simpson’s models based on intuitionistic set
theory [27] (this has been worked out at the time of writing [18]) and from Pitts and coworkers operational
models [4] (we conjecture that this is possible, but have not checked all the details at the time of writing).
As a corollary one then has that the encodings of recursive types mentioned in [2[/] and [4] really do work
out (these properties were not formally provedda. cit). We will also extend the parametric completion
process ofl[b] to produce a parametric LAPL-structure given a model of polymorphic intuitionistic / linear
lambda calculus, see [16].

94

1.1 Outline

The remainder of this paper is organized as follows. In Seff{ion 2 we present LAPL, the logic for reasoning
about parametricity over polymorphic intuitionistic / linear lambda calculus (RP)LLn Sectiorj B we give
detailed proofs of many consequences of parametricity, including initial algebras and final coalgebras for
definable functors and recursive types of mixed variance. In Selction 4 we present our definition of an
LAPL-structure, and we prove soundness and completeness with respect to LAPL in Sectiong 4.1 and 4.2,
respectively. The definition of LAPL-structure builds upon fibred versions of models of intuitionistic / linear
logic [3,[14]. In our presentation we assume that the reader is familiar with models of intuitionistic / linear
IogicE] In Sectio@ we present our definition oparametricLAPL-structure and prove that one may solve
recursive domains equations in such. In Sedtion 6 we present a concrete parametric LAPL-structure based
on partial equivalence relations over a universal domain model. To make it easier to understand the model,
we first present a model of PILL (without parametricity) and then show how to make it into a parametric
LAPL-structure. We also include an example of calculations in the concrete model.

2 Linear Abadi-Plotkin Logic

In this section we define a logic for reasoning about parametricity for Polymorphic Intuitionistic Linear
Lambda calculus with fixed points (PIkL). The logic is based on Abadi and Plotkin’s logic for parametric-

ity [23] for the second-order lambda calculus and thus we refer to the logic as Linear Abadi-Plotkin Logic
(LAPL).

The logic for parametricity is basically a higher-order logic over RHILLExpressions of the logic are
formulas in contexts of variables of PlkLand relations among types of PIi:L Thus we start by defining
PILLy.

21 PILLy

PILLy is essentially Barber and Plotkin’s DILLI[2] extended with polymorphism and a fixed point combi-
nator.

Well-formed type expressions in Plklare expressions of the form:
ay: Type,...,an: Typel o: Type
whereo is built using the syntax
ou=al|ll|lo@t|o—orT|lo|]]ao.

and all the free variables of sigma appear on the left hand side of the turnstile. The last construction binds
«, so if we have a type
ay: Type,...,an: Typel o: Type,

then we may form the type

aq: Type, ..., c;—1Type, a1 Type...ayn: Type b [Jay.o: Type.

7o aid readers unfamiliar with these matters, we have written a short technical note containing detailed definitions and propo-
sitions needed herg [117].

95

We user, T, w, o/, 7'...to range over types. The list afs is called the kind context, and is often denoted
simply by= or @. Since there is only one kind this annotation is often omitted.

The terms of PILL- are of the form:
= . . S oL .
E X101,y Tt O XY Oy ey Tyt Oy E T

where ther;, o/, andr are well-formed types in the kind conteXt The list ofz’s is called the intuitionistic

type context and is often denotEdand the list oft”’s is called the linear type context, often denot®dNo
repetition of variable names is allowed in any of the contexts, but permutation akin to having an exchange
rule is. Note, that due to the nature of the axioms of the to-be-introduced formation rules, weakening and
contraction can be derived for all but the linear context.

The grammar for terms is:
tuo=z | x| Y | Nz:rot|tt|t®t |1t]| Aa: Type.t | t(o) |
letx: c®@y: Tbetint|letlz: o betint|let x betint

We use\®°, which bear some graphical resemblance¢pto denote linear function abstraction. And we use
s, t, u...to range over terms.

The formation rules are given in Figdrg E.| I'; A is considered well-formed if for all types appearing

in" andA, Z F o: Type is a well-formed type constructiond and A’ are considered disjoint if the set

of variables appearing if is disjoint from the set of variables appearingih. We use— to denote an

empty context. As the types of variables in the let-constructions and function abstractions are often apparent
from the context, these will just as often be omitted. What we have described above ipcati&dLLy .

In general we will consider PIL} over polymorphic signatures [12, 8.1.1]. Informally, one may think of
such a calculus as pure Pli:Llwith added type-constants and term-constants. For instance, one may have a
constant type for integers or a constant type for lists lists(«) : Type. We will be particularly interested

in the internal language of a PIkLmodel (see Sectidri 4), which in general will be a non-pure calculus.

We will also sometimes speak of the calculus PILL. This is Rilkithout the fixed point combinatdr.

2.1.1 Equality

Theexternal equalityelation on PILLy terms is the least equivalence relation given by the rules in Figure 2.
The definition makes use of the notion af@ntext which, loosely speaking, is a term with exactly one hole
in it. Formally contexts are defined using the grammar:

Cl-] == —|letx beC[-]int]|let x betinC[-]|t®C[-]|C[-]®t|
letz @ ybeC[-]int |letx ® y betin C[—] | \°z: 0. C[—] |
Cl-|t|tC[-] |'C[-] | letlz beC[-]int | let!z betin C[—] |
Aa: Type. C[—] | C[—]o

AZ|T;AFoc—E|I';A + 7 context is a context’[—| such that for any well-formed ter@ | I'; A +
t: o,theterni= | IV; A’ - C[t]: 7 is well-formed. A context idinear, if it does not contain a subcontext of
the form!C[—].

We prove a couple of practical lemmas about external equality.
Lemma 2.1. Supposé& | I'; A - f,g: lo — 7 are terms such that

E|lz:o;AF f(lz) = g(lz).
Thenf = g.

96

EIT—F*: T

EI0-FY: J]Je.(la —oa) -«

Ellz:o;—Fuaz:0o

E|Tz:obz:o
E|ITARt:0—o7 ZI;AFuro
EITAA Ftu:T
EIT;Az:obu: T
EIARE Nz 0ut0—T

E|IT;ARt:0 Z|T;A Fs:T

A, A’ disjoint

A, A’ disjoint
EIAAN Ft®s: o T
ET;—Fto
EIN—Ft:o

E,a: Type |[[AFt: o
E|T;AF Aa: Type.t: [Ja: Type.o
E|T;ARE: [Ja: Type.o ZF 7: Type
E|T;ARLr): o[r/q]

= | T'; Ais well-formed

ZE|ITAFs:0®0 E|;A x: oy 0’ T
. A, A’ disjoint
;A A Fletr: o®y: o’ besint: 1
EIT;AFs:lo E|lz:0A Ft: T
A, A’ disjoint

;A A Fletlx: lobesint: 7
ZIT;ARt: T Z|T;A Fs:o
Z|IT;A, A Flet x betins: o

Figure 1: Formation rules for terms

97

G-term
EIAR (A z: 0. t)u = tu/z]

f-type
E|T;AF (Aa: Type.t)o = tlo/q]
n-term
E|T;AFR Nz 0. (tx) =t
n-type
E|T;AF Aa: Type. (ta) =t
— %
E|TAblet x bex int=t
. n—x*
E|AFlet x betinx =t
, f-—®
EIT;AFletz®@ybes@uint =t[s,u/z,y]
-
E]].“;AI—Ietw@ybetinx@y:t77
/!

E|T;AFletlz: obeluint = tlu/x]

=|D;AF letlz: o betin P
EIT;ARt=s:0 C|-]isaZ|T;AFoc—Z|T";A’F 7 context
E|TA'RCH]=Cls]: T
C[—] is alinear context
E| ;AR let x betin Clu] = Cllet x betin u]

C[—] is alinear context and does not bimdy or contain them free
E|AFletz®ybetin Clu]l = Clletz @ y bet in]
C[—]is linear and does not bincor contain it free
= | AR let!lz betin Clu] = C[let !z bet in u]
E|IT;—F filo—o0o
EIT-FfI(Y o (If) =Y o ()

Figure 2: Rules for external equality

98

=: Ctx ZFo: Type =T A: Cix
=E|T|6: Ctx EIARt: o EIT;ARt=u
E|IT|O©F p: Rel(o,7) E|IT|O©F p: AdmRel(o, 1)
E|IT|OF¢:Prop Z|T[0|¢1,....,¢0nF

Figure 3: Types of judgements

Proof. Using the rules for external equality, we conclude from the assumption that
;A y: lokletlz beyin f(lz) = let!z bey in g(lx)

and further that
EIT;Ay: lok f(letlx beyinlz) = g(let!x beyin lx).

Thus
EITAy: ok fy) = 9(y),

and hencef = \°y: lo. f(y) = A°y: lo.g(y) = g.

2.1.2 Ordinary lambda abstraction
We encode ordinary lambda abstraction in the usual way by defining
c—-T1=loc—orT

and
Ax:o.t=\y:loletlxbeyint

wherey is a fresh variable. This gives us the rule
E|Nz:o; At T
E|IT AR z: 0.t 0> 7T

For evaluation we have the rule
EIly—Ft:o ZEITAFfro—T
EIT;ARflteT

and the equality rules give
(Ax: o0.t) s = t[s/x].

Note that using this notation the constahtan obtain the more familiar looking type

YV: o (o — a) — «

99

2.2 Thelogic

As mentioned, expressions of LAPL live in contexts of variables of Rildnd relations among types of
PILLy. The contexts look like this:

E|T | Ry: Rel(ry,),..., Ry: Rel(r,,7), S1: AdmRel(wy,w)), ..., Sm: AdmRel(wpp,, w),)

whereZ | I'; — is a context of PILL and ther;, 7/, w;, w} are well-formed types in contes, for all i. The
list of R's andS’s is called the relational context and is often denafedAs for the other contexts we do
not allow repetition, but permutation of variables. TRs and theS’s are interchangeable.

The concept of admissible relations is taken from domain theory. Intuitively admissible relationsL.rétate
L and are chain complete.

It is important to note that there is no linear componérih the contexts — the point is that the logic only
allows forintuitionistic (no linearity) reasoning about terms of Pz whereas PILL terms can behave
linearly.

Propositions in the logic are given by the syntax:
¢ u= (=cu)|ptiu)| ¢DV[L|T[oAY[dVY|Va: Type.¢|

Vx:o0.¢|VR: Rel(o,7). ¢ | VS: AdmRel(o, 7). ¢ |
da: Type.¢ | Jx: 0.¢ | IR: Rel(o, 7). ¢ | 3S: AdmRel(o, 7). ¢

wherep is a definable relation (to be defined below). The judgements of the logic are presented in|figure 3.
In the following we give formation rules for the above.

Remark 2.2. Our Linear Abadi & Plotkin logic is designed for reasoning about binary relational para-
metricity. For reasoning about other arities of parametricity, one can easily replace binary relations in the
logic by relations of other arities. In the case of unary parametricity, for example, one would then have an
interpretation of types as predicates. See alsd [28, 29]

We first have the formation rule for internal equality:
Ell;—Ft:o E|ITs—Fu:o
ZE|I'|©Ft=,u:Prop

Notice here the notational difference betwees v andt =, u. The former denoteexternalequality
and the latter is a proposition in the logic. The rulesfgrv andA are the usual ones, wheredenotes
implication. T, L are propositions in any context. We use for biimplication.

We have the following formation rules for universal quantification:
E|T,z:0|0OF ¢: Prop
E|T|O©FVYx: o .¢: Prop
Z|T|6,R: Rel(o,7) F ¢: Prop
E|T|©FVR: Rel(o,7).¢: Prop
E|I'6,S: AdmRel(o,7) F ¢: Prop
E|T|©FVYS: AdmRel(o, 7). ¢: Prop
E,a|'|©F ¢: Prop
E|T|©OF Ya: Type. ¢: Prop

= | T | ©is well-formed

100

The side conditiorE | I' | © is well-formed means that all the types of variabledimnd of relation
variables in© are well-formed irE (i.e., all the free type variables of the types occugjn

There are similar formation rules for the existential quantifier.
Before we give the formation rule fer(¢, u), we discuss definable relations.

2.2.1 Definable relations
Definable relations are given by the grammar:

pu=R|(x:0,y:7).¢

Definable relations always have a domain and a codomain, just as terms always have types. The basic
formation rules for definable relations are:

E|T|©,R: Rel(o,7) F R: Rel(o, 7)

E|l,z:0,y: 7| OF ¢: Prop
EIT|OF (x:0,y: 7).¢: Rel(o,7)
E|T|OF p: AdmRel(o, 1)
Z|T|OF p:Rel(o,7)

Notice that in the second rule we can only absthaictitionistic variables to obtain definable relations. In the
last rule,n: AdmRel(o, 7) is an admissible relation, to be discussed below. The rule says that the admissible
relations constitute a subset of the definable relations.

An example of a definable relation is the graph relation of a function:

(f) =(@:0y: 7). fr =1 v,

for f: o — 7. The equality relatiorq, is defined as the graph of the identity map.
If p: Rel(o, 7) is a definable relation, and we are given terms of the right types, then we may form the
proposition stating that the two terms are related by the definable relation:

E|T|OFp:Rello,7) E|Is—Ftios:T

= 1)
EIT|OF p(t,s): Prop

We shall also writéps for p(t, s).

We introduce some shorthand notation for reindexing of relations. fFar’ — o,9: 7/ — 7 and
p: Rel(o, T), we write(f, g)*p for the definable relation

(z: 0" y: 7). p(f x,9y).

2.2.2 Constructions on definable relations

In this subsection we present some constructions on definable relations, which will be used to give a rela-
tional interpretation of the types of PlkL

101

If p: Rel(o,7) andp’: Rel(¢’,7"), then we may construct a definable relation
(p—p): Rel((o0 — '), (1 — 7)),

defined by
p—op =(fro—d,g:7— 1) Ve o Vy: 7.p(x,y) D p'(fz,gy).

Za,08|T| ©,R: AdmRel(a, B) F p: Rel(a, 7)

is well-formed ancE | T' | © is well-formed,=, o - o : Type, and=, 8 + 7: Type we may define

V(e B, R: AdmRel(a, 3)). p: Rel((J[a: Type.o), ([[3: Type. 7))

as
V(a, B, R: AdmRel(a, 8)).p =

(t:][a: Type.o,u: [[B: Type. 7).V, 3: Type.VR: AdmRel(a, 3). p(to, uf).

For p: Rel(o, 7), we seek to define a relatidp: Rel(lo, 7). First we define for any type the proposition
(=) lonoas
x|=3f:0—1I. f(x) =1 *

The intuition here is that types are pointed, andis thought of as: # L. Since we have also fixed points,
we may think of types as domains.

We further define the magx lo — o as\°z: lo.let!y bez iny = Az: 0. z. We can now define
lp=(z: loyy:I7).x |2y | A(z |D plex, ey)).

Following the intuition of domains) is to be thought of as lifting, and the unit providing the unlifted
version of an element. The intuitive reading!pfis, that L is related tal (represented by the fact, thais
related toy if neitherz | nory |) and that twd’ed elements are related if their Ured versions are.

Next we define the tensor productoandp’
p@p:Rel((c®d),(rar)),

for p: Rel(o,7) andp’: Rel(o’, /). The basic requirement for this definition is tlreashould become a left
adjoint to— in the category of relatiorkinAdmRelations to be defined in Sectiqn 4. To give a concrete
definition satisfying this requirement, we take a slightly long route. We first introduce the map

fio@T —o]]a.(0 —oT—oa)—oa«a

defined as
frx=letr’®@2": c@rbexrinAa.\°h: 0 —7 —oa.ha' 2"

Then we define
p@p = (f, /) (V(a, 8, R: AdmRel(c, 8)). (p —o p' —0 R) — R),
or, if we write it out,

pRp = (r:o®d,y: 7®7). Vo, [, R: AdmRel(a,).
Vi:o—o1—oa,t':0" — 7 — [.(p—p — R)(t,t') D
R(leta’ @ 2" bexinta' 2" lety @ y" beyint' v y").

102

The reason for this at first sight fairly convoluted definition, is that we will later prove, using parametricity,
thato ® 7 is isomorphic to[[«. (c — 7 — a) — «, and we already have a relational interpretation of
the latter. The idea of using this definition @fis due to Alex Simpson. We use the same trick to define a
relation on/:

Following the same strategy as before, we define a reldiign AdmRel(Z, I') using the map
fiI — J[looa—a«
defined as\°z: I.let x bex in id, whereid = Aa. \°z: a. x and define
Ir = (f,)" (V(a, B, R: AdmRel(c,, 5)). R — R),
which, if we write it out, is

(x: L,y: I).V(a, B, R: AdmRel(a, 3)).Vz: a,w: B.zRw D (let x bex in z)R(let x bey in w).

2.2.3 Admissible relations

The relational interpretation of a type withfree variables is a function takingrelations and returning a

new relation. However, we will not require that this function is defined on all vectors of relations, but only
that it is defined on vectors of “admissible relations”. On the other hand this function should also return
admissible relations. Since “admissible” might mean different things in different settings, we axiomatize
the concept of admissible relations.

The axioms for admissible relations are formulated in Fiflire 4. In the last of thesg ral@Sis a shorthand
for vV, y. p(x,y) =C o' (,y).

Proposition 2.3. The class of admissible relations contains all graphs and is closed under the constructions

of Sectio 2.2]2.

Proof. Graph relations are admissible since equality relations are and admissible relations are closed under
reindexing. For the constructions of Sectjon 2.2.2, we just give the proed.of

We must prove that fop, o’ admissible relations — p’ is admissible
Z|T|OFp: AdmRel(o, 1) Z|I'|©F p: AdmRel(o,7)
E|T,z,y|OF (f,9)-0(fz,9y): AdmRel(oc —o o', 7 —o ') Ellz:oy:7|OF p(x,y): Prop

E|l,z:0,y:7|OF (f:o0—0,g: 7 — 7). plx,y) D (f x,9y): AdmRel((c —o o'), (T — 7'))

EIT|OF(fio—od,g:7—o7)Vr:0o,y: 7.p(x,y) D p'(f x,9y): AdmRel((c —o '), (T — 7))
where in the top deduction on the left, we have reindexeaddlong the evaluation maps

Nfio—oo . fx XNg:T—T.gy.

Now, finally, we may give the last formation rule for definable relations:

al,...,on Fo(d): Type E|T|OF p1: AdmRel(r,7{),. .., pn: AdmRel(7,, 7))
Z|T|OFolp: AdmRel(a(7), o (7))

103

E|T|0,R: AdmRel(o,7) - R: AdmRel(o, 7)

|| ©+Feq,: AdmRel(o,0)

E|T|©F p: AdmRel(o, T) E|T;—Ft:o' —oou:7 —o1 2,9¢7T
E|IT|OF (z:0,y: 7). p(t x,uy): AdmRel(c’,7")
E|T|OFp,p:AdmRel(o,7) z,y¢T
EIT|OF (z:0,y: 7). plz,y) A p'(z,y): AdmRel(c,)
E|IT|©F p: AdmRel(o,7) z,y¢T
EIT|OF (x: 1,y: 0).p(y,xz): AdmRel(T,0)
E|T|OF p: AdmRel(o, 1)
|| ©Hp: AdmRel(lo, !7T)
z,y¢ T
E|IT|OF (x:0,y: 7). T: AdmRel(o, 7)

E|T|OF p: AdmRel(o,7) E|IT|OF¢:Prop z,y¢l
EIT|OF (x:0,y:7).¢ D p(z,y): AdmRel(o, 1)
E,a|l'|OF p: AdmRel(o, 7) =E|T'e ZEko: Type EF7:Type z,y¢lD
E|IT|OF (z:0,y: 7).Va: Type. p(z,y): AdmRel(o, T)
E|lz:w|OFp: AdmRel(o,7) z,y ¢T
EIT|OF (z:0,y: 7).Vz: w.p(z,y): AdmRel(o, T)
2T |6,R: AdmRel(w,w) F p: AdmRel(o,7) z,y ¢ T
E|IT|OF (z: 0,y: 7).VR: AdmRel(w,w’). p(z,y): AdmRel(o, T)
ZE|T|6,R: Rel(w,w') - p: AdmRel(o,7) =,y ¢T
E|IT|OF (z: 0,y: 7).VR: Rel(w,w’). p(z,y): AdmRel(c,)
E|T|OF p: AdmRel(o,7),p : Rel(o, 7) EIT|O|Thp=/
Z|T|OF p: AdmRel(c,7)

Figure 4: Rules for admissible relations

104

Observe that[p] is a syntactic construction and is not obtained by substitution as'in [23]. Still the notation
olpi/ai, ..., pn/an]) might be more complete, but this quickly becomes overly verboseé. Inilis to
some extent defined inductively on the structure obut in our case that is not enough, since we will need
to form o[p] for type constants (when using the internal language of a model of LAPL). We [¢hlthe
relational interpretation of the type.

2.2.4 Axioms and Rules

The last judgement in figuig 3 has not yet been mentioned. It says that in the given context, the formulas
o1, ..., on collectively implyvy. We will often write ® for ¢4, ..., ¢,.

Having specified the language of LAPL, it is time to specify the axioms and inference rules. We have all the
usual axioms and rules of predicate logic plus the axioms and rules specified below.

Rules for substitution:
Ellz:0|O®|TFH¢ E|T'Ft:o
E|T[O|THEot/z]
EIT|O,R:Rel(o,7) | THF¢ E|T|OF p:Rel(o,7)
E|T[O[TFélp/R]

EIT]0,S: AdmRel(o,7) | TH¢ Z|T|OF p: AdmRel(o,7)
E|IT[O]TFop/S]
Zall'|O]|TH¢ ErFo: Type
E|Tlo/a]|Olo/a] | T F lo/a]

Rule 2.4.

Rule 2.5.

Rule 2.6.

Rule 2.7.

The substitutionaxiom:

Axiom 2.8. Vo, 8: TypeVz,2': aVy,y': B.YR: Rel(a, 3.)R(x, y)A
r=q 2 Ny=5y D R(,Y)

Rules forv-quantification:

Ea|llO|dFY
Rule 2.9. =ET|0F®
EIT|O|®FVa: Type.yp

E|Tz:0|O|PF1
Rule 2.10. E|T|OF
EITO|®FVr: 09

Z|T|O,R: Rel(r,7) | & o
Rule 2.11. =|T|0F®
E|T|O]|®+VR: Rel(r, 7).

E|T]0,S: AdmRel(r,7) | @ F o
Rule 2.12. =r'ere
EIT|0]®+VS: AdmRel(r, 7).

Rules for3-quantification:

Ea|l|OfoFy
Rule 2.13. EIT |0y
EIT|0O | 3a: Type.p F

105

E|T,z:0|©|0Fv
Rule 2.14. E|T|OFy
EIT|O©|3z: 09k

E[T|6,R:Rel(r,7') | ¢ ¢
Rule 2.15. Z|T|OF
ZE|T|O|3R: Rel(r, 7)o F

Z|T]6,9: AdmRel(r,7) | ¢ ¢
Rule 2.16. E|T|erqy
2| O|3S9: AdmRel(r,7').¢ F ¢

External equality implies internal equality:
EIl—Ft=u:o
EIT|O|THt=u

Rule 2.17.

There are also obvious rules expressing that internal equality is an equivalence relation.

Intuitively admissible relations should relateto | and we need an axiom stating this. In general, we will
use(—) | asthe test for # L.

Z|T|OFp:Rel(lo,!7),p': AdmRel(lo,!7) x,y ¢ T

Rule2.18. =1 |0| Va:o,y: 7 p(lz,'y) D p/(lz,ly) F
Vo: lo,y: Iz |3 3 15 (o) 7z, y)

We have rules concerning the interpretation of types as relations:
ak a;: Type Z|T|OF 5: AdmRel(7,7)
EIT[O]TFalp] = pi
ako—oo':Type Z|T'|OF 5: AdmRel(7, 7))
EIT[O]TFE (00—)] = (o]p] — o'[p])
dFo®d:Type E|T]OF g: AdmRel(7,7)
ZIT|0] Tk (0®d)d = (olf ®o[a)
E|T |6k g: AdmRel(7,7)
E[TO]THIp = Iga
at[[p.o(d,p): Type E|T|OF p: AdmRel(7,7)
EIT|T I8 0(a 8))p = V(8,8 R: AdmRel(8, 3')). o7, R])
atlo: Type E|T|OF p: AdmRel(7, 7))
ZIT 10| T (lo)[a] =X(olp))

Rule 2.19.

Rule 2.20.

Rule 2.21.

Rule 2.22.

Rule 2.23.

Rule 2.24.

Herep = /' is shorthand foWz, y. xpy 3C xp'y.

If the definable relatiomn is of the form(z: o,y: 7). ¢(z,y), thenp(t,«) should be equivalent to with
x,y substituted by, u

E|T,z:0,y: 7|OF¢:Prop E|T;—Ft:oyu:r
|F|®‘T|((LUU,yT)¢)(t,U)I¢[t,U/$,y]

Rule 2.25.

106

Axiom 2.26. < IT;— |OFY([[o (@ — a) — @)Y

Given a definable relationwe may construct a propositigriz, y). On the other hand, ib is a proposition
containing two free variables andy, then we may construct the definable relatiany). . The next

lemma tells us that these constructions give a correspondence between definable relations and propositions,
which is bijective up to provable equivalence in the logic.

Lemma 2.27. Suppose is a proposition with at least two free variables o,y: 7. Then
(z:0,y: 7). 9)(x,y) I ¢
Suppose: Rel(o, 7) is a definable relation, then
p=(z:0y:7).p(z,y).
Proof. The first biimplication follows trivially from Rul¢ 2.25. For the second, we need to prove
Vz:oow: 7.p(z,w) 3 ((z: o,y: 7). p(z,9)) (2, w),
which is trivial by the same rule. O

The substitution axiom above implies treplacementule:

Lemma 2.28.
E|IT|—Ft=t E|lz:0;—Fu:r

E|T| —Fult/x] = ult'/z]

Proof. Consider the definable relation
p=(y: 0,21 0).uly/a] = ulz/z].
Clearly p(t, t) holds, so by substitutiop(t, ¢') holds. O

Lemma 2.29.
p(z,y) Ap' (@ y") Dp@p(az@a’,y®y)
Proof. Supposen(z,y) A p/(2',y") and that(p — p’ — R)(t,t'). Then clearlyR(t = 2/, t' y 3/) and thus,

since
letzr®a’ bex @2’ intezs’ =tz

we conclude @ p'(z @ 2/, y ® ¢/). O

Lemma 2.30. For z: o, (!z) | always holds in the logic.

Proof. Definef: lo — I as\°z: lo .letly bex in x. Then clearlyf (lz) = *. O

Lemma 2.31.For anyp: Rel(o,7),z: o,y: T
zpy Xlz(!p)ly

Proof. Sincee(!z) = let!y belz in y = x this follows from Lemma 2.30. O

107

2.2.5 Admissible relations preserved by structure maps
We now proceed to show a couple of practical lemmas expressing that various structure maps preserve
admissible relations. The maps that we are interested in are

€c:loc—o0
0g: lo —ollo,

which, categorically in the models of Plkl, are the structure maps of a comonad, and

dy:lo —olo®lo
ey:lo—o 1,

which are the maps that make the comonad into a linear category. The maps are syntactically given as

€ = Nuz:loletlybexiny

0o = XNux:lo.letlybexin!ly
d, = MNuzx:lo.letlybezinlyxly
e = Nux:lo.letlybexin x.

Lemma 2.32. For all admissible relationg: AdmRel(o, 7),
(€5y€r): 1p—0p, (05,07): 1p —ollp
are maps of relations, i.elp(z, y) impliesp(e,z, e-y) and!!p(d,x, 0,y).

Proof. The lemma clearly holds in the casexfy of the form!2’,1y/. Sincep(e,x, e,y) and!!p(d,x, 0,y)
both define admissible relations frdmto !, by Rulg 2.18 we conclude thit(z, y) implies

(@ 132y 1) D plesw, ery)
and(z [>T y |) DNp(dyx, d7y). Sincelp(z,y) D (x |3C y |) we are done. O
Lemma 2.33. For all admissible relationg: AdmRel(o, 7),
(doydr): 1p —olplp, (e, er):!p —o Ige
are maps of relations, i.elp(z, y) implies!p®!p(d,z, d;y) and g (e, e:y).

Proof. To prove thatd, d) is a map of relations, since
letz’ @ 2" be(let!ly bex inlyx!ly)inta’ 2" =letlybexzint!yly
we need to prove that

lo(x,y) D (Va, B, R: AdmRel(a, 3)).Vt: lo —olo —o a, t': 1T —olT —o 3.
t(!lp —lp — R)t D R(let!zbexint!z !z let!zbeyint 1z 1z)

Since the expression on the right hand side of the first admissible inc, y and!p(xz,y) D x |3C y |, by
Rule[2.18 it suffices to prove the implication in the case!z’,y =!y'. In this case, letz bez int !z 1z =
t 12/ 12/, so the implication is trivial.

To prove thate, e) is a map of relations, we need to prove that

Ip(z,y) D (Va, B, R: AdmRel(a, 3)).Vz: a,w: (.
zRw D (let x be(let!v bex in) in z)R(let x be(let!v bey in %) in w).

The implication clearly holds in the case ofy of the form!z’, !/, and so, sincéo(z,y) D = | Ay |, as
before we conclude from Rufe Z]18 that the implication holds in general. O

108

2.2.6 Extensionality and Identity Extension Schemes
Consider the twe@xtensionality schemes

(Vx:ote=rux) Dt =g—or u
(Va: Type.ta =; ua) Dt =[]a: Type.r U-

These are taken as axioms|(in|[23], but we shall not take these as axioms as we would like to be able to talk
about models that are not necessarily extensional.

Lemma 2.34. It is provable in the logic that
Vf,g:o— 1. (Vr: o. f(lx) =; g(lz)) D Va: lo. f(z) = g(x).
In particular, extensionality implies
Vf,g: 0 = 1.(Vo: o f(lz) = g(!2)) D f =57 g
Proof. This is just a special case of Riile 2.18. O

The schema
— | — | -k Va: Type.olegy] = et ()

is called theidentity extension schema Here o ranges over all types, anel; is short notation for
eq,,,---,€e0,, .
For any types, ay, ..., a, - o(5, &) we can form thg@arametricity schema

— | — | = FVavu: ([[B.0).V8,5 . VR: AdmRel(3, 3). (u B)c[R, eqz|(u 3'),
where, for readability, we have omittedlype after3, 3'.

Proposition 2.35. The identity extension schema implies the parametricity schema.

Proof. The identity extension schema tells us that

Vavu: ([B.o0).u(]] 5. 0)[eds]u.

Writing out this expression using Ryle 2|23 for the relational interpretation of polymorphic types, one ob-
tains the parametricity schema. O

In the case of second-order lambda-calculus, the parametricity schema implied identity extension for the
pure calculus, since it provided the case of polymorphic types in a proof by induction. It is interesting to
notice that this does not seem to be the case for P|ldince it seems that we need identity extension to
prove for exampleq, ® eq. = eq,, .

Lemma 2.36. Given linear context§’ andC’, suppose
Vz: o.Vy: 7.Clz @ y] =, C'lx @ y].

then
Vzio@Tletz®@ybezinClz®y] =, letz @y bezin C'z ® y]

109

Proof. Consider
f=X2:0.XYy: 7.C[z ®y] f =Xz 0. Xy: 7.C"z @]

then
f <6q0' —o eqr —° eqw) f/'

If z: ¢ ® 7 then by identity extensioaq, ® eq.(z, z). By definition ofeq, ® eq, we have
letz ® 2’ bezin frxz' =, letx ® 2’ bezin f'za’

which proves the lemma. O

This completes our presentation of LAPL. In the following section we show how to use the logic to prove
various consequences of parametricity. We shall write “using extensionality” and “using identity extension”
to mean that we assume the extensionality schemes and the identity extension schema, respectively.

3 Proofsin LAPL

3.1 Logical Relations Lemma
Lemma 3.1. In pure LAPL, fora, 8 - 7, & + w and g: Rel(&, T),
Tlw/Bllp] = 7(p, wipl]

Proof. Simple induction on the structure ef The cases = «; andr = [are trivial. For the case

=71,
(7" @ ") w/B] [= 7'[w/Bl[p) © 7" [w/Bl[p] =
m[p,wlpl] @ ™"[p, wlpl] = (7' @ 77)[p, w[Al]

Likewise for the cases af = 7/ — 7 andr =!7/. The last case is = [[/. 7/ and in this case’ is not
free inw, so

(IT1e/.) [w/B][p] = Yoy, &, R: AdmRel(oy, o). '[w/B][p, R] =
Vayg, o, R: AdmRel(ag, o). 7'[p, R, w(p]] = (] & 7)) [, w(p]]

Lemma 3.2. SUppos& | I', z: 0; — F t(2): TandZ | T, 2': o/; — F t/(2'): 7/ and
E|T|OF p:Rel(o,d'),p': AdmRel(r, 7).
Then

EIT|O] Va:oy:d' p(z,y) D p'(t(x),t'(y)) -
Va:lo,y: 1o’ Ip(x,y) D p/(let!z bezin t(z),let!z’ bey int'(2))

Proof. Consider the special case of Rjle 2.18 used on the relatians, y: !o/). |p(z,y) and
(x:lo,y: 10’). p/(let!z bex int(z),let !z bey in t'(2')).
This gives us

EIT|O] Va:oy: o p(lz,ly) D p(let!z belzint(z),let!z belyint'(z)) -
Va: loyy: o’ p(x,y) Az [Ty |) D p/(letlz bexint(z),let!z beyint'(z))

110

From this we conclude the desired implication using the fact th@t, !y) > p(z,y) (Lemma[2.3]L),

let!z belzint(z) = t(x) andlp(z,y) Dz [Ty |. O
Lemma 3.3 (Logical Relations Lemma).In pure LAPL, for any closed term | —; — - ¢: 7,
trt.

In words, any closed term of closed type, is related to itself in the relational interpretation of the type.

Proof. We will prove that for any term

in the pure calculus; the proposition

— | —;—waﬁ\ﬂ% AdmRel(&@, 3).Vi: 3(a),7: ¢(0).VZ': &'(@),7: & (F)
TFRIg A &5 (R)F © t(a, &, &) [R5, 7, 9)

holds in the logic. Her@'7[R]j is short for
101 [ﬁ]yl VAP xnan[R]yn

The special case of the vectatsd, @’ of length zero is the statement of the lemma. The proof proceeds
by structural induction on, and it is for the induction we need the seemingly stronger induction hypothesis
described above.

Caset = z;: In this caser is of length one, and the proposition is trivial.
Caset = z): In this caser is empty, and this case is also trivial.

Caset = ». We always haveI[R]x.

Caset =Y: Thisis Axiom[Z2.26

Caset = ANz 41: ons1.t's By induction, the proposition holds faf. We must show that i£7[R]j A
& [R]if, then B
(@, @', &) (ont1 — 7)[RIt(BY').-

The induction hypothesis tells us that if furtrle{+1on+1[ﬁ]yn+1, then

(@&, & w0)T IR (B, 7§, ynt),
and since (@, ¥, ¥)xp+1 = t'(d, 7', ¥, x,+1) we have the desired result.
Caset =t t”: By induction the proposition holds for the termist”, and so since
t(a,7,7) =t(a,d,yt"a,x,2)
the proposition holds by definition ¢f — 7/)[R].
Caset = t' ® t’: By induction, the proposition holds fef, t’. Clearly
ta,7,7) =ty et'ar,?)

and so the proposition holds by Lemma 2.29.

111

Caset = Aamy1.t': We must show that if7[R]§ A &7 [R]if, then
4@, &, %) ([T msr-7) BB, 7,),
i.e., forallay,q1, 07, 1, Rng1: AdmRel(aq1, 05,4 1),
t(d, 7, %) o1 TR, B 1|5, 7, 5) 0y
By induction, the proposition holds fat. But up to the position of the quantifiers
Va1, Oy 1y Rttt AdmRel(aumg1, a4 1),
this is exactly the proposition we need, and the rest of the proof is just simple logic.

- o

Caset =t/(w): By induction, the proposition holds faf. So sincet(d, 2", 7) = (&, 2", 7)(w(d)), if
Z3[R)§ A ¥&[R)i7, then o
t(a, @,)[R, wlR]t(5, ¥,).
By Lemmg 3.1, we get the desired result.
Caset =!t’: In this caser is of length zero. By induction, under the usual assumptions,
(@, @) 7[RI (5. 7).
Sincet(a, ') =!¥'(a, '), we need to show
' (@, &)'r (R (5, 7).
which follows from Lemma& 2.31.
Caset =letz: w® 2': ' bet'int": We know by induction that
t(a@,#, &) (w o)R G,7,9),
and if furtherzw[R]v andz'w'[R]v’ then
(&, @, 2,2,)[R (6,7, 7, v,0).
The latter tells us that
Aoz, 2 (@, &, &, 2, 2") (w]R] — W'[R] — 7[R])A\°v, v/ t" (B, 7,5, v,0),
so by definition ofv[R] ® w'[R], we get
letz: w® 2': W' bet'(a&, 7, Z) int"(a a, T z
letv: w®@v': W bet’(ﬁ v,y)int" (8,7 ,4,v,0")
as desired.
Caset = let!z: wbet'in t’: By definition
t(a, 7, 7) = let!z bet'(a,7,7) int"(a, 7, z, 2).

Suppose we are giveh 3, B: AdmRel(&@, 3), and suppos&z[R]; andz' & [R]i . If we further know
2w|[R]7Z’, then by induction
(e, @, 7, 2)T[RI" (8,9, 4, 7).

By Lemmg 3.2 we conclude thatdif!w[R])v’ then
2))7[R](let!z bev int"(3,7, 7, 2)).
=

(let!z bevint”(a, @, 7,
Since by induction’ (@, Z’, Z)\w[R]t'(&, 7,), we are done.

112

o 2 Jla. (0 —a) —oa«
o1 =2 Jla.(0 —T—oa)—oa«a
I = Jlaoa—a
0 = Jla.a
1 = Jlea
o+717 = Jla.(0 —a) = (1 —oa) -«
ox1T = JJa. (0 —oa)+ (T —a) —oa«a
N = Jla.(a—oa) > a—o«
Moo = T16.- (a0 —) — 8
pa.o = JJa. (0 —a) —o«
va.o = [Ja.l(la—o0o)®a«a

Figure 5: Types definable using parametricity

Cases = let » bes’in s”: By induction, if Z7[R]if and’5’[R]i/ then
§"(a, &,)r[R)s" (5,7, 7)
and .
s'(@, &, %) Iras (8,7, 7).
The definition of the latter tells us exactly that
(let x bes' (@, &, %) in s"(a,#,7))r[R](let x bes' (3,7 .,7)in " (3,7, 7))

as desired.

3.2 A category of linear functions

At this point we wish to show certain types definable via polymorphism as summed up in[Higure 5. To state
this precisely, we introduce for each kind contexihe categorjLinType= as follows:

Objects are typeS | —; — F o: Type.

Morphisms[= | —;— F f: 0 — 7] are equivalence classes of terms of type—- 7; the equivalence
relation on these terms beimgernal equality.

Composition in this category is given by lambda abstraction, f.ec — 7 composed withy: w — ¢
yields\°z: w. f(gx).

We start by proving that under the assumption of identity extension and extensionality, for alEtypes
o: Type we have an isomorphism of objectsloin Type-=:

o2 []a. (0 —a) o«
for a not free ino. We can define terms

fio—o]]a.((c —a)—a)

113

and
g: [[a.((0 —a) <a) —o

by
f=Xx:0.Aa.\°h: 0 o a.hzx
and
g=Xz: [[Ja.((0 = a) - a).zoid,
Clearly

g(fa)=(fa)oide ==
sogf = id,. Notice that this only involve external equality and thus we did not need extensionality here.

Proposition 3.4. Using identity extension and extensionality, one may prove fthas¢ internally equal to
the identity.

Proof. Foraterma: [[a. (o0 — a) — a we have
foga=Aa.\°h: 0 — a.h(aoidy).
Using extensionality, it suffices to prove that
Eal|lh:o—oa|—Fh(acid,) =qaah

holds in the internal logic.
By the parametricity schema we know that for any admissible relatiohdmRel(r, ")

(a7)((eq, — p) — p)(aT)
If we instantiate this with the admissible relatigi), we get
(a0)((eq, — (1) — (W)(a a)
Sinceid,(eq, — (h))h we know that(a o id,)(h)(a a h), i.e.,
haoidy) =4 aah,
as desired. O

This proof may essentially be found in [5].

Intuitively, what happens here is thatis a subtype of [a. (6 — a) — «a, where the inclusiorf mapsx
to application at:. We use parametricity to show th|fa. (¢ — /) — « does not contain anything that is
notino.

114

3.3 Tensor types
The goal of this section is to prove
o@T2[]a. (0 —T—oa) o«

using identity extension and extensionality, ¥t o: Type and= + 7: Type types in the same context.
The isomorphism is in the categohinType-.

This isomorphism leads to the question of wether tensor types are actually superfluous in the language. The
answer is yes in the following sense: Call the language without tensor typesg)(aadd the language as is

T. Then there are transformatiopns 7' — t andi : ¢ — T, i being the inclusion, such thato i = idr and

iop = id;. Thisis all being stated more precisely, not to mention proved, in [16]. In this paper we settle for
the isomorphism above.

We can construct terms
fio@T7 —o]]a. (0 T —oa) o«

and
g:(J[la.(0—oT—oa)—oa)—ooc®T
by
fy=letzr®z:c@rbeyin Aa.\°h: 0 — 7 —oa.hza
and

gy =yo ® T pairing,
where the majpairing: o —o 7 —ooc®ris
pairing = \°z: 0. \°2": r.x @ 2.
Let us show that the compositigre f is the identity.
gofy=g(letzr@az:oc@7beyin Aa.\°h: 0 —o7 —oa.hxa')=
(letz®@2': o @ Tbeyin Aa. \°h: 0 —o 7 —0 a. hz ') 0 ® 7 pairing =

(Aa.X°h: 0 —o 1 —oa.letz®z’: c @7 beyinhza')o® 7 pairing =
letr@a’: c@Tbeyinz®a’ =y.

Proposition 3.5. Using extensionality and identity extension one may prove that the composition
fo: (Jla. (0 o7 —oa) —oa) — ([[a.(60 — T — a) — a)
is internally equal to the identity.

Proof. We compute

fogy= f(yo® T pairing) =
letx ® 2': 0 ® T be(y o ® T pairing) in Aa. \°h: 0 —o 7 —o a.hx '

Suppose we are given atypeand a magh: 0 — 7 — «. We can defin@;,: ¢ ® 7 — « as

bph=\y:ocxT1.letzr@2': c@7beyinhza.

115

Thengy (pairing z ') = h x 2/, which means thapairing(eq, — eq, — (¢,,))h. By the parametricity
schema

Ealhio—o1T—oay: [[e.(60 —oT—oa)—oa|—|TkF
(yo@7)((eq, — eq. — (¢n)) —o (n))(y @)
SO
(y o @ 7 pairing)(én) (y o h),
i.e,

on(y o @ T pairing) =, y a h.
Writing this out we get

Ealhio—oT—oay: [[e.(c—oT—oa)—oa|—|Tk
letz ® 2': 0 ® T be(y o @ T pairing) in hx 2’ =, y a h.

Using extensionality we get
Aa.\°h: 0 — 7 —a.letz®z': 0 @ 7 be(y o ® 7 pairing) in (hz 2') =4 y.
This is enough, since by the rules for external equality the left hand side is

letz ® 2': 0 @ 7 be(y o ® 7 pairing) in (Aa. \°h: 0 — 7 — a. hx a').

3.4 Unit object
The goal of this section is to prove that identity extension together with extensionality implies
I=][a.a—a.

The isomorphism holds ihinTypez for all =.
We first define mapg: I — [[a.a — aandg: ([[a.a —) — I as

f=MXux: I.let x bexinid,
g=XAt: [[Je.ao — .t I %,

where
id = Aa. X\°y: a.y.
We first notice that
g(f(z)) = (let x bexinid) [x =
let x bexin (id I x) =let x bexinx = x.

Proposition 3.6. Using identity extension and extensionality, we have fhats internally equal to the
identity on] [ov. « — av.

Proof. First we write out the definition
fg=Xt: (Jla.a — «).let x be(t I x)in id.

We show that for any: [[a. a — «, for any types, and anyz: o we havefg(t) o x =, t o .

116

Giveno, z as above, we can defirke I — o ash = A\°z: I.let x bez in x. Then(h) is admissible, so by
identity extension

(t 1)({h) —o (R))(t o).

Sinceh(x) = x we haveh(t I x) =, t o x, and by definition

h(tI%)=let x be(tI*)inxz=Ilet x be(tIx)in(idozx)=
(let x be(tIx)inid)ox= fog(t)ox.

3.5 Initial objects and coproducts

We define
0=]]a«

For eachE this defines a weak initial object hinType=, since for any typ& + o, there exists a term
0,: 0 — o, defined as
Nx:0.x0

Proposition 3.7. Supposef: 0 — o for some types - o. Using identity extension and extensionality it is
provable thatf =¢_., 0,. Thus,0 is an initial object inLinTypez for each=.

Proof. First notice that for any map: o — 7, by identity extensioriz o)(h)(z 7) for anyz: 0. Thus, by
extensionalityh o 0, =¢_.r 0, for anyh: o — 7. In particular, for any type, the caseh = 0, gives us
200 =, x0,i.e.,00 =g_o ido. If f: 0 — o, by the above we haw&®, =q_o» f 000 =0_oo [O

Next, suppos& + o, 7 are types in the same context. We define
o+17=]]a. (0 <a)— (T —a) =«

and show under the assumption of identity extension and extensionality that this defines a copreduct of
andr in LinType=.

First define termfn,: 0 —o o+ 7,in;: 7T —o o+ 7 as

in, = XNz:oAaAf:o—oadg:T—a.f(z)
in, = XNy:7.Aa.Af:o0—oa.Ag: T —a.g(y)

For any pair of mapg: 0 — w, g: 7 — w define the copairingf, g]: 0 + 7 — w as
[figl =Az:o+T.2w!flg,

then clearly[f, g](in,(x)) = f(z) and[f, g](in-(y)) = g(y), and sor + 7 is a weak coproduct of andr
in LinType=. We remark that the copairing constructor can also be defined as a polymorphic term

[—,—]: Aa.(0 o) = (T —oa) 20+ T—o«

of intuitionistic function type. Of course we can define an even more generel copairing by absteaeting
as well.

Lemma3.8.If h: w — W, f: 0 —0o wandg: T — w, then using extensionality and identity extension, it
is provable thafh o f,ho g] =51 7w’ ho [f, g]-

117

Proof. Since

foranyz: o + 7,
(zw!f 1) (B w W(ho [)(hog))
by identity extension, i.eh([f, g](x)) = [ho f,ho g](z). O

Lemma 3.9. Using extensionality and identity extension, it is provable gt in;| =, 1+ —oo+r idyir-
Proof. Given anyw,a: o —o w,b: 7 — w, we have
[a, b]([ing, in;](z)) = [[a,b] 0 ing, [a,b] o in;](z) = [a, b](x)
for anyx: o + 7. By unfolding the definition ofa, b] in the above equality we get
[iNg,in;](z) wla!b =, xwlalb.
Sincew, a, b were arbitrary, extensionality (and Lemfna 2.34) implias, in,|(z) =, z for all . O

Proposition 3.10.Foranyf: ¢ —o w,g: 7 —owandh: c+7 —o w, if hoin, =,_4, f andhoin, =, _, g,
then it is provable using identity extension and extensionality that, ... [f,g]. Thusc + 7 is a
coproduct ofc and7 in LinTypex.

Proof.
[f7 9} —o+T—ow [h o ina; ho inT] —0+T—ow ho [ina’ inT] —o+T—ow h

3.6 Terminal objects and products
The initial object0 is also weakly terminal, since for any type
Qoo =Y 0 lids_o
is a term of typer — 0. In fact, using parametricity) can be proved to be terminal.

Proposition 3.11. Supposef, g: o — 0. Using identity and extensionality it is provable that=, ., g.
Thus0 is a terminal object irLinType: for any =.

Proof. We will prove
Ve,y: 0.2 =¢ y

which, by extensionality, implies the proposition. Suppose we are givgn0. The term
X2:0.20 o0y

has type) — o, and thus is equal t6,. This means that o =, z 0 — oy. Likewisexz 0 — oy =, y o,
sox o =, y o. Since this holds for al, by extensionalityr = y. O

118

Supposer, T are types in the same contéxt Define
oxT=]]a. (0 —a)+ (T —a) —oa.
This defines a weak product IninType= with projectionsr,: ¢ x 7 — o andr,: ¢ x 7 — 7 defined as

Te = ANx:0XT.20 (INg_oyidy)
Ty = Nzx:oxT.xT(iNr_orid;)

The pairing of termg: w — o andg: w —o 7is (f, g): w —o o x 7 defined as
(f,g) =X°z:w. Aa. \°h: (0 o)+ (T —). [\°z:0 oa.zo f)\°z2: T —oa.zog|hz

Then
o ((f,9)(x)) = {f,9)(x) 0 (INg—pids) = (\2: 0 — 0.2 0) id, x = f()

and sor,, o (f, g) = f and likewiser, o (f, g) = g proving thato x 7 defines a weak product.

Lemma 3.12. Using identity extension and extensionality it is provable that for Any — o0,¢9: w —o
kW —ow,

<f7g> 0k =i/ —ooxr <f0k5790k>

Proof. The lemma is easily proved by the following direct computation using properties of coproducts
established above. The notatipn o k) below denotes the tertk’y: w — a.y o k of type (w — a) —
w' —o a.

(fok,gok)(x) =sxr Aa.Xh: (0 —oa)+ (T —oa).[\2z:0—oa.z0fok \2:T—oa.zogoklhx

(
=oxr Aa.X°h.[(—ok)o (X’z og—oa.zof),(—ok)o(Nz:T—oa.zog)|hx
=oxr AN X°h.(—ok)o[(A°z:0—oa.zof),(A\°2z: T —oa.zog)|hzx
=oxr Aa. XN°h.[(AN°z:0—oa.z0f),(N2: T —oa.z0g)]h (k(zx))
=oxr (f,9) o k(z)

Lemma 3.13. Identity extension and extensionality implies tlaf, 7.) =oxr—ooxr idoxr-
Proof. We must show that for any: o x 7, anya and anyh: (o — a) + (7 — «)
[\Nz:0 —oa.zoms,A2: 0 oa.zom hex =4 zah
In fact, since we are dealing with coproducts, it suffices to show that fot:amy—- o andk: 7 — «

l(me(2)) =a za(iNg—qal)
E(r-(x)) =a za(iN;—k)

We just prove the first of these equations. Since

id,(eq, —o (I))!

by parametricity of a polymorphic version o,
N, oo (idy)((€0, — (1)) + (e — (1))iNg—a(l)

119

and so by parametricity of: o x 7
0 (INg—op 1dy) (D) a (INg—oq,)

i.e.
7o () (D) x a (INg—on 1)
as desired. O

Proposition 3.14. Supposéi: w — o x T is such thatr, o h =, o, fandn, o h =, o g thenitis
provable using identity extension and extensionality that,, ., <. (f,g). Thuso x 7 is a product ofo
andr in LinTypexz.

Proof.

h —w—ooXT <7TO')7TT> oh —w—ooXT <7T0' o h77TT o h> —w—ooXT <f’ g>~

3.7 Natural Numbers

We define the type of natural numbers as
N=]]a (e —oa) = a—a.
We further define term8: N, s: N — N as
O=Aa.A\f:a—oaXz:axz, s=Xy:NAaAf:a—oa Nz a fya!fz)

and prove thatN, 0, s) is a weak natural numbers object in edamType=, and, using parametricity and
extensionality, an honest natural numbers object.

Suppose we are given a typeaterma: o and a morphisnh: o — o. We can then defink: N — ¢ as
h(y) = y o b a. Then clearlyh(0) = a, andh(s x) = b(x o 'ba) = b(h(z)), sSO(N, 0, s) is a weak natural
numbers object.

We can express the weak natural numbers object property as: fobathere exists ah such that

J—2 oN—S N

N L

O ———o0
commutes.
Lemma 3.15. Identity Extension and extensionality implies
Vr: N.aNlsO =y
Proof. Suppose we are givem, a, b and defineh as above. Sinceko h = hosandh 0 = a, we have
s((h) —o (h))band0(h)a, by parametricity ofc, (z N !s 0)(h)(z o b a), i.e.,
(xNls0)olba=,z0lba.
Letting o range over all types and b over all terms, using extensionality and Lemima .34, we have
xN!ls0 =y x,

as desired. O

120

We can now prove tha¥ is a natural numbers object in eatbinType=.

Lemma 3.16. Assuming identity extension and extensionality, given b, the maph defined as above is
up to internal equality the uniqu’ such that'(0) = a, h/(s =) = b(h').

Proof. Supposé’ satisfies the requirements of the lemma. Thgh') — (h'))b and0(h’)a (this is just a
reformulation of the requirements), so for arbitraryN, by parametricity ofz,

rolba=,h(zNls0) =, h'(z).

Thus, by extensionalityy’ =y_o, h. O

3.7.1 Induction principle

The parametricity principle for the natural numbers implies, th&t:ifAdmRel(N, N), andz: N, then
(xN)((R—- R) — R — R)(z N).

Soifs(R — R)s andR(0,0), then
(x N1s0)R(x N1s0).

By Lemma[3.15,x N Is 0 =y z, so we can conclude thdt(z, z). If ¢ is a proposition orN such that
(z: N,y: N). ¢(z) is admissible, then from parametricity we obtain the usual induction principle

(¢(0) AVz: N.op(x) D ¢(s(x))) D Va: N.¢(x).

3.8 Types as functors

Definition 3.17. We say thati - o: Type is an inductively constructed type, if it can be constructed from
free variablegy and closed types using the type constructors of RlLile.,—, ®, I,! and]] c..

For example, all types of pure PlkLare inductively defined, andf is a closed type the] . o x acis an
inductively constructed type. However, some models may contain types that are not inductively constructed!
For example, in syntactical models, any basic open type, such as the typksts(«) is not inductively
constructed.

We define positive and negative occurences of free type variables in inductively defined types as usual. The
type variablen: occurs positive in the type and the positive occurences of a type variabi@ o — 7 are

the positive occurences of in 7 and the negative ia. The negative occurences afin ¢ — 7 are the

positive ino and the negative im. The positive and negative occurencesxah [[8. o are the positive

and negative occurencesdnfor o # (3. The rest of the type constructors preserve positive and negative
occurences of type variables.

If o(a, B) is an inductively defined type in which the free type variablappears only negatively and the
free type variables appears only positively, then we can considas a functoLinType® x LinType —
LinType by defining the term

Mo’(a,ﬁ): Ha7ﬁ7 CEIHB/' (O/ —° Oé) - (ﬁ —-° ﬁ/) - O'(CV?ﬁ) - O'(O[/,ﬁ/>,

which behaves as the morphism part of a functor, i.e., it respects composition and preserves identities. We
defineM,) by structural induction om. This construction immediately generalizes to types with less or
more than two free type variables, all of which appear only positively or negatively.

121

For the base case of the inductiongifo, 3) = 3, define

Mg = Aa, 3,0/, 8" .\, g.9.

In the caser (5, @) — 7(«, 3) we define the term

Mo (8,0)—or(c,3) *
[T, B,¢/, 8. (o) —) = (8 —) = (0(8,a) — (e, f)) — o(f,&/) — 7(,)

by
MU(,@,&)—OT(@,,@) = Aa, B, O/a ﬁ,- Ay g
Ah:o(B,a) —o (e, B). (MraBa' B fg)oho (M, B o Bag f).

For bang types, we define:

Moy = Ao, 3,0/, 8" Nf: o/ —oa. Ag: B — ' Nz lo(a, B).
letly bex in(Myq a8 B fgy).

For tensor types, we define:

MU(&,B)@T(Q,,@) = AOé, ﬂa O/a B,')‘f’ g. Az O'(Oé, /8) X ’T(Oé, ﬂ)
etz ® y: o(a,f) ® 7(a, B) bez in (Mya f o/ B f g2) © (Mea fo’ ' f gy).

The last case is the case of polymorphic types:

MHw.a(a 5 = Ao, 8,0, 8 Nf,9.\°z: [[w.o(a, B).
Aw: Type. Ma(a,ﬁ) afd B fgzw).

Lemma 3.18. The term),, respects composition and preserves identities, i.e.ffon” — o/, f: o/ —o
a,g: 8 — f,andg’: ' — g,

o MoqapaBa” 87(fo f)Ng 0g) = (Mo(ap o 5" B"1f"g') 0 (My(a,p) o’ 5" 1g),
o Mg(a”g)Oé ﬁ o ﬁ !ida!idg = ida(a,ﬁ)-

Proof. The proof proceeds by induction over the structure,and most of it is the same as In [23], except
the case of tensor-types ahdrhese cases are essentially provedin [2]. O

Notice that in the proof of Lemnja 3./L8 we do not need parametricity. Suppose
El——Ffia —ag:p—p.
We shall writeo (£, g) for
Mg(aﬂ)a ﬂ O/ ﬂ/ 'f !g.

The type ofo(f, g) iso(a, 3) — o(d/,3'). Notice that we apphM/ to ! f,!g, sinceM is of intuitionistic
function type (- instead of—o). By the previous lemmay, defines a bifunctoLinType®” x LinType —
LinType.

First we consider this in the case of only one argument:

122

Lemma 3.19 (Graph lemma). Assuming identity extension, for any type o with o occuring only
positively and any magp: 7 — 7’

o[(f) = (e ()

Likewise, suppose F ¢’ is a type witha only occuring negatively. Then identity extension implies

whereo (f))Pis (z: o(7),y: a(7). (a(f))(y, x).

Proof. We will only prove the first half of the lemma; the other half is proved the same way. &inceurs
only positively ino, we will assume for readability thdt/, has type[[o, 8. (a — 3) — o(a) — o ().

By parametricity ofM,,, for any pair of admissible relations AdmRel(«, ') andp’: AdmRel(3, 3)

(Mo o B)((p — p') = (olp] — o[p']))(Mz o' 3). (2)

Let f : 7 —o 7’ be arbitrary. If we instantiat¢ [(2) with = eq, andp’ = (f), we get

(Mo 7 7)((eqr —o (f)) = (edo(r) — o[(/))) (Mo 7 7'),

using the identity extension schema. Sinée(eq, — (f))f,

lid;!(eqr — (f))Lf,
and usingM, 7 7' | f = o(f) we get

id () (eto(r) —o TL(F))(F),

Va: (7). 2(a[(/)])(o(f)z).
We have thus prove@ (f)) impliesa[(f)].

To prove the other direction, instantialt¢ (2) with the admissible relations f), p’ = eq, for f: 7 — 7.
Sincef((f) —o eq,s)id,

U(f)(O—KfH - eQO'(TI))idO'(T/)'
So for anyz: o(7) andy: o(7') we haver(co[(f)])y implieso(f)x =, y. This just means that[(f)]
implies (o(f)). O

3.9 Existential types

In this section we consider existential or sum type&, I - o is a type, we define the tyge+ [[a. o as

[Mao=116.(Ilawo —f) —p

In fact, this defines a functor

LinTypez , — LinTypez

=«
with functorial action as defined in Sectjon[3.8. In this section we show that this functor is left adjoint to the

weakening functor
LinTypez — LinTypez,

123

mapping atype& - o to =, o F o. In other words, we show that for any tyget +, there is a one-to-one
correspondence between terfis ¢: ([[a.0) — 7 and terms, o F o — 7 if we consider terms up to
internal equality provable using identity extension and extensionality.

First define the term

pack [[a.(c —[]a.0)
asAa. N°z: 0. AB.X°f: [[a. (0 — B). f a z. The correspondence is as follows. Suppose Hrsi
t:o —o 7. ThenZ F t: (J[Javo) — 7is Xz: [[a.o.z 7 (Aa.t). If 2 F s: (J[[a.o) — 7 then
Z,at §: 0 — 7is defined to be\x: 0. s(packa x).

Now, suppose we start with atefa + ¢t: ¢ —o 7 then

i = Xz:o (Ny: [[a.o.y 7 (Aa.t)) (packa z)
= AN°z:o.packa z 7 (Aa.t)
= Nz:o. (Aa.t)azx
= t.

It remains to prove that is equal tos for any = + s: ([Ja.o) — 7. For this we need to use identity
extension.

Lemma 3.20. Supposer: [[a.o, 7,7 are types andf: 7 — 7', g: [[a.0 — 7. Then using identity
extension and extensionality,

7 (Aa. fo(ga)) = f(zTg)

Proof. Using identity extension ogiit is easy to see that([[«. 0 — (f))Aa. fo(ga). If x: [] . o then
by identity extension

r7g(flz T (Aa. fo(ga))
which is what we needed to prove. O

Lemma 3.21. It is provable using identity extension and extensionality that
Vo: ([Ja.o).z [Ja.o pack=[[4. ©

Proof. Suppose we are givehandf: [[«.o — 3. We show that

v 8 f =p = ([]a.0) packs f
Definef’ = X°z: ([o) z 8 f of type (][av. o) — 3. By Lemmd 3.2D

z 3 (Aa. f' o (packa)) =g f'(z [[.o pack =3 = [a. o packs f
so we just need to show thAtv. f' o (packa) is internally equal tgf. But
Aa. f' o (packa) a y =3 f' (packa y) =g packay f =5 f ay.
O

Proposition 3.22. SUupposé& I s: (I] «. o) — 7. Itis provable using identity extension and extensionality
that § is internally equal tos.

Proof.)
s(x) = z 7 (Aa. \°2": 0. s (packa o)) =; s (x [Ja.o pack =, sz

where for the second equality we have used Lenmg 3.20. O

124

3.10 Initial algebras

Supposex + o: Type is an inductively constructed type in whiehoccurs only positively. As we have just
seen, such a type induces a functor

LinTypez — LinTypez

for each=. We aim to define an initial algebra for this type.

Define the closed type
pa.o(a) =[] a. (o(a) — a) — a,

and define
fold: [Ja. (o(a) —) — (pa. o(a) —o @)
as
fold = Aa. A\f: o(a) — a. A°u: pa.o(a). ualf,
and
in: o(pa. o(a)) —o pa. o)
as

iNnz=Aa.\f: o(a) — a. f(o(folda ! f) z).

Lemma 3.23. For any algebraf: o(7) — 7, fold 7 | f is @ map of algebras frorfua. o(«),in) to (7, f),
i.e., the diagram

o(pa. (@) “"—opa. o(a)

o(fold 7 !f)L Lfoldr I
f

o(r) —————oT
commutes.
Proof. Forz: o(pa.o(a))
(fold7!f)oinz =inz7!f = f(o(foldT !f)),
as desired. O

In words we have shown that defines a weakly initial algebra for the functor definedvbipn LinType=
for each=. Notice that parametricity was not heeded in this proof.

Lemma 3.24. SupposeE | I'; — - f: o(r) — 7andZ | I';— F ¢g: o(w) —o w are algebras foro, and
E|T;—F h: 7 — wisamap of algebras, i.eh f = g o(h). Then, assuming identity extension and
extensionality,

ho (fold7!f) =,4.0(a)—w foldw g.

Proof. Sinceh is a map of algebras

so by the Graph Lemma (3]19)

and by Lemm@a 2.31
(e [(r)] — (h)))lg.

Clearly (fold, fold) € e, , and thus, by identity extension,

(o) =) = (.0 (a)—oa)

(fold, fold) € [T . (o(r) — @) — (8 — @)[edua.0(a)/Bl;

so for anyz: pa. o(«),
(fold 7 ! f)(h)(foldw lg z),

i.e.,
ho (fold 7 !f) = ja.0(a)—ow fOId W g,

as desired. O
Lemma 3.25. Using identity extension and extensionality,
fold pucv. () N =16 5(0)—opaco(a) paco(a)-
Proof. By Lemmd 3.24 we know that for any type f: o(7) — 7 andu: po. o(w)
(fold 7 ! f) o (fold pav. o () lin) uw =, fold 7 ! f w.
The left hand side of this equation becomes
fold 7 ! f (u pav. o(a) lin) = (u pa. o(a) lin)7 1 f

and, since the right hand side is simply

uT!f,
the lemma follows from Lemnia 2.B4. O
Theorem 3.26.Suppos& | —; — - f: o(7) — Tisanalgebraan®& | —; — + h: pa. o(a) — Tisamap

of algebras from in tgf. Then if we assume identity extension and extensionality,, ,(.)—- fold 7 ! f.

Proof. By Lemmd 3.2} we have
ho (fold pav. o () lin) =, 5 (a)—r fOld T ! f.
Lemmg 3.2p finishes the job. O

We have shown thah defines an initial algebra.

3.11 Final Coalgebras

As in sectior} 3.10 we will assume that- o(«): Type is a type in whichx occurs only positively, and this
time we construct final coalgebras for the induced functor.

Define
va.o(a) =[[a(a — (@) @ a =[S ([Ja. (o — o(a)) @ a — B)) — 3

with combinators
unfold: [Ja. (o — o(a)) — a — va. o(a),

out: va. o(a) —o o(va.o(a))

126

defined by
unfold = Aa.\°f: !(a — o(a)). \°z: a.packa (f ® x)

out = Xz:va.o(a).xzo(va.o(a))r,
where

r:]Ja.(a—o(a))®a—o(va.o(a))
r=Aa. \y: (a — o(a)) @ a.letw @ z bey in o(unfolda w)(let! f bew in f z).

Lemma 3.27. For any coalgebraf : 7 — o(7), the map unfold ! f is a map of coalgebras frorfito out.
Proof. We need to prove that the following diagram commutes

T———o0(T)
unfold !fl La(unfoldr 'f)
va. o(a) —oo(va. o(a)).

But this is done by a simple computation

out(unfoldr ! f) = out(pack 7(!f) ® z) =
packr(1f) @ zo(va.o(a)r=r7((If) ®@z) =
o(unfoldr (1f)) (f z).

O

Lemmg 3.2 shows thautis a weakly final coalgebra for the functor induceddgn LinTypez for each
=. Notice that parametricity was not needed here.

Lemma 3.28. Supposé:: (f: 7 — o(7)) — (f': 7 — o(7)) is @ map of coalgebras. If we assume
identity extension, then the diagram

unfoldr ! f

T ———ova.o(a)

h
L ng’

T/

commutes internally.

Proof. Using the Graph Lemma, the notion flobeing a map of coalgebras can be expressed as
F((h) — o))"
Now, by parametricity otinfold,
unfold7 ! f((h) —o €Q,4 4 ())unfoldr’ ! ',
which is exactly what we wanted to prove. O
Lemma 3.29. Using extensionality and identity extension,
unfoldva. o(«) lout

is internally equal to the identity ona. ().

127

Proof. Seth = unfoldva. o(«) loutin the following.

By Lemmd 3.2[7h is a map of coalgebras fromutto out, so by Lemma 3.28) = h2. Intuitively, all we
need to prove now is thatis “surjective”.

Consider any : [Ja. ({(a — o(a)) ® a — (). For any coalgebramap: (f : « — o(a)) — (f':
o' — o(’)), we must have, by Lemmas 3|19, 2.31, and [2.29,

(If @ 2)({((k) — o[(k)]) ® (k) (1f' ® k),

so by identity extension and parametricitygof
Ve:a.ga(If)@x=gd (If) @ k(z).
Using this on the coalgebra mapfold« ! f from f to outwe obtain
Ve:a.ga(lf)®@x =5 gra.o(a) (lout) ® unfolda ! f .
By Lemmg 2.3} this implies that
Vil a—oo(a)),z:a.ga f®@x=ggra.o(a) (lout) ® unfolda f ,
which implies
Vz: (o —o(a)) ® a.gaz =g gra.o(a) (let f ® z bezin (lout) ® unfolda f x)

using Lemma 2.36.
In other words, if we define
E: [Ta.(Ma—o(a)) @ a—o 1),

wherer =!(va.o(a) — o(va.o(a))) ® va.o(a), to be
k=Aa. Xy (a—oo(a))®a.let f ®xbeyin (lout) ® unfolda f z,

then
Va. g @ =1(q—o0(a))®a—o8 (gra.o(a)) o (k). 3)

Now, suppose we are given o', R: Rel(a, ') and termsf, f’ such that
fUR —o[R) @ R)f'.
Then, by [(B) and parametricity gf
gaf=pgd f =5 (gva.c(a))(ka’ f),
from which we conclude
g(V(a, B, R: Rel(a, 8)). /(R — 0[R]) ® R —o (g vav. o(a))P))k.

(Here we use“P for the inverse relation of.) Using parametricity, this implies that, for amy va. o(«a),
we have

xfg=pggra.ocla)(xzTk).

128

Thus, sincey was arbitrary, we may apply the abovegte- k& and get
xTk=rkva.o(a)(z7k)=letf®zbe(z7k)in (lout) ® unfolda f z.

If we write
Il =MXr:va.o(a).let f ® z be(z T k) inunfolda f z,

then, sinces is a closed term, so Is and from the above calculations we conclude that we have
VB.Vg : [Ja (o —o(a)) @a — B.2 89 =5 gra.o(a) (lout) ® (I x).

Now, finally,

h(l) = unfoldva. o (@) lout (I z) =
packva. o(a) lout® (I z) =
AB. g [Ta. (Ma—o(a)) ® a— B).gva.o(a)out® (1 1) =,4.0(a)
AB.Ag : []a.((a —oo(a) @a — (). 5g =z,

where we have used extensionality. Thisa right inverse té, and we conclude
hx —va.o(a) h2(l (L‘) —va.o(a) h(l .’E) =va.o(a) L
O

Theorem 3.30. SupposeE | —;— + f: 7 — o(7) isacoalgebraan®E | —;— F h: 7 — pa.o(a) is
a map of algebras fronf to out. Then if we assume identity extension and extensioakty . (q)
unfolda ! f.

Proof. Consider a map of coalgebras irtot

By Lemmag 3.28 anld 3.9,
unfoldr ! f =0 5(a) (Unfoldva. o(a) lout) o g =, o0 5(a) 9-

O

Theorenj 3.30 shows thattis a final coalgebra for the endofunctor binType= induced byo for each

—
—

3.12 Recursive type equations
In this section we consider inductively constructed types o(«) and construct closed typessuch that

o(7) = 7. In Section$ 3.70 arjd 3.]11 we solved the problem in the special caseasiuring only positively
in o, by finding initial algebras and final coalgebras for the functor induced. by

129

This section details the sketch 0f [22], but the theory is due to Freyd[[8, 7, 9]. In short, the main observation
is that because of the presense of fixed points, the initial algebras and final coalgebras of Seciions 3.10,
[3.17 coincide (Theorein 3.B6 below). This phenomenon is called compactness, and was studied by Freyd in
loc. cit..

Before we start, observe that we may split the occurencest in positive and negative occurences. So
our standard assumption in this section is that we are given adtyfe- o(«, 3), in which a occurs only
negatively and3 only positively, and we look for a type, such that (7, 7) = 7.

3.12.1 Parametrized initial algebras

Setw(a) = pp.o(a, B) = [[6. (o(a, B) —) —o (. Now, w induces a contravariant functor from types
to types.

Lemma 3.31. Assuming identity extension and extensionality,ffor’ — a, w(f): w(a) — w(’) is (up
to internal equality) the uniqué such that

ola,w(a)) Lou}(oz)

U(id’h)L

o(a,w(a)) h

o(f,id)

commutes internally.

Proof. One may definén as a polymorphic term
in: [Ja.o(a,w(a)) — w(a)

by
in=Aa.\z: o(a,w(a)). AB.Nf: o(a, 3) — B. f(o(Ax: .z, fold 5 f) z).

By parametricity we have
ind/(a((f),w((f))) — w((f))ina,
which, by the Graph Lemma (Lemrpa 3] 19), means that
ino/((a(f,w(f)))* — (W(f)*P)ina,

which in turn amounts to internal commutativity of the diagram of the lemma.
Uniqueness is by initiality oin (in LinType,,, proved as before) used on the diagram

in

o(a, w(a)) w(a)
o(id,h) h

o(a,w(a’)) MJ(O/, w(a)) Low(o/).

130

3.12.2 Dialgebras

Definition 3.32. A dialgebra forr is a quadruplér, 7', f, f') such that- andr’ are types, and: o(7/,7) —o
Tandf’: 7" — o(7,7") are morphisms. A morphism of dialgebras fr¢rg, 73, fo, f}) to (11,71, f1, f1) is
a pair of morphismé: 1) — 71, h’: 71 — 7, such that

!

o (74, 70) LTO 1 L<>U(7’1,7'1’)
a(h',h)L Lh h’i La(h,h’)
o(r{, 1) ——T1 7o ——20 (70, 74)-
f1 I

Lemma 3.33.If (k, 1) is @ map of dialgebras and, i’ are isomorphisms, thefh, ') is an isomorphism
of dialgebras.

Proof. The only thing to prove here is th@t—*, (h')~1) is in fact a map of dialgebras, which is trivial (]
Remark 3.34. If we for the typea, 5 F o: Type consider the endofunctor
(c°P,0): LinType®z x LinTypez — LinType®z x LinTypez

defined by(«,) — (0(0,), o(a, B)), then dialgebras for are exactly the algebras f¢5°P, o), maps of
dialgebras are maps of algebras {of?, o) and initial dialgebras correspond to initial algebras.

Theorem 3.35. Assuming identity extension and extensionality, initial dialgebras exist for all functors in-
duced by types(«, 3), up to internal equality.

Proof. In this proof, commutativity of diagrams will mean commutativity up to internal equality.
Setw(a) = pf.o(a,). Thenw defines a contravariant functor. Define

7' =va.o(w(a),a), T=w(r) = up.o(7,B).
Sincer’ is defined as the final coalgebra for a functor, we have a morphism
out: 7 —o o(w(r), ") = o(r,7),
and sincer is defined to be an initial algebra, we get a morphism
in: o(r',7) — .

We will show that(r, 7/, in, out) is an initial dialgebra.

Suppose we are given a dialgeljra, 7, g, ¢’). Sincein is an initial algebra, there exists a unique map
such that _
a(7h,w(13)) ——ew(13)

a(id,a)i La

o (7, 70) — 9 om,

131

and thus, sinceutis a final coalgebra, we find a mapmaking the diagram

7§ oo (70,) "0 (w(rh),70) @
1% o(w(h'),h)
7’ oo (w(), ')

commute. Seb = a o w(h'). We claim that(h, ') defines a map of dialgebras. The second diagram of
Definition[3.32 is simply[(#). The first diagram [of 3]32 follows from the commutativity of the composite
diagram

o (7', w(r') ——ew(r) ()

U(h’,w(h’))L Lw(h/)

o (16, w(15)) ——ow(()

U(id,a)L La
o (74, 70) ——70,
where the top diagram commutes by Lenjma[3.31.

Finally, we will prove that(h, ') is the unique dialgebra morphism. Suppose we are given a map of
dialgebragk, k') from (7, 7/, in, out) to (79,7, g,¢’). By the first diagram of Definitioh 3.32, we have a
commutative diagram

o(r', 1) in oT

o‘(id,k)L k
o(k',id
o(t',70) (—ga(q’), 70) —7 7.
Since clearly[() also commutes whihis substituted fo#’, by (strong) initiality ofin, we conclude that
k =r_or aow(k’). Finally, by the second diagram of Definitipn 3,32 we have commutativity of

/ o(a,id
oo (1, 7) Lo (w(r4), 76)
¥ La(w(k’),k’)
t
7! = oo (w(r’), 7).
So sinceoutis a final coalgebra we concludé=_,__.. 1'. O
0

3.12.3 Compactness

As advertised in the introduction to this section, the presence of fixed points makes initial algebras and final
coalgebras coincide.

Theorem 3.36 (Compactness)Assuming identity extension and extensionality, for all typéso(a) in
whicha occurs only positively, in! is internally a final coalgebra and out is internally an initial algebra.
Furthermore im! and out! can be written as terms of PIkL

132

Proof. By Theorem$ 3.36 arjd 330 is an initial algebra, andutis a final coalgebra for. Consider
h=Y (va.o(a)) —o pa.o(a) (Ah: va.o(a) —o pa.o(a).ino o(h) o out).

SinceY is a fixed-point operator, we know that

o) | L

o(pa. o(a)) in—@,u,a. o(a)

commutes. Sincen~! is a coalgebra, we also have a magoing the other way, and sin@aitis a final
coalgebrakh =, 5(a)—ova.o(a) 1dra.c(a)- SINCEINis aninitial algebra, we know that =, (a)—oua.o(a)
id o () - Soin~! = outas coalgebras arat~! 22 in as algebras, internally.

Lemma 3.37. Assume identity extension and extensionality.(ket’, in, out) be the initial dialgebra from
the proof of Theorefn 3.85. Thér', 7, out™!,in~!) is also an initial dialgebra internally.

Proof. In this proof, commutativity of diagrams is up to internal equality.

Suppose we are given a dialgelra, 7, g, ¢’'). We will show that there exists a unique morphism of
dialgebras from{~’, 7, out™!,in"1) to (7o, 7, 9, ¢').

By Theorent 3.36, for all typea, in"!: w(a) — o(a,w(a)) is a final coalgebra for the functgt —
o(a,), andout™!: o(7,7") — 7’ is an initial algebra for the functar — o(w(a), a).

Let a be the unique map making the diagram

/
5 oq (0,

al La(id,a)
in—1

w(10) ——0 (70, w(T0))

commute. Definé to be the uniqgue map making
O'(T’ 7_/) out™! 07_/ (6)

Lh
o(a,id) ,

U(W(TO)a 7—0) 400—(7—07 7—0) LOTO

U(M(h)ﬁ)l

commute. We definé’ to bew(h) o a and prove thath, 2’) is a map of dialgebras. The first diagram of
Definition[3.32 is simply[(6). Commutativity of the second diagram follows from commutativity of

1) ———o0 (70, 74) @)

ai Jya(id,a)
w(m0) —e0 (70, (7))
w(h)i La(h,w(h))
1

w(r') —oo(,w(r)),

133

where commutativity of the last diagram follows from Lemma B.31.
Finally, we will show that if(k, k) is another map of dialgebras frof’, 7,out™%,in"!) to (70, 7, 9, 9')
thenh =7, kandh’ =, . k'. By the second diagram of Definition 3|32 we know that

7§ oo (m0,) "o (r', 7f) ®)

K La(idJc’
o(r’

)
T in”* ,T)

commutes. Clearly, if we substitukefor i in (7)), we obtain a diagram that commutes by Lenima[3.31. So,
using the fact than—" is a final coalgebra orﬂ(S), we get =1} —or w(k) o a.

The first diagram of Definitiop 3.32 implies that

o(r,7) out”! or!
o(w(k),k) L k

o(a,id) g
o(w(m0),70) ——>0 (1), T0) ——=T0

commutes. Comparing this @ (6) we obtair=,_., k, by initiality of out!. O

Theorem 3.38. Assuming identity extension and extensionality, for all types) wherea occurs only
negatively ang3 only positively, there exists a typeand a mapf: o(r,7) — 7, such that(r, 7, f, f 1) is
an initial dialgebra up to internal equality.

Proof. As usual commutativity of diagrams will be up to internal equality.
We have a unique map of dialgebras

(h,h): (r,7',in,out) — (7,7, out™t,in™1)

We claim that(%’, h) is also a map of dialgebras frofn, 7/, in, out) to (7', 7,out™!,in~1). To prove this we
need to prove commutativity of the diagrams

o(r',7) L T—oin_l o(r',1)
)) b)
U(h,h’)L Lh/ hL Lo(h’,h)
1
o(r,7) our, 7! ! _out, o(r,7)

but the fact thath, 4') is a map of dialgebras tells us exactly that

. P
o(t',7) LY r N, o(t',7)
a(h’,h)i Lh h[LO(ML/)
1
o(r,7) %7/ o 04“‘00(7.,),

and these two diagram are the same as the above but in opposite order. Thus, by uniqueness of maps of
dialgebras out ofr, 7, in, out), we geth =, .~ h'. Since(h, h) is a map between initial dialgebrasijs
an isomorphism.

134

Now definef: o(r,7) —o 7 to bein o o(h~1,id,). Then clearly(id,, h~!) is a morphism of dialgebras
from (7,7, f, f~1) to (, 7, in, out), since the diagrams provir(gd, h~!) to be a map of dialgebras are

h717-d .
o(r, T)U—o(:)0(7'/,7' Ly T out oo (1,7")
f
a(hl,id)L Lid hli La(id,hl)
i in—1 h,id
o(r,r) ——" o P,) o (r 7).
f 1

Clearly the first diagram commutes, and the second diagram is just part of the definithot pbeing a map
of dialgebras. Thusgid,, h~!) defines an isomorphism of dialgebras froémr, f, =) to (7, 7',in, out),
as desired. O

Corollary 3.39. Assuming identity extension and extensionality, for all typest o(«, 3), wherea occurs
only negatively and only positively, there exists a typesuch thais (7, 7) = 7 in eachLinType-=.

Proof. The isomorphism ign o o(h~1, id). O

Notice that the closed terms—o o(7,7) ando (7, 7) — 7 always exist, independent of the assumption of
parametricity. We use parametricity to prove that they are each others inverses.

3.13 Recursive type equations with parameters

We now consider recursive type equations with parameters, i.e., we considefitypeso (d, o) and look

for typesda + 7(a) satisfyingo(d, 7(&)) = 7(a). As before, we need to split occurences of the variable

into positive and negative occurences, and since we would like to be able to construct nested recursive types,
we need to keep track of positive and negative occurences of the variabigte solutionr as well. So

we will suppose that we are given a tyes, o, 8 - (&, 3, o, 3) in which the variablest, a occur only
negatively and the variabl% 5 only positively.

Of course, the proof proceeds as in the case without parameters. However, one must take care to obtain the
right occurences of parameters, and so we sketch the proof here.

Lemma 3.40. Supqposei’, 5, a,BF o(a, 3, a, 3) is atype inqwhich thg variables, o occur only negatively
and the variablegs, 5 only positively. There exists typ&sg - 7(a, 3) in which& occurs only negatively

-,

andﬁonly positively andv, 5 F 7’(& () in which@ occurs only positively anﬁ only negatively and terms

o(a,B,7(a,p),(d,B) — 7(a,s)

-,

out: T'(& 3) — a(f,d,7(a,f),7(a,p))
such that for any pair of types, A+ w,w', and terms
g: 0(&',5,w2w) —ow
g W —o(f,d,w,w)
there exists uniqué, ' making

!

o(@, B, 7(@, B), 7(@, §)) ——or(a, B R ————: I R
a(&,ﬁh,h)L Lh % L (B,&,h,1)
o(d, B, o, w) —————w (@, 5) o (B, d,7(a,7), 7(a, B))

commute up to internal equality.

Proof. Define

w(d,B,a) = pb.o(
(&, .o (
7(@,8) = w(@p,7(a,p))
Notice that we have swapped the occurenceﬁqﬁin o in the definition ofr’, making all occurences af

in 7' positive and all occurences 6fin 7/ negative. The rest of the proof proceeds exactly as the proof of
Theoreni 3.35. O

Theoiem 3.41. Suppose, ﬁ, a, B F a(&,ﬂ:,a,ﬁ) is a type as in LemO. Then there exists a type
7(a, B) with & occuring only negatively and only positively, and a term

-,

in: o(d, 5.7(3,d),7(a., §)) — r(d.)
satisfying the conclusion of Lemina 3.41 wittv, 3) = (4, @) and
out=in"t: 7(8,a) — o(3,a7(a, f), (G, &)).
Proof. Using Theorem 3.36, we can prove as in the proof of Lefnmg 3.37 that the pair
out™": o(d, B, 7(5,a), (6, @) — 7'(5,d)
in~t: 7(3,d) — o(B,d,7(8,d),7(5, d))

also satisfies the conclusion of Lemma 3.41. Proceeding as in the proof of Llemrpa 3.38 we get an isomor-
phism7(&, 3) = 7/(3, @) up to internal equality, which implies the theorem. O

Corollary 3.42. For any typed, ﬁ,a,ﬁ + g(&’, ﬁ,a,ﬁ) is a type as in LemO, there exist a type
7(a, B) with & occuring only negatively and only positively and an isomorphism

-, -,

o(a, 3,7(8,d),7(a,) = r(a,)
in LinType_ 5

4 LAPL-structures

In this section we introduce the notion of LAPL-structure. An LAPL-structure is a model of LAPL.

First, however, we call to mind what a model of PILL is and how PILL is interpreted in such a model (for a
full description of models for PILL and interpretations in these, seele.g. [19] 17,12, 15, 5]).

A model of PILL is a fibred symmetric monoidal adjunction

Kind,

such thafLinType is fibred symmetric monoidal closed; the tensoflippe is a fibred cartesian product;
Type is equivalent to the category of finite products of free coalgebras for the contéiamh LinType;

136

Kind is cartesianp has a generic object and simple products with respect to projections fordettiviiere
Q is p of the generic object. Sele [17] for detailed explanation of this definition.

PILL is interpreted in such models as follows. A typés interpreted as an objeft] € LinType using
the SMCC structure to interpret, —o, I and the comonad'G to interpret!, and we interpret a term

S o o o o
alz:ax:dFt:r

as a morphism
o] @ ... on] @ [0]] ®@...®[o.] — [7]
in LinType, where! = F'G. Notice that we denote the morphismdiinType by —.

The comonad structure drinType induced by the adjunction gives us two natural transformations—
lande: ! — id. These are defined in the internal language as

0 = A°z: lo.letly bex in !y,
€ = N°z: lo.let!zbexin z.

It turns out that we may interpret the intuitionistic part of the calculus, that is, the terms in the calculus with
no free linear variables, iype. For suppose we are given such a term

Elda -kt
Then the interpretation of this term IninType is
[E]Z:0;—Ft:7]: QE| o:] — [E]| 7].

Since®;![= | 0;] =2 F([[, G([Z | 04])) (F is strong) and = F'G, we have, using the adjunctidn - G,
that such a term corresponds to

[E]%: 7 = F tlrype: [G(lou]) — G(I7])
in Type. Itis easy to prove that

[E [T —F slt/z]]type =
[E|T,2:0;—F s: T[1ype © <id[[5|p;_]], [Z]|T;—F t]rype),

using Lemma 3.2.2 of [2].
Definition 4.1. A model of PILLy is a model of PILL, which models a fixed point operator
Y:1la. (o — a) = «

Definition 4.2. A pre-LAPL -structure is

1. a schema of categories and functors

Prop

T
PN I
LinType Type “—— Ctx

T

137

such that

e the diagram

is a model of PILLy .
e ¢ is afibration with fibred finite products

e (7,q) is an indexed first-order logic fibration [5] which has products and coproducts with respect
to projectionsE x 2 — = in Kind [5], wheref2 is p applied to the generic object pf

e [is a faithful product-preserving map of fibrations.

2. a contravariant morphism of fibrations:

LinType Xkind LinType v Ctx

T

Kind
3. afamily of bijections
¥ : Homeixz (&5 U(0, 7)) — Obj (Propey 1(6(o)xG(r)))
for 0 and7 in LinTypez and¢ in Ctxz, which

e is natural in the domain variabte
e is natural ino, 7

e commutes with reindexing functors; that ispift =/ — = is a morphism irKind andu : £ —
U(o,) is a morphism irCtxz, then

U(p*(u)) = ()" (¥(u))
wherep is the cartesian lift op.

Notice that¥ is only defined on vertical morphisms.

By contravariance of the fibred functbrwe mean thal/ is contravariant in each fibre. SinEeis uniquely
defined by the requirements on the rest of the structure so we will often refer to a pre-LAPL structure simply
as the diagram in item 1. Strictly speaking, we should denote the bijegtion U= . , . since it depends

on all these, but for ease of notation we simply write

We now explain how to interpret a subset of LAPL in a pre-LAPL structure. The subset of LAPL we consider
at this stage is LAPL without admissible relations and without the relational interpretation of types.

We interpret the full contexts of the considered subset of LAPL in the categtxyas follows. A context
E|x1: 01,20 0 | Ry Rel(m,7), ..., Rt Rel(7in, 7))

is interpreted as

[1; 1G(lo:) x IT; U(I75]; [75D),

138

where the interpretations of the types is the usual interpretation of tyddaifiype — Kind.
For notational convenience we shall write | I" | © I ¢: 7] for the interpretation of in Ctx, that is for

I([E| ;= Ft: T]rype) o7
(note the subscripl'ype), wherer is the projection

m [E[T[6] = [E]T]-]
in CtX[[E]].
The propositions in the logic are interpretediirop as follows.
LetA;: I — I x I denote the diagonal map, then

[E|x:ryy:Thz=y] = HAH(T)’
where]_[AH denotes the left adjoint to reindexing aloAg Now we can define
[EIT|OFt=u]=(E|T|OFt,[E|T|OFu)[E]|x: ,y: TFz=;y].

To interpretvz: oy,.¢, recall that a conteX | z: o1,...,x,: 0y, | © is interpreted as

[1; 1Glo:] < [®],

where[o;] is the usual interpretation of typesIrinType and the product refers to the fibrewise product
in Ctx. We may therefore interprét: : o;,.¢ using the right adjoint to reindexing along the projection

m: [1Goi] % [O] = iy, 1Gloi] x [O].

Likewise,VR: Rel(co, 7.)¢ is interpreted using right adjoints to reindexing functors related to the appropriate
projection inCtx. The existential quantifiersz: 0;,.¢ and3R: Rel(o, 7.)¢ are interpreted using left
adjoints to the same reindexing functors.

Quantification over typesa.¢ and3a.¢ is interpreted using respectively right and left adjointgtavhere

7 is the lift of the projectionr : [Z, a: Type] — [Z] in Kind to Ctx. To be more precise, one may easily
show that for= | I' | © wellformed[Z,a | T | ©] = #*[Z | T" | ©] using the corresponding result for the
interpretation of PILL-, and so the cartesian lift af is a map:

7 [E,a|T|0] = [E|T]06]

and we define
[EIT[OFYa.¢] =][;[E a|T'[OF 4],

where] [is the right adjoint tar™.

Definable relations with domaisa and codomairr in contexts= | I' | © are interpreted as maps from
[E]T]6]intoU([o],[7]). The definable relation

E|T'|©,R: Rel(o,7) F R: Rel(o, 1)
is interpreted as the projection, and

[EIT|OF (z:0,y:7).¢:Rel(o,7)] =V [E|[,2: 0,y: 7| O F ¢]).

139

We now define the interpretation pft, s), for a definable relatiop and termg, s of the right types. First,
for= || ©F p: Rel(o, 7), we define

[ElT,z:0y:7[OF plz,y)] = ¥([E[T[OF p: Rel(o, 7)]).
Next, if= |T'F¢: 0,s: 7, then

[EIT Ok p(t s)] =
(m(EIT IO [EIT]OFsD),m)[E[T,z:0,y: 7| O F p(z,y)];

wherer, 7’ are the projections
m[E|IT O] = [E]T] " [E|T|6]—=[=]-]6]

One may think of the isomorphisth as a model-theoretic version of Lemma 2.27.

To interpret admissible relations, we will assume that we are given a subfuncol/, i.e., a contravariant
functorV with domain and codomain d$ and a natural transformatidn = U whose components are all
monomorphic. Thus, for al¥, 7, we can consideV (¢, 7) as a subobject d (o, 7). We think of V (o, 7)
as the subset of all admissible relations (since the isomorpfisitfows us to think ot/ (o, 7) as the set of
all definable relations).

We may interpret the logic containing admissible relations by interprétingdmRel (o, 7) asV ([o], [7])-
Admissible relations are interpreted as maps W@, 7). For this to make sense we need, of course, to
make sure that the admissible relations in the model (namely the relations that factor through the object of
admissible relations) in fact contain the relations that are admissible in the logic. We need to assume that of
the functorV'.

Definition 4.3. A pre-LAPL structure together with a subfunctor of U is said tomodel admissible
relations, if V' is closed under the rules of Figure 4 and Rule P.18 holds.

Lemma 4.4. In the interpretation given above of the subset of LAPL excluding the relational interpretation
of types in a pre-LAPL structure modeling admissible relations, if

E|lz:0|0OF¢:Prop
is a proposition in the logic, and
E|THt:0o
is a term, then
[E|T|OF¢t/z]: Prop] = ((m,[Z|T|OFt: o)), 7Y [Z|T,z: 0| O+ ¢: Prop],
wherer, ' are the projections

m: [2]T]6]—[Z|T] 7 [Z|T|0]—[Z]-|06]

Proof. By induction on the structure af. CasesR(s,s’) ands =, s’ are easy from definitions, simply
using the fact that
[E|T,2: 0F s[t/z]]Type =
[[E ‘ F,.’D: ok s: T]]Type e} <7T[[E|F;f]]7 [[E ‘ '+ t]]Type)
in the PILL model. The cases A ¢/, ¢ D ¢, etc., are just the fact that the fibrewise structur@®ebp is
preserved by reindexing, and the cases of the quantifiers is by the Beck-Chevalley condition. [

140

Lemma4.5.For[=|T'|©F p: Rel(o,7)]: [E|T| ©] — U(o,7)andt: o’ — o ands: 7’ —o 7,
[EIT|OF (z: 0 y: 7). p(tx,sy)]: [E|T 0] = U(c',7")=U(t,s)o[E|T | O F p: Rel(a,7)].

Proof. This follows from Lemma 4J4 and naturality & in o, 7: Assume for simplicity thal’ and© are
empty.

/ Geyr . .
Observe[= | z: o' Ftz: o]rype = G oL GFG o' G o' --G o = G(t), wheren is the unit
of the adjunctiont” 4 G. Now

[El-l-F@:oy:n)pltesy] =Y (E|lz:oy:7|—Fpltzsy])
which using Lemma 4]4 and the calculation above gives

Ut xs)([Ela:oy:7|—Fpla

) =
Ut,s)o Uz ([E |z oy | —F plz,y)]) =Ult,s) o [E] — |

—F p: Rel(o,7)].

Given a pre-LAPL structure modeling admissible relations, we may define a fibration

LinAdmRelations

|

AdmRelCtx J

which we think of as a model consisting of admissible relations. We first define the catedanRelCtx
by the pullback
AdmRelCtx — Ctx

_
ol

Kind x Kind —— Kind.

We write an objec® in AdmRelCtx over(=,=') as=, =’ | ©. The fibre ofLinAdmRelations over
an objecE,Z' | © is

objects triples (¢, o, 7) wheres andr are objects irLinType over= and=’' respectively and
is an admissible relation, i.e. a vertical map

¢: © — V(rn*o,n"1)
in Ctx. Herer, 7’ are first and second projection respectively ouEof =’'.
morphisms A morphism(¢, o, 7) — (v, 0’,7') is a pair of morphism
(t: 0 —o o' u: 7 — 1)
in LinType= andLinType=, respectively, such that
U(¢) < U(V(t u) o)),

where we have left the inclusion &f into U implicit.

141

Reindexing with respect to vertical maps© — ©’ in Ctx is done by composition. Reindexing objects of
LinAdmRelations with respect to lifts of maps iiKind x Kind is done by reindexing in the fibration
Ctx — Kind. Reindexing of morphisms ihinAdmRelations with respect to maps iKind x Kind

is done by reindexing each map IinType — Kind. This defines all reindexing since all maps in
AdmRelCtx can be written as a vertical map followed by a cartesian map.

Remark 4.6. In the internal language, objectsbfnAdmRelations are admissible relations
;21O F p: AdmRel(o, 7).

A vertical morphisms inLinAdmRelations from p: AdmRel(o, 7) to p': AdmRel(o’,7') is a pair of
morphismsf: ¢ — ¢/, g: 7 — 7/ in LinType such that in the internal language the formula

Ve:oy: 7 .p(x,y) Do (fx,gy)

holds (this follows directly from Lemnia 4.4).
There exist two canonical maps of fibrations:

LinAdmRelations LinType

do

- >
o1

AdmRelCtx Kind

On the base categodyy, 9 map an objecE, =’ | © to = and=' respectively. On the total category they
map (¢, 0, 7) to o and 7 respectively. In wordsgy, andd; map a relation to its domain and codomain
respectively.

Lemma 4.7. The fibrationLinAdmRelations — AdmRelCtx has products in the base, a generic
object and simple products with respect to projectionaidimRelCtx forgetting the generic object. The
mapsdy, 01 preserve this structure.

Proof. The categoryYAdmRelCtx has products:
(51,5/1 ‘ @1) X (EQ,EIQ ‘ @2) = El X EQ,Ell X E,Z ‘ W*((")l) X W/*(@Q)

(seel[12, Proposition 9.2.1]).

The fibration has a generic obje@t 2 | V(@,@), since a morphism into this frorE,=’ | © in
AdmRelCtx consists of pairs of types : = — Q, g : = — Q) and a morphism fron® to V (f, 9).

We now show that we have products with respect to projections forgetting the generic object. Given a
relation
Z,0;2, 8|6, R: AdmRel(a, 8) - p: AdmRel(T,7")

we can define
E,Z | © FV(a, 3, R: AdmRel(a, 3)). p: AdmRel(([] a: Type. 1), ([13: Type. 7))
as

V(e B, R: AdmRel(a, 3)). p = (t,u). Y, 3: Type. VR: AdmRel(a,). (ta)) p(uf3).

142

We will to show that this defines a right adjoint to weakening. Suppose we have another relation
Z,Z | O F w: AdmRel(o,d’).

We will use the usual adjunction hinType, where amafg,« | — - t: 0 — 7, With E F o: Type
corresponds to
E|l-Ft=Xz:0.Aa.(tz): 0 —[[a.T.

We need to prove thdt, «) preserves relations ifft, @) does, but it is clear that
E,;E B lw:oy:0 | ©,R: AdmRel(a, 8) | zwy & (t 2)p(uy)
iff
2,2 | z:0,y:0 | O] awyk Vo, B: Type. VR: AdmRel(a, 3). (t 2 a)p(t y (),
which establishes the bijective correspondence between maps
W —o p

w —o Y(a, B, R: Rel(e,). p

proving that we have in fact defined a product. O

Lemma 4.8. The fibrationLinAdmRelations — AdmRelCtx has a fibrewise SMCC-structure and
the two map$),, 0; are fibred strict symmetric monoidal functors.

Proof. We prove that the constructioms, — on definable relations given in Sectipn 2]2.2 define a fibre-
wise symmetric monoidal structure drinAdmRelations — AdmRelCtx. Notice that sincéd’ is

closed under the rules of Figyré 4, Proposifior] 2.3 tells us that the constructions on definable relations of
Sectior] 2.2. indeed do define operationddnAdmRelations — AdmRelCtx.

First we will prove that the two operators® —, p — — do in fact define functors chinAdmRelations.
That is, we need to check that if

(to;s0): po — py (t1,81): p1 — ph,

then
(to @ t1,50 ® 1)1 po ® p1 —o py @ P,

and, if(¢,s): p/ — p”, then
(to—,s0=): (p—op) —(p—p").
To see that defines a functor, suppos€py ® p1)y and f(py — p| — R)g. We need to show that

R(letz ® 2/ be(tg @ t1)(z)in f 22 letz ® 2’ be(sp ® s1)(y) ing 2 2').
Recall that{ty) ® t1)r = letw ® w’ bex in ty w ® t; W’ in PILL. Notice then that
letz ® 2 be(to @ t1)(y)in f 22 =letz ® 2" beyin f (to(2)) (t1(2)),

and
(A2, 2" f (t0(2)) (t1(2)))(po —o p1 —o R)(Xz, 2. g (s0(2)) (s1(')).
The result now follows from the assumption thdpy ® p1)y.

143

To prove thaip — — is a functor, supposgf, g): p — p’ andp(x,y). Then clearly” (¢t o f(x), s o g(y)),
as required.

We need to show that — — is right adjoint to— ® p, and that the adjoint components are natura.in
Since we are given a similar adjunctionliin Type, all we need to show is that
(t,s): p—o(p' —p")
iff
(£,8): p@p' —o p",
wheret, § are the maps correspondingtta in the adjunction ofLinType. Suppose first that
(t,8): p—o (p' — p") andz(p @ p')y.
The definition of the latter says exactly that, for@lls): p — (o' — p"), we must have” (t =, 5 1).

Now, suppose?,3): p @ p' — p” andapy A 2/p'y'. By Lemma2.2Bp @ p/(z @ 2',y @ y') and so
'tz @), 5y ®7y")). Hence, sincé(z ® 2') = t x 2’ (likewise fors), we are done.

We now proceed to prove that the functersz —, p — — define a fibred SMCC structure on
LinAdmRelations — AdmRelCtx.

The unit in a fibre islr.;: AdmRel(I, I) where! is the unit in the appropriate fibres 8inType. The
maps giving the isomorphisms

He(=eE=)=(-)e (=) (=),
(Hel=(-), HeE=E=e(-)
are simply pairs of the corresponding maps in the fibrewise SMC-structilrim@ype. These maps satisfy

the coherence properties simply because the mapiiil'ype do the same. One has to check that the maps
defined by pairing maps in fact define mapdim AdmRelations, i.e., that they preserve relations.

One direction of the isomorphism® I = ¢ is given by the map\°z: 0.z ® . To see that this preserves
relations, supposepy. SincexIge*, (z @ x)(p @ Ige)(y @ x) by Lemmd 2.20. For the other direction,
considerf,: o0 —o I —o o given asf = \°z: c)\°2’: I.let x bez’inz. Thenthe mapg ® I — o is
simply f,, and we have proved earlier that it now suffices to prove fhatreserves relations. So suppose
xpy A x'Igery’. By definition ofz’ Ir.y’ we can conclude that(f, = 2/, f- vy y/).

The isomorphisnip ® p') ® p” = p @ (p' ® p”) is obtained using the adjunction as follows
(p®p)®p" —p”

p_op/_opll_op///

p —o (p/ ®,0”) 5 p///
p@(p@p") —p"
and it is easily seen that this isomorphism is given by pairs of the usual magahype. Likewise the
isomorphisnp ® p’ = p’ ® p comes from

p&p —op"
pr—op—p
By construction, the functor®,, 0, are fibred strict symmetric monoidal functors. O

144

Lemma4.9. The fibrationLinAdmRelations — AdmRelCtx has a fibred comonad structure induced
by the functop —!p. The map$),, 9, map this comonad to the fibred comoriaxh the nose.

Proof. We need to check thatdefines a functor, i.e., that {ff,g): p — p/, then(!f,1g): Ip —olp’. Itis
easy to see that

Vo, y.1p(lz, ly) D' (1) (1), (9)(1y))
since(!f)(1z) =!(f(z)). Now the result follows from Rule 2.18.

The comonad maps are given(eye): !|p — pand(d,d): |p —!lp. These preserve relations by Lenma 2.32,
and the commutative diagrams of a fibred comonad are preserved since they hold for the fibred comonad on
LinType — Kind. O

Lemma 4.10. The fibrationLinAdmRelations — AdmRelCtx has natural transformations
d: 1(=) (=)@ (-),e: /(=) = Ing
making it a fibred linear fibration. The mapg, 9, preserve this structure on the nose.

Proof. The mapsi, e are given by(d, d) and(e, e), which preserve relations by Lemina 2.33. The necessary
diagrams commute by the same diagrams for the fibred comonhéidhype — Kind, and the functors
0, 01 preserve the structure on the nose by construction. O

If we defineAdmRelations to be the category of finite products of coalgebras [17], we obtain a PILL-
model

LinAdmRelations 1 -~ AdmRelations
AdmRelCtx

and two maps of PILL-model§,,d;. This model need not be a Plkkmodel, since for pre-LAPL-
structuresy” does not necessarily preserve relations.

Definition 4.11. An LAPL-structure is a pre-LAPL-structure modeling admissible relations, together with
a map of PILL-models/ from

LinType | "~ Type

~

Kind

to

LinAdmRelations 1 AdmRelations
AdmRelCtx

such that when restricting to the fibred linear categoriesygether withdy, 0; is a reflexive graph, i.e.,
800J2810J:id.

145

In the following, we will often confuse with the map of fibred linear categories frdainType — Kind
to LinAdmRelations — AdmRelCtx.

We need to show how to interpret the rule
at,...,an Fo(d): Type E|T|OF pr: AdmRel(r, 7)), ..., pn: AdmRel(7,, 7))
Z|T|OFolp: AdmRel(a(7), o (7))

in LAPL-structures.

SinceJ preserves products in the base and generic objéd}g,- o(&)]) is arelation fromy (@) too(5) in
context[d; § | R: AdmRel(a, §)]. It thus makes sense to define

[@ 3| — | R: AdmRel(@, 5) - o[R]]

to be J([@ | o(d)]), so all we need to do now is to reindex this object. We reindex it to the Kgit
context using
- [E] — 92,

thus obtaining _ .
[E]| - | R: AdmRel(7,7) o[R]: Rel(a(7), o0 (7))]-

For= |T' | © F p: AdmRel(7,7"), we define

[E|T | ©F olf]: AdmRel(a(7),0(7))] =
[| — | R: AdmRel(7,7) F o[R]] o [E| T | © F : AdmRel(7, 7)].

where by[Z | T' | © F 5: AdmRel(7, 7/)] we mean the pairing
(EIT|0Fpm],....,[EIT[OF pa]).

Remark 4.12. To model a version of Linear Abadi & Plotkin Logic for unary or other arities of parametric-
ity as in Remark 2J2, the functdr should, have corresponding arity and the domain and codomain of the
bijection ¥ should be changed accordingly. Furthermore instead of considering the fibration of binary rela-
tionsLinAdmRelations — AdmRelCtx we should consider a fibration of relations of the appropriate
arity.

4.1 Soundness

In this section we prove that the interpretation of LAPL in LAPL-structures is sound. First, we present a
series of reindexing lemmas.

Lemma4.13.1f = | T',z: 0 | © I ¢: Prop is a proposition in the logic, and
E|TFt:0o
is a term, then
[E|T|OF¢[t/x]: Prop] = ((m,[Z| T |©Ft: o)),) [Z|T,z: 0| OF ¢: Prop]
wherer, 7’ are the projections

m: [Z2]T 0] —[Z|T] 7 [2|T|0]—[Z]-|06]

146

Lemma4.14.1f Z | T,z | © F p: Rel(7, 7’) is a definable relation in the logic, and
E|ITkHt:o
is aterm, then

[E|T,z|OFplo{(m[Z|T|OFt:o]),n")=[Z|T|0OF plt/z]].

Notice that Lemma 4.13 differs from Lemrpa}4.4 since the latter only concerns the interpretation of the part
of the logic not including the relational interpretation of types.

Proof. The two lemmas above are proved simultaneously. We only include the proof of the former, for
which we only need to extend the proof of Lemmal 4.4 to the cag&©fu). But this follows easily by
induction using the latter lemma. O

Lemma4.15.1f Z | T' | © F ¢: Prop then
[E|T,2:0|©F ¢: Prop] =7*[E|T | © F ¢: Prop],
wherer is the obvious projection. Likewisedf| I' | © - p: Rel(o, 7) then
[EIT,z:0|©Fp:Rel(o,7)]=[E || OF p: Rel(o,7)] o,
wherer is the obvious projection.
Proof. The lemma can be proved in a way similar to Lemnas|4.13 andl 4.15. O
Lemma4.16.1f =+ o: Type then
[2| Tlo/a] | ©lo/a] - ¢lo/al] = (idgz, [0]) [E,a: Type | T | © F 4],

and .
[E|T[o/a] | Blo/al - plo/a]] = (idig), [o]) [E,a: Type |T'[O F g,

where the vertical line ifid =y, [o]) denotes the cartesian lift.

Proof. We know that
[E | Tlo/a] | ©lo/a]] = (idig), [0])*[E, : Type | T | O]

since the corresponding statement holds in the PILL-model and the fui¢t@ry commute with reindex-

ing.

Now one proceeds by simultaneous inductiongoand p. Forp = R and forp = 7[p] one uses tha¥
commutes with reindexing. Far = v =, u’ one uses the Beck-Chevalley condition, as is also done for the
cases of andv. The remaining cases either follow by induction or from the fact that the fibrewise structure
in Prop (D, A, etc.) is preserved by reindexing.

O

147

Lemma 4.17.1f = | I' | © F ¢ then

[E|T|OF ¢] =7%

za—z[EalT[OF]
Likewise, if IfZ | T' | © - p then

[E|T|OF p] =7z [E,a|T|OF p].

Proof. By simultaneous induction. O
Lemma4.18.1f Z | T' | © p: Rel(r, 7’) is a definable relation and
Z|T|6,R: Rel(r,7) - ¢,

then
[EIT|©F ¢lp/RIl = (idizrjer, [P))*[E] T | ©, R: Rel(r,7') I ¢].
Likewise, If= | ' | © F p: Rel(r, 7’) is a definable relation and

E|T|0O,R: Rel(r,7) F p': Rel(a,0"),

then
[E]1T]6,R: Rel(r,7') - p'To ((idizgriep, [E 1T |©Fp]) =[E]T|©F pp/R]].

The same holds for substitution of admissible relations.

Proof. By simultaneous induction o andp’, using naturality of’, Beck-Chevalley and the fact that the
fibrewise structure ifProp is preserved by reindexing. O

Lemma4.19.1f = | T' | © F ¢ is a proposition then
[E]T|6,R:Rel(o,7)F¢] =a*[E|T|OF 4],

wherer is the obvious projection. Likewisedf| I' | © F p: Rel(¢’, 7’) is a definable relation then
[E|T|©,R:Rel(o,7) Fp] =[E|T|OFp]om,

wherer is the obvious projection. The same holds for substitution of admissible relations.

Proof. Again by simultaneous induction. O

Theorem 4.20 (Soundness)The interpretation given above of LAPL in LAPL-structures is sound with
respect to the Rules and Axiomns|P.9-2.26.

Proof. Rules[2.8-2.T6 hold since the interpretation of quantification is given by adjoints to weakening,
considering Lemmds 4.5, 4117, 4.19 above.

Ruled 2.4-2]7 hold since substitution corresponds to reindexing as in the lemmas above.
Rule[2.8 is proved exactly as inl [5].

Rule[2.1T holds since externally equal maps are interpreted equally in the model, by soundness of the
interpretation of PILL-. Clearly internal equality is an equivalence relation.

Rule[2.18 is required to hold in Definitipn 4.3.

148

Ruleq 2.1§-2.24 all hold sincé preserves SMCC-structure, generic objects, simple products and
To prove soundness of Rule 2]25, it suffices to prove soundness of

El N, z:0y:7|O|TE((z: 0,y: 7). 0)(x,y) 3T &,

but
[ET,2:0y:7|OF ((z: 0,y: 7). ¢)(z,y)| =V([E| ' |OF (z: 0,y: 7).9]) =
VoV N[Z|T,2: 0,y: 7‘|®|—¢]]):[[E|F,:c:a,y:7'|@l—d>]].

To prove Axiom, notice thaf is required to be a functor. This means that it mpg: I —
[l (¢ — a) — «a] to a morphism from/g,; to the relational interpretation dfl . (&« — a) — «.
By the requirement, that/, dy, 01) is a reflexive graph, this map must bg], [Y]). SincexIg.* and
[Y](*) =Y wegetY ([[a. (0« —) — a)Y. 0

4.2 Completeness

Theorem 4.21 (Completeness)There exists an LAPL-structure with the property that any formula of LAPL
over pure PILLy holds in this model iff it is provable in LAPL.

Proof. We construct the LAPL-structure syntactically, giving the categories in question the same names as
in the diagrams of the definitions of pre-LAPL- and LAPL-structures.

e The categonKind has as objects sequences of the form
ay: Type,...,an: Type,

where we identify these contexts up to renaming (in other words, we may think of objects as natural
numbers). A morphism fror& into

ay: Type, ..., ay: Type
is a sequence of typésy, ..., 0,) such that alb; are well-formed in contexE.

e Objectsinthe fibre ocLinType over= are well-formed types in this context. Morphisms in this fibre
from o to 7 are equivalence classes of tertruch that | —; z: o - ¢: 7, where we identify terms
up to external equality. Equivalently, we may think of morphisms as t&ms-; — - ¢t: 0 — 7.
Composition is by substitution, and reindexing with respect to morphisiKdiira is by substitution.

e Objects in the fibre o'ype over= are well-formed sequences of types in this context. Morphism in
this fibre fromoy, ..., 0, to 7, ..., 7, are equivalence classes of sequences of tétms.,, such
that for each the term

ElZ: -t
is well-formed, where the sequendgs and(t;) are identified if, for each, ¢; is externally equal to
t;. Reindexing with respect to morphismskind is by substitution.

e The functorLinType — Type maps a morphism-;x: o - t: Ttox: o;— + t: 7. The functor
going the other way maps a sequence of objéetsto ®;!0;. It maps a morphisnit;) from (o;) to

(Ti) to

| —y: ®lo; Flet @; 2} ®;l0; beyinlet!# bed in ®;!t;.

For further details of the term model for PILL séé [2].

149

e The categoryCtx has as objects in the fibre overwell-formed contexts of LAPLE | ' | ©. A
vertical morphism fronE | T" | © to

Z| I | Ri: Rel(o1,m1),..., Ry: Rel(op, 7),51: AdmRel(o), 1), ..., Sm: AdmRel(a),,,7.)

is a triple, consisting of a morphise | I' — Z | I in the sense of morphisms Ry pe, a sequence
of definable relationgp1, ..., p,), and a sequence of admissible relati¢as, . .., w,,), such that
E|T|OF pi:Rel(o;,) andZ | T' | © F w;: AdmRel(o}, 7/). We identify two such morphisms
represented by the same type morphism and the definable relgtions. , p,,) and (o), ..., 0.,)
and admissible relationsu, . ..,wy) and(wi,...,w!,), respectively, if, for each, j, the formulas

pi = p; andw; = w;~ are provable in the logic, where, as usyal= p/ is short for
Va: 03, Y: Ti- pl(xh y’b) 3 p’IL(‘rZ? yl)’
and likewise forw; = w;. The inclusion functor is the obvious one. Reindexing is by substitution.

e The fibre of the categorProp over a contexE | I' | © has as objects formulas in that context,
where we identify two formulas if they are provably equivalent. These are ordered by the implication
in the logic. Reindexing is done by substitution, that is, reindexing with respect to lifts of morphisms
from Kind is done by substitution in type-variables, whereas reindexing with respect to vertical maps
in Ctx is by substitution in term variables and relation variables.

An easy fibred version of the completeness proofin [2] showsKHaid, Type, LinType together with
the functors described above form a PiLimodel. The fibratiorCtx — Kind clearly has fibred products
formed by appending contexts, and the inclusion funétisrclearly faithful and product-preserving.

We need to prove thaProp — Ctx — Kind is an indexed first-order logic fibration with products

and coproducts with respect to simple projectionKimd. The fibrewise bicartesian structure is given by

V, A, D, L, T. Fibred simple products and coproducts are given by quantifying over relations and variables,
simple products in the composite fibration is given by quantifying over types. We can in fact prove that the
composite fibration has all indexed products and coproducts (in particular, that it has equality).
Suppose(7,) represents a morphism frof | #: & | Rto £ | §: 7 | S (the vectorsR, S consist of

both definable and admissible relations, and the vegtsra concatenation of the corresponding vectors

of admissible and definable relations from the definition above). We can then define the product functor in
Prop as:

We remark that the equality we will actually be using in the model is the obvious

E|Tz:0|O0F¢)— (E|z:0y:0|OFpAT=57)

The functorU of item[2 is defined as

U(o,7) = R: Rel(o, 1)

150

and
Ult:0c —oc' ,u: 7 —o7)=Z| R:Rel(c!,7') (z: o,y: 7). R(tz, uy).

The required isomorphisn is just the isomorphism given by Lemina 2.27. The funétds defined as
V(o,7) = R: AdmRel(o, 7)
and
V(t:o —ooc',u: 7 —7)=Z| R: AdmRel(o’,7') F (z: 0,y: 7). R(tx, uy).

We have defined a pre-LAPL-structure modeling admissible relations. If we conatdigiRelCtx as in
the definition of LAPL-structure, we obtain:

=, — =,

Objects @& 0| T | R: AdmRel(3(&), 7(0)), R': Rel(@(&), 7 (3)).

Morphisms A morphism from

=, — =,

& (| T | R: AdmRel(3(a), 7(0)), R : Rel(@ (), 7 (3)

~—

to
&, G| T | §: AdmRel(@(a),7(3)),5": Rel(@ (&), R (3))

consists of two morphism iKind:

and

V-,
a morphism froma, 3 | T to &, 0 | T[g,v/d B’] in LinType, 3, and a sequence of
admissible relationg and a sequence of definable relatighsuch that, for all i},

-, -,

a3 | T'| R: AdmRel(3(d), 7()ZR el(&'(@), 7(8)) - pi: AdmRel(w;(j1), ri(7))
& 3 |T"| R: AdmRel(G(d),7(5)), B : Rel(5'(d),7(5)) & pl;: Rel(w!(f1), & (7)).

As in Ctx these morphisms are identified up to provable equivalence of the definable rela-
tions.

=, -,

The fibre ofLinAdmRelations over an objecﬁ,§| I | R: AdmRel(G(@),7(5)), R': Rel(&" (&), 7 (7))
in AdmRelCtx becomes:

Objects Equivalence classes of definable relations

@ 3 |T | R: AdmRel(3(@),7(5)), R': Rel(& (&), 7 (5)) F p: AdmRel(c(&), 7(5)).

Morphisms A morphism fromp: AdmRel(c(&), 7(5)) to p': AdmRel(c’(&), 7(3)) is a pair of mor-
phismst : ¢ — ¢’, u : 7 — 7/ such that it is provable in the logic that:

Va: o.Vy: 7.p(z,y) D p(tx, uy)

151

We will construct the map’ as a map of fibred linear categories fr&simType — Kind to
LinAdmRelations — AdmRelCtx
as follows. On the base categoriéss defined on objects as
J(ag,...,an) =a1,...,an; 01, .., 0n | R1: AdmRel(aq, 51), ..., Ry: AdmRel(a,, G,).
We defineJ on the objects of the total categories (and on the morphisms of the base category) as
J(@F o: Type) = @, 3 | R: AdmRel(@, §) - o[R]: AdmRel(o(&), o(3)).

To defineJ on morphisms of the fibre categories, supp@se—; — + t: 0 — 7. We defineJ(t) = (¢,t).
To see thatt, t) in fact is a map fronw|R] to 7[R], notice that the Logical Relations Lem 3.3) tells us
that

Aa.t(J]a.0 — T)Ad. ¢,

which means exactly thét, t): o[R] — 7[R].

Ruleq 2.1R-2.24 tell us thatis a strict fibored symmetric monoidal closed functor preserving product$ and
on the nose. Since theands of the fibred comonad ohinAdmRelations — AdmRelCtx are simply
(e,€) and(d, 0) itis clear that/ preserve these as well.

Now, by definition, a formula holds in this LAPL-structure iff it is provable LAPL. O

5 Parametric LAPL-structures

Definition 5.1. A parametric LAPL-structure is an LAPL-structure with very strong equality in which
identity extension holds in the internal logic.

Recall that very strong equality implies extensionality. We ask that identity extension and extensionality
hold because this means that all the results from Section 3 apply to the internal logic of the LAPL-structure.
Strong equality will be used to conclude that properties proved in the internal logic also hold externally,
as exemplified in the following subsection, where we show how to solve recursive domain equations in
parametric LAPL-structures.

5.1 Solving recursive domain equations in parametric LAPL-structures

Definition 5.2. An endofunctorl” : B°®? x B — B, for B an SMCC, is calledtrong if there exists a natural
transformatiort,, ; o+ . :!(¢7)®!((7')7) —o T(o’, 7')T(>7) preserving identity and composition:

S e I g B e B B RS AP T
k@ me 1t Lt

com
) P

07 7_)T(a ,T) T(O‘l, T/)T(a,r) ® T(O'//, T//)T(o",'r/

T(O’”, 7_//)T(cm—)'

The natural transformatioh is called thestrength of the functorZ”. (Note that we here used exponential
notationXY for the closed structure iA.)

152

One should note thatin the definition above represents the morphism part of the fuficioithe sense that
it makes the diagram

I ﬂO!(UU)R((T)7) 9)

—— [Zep——
T(f7g) o '

T(UI, 7_/)T(U,T)

commute, for any pair of morphisnys ¢’ — o, g: 7 —o 7’. This follows from the commutative diagram

lo?@17 T(o,7)"(o7)

\ L!(of)@(gf) LT(f,g)T("’”

lo® (1) L (o, 7)),
In fact, (9) shows that we can define the actioff'afn morphisms from the strength.

Definition 5.3. If E — B is a fibred SMCC, then a fibred functor

EP xpE —©
B

is calledstrong fibred if there exists a fibred natural transformatiofiom

E

(D)@l o T(—, =)

satisfying commutativity of the two diagrams of Definition|5.2 in each fibre. The natural transformégion
called thestrength of the functorT'.

The fibred strengthis a natural transformation between two fibred functors

E X E?P xg EP xg E ————F
\B

For example, in the case of a Pl.kmodel, the interpretation of any inductively constructed typg +
o(a, B) with a occuring only negatively angd only positively induces a strong fibred functor, since as
described in Sectidn 3.8, for each such type we can define a term

—Ft: [T, 8,d/, 8. (o) —) = (B — ') = o(e,) — o(c/, 3
The object part of the functar is then defined as

F(r, ") = [o(r,7)]

153

and the strengthk of the functor is defined as
(82)rrww = [EFtT T wu'].
The morphism part of the functor is induced by the strength.
In fact, an a sense these are the only fibred strong functors onPddels.
Lemma 5.4. Suppose

LinType®® Xking LinType LinType

\/

Kind
is a fibred strong functor on a PILkt-model. Then there exists a types - o and a term
—kt: [[a, 8,08 (¢ —a) = (8 —) — o(a,) — o(a,)
in the internal language dl.inType — Kind inducingF'.

Proof. Let T': LinType(denote the generic object of the fibratibinType — Kind. For each type
7: LinTypez there exists a mag — (2, which we will denoter such that*7T" = 7.

Definec = F ([, 5+ «], [o, 8+ 5]). Thenfor any pair of type&r, ') € (LinType® xkinaLinType)=
F(r,7') = F((#,7)*([a. B F o], [, B B])) = (7, 7')*c

sinceF is fibred. In the internal languaget o(r, ') is interpreted a$#, 7/)*o and so indeed induces
the action ofF' on objects.

Let s denote the strength of the fibred funcior Consider the component
(s04)[a,8,0" ol [o8.0"], [0 8.0/ B-al [B! B3]
and denote it by’. In the internal language, is a term, and we can consider the polymorphic term
—Ft=Aa. AB. A NG A T, 8,0, 8. (6 —a) = (8— ') — (o(a,) —0 o(, 3)).
We just need to show that the strength induced by the tesnn fact s, but
[Ertrr ww]=(#7,0,0) %t = (s2)rrww
sinces is preserved by reindexing. O

Theorem 5.5. In a parametric LAPL-structure, for any strong fibred funcfotthere exists a closed type
such thatF'(r,7) = 7 in LinType, for 1 the terminal object oKind.

Proof. Since by Lemma 5]4 we can expre8sn the internal language, we can copy the proofs from Sec-
tions[3.10] 3.1[1[, 3.12. The functorial interpretation of types of Se€tign 3.8 should be substituted by the
polymorphic term provided by Lemnja $.4. Since internal equality implies external equality, we get the
result in the “real world”. O

Remark 5.6. Since the functo¥’ is fibred, we may reindex to get a family of object$!:7)=ckina such
that for eaclE, |27 satisfiesF'(!L7, 1£7) !X 7 in the fibre, wheréz is the unique mafE — 1 in Kind.

Remark 5.7. Parametric LAPL-structures do not in general model recursive types, that is, we do not have
for all typeso: LinTypeg, a typer such that(7) = 7, since there may not be a functorial action corre-
sponding ta.

154

5.2 Parametrized recursive type equations

An inductively constructed types, 51, . . ., an, B, F o with 2n free type variables, in which the variables
& occur only negatively and the variablgonly positively induces a fibred functor

F

(LinType? xking LinType)” LinType

T

Kind.

On the other hand Definitign §.3 can easily be extended to define what it means that a fuastabove
is strong fibred, and Lemnja 5.4 extends to show that such strong fibred functors correspond t¢oatypes
above and closed polymorphic terms of type

[1a,6,d, 8. (o) — a1) = (B1 — B}) = ... = (o —o an) = (B —o B,) — o(d, f) — (&, F)

in the internal language. The following theorem is then the corresponding extension of Thegrem 5.5 obtained
using the analysis of Sectipn 3]13.

Theorem 5.8. In a parametric LAPL-structure, for any strong fibred functor

F

(LinType® xking LinType)"t! LinType

there exists a strong fibred functor

(LinType®? xking LinType)”

and a fibred natural isomorphism

F(X1,Y1,. .., X, Yo, FIXF (Y1, X1, ..., Y, X)), FIXF (X1, Y1, ..., X0, Yy))
~ FXF(X1,Yi,...,XnY,).

Moreover, ifG is a strong fibred functor

(LinType®® xkinqg LinType)™ (LinType®? xking LinType)”

\/

Kind.

then FiXF o (G x id)) = FixF o G.

155

6 Concrete Models

In this section we describe a parametric LAPL structure based on admissible pers over a universal domain
as advocated by Plotkin [22]. Pers are known to model the typedlculus, and admissible pers further
facilitates a fixed point operator.

As noted in Sectiofi]4, to model PILL one has to provide a fibred symmetric monoidal adjunction. We do
this by constructing a regular symmetric monoidal adjunction and then define the fibration pointwise.

The standard example is a lifting functor and a forgetful functor. This is also the case here albeit slightly
obfuscated, as lifting is coded in the language of the universal domain. This is an adaptétion of [13].

Finally, to be able to model polymorphism, the entire construction is done fibred. Parametricity is then
ensured by a yet-to-be-described completion process, but first we present the “clean” version:

Let D be a reflexive cpo, i.e. a pointedchain-complete partial order such that we have
®: D — [D— D] and V: [D— D] — D,

both Scott-continuous and satisfying
Q(Dmiiiduyﬁp]

where[D — D] denotes the cpo of continuous functions frdinto D. We assume, without loss of
generality, that botld and ¥ are strict. It is standard that there exists strict continuous functions

Y:DxD—D 7D —D and 7D — D
<7>))

such that for altd, d’ € D:
md,d)y=d and 7'{dd)=d.

We use to denoteV (id|p_. p)). Notice that® (1) = id|p_. p).

Definition 6.1. An admissible partial equivalence relation dn is a partial equivalence relatiaR on D
satisfying

strict LpR1p,

w-chain complete For (x,,)new and(y,)new w-chains inD:

(Vn € w.zy, Ryn) = |_| Ty R |_| Yns

new new

Definition 6.2. For R andS pers onD, define the set odquivariant functions from R to S as
F(R,S)={fe[D—Dlx Ry = f(x)S f(y)}
and the set o$trict equivariant functions from Rto S as
F(R,S), ={feFR,)|f(Lp)=Lp}.
Note F(R,S), C F(R,S).
Definition 6.3. For R andS pers onD, define onF (R, S) or F(R, S), the equivalence relationp s by

f~rsgeVde D.dRd= f(d)S g(d)

156

We write PER /(D) for the category of partial equivalence relations akerRecall that it has partial equiva-
lence relations oveb as objects and that a morphisifj: R — S'is an equivalence classi(R, S)/ ~r s.
Elements of f] are calledealizersfor [f].

Definition 6.4. We define the categoma P (D) of admissible partial equivalence relations ovemas the
full subcategory oPER(D) on the admissible pers.

Lemma 6.5. There is a faithful functo€'lasses: AP(D) — Set mapping an admissible per to the set of
equivalence classes and an equivalence class of realizers to the map of equivalence classes they induce.

Proof. This is well-defined since to realizers are equivalent precisely when they define the same map of
equivalence classes. O

Theorem 6.6. The categon AP (D) is a sub-cartesian closed categoryBER(D).

Proof. We recall the constructions. It is straightforward to verify that the resulting pers are admissible. The
terminal objectl is the admissible per defined by

dld &d=1p=d.

The binary product oR andS is
(dy,d2) R x S (d},d)

)
diRd, A dySd

This is an exhaustive description, understood that only pairs are related in the product. The exponential of
R ands, S%, is given by
dSftd < ®(d) ~ps ®(d).

O

Definition 6.7. The categoryAP (D), of admissible pers and strict continuous functions is the full-on-
objects subcategory &f P (D) with morphisms f]: R — S equivalence classesi(R, S) |/ ~g.s.

Note that inAP (D), morphisms are required to havstaict continuous realizer.

Theorem 6.8. AP(D) is a cartesian sub-category &P (D).

Proof. Obvious using that, 7/, and(-, -) are strict. O

Theorem 6.9. The categon AP (D), is symmetric monoidal closed.

Proof. The tensor of? andsS is

<d17d2> R®S< llvd/2>
0
(d1,ds) R x S (d, db)
V
diRdy N daSdy A dllell VAN d/QSd/Q VAN
<(d1R¢D V deS1lp) A (@d{RLlp V d’QSLD)>

157

This complicated looking definition is most easily understood through the fu@étsises: The equivalence
classes of the tensor product are those of the product with the modification that all pairs where one of the
coordinates are related tbp has been gathered in one big equivalence class. It can thus be seen as a
quotient of the product.

The unit of the tensof is defined by
did & d=d =1pvd=d =(,1p).

This definition is not taken out of the blué.is actually in the image of a lifting functor to be defined later.
Notice the “if construct” ory, which will be available on all lifted relations:

dld = d=1p V d:<1,J_D>
= 7w(d)=1lp VvV w(d) =1
= ®(n(d))=Lp-p VvV @(r(d)=1idp_p

Thus ford I d, ®(w(d))(d’) can be read as “ifl # Lp thend’ else Lp”. We will use this to construct
realizers.

The exponential o andS, R — S, is given by
dR—-Sd < dS%d A (d"R1lp=®d)(d")S LpSad)d"))
The proof consist of a series of straightforward verifications. O

For later use we shall mention how regular subobjects look in this category. We useR to express that
A'is aregular subobject a@t, if R is an admissible per.

Lemma 6.10.
A — R < Classes(A) C Classes(R) N A € obj(AP(D),)

Proof. In PER(D) there is a standard way of constructing an equalizer out of a subset of the equivalence
classes. This also works here, and the image of an equalizer is easily seen to be admissible. Thus all regular
subobjects have a representative, which is tracked by the identiBy. on O

We also need to know the following fact about admissible pers

Lemma 6.11. If [is an arbitrary set, and for all € I, R; is an admissible per oveP then

N

iel
is an admissible per oveb.

Proof. We intersect relations, which may be seen as sets of pairs. Thus we have the following equation

dﬂ&d@WEMMM
el

which makes the statement obvious, adalbre admissible. O

158

6.1 The connection to CUPERS

In [1] Amadio and Curien show how complete uniform pers over a universal domain allows on to solve
domain equations on the per level. As we claim, the same is true for admissible pers, a comparison is
natural.

There are, however, some technical issues which makes this a little difficult.
Cupers are defined over a universal solution to the domain equation

D =T(D) = (D — D)+ (D x D)

In the category” PO™ of pointed directed complete partial orders and injection-projection pairs. Itis known
that D is then the colimit of the,°P-chain

2
L:O! 0 T! T20T!

Denoting7™0 by D,, we have by the cocone property fo eacthe diagram:

Jn
P
Dy <D
in

Definingp,, = i, o j,: D — D we can define a cuper dn as a relatiorR C D x D such that

o If AC RandA Cg4, D x Dthen| |A € R.
e If d R e then for alln, p,(d) R py(e).

So apart from using directed-complete rather than chain-complete cpos and living on a universal domain
solving a slightly different domain equation, cupers live on a domain with a known structure, and this
structure appears in their definition.

Thus the only reasonable way to compare the two notions is to consider a suitably adapted notion of admis-
sible pers over the above describled We then find, that the cupers form a proper subset of the admissible
pers.

It is noticeable, that cupers facilitate an ordering of the equivalence classes and thus allows one to solve
recursive domain equations, while admissible pers achieve this by modeling polymaspaiculus and
calling upon parametrici@(Hence the two approaches are somewhat different.

6.2 Lifting

We now define a notion of lifting, to establish an adjunction betw&&1 D) andAP (D), . Our notion of
lifting is essentially the one in [13], specialized to the partial combinatory algebra definBddyand v.

Let P D denote the power set @. Define the mad.{: PD — PD by
Ly(A) = {d € DIr(2(d)(1)) =1/ 7'(®(d)(1)) € A},
for A C D. And then the mag.,o: AP(D)y — (AP(D))o by

Classes(Lo(R)) = {Ly(K)|K € D/R} U{{Lp}}.

2And calling upon parametricity is, as far as we know, only possible after the deployment of a parametric completion process.

159

Notice the “if construct” available on a liftet relation: B is an admissible per then
dLy(R)d = d=1p VvV #(®(d)()) =1
= m(®(d)()=1Lp VvV 7w(®(d)(r)) =1
= O(m(®(d)(1) =Lp-p VvV S@(®(d)()))=idp_p
Thus® (7 (®(d)(1)))(d’) can be read ‘it ¢ 1 (g thend’ elselp”, where L of course representsg
for any admissible pes.

We also have a “lift” and an “unlift” Ifd € A then¥(\d' € D.(1,d)) € Lo(A) and ifd € Lo(A) then
7/ (®(d)(1)) € A. This is convenient for constructing realizers.

Similarly define, for admissible pef? andS, the mapL} : F(R,S) — F(Lo(R), Lo(S)). by
Ly(f) = Ad € D.2(m(2(d)(1))) (¥ (A" € D.(1, f(7'(2(d) (1))))))

which reads “ifd ¢ L1, () then lift(f(unlift d)) else L p".
And then the magd.;: (AP(D)); — (AP(D)); by

Ly (f) = {Lll(tf)]ﬁLo(R),LO(S)

for f: R — S. A tedious, but straightforward, verification shows that the definitions{pfL,, L} and
L, all make sense, and that= (Lo, L1): AP(D) — AP(D), defines a functor. There is an obvious
forgetful functorU: AP(D); — AP(D).

Theorem 6.12. There is a monoidal adjunctioh 4 U.

Proof. One first shows thak is left adjoint toU in the ordinary sense. The unit of the adjunction is given
by (nr: R — UL(R))reaprD,, all tracked by

ty = Ad € D.U(Ad' € D.(,d)).

Forf: R — U(S)in AP(D),, the required uniqué: L(R) — Sin AP(D),, suchthat/(h) o nr = f,
is given by the realizer

th = Ad € D.2(m(®(d)(1)))(tf (' (2(d)(1)))),
wheret is a realizer forf.
To show that the adjunction is monoidal it suffices by to show that the left adjoisia strong symmetric
monoidal functor (seé [17] for an explanation). To this end, we must exhibit an isomorphjisth — L(1)

and a natural isomorphismp s: L(R)®L(S) — L(Rx.S). This is mostly straightforward; we just include
the definition ofmp s: L(R) ® L(S) — L(R x S): itis the morphism tracked by the realizer

which reads

160

“if m(d) # L then
if 7'(d) # L then
lift of (unlift(w(d)), unlift(7’(d)))
elselp
elselp”.

Following a similar chain of thought, the inverse is tracked by

Ad e D.
P (m(2(d)(1)))(
| (T(Ad" € D.(, (7" (2(d)(1)))), ¥(Ad' € D.(1, 7' (7' (2(d)(1))))))
which reads
“if d# 1 then
(lift of 7 (unlift(d)), lift of 7/(unlift(d)))
else L p".

6.3 Going fibred

In order to model polymorphism, we do a fibred version of the adjunction presented in the last subsection,
thus arriving at the PILL-model

L
UFam(AP(D),) 1 UFam(AP(D)) (10)
U
q p
Set.

Define the contravariant functét : Set®® — Cat by mapping sef to the category’(I) with

objects:(R;);c; Where for alli € I, R; is an object ofAP (D).

morphisms:(a;)icr: (Ri)icr — (Si)icr, Where, for alli € I, o; € AP(D)(R;,S;) and3a € [D —
D\.Viel. a; = [a]ﬁRivSi'

For a functionf: I — J, the reindexing functoP(f) is simply given by composition witlf.
Define the contravariant funct@y : Set°® — Cat given by mapping sef to the category) (1) with

objects:(R;);c; where for alli € I, R; is an object ofAP (D) .

morphisms:(«;)icr: (R;)ier — (Si)ier Where for alli € I, o; € AP(D), (R;,S;) and3a € [D —
DlViel a;=[ak, .

161

For a functionf: I — J, the reindexing functof)(f) is again simply given by composition with

That we have two contravariant functors is obvious. The Grothendieck construction then gives us two
split fibrations,p: UFam(AP (D)) — Set andq: UFam(AP(D),) — Set. The functorsL andU

easily lift to fibred functors between these two fibrations (we abuse notation and also denote the fibred
functors byL andU). Explicitly, on objectsL(I, (R;):c;) = (I, (L(R;))icr) and on vertical morphisms
L(I,(fi)ier) = (I,(L(fi))ier). Likewise forU. These are not recursive definitions, they simply look so
because of the reuse of letters.

Theorem 6.13. L and U are split fibred functors and 4 U is a split fibred strong monoidal adjunction

Proof. It is obvious thatl. andU are split fibred functors; the second part follows immediately from Theo-

rem6.12. O

6.4 A domain-theoretic model of PILL

To show that[(I]0) is a model of PILL it remains to be shown thiaas a generic object and simple products.

Lemma 6.14. The sef2 = Obj(AP(D),) = Obj(AP(D)) is a split generic object of the fibratian The
fibration ¢ has simple splif2-products satisfying the Beck-Chevalley condition.

Proof. The first part is obvious. For the second part, one uses the usual definition for uniform families of
ordinary pers and verifies that it restricts to admissible pers: We recall from [12] that given any projection
ma: A x Q — Ain Set, the right adjointy 4 to 7 is given on objects by intersection:

vA((‘R(a,w))(a,u})GAXQ) = (m R(a,w))aGA-
we2

By lemmd 6.1]1 the resulting per is admissible. O

Theorem 6.15. The diagram(10) constitutes a model of PlLL

Proof. Given the preceding results it only remains to verify that (1) the structure in the diagram models the
polymorphic fixed point combinator and that @Fam (AP (D)) is equivalent to the category of products
of free coalgebras dJFam(AP(D)) .

For (1), the required follows, as expected, because the pers are strict and complete. In more detail, the
reasoning is as follows: It is well-known that there is a Scott-continuous fungtien[D — D] — D]

giving fixed-points through iterated application_af. Since realizers are Scott-continuous functions in

[D — Dj, every realizer has a fixed-poing(«) in D given by| |, (a™)(Lp). If for some admissible per

R, a € F(R, R), then, sinceR is strict, o respectsk, and R is chain-completey(a) R y(«). Thus the
equivalence class af(«) exists and is a fixed-point of the morphism represented.byhis is applicable

both inAP (D) andAP(D)_, butis not so interesting on strict morphisms. Itis, howeveAI(D) ; that

we model the calculus, and thus here we want a fixed-point combinator — albeit only for some morphisms,
namely those of typeR — R = R — R, corresponding to morphisms &P (D). Intuitively, we wish to

take such a morphism, transpose it, grab the fixed-poil(D) and call the whole process a morphism

in AP(D),. This is possible, since transposition cascades to the level of realizers. The function that
transposes a morphism and returns the fixed-point of the result is continuous. The fixed-point function is in
F(R — R, R), for any R, and thus its code is a member¥f Type.(« — «) — «. Precomposing with

162

a uniform realizer fok before taking the code, one easily obtains the polymorphic fixed-point combinator
Y: VaType.(a — «) — «. Writing this out, one arrives at

U(Ad € D.y(Ad € D.2(2(m(2(d)(1))) (7' (2(d) (1)) (1, d))))

For (2), observe that by [17, Proposition 1.21] applied to Thegrem 6.8 it suffices to shduhat (AP (D))
is equivalent to the coKleisli category of the adjunctibr+ U, but this follows from the fact thal/ is a
forgetful functor. O

6.5 A parametric domain-theoretic model of PILL

In this section, we introduce a parametric version of the thus far constructed model. It is essentially ob-
tained through a parametric completion process such as the one described in [5] for ikteralels (as
mentioned in the Introduction, we will generalize that completion process to produce parametric LAPL-
structures in[[16]).

We will arrive at the diagram

PFam(AP(D),) j_ PFam(AP(D)) (11)
\ U /
PAP(D)

Our construction is based on reflexive graphs and since our strategy is to obtain relational parametricity for
admissible relations (to also model the fixed point combinator in the parametric model), we consider the set
RefGrph of diagrams

A— R X S,

where A is a regular subobject d® x S in AP(D),. (ltis crucial that subobject is in the category with
strict maps — it means that will relate the equivalence class ofin R to the equivalence class afin S.

Identifying RefGrph™ with n, we define the base categdPAP (D) by
Objects: n € N — objects are natural numbers.
Morphisms: f: n — mis anm-tuple,(f1,..., fm), Where eacly; is a pair(f’, f) satisfying

e f7is amap of object§Obj(AP(D),))™ — Obj(AP(D),)
e fIis amap, that to two vectors of objectsAP (D), associates maps of subobjects

satisfying . S
VR € (Obj(AP(D)1))".f] (R, R)(Eqr,) = Eqjn),

where the regular subobjects are to be calculateAlR(D) , .

We now describ@®Fam(AP(D),) — PAP(D) andPFam(AP (D)) — PAP(D). As objects they
basically contain an (indexed) per and an (indexed) relational interpretation of this per. As morphisms they

163

have uniformly tracked morphisms that respect admissible relations. We wish to model admissible relations
as regular subobjects AP (D) , so we introduce the notatioh — R for A € Obj(RegSubp(p), (R)).

We plan to use the Grothendieck construction, and so define indexed categBidean(AP (D),)), is
defined with

Objects: f: n — 1is a morphismifPAP (D) fromn to 1.

Morphisms: a: f — g is a uniformly tracked family of morphismgy ;)
such that

Fe(obj(ap(p),) OF AP(D)L

ag: fP(R) — ¢"(R).
Thata is uniformly tracked means that there is a strict continuous fune¢tion [D — D] such that

VR € (Obj(AP(D))"0 = oiiftalge i)

Furthermore thigy should respect relations:

—, —,

VA R x S.(a,b) f"(R, S, A) (a,b) = (ta(a), ta(d)) ¢"(R, S, A) (ta(a), ta(D)).
Quite similarly(PFam(AP(D))),, is defined as the category with

Objects: f: n — 1isamorphismifPAP(D) from somen to 1.

Morphisms: «a: f — g is a uniformly tracked family of morphism@ ;)
such that

Fe(objap(p),)r Of AP(D)

ag: U(fP(R)) — U(g(R))

whereU: AP (D), — AP(D) is the forgetful functor. That we now ask for morphismsAdP (D)
removes the demand, that the uniform tracker be strict. AgairtBlsould respect relations:

-,

VA — B x S.{a,b) fP(R, S, A) (a,b) = (ta(a),ta(b)) g(R, S, A) (ta(a),ta(b))
Here A is still a regular subobject iAP (D), .

Note that the only difference between the two definitions is the choice of category in whiety;thee
required to be morphisms.

Definition 6.16. DefinelL.: PFam(AP (D)) — PFam(AP(D),) on

objects by
L((f", /") = (F¥, F")
where
FP(R) = L(f"(R))
and

morphisms by

DefineU: PFam(AP(D),) — PFam(AP(D)) in a similar way usind’ instead ofL.

164

Lemma 6.17.1f A — R x S, thenL(A) — L(R) x L(S).
Lemma6.18.L: PFam(AP(D)) — PFam(AP(D),)andU: PFam(AP(D),) — PFam(AP(D))
are both functors, anfl. 4 U

Proof. Easy given Iemm7 and the fact that for all admissible Reis(Eqr) = Eqr g Lemm;-7
ensures that the realizey for the unit of L + U also defines a natural transformatrmh:> UL with the
required universal property. O

By an easy extension of Theor¢m|6.6, we have:

Theorem 6.19. PFam(AP(D)) is fibred cartesian closed.

Proof. It turns out to be easy, since the product of two regular subobjects turns out to be a regular subobject

of the product, and the exponent of two regular subobjects turns out to be a regular subobject of the exponent.
Since the adjunction works on the level of realizers and realizers are uniform, the adjunction holdsl.

Theorem 6.20. PFam(AP(D),) is fibred cartesian and fibred symmetric monoidal closed.

Proof. We just present the SMCC structure: The tensor produ€f@ff”) and(g?, ¢") in the fibre
(PFam(AP (D) 1))n,
is denoted by /7, ") ® (g7, ¢") and defined by
(P @@ g") = (fPeg” ey,

where

(f? ® g")(R) = f*(R) ® g*(R)

nd(f"®g¢")(R, 5)(A) is defined as the image of the mal(R, 5)(A)@g" (R, §)(A) — fP(R)@g?(R)x

=,

(S) @ gP(S) tracked by
ty = M € D.({nrd, rr'd), (x'7d, 7’7’ d))

which on pairs of pairs have the following behavior:
<<Tfa Sf>7 <T97 89>> = <<’f‘f, T9>7 <Sf7 39>>'
The unitp! of the tensor is given by the objedE — I, (R, S) — Eq;).
The exponential of f7, f7) and(g?, ¢") in (PFam(AP (D),))n, is(f?, f") — (g7, ¢") defined by
(fP ") = (g"9") = (fP —g" f" — g")

where . B B

(ff — g")(R) = fP(R) — g"(R)
and(f" — ¢")(R, S)(A) is defined by

0

This is an exhaustive description, in the sense that only pairs are ever related.

To verify the adjunction(—) @ (f?,) 4 (fP,f") — (—), we use that we know that it holds in the

first component and then check that the bijection can be restricted to realizers that define morphisms in the
second component; the latter is a direct consequence of the way the relational interpretaticansdoefo

are defined.]

Lemma 6.21.1L 4 U is a fibred symmetric monoidal adjunction.

Proof. This proceeds much as in the unfibred case. We showLtigt fibred strong symmetric monoidal

functor. We must provide a morphism; and a natural transformation, but we can simply use the same
realizers as before, since everything has been defined coordinatewise and these realizers are independent of
the specific pers, and hence are uniform realizers. O

Lemma 6.22. 2 = 1 is a split generic object dPFam(AP (D),) — PAP(D).

Proof. Obvious. O
Lemma 6.23.1f (f?, f") is an object oPFam(AP (D),),+1, then(() P, f"), where

(m fp)(Rla o ,Rn)(-T,y) <~
mRGObj(AP(D)L) fp(Rb ceey RYL,R)(xay) A VRa S7A — R xS. <xay>fr(EQR17 s 7Ean7 A)<$7y>

and

=,

(@) () (A1 — Ry X S1, ..., Ap > Ry x Sp)(z',yf) <=
) A (NS (. y)

VR, S, A— Rx S (z,y)fP(AL,..., An, A, y") A (N FP)(R)(z,
is an object oPFam(AP(D),).

Lemma 6.24. PFam (AP (D),) has simple&2-products.

Proof. The construction is as in_[12, Section 8.4]. Given a projectiom + m — n, we must define a
right adjoint tor*. This is done by extending the construction of the previous lemma in an obvious way to
a functor. O

Proposition 6.25. The diagram|[(I]L) constitutes a Pli.Lmodel.

Proof. It only remains to verify that the structure models the fixed point combinator. Here we simply use
theY from Theoren 6.15, which works since relations are strict and chain complete. O

We now proceed to show that this new PiLimodel can be extended to an LAPL-structure. For this we
need just two more fibrationg, Fam(Set) — PAP(D) andr: Fam(Sub(Set)) — Fam(Set). The
fibre of Fam(Set) overn has as

Objects mapsf : obj(AP(D))" — Set.

Morphisms ¢ : f — g is a family

(g f(R) = 9(R)) geopiap(py)n

166

and reindexing is given by composition. The fibreaim (Sub(Set)) over an objecy : obj(AP (D))" —
Set is a preorder with
Objects mapsg : obj(AP(D))™ — Set, such that

VR € obj(AP(D))". g(R) C f(R).

Morphisms There is a morphismg — ¢’ if

VR € obj(AP(D))". g(R) C ¢'(R).
Here reindexing is with respect to morphismsBA P (D) is given by composition, whereas reindexing
with respect to morphisms iIBam(Set) is given by inverse image.

Lemma 6.26. q is a fibration with fibred products, an(, ¢) is an indexed first-order logic fibration with
simpleQ2-products and -coproducts.

Proof.
Sub(Set)

|

Set

is a first-order logic fibration with generic object and all simple products and coproducts. By Lemma A.8 in
[5] we can construct the pullback

Fam(Sub(Set)) —— Sub(Set)

P

Set™” ——— > Set

obtaining thatFam(Sub(Set)) — Set™ 4 Set is a composable fibration with the desired qualities.
Yet this is not quite the right fibration. Fortunately we have

Fam(Set) ———— Set™

Set
by the isomorphism mappin@/,,).cx to L. xU, — X. And now

Fam(Sub&Set)) Fam(Sub(Set))

| |

~

Fam(Set) —— Fam(Set) ——— Set™

f T~ Joe

PAP(D) Set

is a pullback. The bottom half is a pullback by definition, the rifapP (D) — Set operates as follows
n — obj(AP(D))" (f?,f"):n—m — fP:obj(AP(D))" — obj(AP(D))™

And the top one easily is a pullback as well. Aspreserves products, the leftmost composable fibration
have the desired qualities. O

167

We can then define the functér PFam(AP (D)) — Fam(Set) to be the fibred version af'lasses.

Lemma 6.27. [is a faithful and product-preserving map of fibrations.

It is now time to define the contravariant map of fibrations

PFam(AP (D),)? v Fam(Set)

T~

PAP(D)

This is defined at index on
Objects by U(f,g) = R — P(I(f?(R)) x I(g*(R))), whereP (—) denotes powerset,
Morphisms by U(a: f — f/,3:9 — ¢) = R —
ACI(f(R) x I(g”(R)) — { (x,y) € I(f*(R)) x I(g"(R)) | (I(a)(2), I(B)(y)) € A}
Lemma 6.28. U is a contravariant map of fibrations.
Proof. U can be equivalently defined as
(0,7) s 21@XI(),

which makes the statement clear. O

We can then define a family of bijectiofig,,),,.conjpap(p)) such that for allf, g € (PFam(AP(D))),
andM € (Fam(Set)),,

Yot Fam(Set) (M, Un(f, g)) — Obj(Fam(Sub(Set)) s 1. v, (/)x0, (o))

by
xn(h) = {(m, (a,b))|(a,b) € h(m)}

Lemma 6.29. y is a bijection, which is natural in the domain variable, is naturalfiry, and which com-
mutes with reindexing functors.

We have now proved:

Proposition 6.30. The diagram

Fam(Sub(Set)) (12)

S |

PFam(AP(D);) 1 PFam(AP(D))——— Fam(Set)
PAP(D)

constitutes a pre-LAPL structure.

168

Now we define a subfunctdr of U on
Objects by V(f,g) = R {I(A) | A —app), (fP(R) x g*(R)) },

One can now show thaf is closed under all the constructions performable on admissible relations and that
it contains all graph relations.

Lemma 6.31. The structure in diagranj (12) and model admissible relations.
Proof. We refer to figuré€ 4 and provide only a part of a formula to hint at which construction we are debating:

eq,: Equality on a typer is modeled as the diagonal subobject]ef x [¢]. This corresponds to an
admissible relation because it is isomorphiddd by the continuous functionsd € D. (d, d) andr.

p(t z,u y): Reindexing an admissible relation by a strict continuous function (iteu)) is bound to
give an admissible relation. We consider chain-completeness: Given two index-wise related chains
in (t,u)"(p), (t,u) taken on these gives us two index-wise related chains iSincep is chain-
complete their limits are related m and sincet, «) is continuous the limits of the original chains is
in the inverse image of the limit ip.

p(z,y)\p'(z,y): Conjunction is modeled by intersection, under which admissible relations by [emna 6.11
are stable.

(z:7,y: 0).p(y,x): swapping the abscissa and ordinal axis does not break admissibility.
!p: This is simply the usual lift of relations.

T: Thisis all classes. This is admissible.

¢ D p(x,y): If ¢ does not hold we get all classesglfloes hold we get which is admissible.

Quantifications: All quantifications are modeled through intersections and are thus taken care of by lefnma 6.1.

O]

Having come so far, we move on to describtnAdmRelations and AdmRelCtx from Sectior #.
Recall thatAdmRelCtx is defined as the pullback

AdmRelCtx Fam(Set)

o |

PAP(D) x PAP(D) —— PAP(D)

which means thaAdmRelCtx has as

Objects triples(n, m, ®) where®: obj(AP(D))""™ — Set, assigns a set to a vector of admissible pers.

Morphisms triples(f, g, p): (n,m,®) — (n’,m’,®') wheref: n — n’ andg: m — m’ are morphisms
in PAP(D) andp is an indexed family of maps

p= (Pﬁj: (R, S) — (I)/<fp(R)’g_ij(S)))ﬁeobj(AP(D))",§€obj(AP(D))m

where® and®’ are evaluated on the combined lists of admissible pers.

169

In this concrete caskinAdmRelations can be described as follows: Given an objectm, ®) over
(n,m), the fibre ofLinAdmRelations over(n, m, ®) has as

Objects triples(¢, f, g) such thatf andg are objects oPFam(AP (D)) overn andm respectively and
¢ is an indexed family of maps

=,

¢ = (¢1§,§: @(ﬁ’ §) —{A|A— fp(é) x g¥()})éeobj(AP(D))n,ﬁeobj(AP(D))m
Morphisms A morphism(¢, f,g) — (¢, f’,¢') is a pair of morphisms
(t: f— flurg—4d)
in (PFam(AP(D))), and(PFam(AP(D)))n, respectively, such that

VR € obj(AP(D))", S € obj(AP(D))™.Vz € ®(R, S).
(z,y) ¢(2) (x,y) = (t(z),u(y)) ¥ (z) (t(z),u(y))

Note that we now have two obvious projectiaisando; .
Finally we can define the required functér

PFam(AP(D),) LinAdmRelations

PAP(D) AdmRelCtx
For the base categories,is defined on
Objects by n — (n,n, (J[,[{ A A— R x Si })p

Morphisms by f — (f, f,I[; f])

§EAP(D)")

and for the total categoried,is defined on
Objects by (f7, f7) — (f", f. f)
Morphisms by a — («, «).

This definition on morphisms is legal becauspreserves relations.
In order to show thafl preserves tensor products, we need the following lemma

Lemma 6.32. The tensor product illinAdmRelations — AdmRelCtx can be described as
(. L@@ fd)=par, fof.gog)
wherep @ p' is calculated pointwise, i.e for € ¢(R, S)
(p®) .5(2) = p(z) ® p/(2)

Proof. We argue that this construction defines a left adjoint¢o The standard curry-uncurry-adjunction
holds, on the level of realizers even, which is not hard to show. O

170

Lemma 6.33. J is a map of linear\,-fibrations.

Proof. We must show thaf preserves—, ®, [[, I and !.
The constructions in the two categories are virtually identical excepb fantil application of lemma 6.32.
To check the case dfwe consider the logical expression fpr AdmRel(o, 7):

(zloyy:n)e <= y| AN z]Dplex,ey)
The expression: | equatest # [L]. Hencer | <= y | express the fact that no lifted class is related to
[L]in!p.

Further since: provides us with unlifted versions of its argument| > p(ex, ey) states that liftet classes
are related iflp only if their unlifted versions are related jn

This is an exact description of the lifting performed by the fundtor O

Itis easy to see thalyJ = id ando,J = id.

Theorem 6.34. The diagram in(12) constitutes a parametric LAPL-structure.

Proof. By the preceding results it is clear that it is an LAPL-structure; it only remains to show that it is

a parametric such. Extensionality holds since the logic is essentially given by regular subobjects, which

means that we have very strong equality! [12], and thus also extensionality. The parametricity schema is
easily verified to hold. m

Example 6.35. To ease notation in this example we shall wiitey) € A for (z,y)A(x,y) for regular
subobjectsA — R x S, as we do in LAPL. We will also leav&, ® implicit, and simply writef x for

(f) ().
We consider the typdat = [[[a. (&« — a) — a — «]. By definition

d(Nat?)d'
iff for all R, S pers and all regular subobjects— R x S, (f,g) € (A — A) and(z,y) € A
(dfxdgy)e A
The domain olNat contains the elements = A fAz. L andn = A\f. Az. f™(z), in particular) = A fAz. x.

Lemma 6.36. Supposer < m. Thenn = m.

Proof. Consider the two functiong, g: D — D given by f(d) = (d, ¢), where. is the code of the identity
function, andg being the first projection. Both are continuous and sipeef = id f is injective. Define
the sequence of elements = f"(_L). This sequence is strictly increasing.

Now, if n < m then

son < m. Further,
Tmen =N GTm SMGTym =L

som = n. UJ

171

Lemma 6.37. The per
{1} u{{n}|n}

is a admissible.

Proof. Direct consequence of the lemma above. O
Proposition 6.38. Supposel(Nat”)d. Then eithekl = L or d = n.
Proof. Consider the discrete admissible ger
{{d} [d € D}
Then givenf, z consider the regular subobjedt— Nat x D given by
(L, L)e A, Vn. (n, f*(x)) € A.

A is admissible, simply because it contains no interesting increasing chains. QRantyf) € A — A,
SO
(dsuccl,d f z) € A,

i.e., ifdsuccO = L, thend f x = 1 for all f,z and sod = 1, and ifd succO = n for somen, then
dfx= f"(x),forall f,z, sod = n. As we have seen, there are no other possibilitieg farcc0. O

Proposition 6.39. Supposel(Nat?)d', thend = d'.
Proof. Analyzing the above proof we see that
d = d succl
By considering the regular subobje¢t— Nat x Nat given by
(L, 1) €A, Vn.(n,n) € A

we conclude
d succO = d' succO.

Acknowledgments

We gratefully acknowledge discussions with Milly Maietti, Gordon Plotkin, John Reynolds, Pino Rosolini
and Alex Simpson.

172

References

[1] Roberto M. Amadio and Pierre-Louis Curidbomains and Lambda-Calculrolume 46 ofCambridge
Tracts in Theoretical Computer Sciend@ambridge University Press, Cambridge, 1998 6.1

[2] A. Barber. Linear Type Theories, Semantics and Action Calc&#hD thesis, Edinburgh University,
1997.[2.1{ 3.4, 42

[3] P.N. Benton. A mixed linear and non-linear logic: Proofs, terms and models (preliminary report).
Technical report, University of Cambridge, 1995.]1.1

[4] G. M. Bierman, A. M. Pitts, and C. V. Russo. Operational properties of Lily, a polymorphic lin-
ear lambda calculus with recursion. Fourth International Workshop on Higher Order Operational
Techniques in Semantics, Moai, volume 41 ofElectronic Notes in Theoretical Computer Science
Elsevier, September 2000] 1

[5] L. Birkedal and R. Mggelberg. Categorical models for Abadi-Plotkin’s Logic for parametridiayh-
ematical Structures in Computer Scien2805. To Appear (Accepted for publication)] [1,]3.2, ¥, 1,

[4.1[6.5[6.5

[6] M. Fiore. Axiomatic Domain Theory in Categories of Partial MapBistinguished Dissertations in
Computer Science. Cambridge University Press, 1996. 1

[7] P.J. Freyd. Algebraically complete categories. In A. Carboni, M. C. Pedicchio, and G. Rosoalini,
editors,Category Theory. Proceedings, Como 1996lume 1488 of_ecture Notes in Mathematics
pages 95-104. Springer-Verlag, 1990. B.12

[8] P.J. Freyd. Recursive types reduced to inductive typeBrdoeedings of the fifth IEEE Conference on
Logic in Computer Sciengpages 498-507, 199(. 3]12

[9] P.J. Freyd. Remarks on algebraically compact categories. In M. P. Fourman, P.T. Johnstone, and
A. M. Pitts, editorsApplications of Categories in Computer Science. Proceedings of the LMS Sympo-
sium, Durham 1991volume 177 ol.ondon Mathematical Society Lecture Note Seneges 95-106.
Cambridge University Press, 199[. 3.12

[10] J.-Y. Girard. Interprétation fonctionelle e&limination des coupures de larittgtique d’ordre
sugerieur. Thése d’Etat, Universit Paris VII, 1972.[[1

[11] H. Huwig and A. Poig@. A note on inconsistencies caused by fixpoints in a cartesian closed category.
Theoretical Computer Sciencg3:101-112, 1990] | 1

[12] B. Jacobs.Categorical Logic and Type Thegryolume 141 ofStudies in Logic and the Foundations
of MathematicsElsevier Science Publishers B.V., 1999. 211, 4,[6.4/6.5, 6.5

[13] J.R. Longley and A.K. Simpson. A uniform approach to domain theory in realizability mddeith.
Struct. in Comp. Sciencél, 1996.[§, 612

[14] M. Maietti, P. Maneggia, and E. Ritter. Relating categorical semantics for intuitionistic linear logic.
Applied Categorical Structure2004. To Appear[1]1

[15] Maria E Maietti, Paola Maneggia, Valeria de Paiva, and Eike Ritter. Relating categorical semantics for
intuitionistic linear logic. Technical Report CSR-01-7, University of Birmingham, School of Computer
Science, August 2001.| 4

173

[16] R. E. Mggelberg. Parametric completion for models of polymorphic intuitionistic / linear lambda
calculus. Technical Report TR-2005-60, IT University of Copenhagen, February 2005] [1,B.3, 6.5

[17] R. E. Mggelberg, L. Birkedal, and R. L. Petersen. Categorical models of PILL. Technical Report
TR-2005-58, IT University of Copenhagen, February 2005.] fI} 4, 4, 6.2, 6.4

[18] R. E. Mggelberg, L. Birkedal, and G. Rosolini. Synthetic domain theory and models of linear Abadi
& Plotkin logic. Technical Report TR-2005-59, IT University of Copenhagen, February Z005. 1

[19] R.L. Petersen and J. Thamsborg. Polymorphism and linearity all in one pill. Student Project[2003. 4
[20] B.C. Pierce.Types and Programming Languagé8IT Press, 2002[]1

[21] A. M. Pitts. Parametric polymorphism and operational equivaleMaghematical Structures in com-
puter Sciencel0:321-359, 2000[| 1

[22] G.D. Plotkin. Second order type theory and recursion. Notes for a talk at the Scott Fest, February
1993.[1[3.14,]6

[23] Gordon Plotkin and Mam Abadi. A logic for parametric polymorphism. Tryped lambda calculi and
applications (Utrecht, 1993)olume 664 ofLecture Notes in Comput. Sgpages 361-375. Springer,

Berlin, 1993.[1[P, 2.213,2.26,3.8

[24] J.C. Reynolds. Towards a theory of type structureCéloquium sur La Programmatigvolume 19
of Lecture Notes in Computer Scienpages 408—423. Springer-Verlag, 1974. 1

[25] J.C. Reynolds. Types, abstraction, and parametric polymorphiisformation Processing83:513—
523, 1983.[1L

[26] J.C. Reynolds. Private communication, June 27J00. 1

[27] G. Rosolini and A. Simpson. Using synthetic domain theory to prove operational properties of a
polymorphic programming language based on strictness. Manuscript, ZD04. 1

[28] Izumi Takeuti. An axiomatic system of parametricitifund. Inform, 33(4):397-432, 1998. Typed
lambda-calculi and applications (Nancy, 199f).] 2.2

[29] P. Wadler. The Girard-Reynolds isomorphism (second edition). Manuscript, March P004. 2.2

174

Categorical Models of PILL

Rasmus Ejlers Mggelberg
Lars Birkedal
Rasmus Lerchedahl Petersen

Abstract

We review the theory of adjunctions and comonads in the 2-category of symmetric monoidal ad-
junctions. This leads to the definitions of linear adjunctions, linear categories and models of DILL as in
[1,[6,[7]. This theory is generalized to the fibred case, and we define models of PILL ang Bfd_
morphisms between them.

Contents

1 M Isof DILL 176
1.1 The 2-category of symmeiric monoidal categories

1.2 The co-Kleisli category and the Eilenberg-Moore category ofacomonad

1.3~ The category of producis offreecoalgebras

l2__PILL models| 185

175

1 Models of DILL

1.1 The 2-category of symmetric monoidal categories

In the following SMC stands for symmetric monoidal category.

Definition 1.1. A functor of SMC'’s fronT to C’ is a functorF' plus natural transformation
m: F(-) @ F(=) = F(-® =)

and mapm;: I — F(I) satisfying the following commutative diagrams

(F(-)® F(=) @ F(=) —= F(-) ® (F(=) ® F(=))

m®idi \Lid@m
F((-)® T)) ® F(=) F(-)® F(l(:) ® (=))
F((m) @ (=) ® (=) F((-) @ (=) ®(2)
[@F(~) —— F(-) F(-)® F(=) — F(=) ® F(-)

T

F(I)® F(-) == F(I ®(-)) F(5)e =) —FFE o)

The functorF is calledstrongif the transformationsn, m; are isomorphisms angtrict if they are identities.
The composite of symmetric monoidal functors

F,ml,ml : C— C'and G,mG,mG ¢ —-C”
I I
is (GF,G(ml)o mG,G(mI})o m?), where

GF(-)® GF(=) e, G(F(-)® F(=)) (ﬁg GF(-® =)

GF(I).

Definition 1.2. A symmetric monoidal transformation between symmetric monoidal fur(dtors’, m£)

and (G, m%, m¢) is a natural transformatiory: F' = G in the usual sense satisfying

I
F el
ér1

G(I).

F(-)® F(=) > F((-) @ (=)

-

G(-)®G(=) "=G(-)e (=) FU)

The above defines the 2-category of SMC's. In this 2-category one can define adjunctions, monads, comon-
ads etc. as usual. In the following we write out some of these definitions in detail.

176

Definition 1.3. A pair of functors of SMC'’s

F
CZ_ L =D
G
constitute a symmetric monoidal adjunction (wifthleft adjoint), if F 4 G as usual and both the unit
n: idp = GF and the counit: F'G = idc are symmetric monoidal transformations. This means that the

following diagrams commute:

FG(—) @ FG(=) ™'~ F(G(—) © G(=)) I

E®€l lF(mc) mfl \

()8 ()~ FG() 0 (=) F() 1= FGU)
(=) — " =CF()®(=) 6

® G(mF n
) fowrr] o,

GF(—) @ GF(=) "~ G(F(-) @ F(=)) GF(I)

The following theorem is originally from [5].

Theorem 1.4. An adjunctionF’ 4 G between symmetric monoidal categories is a symmetric monoidal
adjunction iff F' is a strong symmetric monoidal functor.

For a proof we refer td [8,12]. We just note that #, m’, mf) is strong symmetric, then the natural trans-
formationsm®: G(—) ® G(=) — G((-) ® (=)) is given as the adjoint correspondent to the composition

(m™)*

eRe
F(G(-) ® G(=)) > FG(-) ® FG(=) > (-) ® (=)
and the natural transformatitm? is given as the adjoint correspondent to
(mI)y™ . FI— 1.

A symmetric monoidal comonad on an SMCis a vector((F, m,my),€,0) such that(F,m, my) is a
SMC epifunctor,(F, ¢, d) is a comonad and, § are symmetric monoidal transformations. Since the usual
construction of a comonad from an adjunction can be carried out inside any 2-category, we obtain:

Lemma 1.5. Any symmetric monoidal adjunction
F
C<_ 1T =D
G
gives rise to a symmetric monoidal comonad(n

Suppose we are given a functbr: C — D between symmetric monoidalosedcategories. Then there
exists a natural transformation F'((—) — (=)) = F(—) — F(=) defined as

F((-) — (=) —= F(=) = F((~) — (=) ® F(-) =%
F(=) — F(((=) — (=) ® (—)) ——)

where the first map is the unit of the adjunction.

F(=) — F(=),

177

Definition 1.6. A morphism of SMCC'’s is simply a morphism of SMC’s. A strong map of SMCC's is a strong
map of SMC'’s where the transformatiarabove is an isomorphism. The map is strict if it is a strict map of
SMC'’s and the transformatiom is the identity.

1.2 The co-Kleisli category and the Eilenberg-Moore category of a comonad

Suppose we are given an SMCand a symmetric monoidal comonéf, ¢, §) on it. We can then form the
co-Kleisli category of the comonad as usual:

Objects: are the objects @f.
Morphisms: A morphism fronX to Y is a morphism irC from7X toY.

Composition: Composition of maps X — Y andg: Y — Z is given as
5 T
X -rrx Loy Loz
The natural transformationplays the role of the identity.

We denote the co-Kleisli category &Y.
We can also form the Eilenberg-Moore category of the comonad as

Objects: Coalgebras for the comonad, i.e., mapX — T X satisfying

X —"s7x X —ls7x
RN
Tx e 2y X

Morphisms: Morphisms of coalgebras

We denote the Eilenberg-Moore category®y.

Lemma 1.7. The co-Kleisli category of a comonad is isomorphic to the full subcategory of the Eilenberg-
Moore category on the free coalgebras for the comonad, i.e., the coalgebras of thé forffi(X) —
T%(X).

Proof. There is clearly a bijective correspondence between objects. We need to check that this correspon-
dence extends to morphisms. Supphsd'X — Y is a morphism in the co-Kleisli category froM to Y.
ThenTh o dx defines a morphism of coalgebras since

76 T2h

T2X T3 X T2y

5XT 5TXT T5Y
)

TX 2> p2x 0o TY,

where the square to the left commutes by the definition of comonad, and the diagram to the right commutes
by naturality ofd. To check that this defines a functor from the co-Kleisli category to the Eilenberg-Moore

178

category, supposke: TX — Y andh’: TY — Z in C. If we first use the functor and then compose, we
obtain(Th')ody o(Th)odx. If we first compose and then apply the functor, we obfaih’ o Thodx)odx,
which by definition of comonad &4’ o T%h o d7x o 6x. By naturality ofs§, we conclude that the functor
commutes with composition. Cleardyis mapped to the identity.

Suppose on the other hand thfatT X — TY defines a map of coalgebras, i.€f o §x = dy o f. Then

we can define the mag-o f: TX — Y, which is a map in the co-Kleisli category fromto Y. Again we

need to check that this defines a functor. Suppsd’Y — T'Z is another map of coalgebras. Composing

first and the applying the functor giveg o f' o f. Applying the functor first and then composing gives
ezof'oT(eyof)odx = ezof'oT(ey)odyof, sincef is amap of coalgebras. We now UBgy)ody = idy

by one of the equations for comonads to conclude that the functor commutes with composition. Clearly the
identity is mapped te.

We need to check that the two functors are inverses of each other. Suppose we start with a map in the
co-Kleisli category, i.e., amap: TX — Y. Applying the two functors to this gives o Th o dx =
hoerx odx = h. If we start with a map of coalgebrgs TX — TY, applying the two functors gives

T(Ey)OT(f)O(SX:T(Ey)o5yof:f.]
We have the usual adjunctions betwé&eandC” andC andCr. We can illustrate these as

UT
CZ__ 1 =T

wherei is the inclusion. We know thatt’y = FT, UTi = Up. Without further assumptions, neith€r
nor CT have a natural SMC structure, so it does not make sense to ask for the adjunctions to be symmetric
monoidal.

Definition 1.8. Alinear adjunctioris a symmetric monoidal adjunction

F
C<__ 1 =D,
G

where the SMC-structure dh is in fact a cartesian structure, arfd is SMCC.

F P
A morphism of linear adjunctions fronrt <~ | =D to ¢/<___ | =D/ is a pair of functors
G a

H, K whereH is a strict map of symmetric monoidal closed categories,&nd a strong map of symmetric
monoidal categories such that the diagrams

c—S-p-Ltsc

A

C'—D ——C

179

commuteup to isomorphism Furthermore,H is required to commute with the comonads induced by the
adjunctions, i.e. HFG = F'G'H, He = ¢ H and H5 = §' H, whered, §’ are the comultiplications of the
comonad induced by the adjunctions.

A natural transformation from{H, K) to (H, K') (notice that the first components of the two functors are
equal) is a natural transformation froi{’ to K.

The definition of natural transformation may seem a bit unintuitive, in particular the fact that natural transfor-
mations are always identity on the SMCC components of a functor. We have chosen this definition because
we want a fairly restrictive notion of equivalence between linear adjunctions.

It is well-known that DILL can be interpreted soundly and completely in any linear adjunction [1]
Remark 1.9. An LNL-model is a linear adjunction in which the cartesian category is closed.

Definition 1.10. A linear category is an SMCC with a symmetric monoidal comonad, m, my), €, 9)
and symmetric monoidal natural transformations!(—) — I, d: !(—) —!(—)®!(—), such that

e For each object4, (!4, e4,d4) is a commutative comonoid, i.e.,

14— 14014 14— 14014
\ \Lid@eA m is
A® I 1A A
14— 1414 2% 4 @ (1401A4)
| :
LAIA B 1 ARIA)@IA,

wheres is the natural transformatioi—) @ (=) = (=) ® (-),
e c4,d4 define coalgebra maps frotn : !A —!! A to the coalgebrasn;: I —!I and

A4 228 A A — T 1(1ARIA)

¢ All coalgebra maps between free coalgebras preserve the comonoid structure,fi.elAif—!B is

such that
na—2-np
aAT TJB
1A—L 1B
then

1A

A 'B

f B f
N o] |
I fef

AR!A — |BR!B.

Linear categories model Intuitionistic Linear Logic (ILL). In ILL, types of the fotrh behave intuition-
istically, and intuitively, one should think af as providing weakening for these types, ahds providing
contraction.

180

Lemma 1.11. In Definition[1.10, the last condition can be replaced by the condition éhpteserves
comonoid structure.

Proof. From the definition of comonads, we see thad a coalgebra map, and thus the new condition is a
special case of the old.

For the other implication, suppose that!A —!B is a map of coalgebras. Then
epof=epodpof=epo(lf)joda=en0da=ceq
which proves commutativity of the first diagram. For the second notice first that
f=legodgof=lego(lf)oda.

The result now follows from the following commutative diagram:

M— oy g g
dAi ld!A id'B \LdB
AIA —2L waenA L2 nBenB 2 1 BoIB.

O]

Definition 1.12. A morphism of linear categories froifC, !, d,e) to (C',!,d’,¢’) is a strong symmet-
ric monoidal closed functof' preserving all the comonad structure on the nose, I'é!,= F!, ¢ F =
Fe, 0'F = Fé. If the functorF is strict, we call this a strict functor of linear categories.

Lemma 1.13. For a linear category, the associated Eilenberg-Moore category is cartesian.

Proof. The product of two coalgebrads,: A —!A,hg: B —!Bis

A®hB

A® BB\ AgIB "> 1(A® B)

with projection given by

1dRh B d®e B

A® B— A®!B —— A®I*>A

and diagonalA 4 given by
€AREA

A*>'A*>'A®'A AR A.

Having defined the diagonal, pairing of functiofis A — B,g: A — C'is defined as usual ¥, g) =
f®goAy.
The terminal object isn;: I —!1. O

Proposition 1.14. Each linear adjunction
F
C<_ 1 =D
a

gives rise to a linear category whose comonadl is F'G. This extends to a functor from the category of
linear adjunctions to the category of linear categories with strict morphisms.

181

Proof. Recall first that in a linear adjunction, the left adjoint is strong by Thedrein 1.4 n.en; are
isomorphisms.

The mape 4 is the composition

andd4 is
F(A) m~1L
FGA——F(GAx GA) —= FGA ® FGA.
For the details of this proof, we refer 10 [2].

The last part of the proposition is obvious. O

1.3 The category of products of free coalgebras

Given a linear categoryC,!, e, d) we defineC} to have as objects finite vectors of objectsfind as
morphisms from(A;) to (B;) morphisms ofC' from [d4, to [] dp;- This category is equivalent to the full
subcategory of' on products of objects df,. We callCy the category of products of free coalgebras and
we will often denote an object @} simply as[[4, instead of(4;).

Lemma 1.15. Given a linear categoryC, !, e, d), there is a symmetric monoidal adjunction
ur
c<_ 1 ¢,
F‘]*

i.e., a linear adjunction whose associated linear category (Propo 1.14) is isomorpliic te, d).

Proof. This is basically the restriction of the adjunction betwé2randC. To show that the adjunction is
symmetric monoidal, it suffices to show th@t is a strong symmetric monoidal functor. But

U|*((Az) X (Bj)) = U!*((Al, AR By Bm) =14, ®..J4,'B1®...B,,

and
U(4i) ® Uf'(Bj) = (®!4;) ® (®;!B))

soU/" is clearly a strong symmetric monoidal functor. O

Lemma 1.16. The construction of Lemnja 1]15 extends to a functor from the category of linear categories
with strict maps to the category of linear adjunctions. This functor is right inverse to the functor of Propo-
sition[1.14.

Proof. SupposeX : (C,!) — (DY) is a map of linear categories. We defifle C; — Dy by H(4;) =
(K A;) and on morphisms

H(h: ®!A; — ®!B;) = K(h): @!KA; = K(9!4;) — K(®!B;) = ® KB,;.

The reader may verify that becauséis strict and commutes with, this defines a map of coalgebras.
Clearly H is a strict map of SMC'’s and the two required diagrams commute on the nose. O

Definition 1.17. We define the category of DILL models to be the full subcategory of the category of linear
adjunctions on the objects equivalent to the objects induced by linear categories as in Lemima 1.15

182

G
If we write out the definition above, then a DILL model is a linear adjunctort” | > D such that
F

there exists maps of SMCH, K as in

G
C=__ =D
F
such thatH, K is an equivalence of categories and such that

G2ULpK, Fip~KF, GH=UbLp, HF\z=F.

Notice that out of these four equations, the first two are equivalent to the last two using the assumption that
(H, K) is an equivalence of categories.

Clearly DILL-models provide sound models of DILL, but they are in fact also compléete [6].

Remark 1.18. In [6] the category of DILL-models is defined by requiring that the cartesian categaty,

and not just is equivalent to it. The authors of [6] then argue that DILL provides the internal language of
the DILL-models meaning that the category of DILL models is equivalent to the category of DILL theories
with translations as morphisms. With our definition of DILL model, we still have a functor constructing the
internal language of a model and a functor constructing the classifying model of a theory. For any theory,
the internal language of the classifying model is isomorphic to the original theory, and for any model, the
classifying model of the internal language is equivalent to the original model.

Proposition 1.19. Given two DILL-models and a morphism between the two corresponding linear cate-
gories, there exists an extension of this morphism to a morphism of DILL-models. This extension is unique
up to isomorphism.

Proof. The map is up to equivalence given by Lenima]L.16. O

We now give two examples of DILL-models. The first is a practical reformulation of the catétjoayd
the second (Proposition 1]21) handles a special case in Whishequivalent taC;.

We now give a different definition of the categdty.
Objects: Finite vectors of objects frof

Morphisms: A morphism fron{A;); to (B;); is a family of morphismg f;: ®;!4; —
Bj)j.
Composition: The composite 0f;);: (A;); — (Bj); and(gr)x: (Bj); — (Ck)x is

®idA, 1f:)s .
@il s 20 @14, M (@A) L (1B, U (o),

where(! f;); is the pairing of the functionf; defined as

51,

183

Identity: The identity on(A4;) is
(@14 =14, — = A;)y,
wherer;,: ®;!4; — A, is defined as

®izigea,; ®id o
@14y ——— (Rizind) ® Aijy — Ayy.

Lemma 1.20. The description above describes a category. This category is isomorp8jc to

Proof. To be able to distinguish the two definitions, for the remainder of this proof we dendbethg
definition just above. We prove that there are bijective correspondences between objects and morphisms of
D andC} and that these bijections preserve composition and identity. This way we prove both statements
of the lemma simultaneously.

Objects of bothD andC} correspond to finite vectors of objects©f The correspondence on morphisms is
given by
Homp ((As)i, (Bj);) = [1; Homp((A:)i, Bj) = []; Home(®;!A;, Bj) =
Hj Homg: (H¢ 5141‘? 631) = Homg: (Hz 5/47;7 Hj 5Bj)

In one direction, this correspondence maps a mdp in
(fj: QA — Bj)j

to
®;!f;

®iba, m
®ilA; it 3 RNA;, — 1®;1A; 4. ®;1®;!A; —= ®;!B;
as a map irC'. Going the other way, given a map of coalgebfasv;!4; — ®;!Bj, this map corresponds
to (eomjo f); inD.

Since these processes are inverses of each other, we know for example that

®ida; ®;1f; ~
@il A; — @M A~ 10, Ay — L @114 2L ®1B; 2~ 1B; —< ~ B,

is simply f;. This allows us to conclude that if we start with two mags): (4;) — (B;), (9x): (Bj) —

(Cx) in D, take the corresponding maps@i, compose these and then go back ibtove get exactly the
composite of(f;) and(gx) as defined ifD. This proves that the isomorphism preserves composition. It is
clear that the isomorphism preserves identity. O

Proposition 1.21. Suppose the linear catego(, !, e, d) has products. Thefl, is equivalent in the cate-
gory of SMC’s tdC} and the usual adjunction betwe€&handC, is a DILL-model.

Proof. Notice first that there exists a natural isomorphisghA; =!(][, A;) which is a map of coalgebras,
i.e.,
o1 4,
'(Hz A;) ”(Hi A;)

lfv l!(N)
®ida,

184

is commutative. This follows from the Yoneda Lemma and the natural isomorphisms

Homgei(h, [1d4,) = [[Homei (h, d4,) = [[Home (B, A;) =
Homc (B, [[Ai) = Homg: (h, 017 4,),

for h: B —!B.

We need to check that the adjunction betw&€eandC, is an SMC adjunction. The SMC structure Gnis
defined by the produ@ty x dg = d 4«5, and we need to check that the functér C, — C is strong. But

Ui(6a x o) = Ui(0axB) =l(A x B) 2IARQ!IB = U,(d4) @ Uy(dp).

The equivalence is given by the obvious inclusiorCefinto Cf, and the map, that magg; d 4, to oyj 4,

Clearly the composition starting @ is the identity. The isomorphism between the other composition and
the identity is the isomorphisidyy 4, = [94, described above. We need to check that the two functors are

in fact strong morphisms of SMC'’s, and that the two equivalences make the right triangles commute as in
the text after Definition 1.17.

The inclusion ofC, into Cy is strong by the isomorphism constructed above, and the functor the other way is
strong, becausg [6.4,) x ([d5;) maps tod [y 4,)x (17 B;) Which is isomorphic to the product of the images
(in fact equal up to arrangement of parentheses).

Finally, we will check that the triangles mentioned after Definifion [L.17 commute up to isomorphism. By
the same remark, it suffices to prove that half the triangles commute, so let us only consider the ones for the
inclusionC, — C¥. Itis easily seen that these triangles commute. O

2 PILL models

Definition 2.1 (The 2-category of fibred SMC’s). A fibred symmetric monoidal category is a fibration

together with a fibred functor

ExpE ©

\B

and fibred vertical natural transformations making each fibre into an SMC.

E

A fibred symmetric monoidal functor is a map of fibratidas K):

E—L>F
B>

together with vertical fibred natural transformatioms, m;, such that for each obje& in B the functor
(Fz,mz=, (mr)=) is an SMC functor. We say thdt is strong (strict) ifm,m; are fibred isomorphisms
(identities).

A fibred symmetric monoidal natural transformation fréf, K') to (H', K') is a natural transformation

185

of fibred functorga, () as usual, as in

E

pl P
K

B

P T

EI/

— 8 =5
K/

such that the usual diagrams are commutative. Notice that these diagrams need not be vertical, for example,
the diagram

H(-)® H(=) ™~ H((-) @ (=)

a®al \La
Hl

H(-)®H'(=) == H((-)® (=)
projects viap' to
Kp(—) —*~ Kp(-)

lﬁm lﬁm

K'p(=) — K'p(-)
sincep(—) = p(=) (so the vertical maps are not vertical .. .)

Having defined what the 2-category of fibored SMC's is, we can derive the notion of a fibored symmetric
monoidal adjunction. We focus on the case of a fibred symmetric adjunction over a specific base category.

The pair of fibred functorg’, G in

is called a fibred symmetric monoidal adjunction if

e the two fibrations are fibred symmetric monoidal,
¢ the two functorsF, G are fibred symmetric monoidal,

¢ there exist fibred vertical symmetric monoidal natural transformatiofsG = idp,n: idg = GF
such that in each fibre ov&r € B, these are counit and unit of the adjunctigsn - G=.

There is a fibred version of Theorém11.4.

Theorem 2.2. A fibred adjunction

between fibred symmetric monoidal fibrations is a symmetric monoidal fibred adjuncttoisifftrong.

186

Proof. The left adjoint of a fibred symmetric monoidal adjunction is strong since it is strong in each fibre.

For the other direction, we notice that the constructions:6f m? as described after Theor1.4 give us
fibred natural transformations, which satisfy the desired properties, since they satisfy them in eachfibre.

Definition 2.3. A fibred linear adjunction is a fibred symmetric monoidal adjunction

whereD is fibred SMCC and the fibred tensor-productlbis a fibred cartesian product.
A map of fibred linear adjunctions from

F/
DME to I 1 SFE
\ / \G’/
B/

is a pair of fibored mapsH,L): (D — B) —» (D' — B') and(K,L): (E — B) — (E’ — B’) (over the
same map in the base categories) such {#atL) is a strict map of fibored SMCC'’s preserving the induced
comonad on the nose, ad’, L) is a strong fibred map of SMC'’s such that the diagrams

G F

D——FE——D

ot b
g Ly

commute up to vertical isomorphism.
A natural transformation of fibred linear adjunctions from

((#,L),(K, L)) to ((H,L), (K", L))

(notice that thg H, L) components of the two maps of fibred linear adjunctions are the same) is a vertical
natural transformation fronk to K’ over L.

Again, this may seem a strange definition of natural transformations, but we have chosen this definition to
give us a restrictive notion of equivalence of fibred linear adjunctions.

Definition 2.4. A fibred linear category is a fibred SMCC with a fibred symmetric monoidal comonad, and
fibred symmetric monoidal natural transformationgl such that for each fibre, the restriction of the data
mentioned constitutes a linear category.

A morphism of fibred linear categories is a strong fibred morphism of SMCC's preserving the comonad
structure on the nose as in Definitipn 1.10. It is called strict, if the functor is a strict fibred symmetric
monoidal functor.

Proposition 2.5. There is a forgetful functor from the category of fibred linear adjunctions to the category
of fibred linear categories with strict morphisms.

187

Proof. The proof of Propositiop 1.14 clearly generalizes. O

On the other hand, suppose we are given a fibred linear caté€geryB with comonad. We can construct

the category of coalgebras for the comorf&idas having as objectgertical mapsA —!A and the rest of

the construction as usual. This gives a fibratiBn— B. Likewise, we can construct the co-Kleisli fibration

C, — B by taking each fibre to be the co-Kleisli category of the restriction of the comonad, and letting
reindexing be the obvious choice. Finally, we can constiljct- B fibrewise as we did in the Secti@.&

Lemma 2.6. Given a fibred linear categor§ with comonad, the fibred adjunction

Uy
CZ__ 1 =

N

B

is a fibred linear adjunction. This construction extends to a functor which is right inverse to the forgetful
functor of Propositiof 2]5.

Definition 2.7. A PILL-model is a fibred linear adjunction

Cwm

N

B

“ﬁl—)@

equivalent to (in the category of fibred linear adjunctions) the fibred linear adjunction induced by the
comonad~F as in Lemma@ 2|6 and such that further

e the categon is cartesian

¢ the fibrationC — B has a generic object projecting fdin B, and products with respect to projections
ZExQ—ZinB.

The condition of the fibred linear adjunction being equivalent to the fibred linear adjunction induced by the
comonad means that there exists mapd< fibred overB as in

*
GF
Uér
K| |H
Fer
G
= T
C - D
F

such thatH, K are strong maps of fibored SMC’s and constitute a fibred equivalence, and such that the
obvious four triangles commute up to vertical isomorphisms.

Definition 2.8. A morphism of PILL-models is a morphism of fibred linear adjunctions such that the SMCC
part of the functor preserves generic object, products in the base and products in the fibration.

188

Definition 2.9. A PILLy-model is a PILL model with a polymorphic fixed point combinator
Y: []a: Type. (o — a) — a.
A morphism of PILLk-models is a morphism of PILL-models preserving

The following Proposition is a trivial generalization of Proposifion]L.19.

Proposition 2.10. Given two PILL-models and a morphism of fibred linear categories between the corre-
sponding fibred linear categories preserving generic object, products in the base and the simple products,
there exists an extension of this map to a map of PILL-models. The extension is unique up to vertical
isomorphism.

Lemma 2.11. The fibrationCy — B is isomorphic to the fibration obtained by defining each fibre as in
Lemmd 1.200 and defining reindexing to be the obvious choice.

Proof. The two fibrations are fibrewise isomorphic by Lemjma [1.20, and we just need to check that the
isomorphism commutes with reindexing, which is obvious. O

Proposition 2.12. Suppose the linear fibratio@ — B with comonad has fibrewise products. Then the
usual fibred adjunction betwednandC, is a fibred linear adjunction, and there exists an equivalence of
fibred linear adjunctions between this and the fibred adjunction betWesnd C;.

Proof. The proof of Propositiop 1.21 clearly generalizes. O

References

[1] A. Barber. Linear Type Theories, Semantics and Action CalcihD thesis, Edinburgh University,
1997. [(documenit), 1.2

[2] P.N. Benton. A mixed linear and non-linear logic: Proofs, terms and models (preliminary report).
Technical report, University of Cambridge, 1995. |1.1] 1.2

[3] Masahito Hasegawa. Categorical glueing and logical predicates for models of linear logic. 1999.

[4] B. Jacobs.Categorical Logic and Type Theqryolume 141 ofStudies in Logic and the Foundations of
Mathematics Elsevier Science Publishers B.V., 1999.

[5] G. M. Kelly. Doctrinal adjunction. IrCategory Seminar (Proc. Sem., Sydney, 1972/19%R)es 257—
280. Lecture Notes in Math., Vol. 420. Springer, Berlin, 194.] 1.1

[6] Maria E Maietti, Paola Maneggia, Valeria de Paiva, and Eike Ritter. Relating categorical semantics for
intuitionistic linear logic. Technical Report CSR-01-7, University of Birmingham, School of Computer

Science, August 2001. (document),|1.3,1.18

[7] Paola ManeggiaModels of Linear PolymorphisnPhD thesis, University of Birmingham, Feb. 2004.
(document)

[8] Paul-Andé Mellies. Categorical models of linear logic revisitetheoretical Computer Sciencdo
appear.[1]1

189

Synthetic Domain Theory and Models of Linear Abadi & Plotkin
Logic

Rasmus Ejlers Mggelberg
Lars Birkedal
Giuseppe Rosolini

Abstract

In a recent article[[3] the first two authors and R.L. Petersen have defined a notion of parametric
LAPL-structure. Such structures are parametric models of the equational theory ,Rildolymorphic
intuitionistic / linear type theory with fixed points, in which one can reason using parametricity and, for
example, solve a large class of domain equatiofs| [3, 4].

Based on recent work by Simpson and Rosolini [14] we construct a family of parametric LAPL-
structures using synthetic domain theory and use the resudts.afit. and results about LAPL-structures
to prove operational consequences of parametricity for a strict version of the Lily programming language.
In particular we can show that one can solve domain equations in the strict version of Lily up to ground
contextual equivalence.

Contents

(1__Introduction| 193

[2 Synthetic Domain T'heory 194
21 Poinfedsets 195
2.2 Domainsand predomains e 198

[3 The category of domains 199

4__The domains fibration 203

[5 The parametric fibration| 207

6 The LAPIL -sfructure 214

[/ Proving consequences of parametricity for Lily.| 220
|/.1 Thelanguage Lily;f. - oo v oo 221
[/.2 Translating PILk- into Lily| 225
[/.3 Consequences of parametricity Tor Iy o 231

[B_Conclusion 232

191

A Tensor products in parametric LAPL-structures| 233

192

1 Introduction

It was first realized by Plotkir [10,] 9] that PIkL, a polymorphic type theory with linear as well as intu-
itionistic variables and fixed points, combined with relational parametricity has surprising power, in that one
can define recursive types in the theory. This theory can be seen as an approach to axiomatic domain theory
where the concept of linear and intuitionistic maps correspond to strict and non-strict continuous maps be-
tween domains. In this approach recursive domain equations are solved using polymorphism instead of the
traditional limit-colimit construction.

In [10] Plotkin also sketched a logic for reasoning about parametricity for PI{the logic is a variant of
Abadi & Plotkin’s logic for parametricity [11]) and how to solve domain equations for Rlldnd prove
correctness of the solutions in the logic using parametricity.

Recently the first two authors together with R.L. Petersen have given a detailed presentation of the logic
sketched by Plotkin and defined the categorical notion of parametric LAPL-structure (Linear Abadi-Plotkin
Logic), which are models of the logiC![3} 4]. Using Plotkin’s constructions one can solve recursive domain
equations in LAPL-structures. loc. cit.a concrete domain theoretical LAPL-structure based on admissible
pers on a reflexive domain is constructed, and in [7] a parametric completion process along thellines of [12]
is presented constructing parametric LAPL-structures out of a large class of models ef. PILL

In recent work Simpson and Rosolini_[14] have constructed an interpretation (or rather a family of inter-
pretations) of Lily,; — a strict version of Lily [1] — based on Synthetic Domain Theory (SDT). The
interpretation uses a class of domains in an intuitionistic set theory, and the type constructors are interpreted
using simple set-theoretic constructions. It is a result of SDT that such a theory has models, and for each
such model the construction of [14] gives an interpretation ofg,ily, but one does not have to know the
details of these models to use the interpretation.

Simpson and Rosolini further show how one can use the interpretation to prove operational properties of
Lily 4ict- N particular, they prove a version of the strictness theorem for Lily [1] for the new language
Lily ¢ier- The strictness theorem states that the two versions of ground contextual equivalence obtained by
observing termination at lifted types for a call-by-value and a call-by-name operational semantics coincide.
They show that the interpretation is adequate with respect to this ground contextual equivalence.

In this paper we present a parametric LAPL-structure based on the interpretation gf.Laf/[14]. We

have three motivations for this work. First of all, we would like to show that the concept of parametric
LAPL-structure is general enough to incorporate many different models. As mentioned we have already
constructed a concrete domain-theoretic parametric LAPL-structure and shown how to construct parametric
LAPL-structures from PILk -models using a parametric completion process. In a future paper we intend
to construct a parametric LAPL-structure using operational semantics of Lily, showing that the parametric
reasoning used in [1] can be presented as reasoning in an LAPL-structure.

Our second motivation is that the interpretation presented in [14] is parametric and thus one should be able
to solve recursive domain equations in it. Proving that the interpretation gives rise to an LAPL-structure
provides a formal proof of this.

Our third motivation is that we can use the LAPL-structure and the adequacy of the interpretation,gf; Lily
to show formally consequences of parametricity for Ljjy. This builds upon the idea from [14] of giving
denotational proofs of the theorems|in [1], and extends it to prove properties not includéed in [1].

We assume that the reader is familiar with LAPL-structures but assume no knowledge of synthetic domain
theory. In Sectiof]2 we introduce synthetic domain theory as presented in [14], constructing a category of
domains. In Sectiorjg[4-6 we present the LAPL-structure. We first present a model gf Béised on the

193

category of domains, then we create a parametric version of this model, and finally we construct the full
parametric LAPL-structure.

In Section ¥ we show how to use the parametric LAPL-structure to reason aboyt.ilyn particular,
we show how to solve recursive domain equations ingdjly First, however, we present the language and
sketch the results of [14].

In AppendixX A we address the following question: Itis well knowni[10] that in RH_using parametricity,
the type for tensor products can be expressed using the other constructions of the language:

o7 2 [[a. (0 —T —oa)—oa.

Does this mean that if one leaves out tensor products of PJlthen one obtains a language as expressive

as the original PILk ? In particular, there could exist terms in PH:Lthat could not be expressed without

using let-expressions, which of course cannot exist in the language without tensor products. The answer
to the question is yes, and the appendix is included here because this result is needed for solving recursive
domain equations in Lilyic.

Acknowledgments.We thank Alex Simpson for helpful discussions.

2 Synthetic Domain Theory

The idea of synthetic domain theory as originally conceived by Dana Scott is to consider domains as simply
special sets, and maps between them as all set-theoretic maps. Of course, one of the points of classical
domain theory is that all continuous maps have fixed points, and so all set-theoretic maps between domains
should have fixed points. Classically this entails that all domains are trivial, sin€eigfa domain and

xz,y € X, x # y we can define the map: X — X as

Yy 2=z

f(z):{ Tzt

Clearly this f cannot have a fixed point. This argument does not hold in intuitionistic set theory since the
map f is not constructively definable. In fact, in some models of intuitionistic set theory interesting classes
of sets with the property that all endofunctions have fixed points do exist.

In this section we recall the approach to synthetic domain theory (SDT) preserited in [14]. In fact we follow
[14] closely, but add some details and proofs to assist the reader. In their paper, Simpson and Rosolini work
informally in an intuitionistic set theory, which formally may be taken to be [ZF [15]. For later purposes, we

will need to be a bit more refined, but we postpone this issue to S¢gtion 4. Simpson and Rosolini’s axioms
for SDT assume given a class of special sets called predomains satisfying certain conditions. Domains are
then defined to be pointed pre-domains, and another axiom states that all endomaps on domains have fixed
points.

We emphasize that there do exist models of SDT as presented here. For example, SDT can be modeled
in any realizability topos satisfying th&trong completeness axioofi [6], by taking predomains to be the
well-complete objects.

In the rest of this paper we will use synthetic domain theory to construct an LAPL-structure. To be precise,
the construction actually gives us a large family of LAPL-structures, since we get one for each model of
SDT.

194

2.1 Pointed sets
Consider the powerset of the one-point ket {0}
Q= P(1).

In intuitionistic set theoryf2 is not just the sef(, {(}} as it is classically. In fact for every propositign
one can associate the element

{01p} e

and for each elemer¥ € 2 one can associate the propositiba X, and these associations are each others
inverses up to provable equivalence of propositions. Motivated byShscalledthe set of truth values

Simpson and Rosolinis first axiom is that a Be€ € of truth values is given. The sg&tis to be thought of
as the set of truth values of propositions of the form “P terminates”, for programs P.

Axiom 2.1. The subset C) is a dominance [13], i.e.,

e T €.

e lfpeX geQandp D (qe X)thenpAge .
For eactp € ¥ consider the set
XP={ACX |V, €e A x=2")A((3z € A) T p)},

i.e., X? is the set of subsingleton subsetsof X which are inhabited (i.e3Jx € A) with truth valuep.
There is a canonical isomorphisfi = X T,

Definition 2.2 ([14]). A pointed set is a paiX, (r,),cx) whereX is a set and for each € X, r,: X? —
X is a map such that

o forallz € X, rr({z}) ==

o forall p,q € &, e € XP'9,
rpag(e) = mp({rpaqle) | p})
The definition above is a generalization of the classical concept of pointed set. In that eadel, T},

and a pointed set is a s&t with two functionsr+, r, . The first condition of Definition 2|2 tells us that
is the isomorphisnX " = X and sinceX* = {()}, », simply corresponds to a point iK.

A strict map is simply a map preserving the pointed structure.

Definition 2.3 ([14]). A strictmap from a pointed s€tX, (7,,),¢cx) to a pointed setY, (s,),cx) is a map
f: X — Y suchthatforallp € ¥ ande € X?

f(rp(e)) = sp({f(2) | w € €})

Following [14], we will often leave the pointed structure implicit and simply wikefor a pointed set
(X, (rp)pex). Write f: X — Y to denote thaf is a pointed map, and writ¥ — Y for the set of pointed
maps fromX to Y. Simpson and Rosolini define a subsét C X to be a subpointed set of if for all
p € ¥ ande € (X')P the pointr,(e) is in X', where(r,),ex is the pointed structure oi.

195

Lemma 2.4. For any pair of strict mapy, g: X — Y, the equalizer of andg
{ze X | f(z)=g(2)}

is a subpointed set of .
Proof. DefineE = {x € X | f(x) = g(z)}. Foranyp € ¥, e € EP we must show that,’ (¢) € E. But

flry(e)) =ry ({f(x) | x € e}) =1y ({g(2) | x € e}) = g(r7' (€)).

Lemma 2.5. For all setsX and families of pointed se{§’, (1) 5%)pex)zex, the family of maps

rpe e Y (o) = (1Y ({ma(2) | 2 € €}))aex

wherer,: [[,cx Y: — Y, denotes the projection, define a pointed structurd pp) - Y,.. This defines a
categorical product in the category of pointed sets and strict maps.

Proof. Suppose € (], Y:)*" for somep, ¢ € ¥. Then

Yy
k(€)= (g ({ma(2) | 2 € ehoex =
(ry= ({rprg({ma(2) | 2 € €}) | P}))aex =5 ({rpry “(e) | p})-
This proves that the maps define a pointed structure. Since any pairing of strict maps is strict, this defines a

product in the category of pointed sets and strict maps. O

Lemma 2.6. For any setX and all pointed set$Y, r)) cs, the maps;‘ —Y defined by

o) = @y ({f(@) | f € e}))

define a pointed structure o — Y. If, moreover,X is pointed, then the seét — Y is a subpointed set
of X -»Y.

Proof. As alwaysX — Y =[], .x Y and the pointed structure defined above is just the product structure.
We proceed to show thaf — Y is a subpointed setof — Y.

Define the seL X = | J, .y X?. The setX — Y is the equalizer of the two maps

pPEXL

¢, P (X =Y) = (LX =Y)

defined as
o(f)le) = ry({f(z)|zee})
w(f)le) = fr)(e))
fore € X?. By Lemmd 2.4t it now suffices to show thaty are strict. Supposee X? andf € (X — Y)4.
Then
qﬁ(rfﬁy(f))(e) =ry (Ird 7V (@) |z ee}) =
ry ({ry {o(=)!g€f})|w€e}-

Now, supposey € {rY ({g(z) | g € f}) | = € e} then there exists an € e, i.e., p holds andy =
Y ({9(z) | g € f}). On the other hand if

y€{rgpy(@) lge frzee})|3ace}

196

thenp holds andy = 7} ({g(z) | g € f}). Thus

{rg Hg(z) g€ f}) |z € e} = {rpp({g(x) g€ fAz e} |z e}

and so
ryp({%q({g(r)|gefrz€e}|Iree})=
ng{g(x) g€ f Az €e}).

Likewise

rget "V ({e(9) | g € fH(e) =ry ({o(9)(e) | g € f}) =
rg ({ry {g(a) |z €e})[ge f}) =
ry ({rng{9(@) [z €enge f})[Tge f}) =rmpao@) |zceng e f})
and so¢ is strict.
To see that) is strict, compute

D(rgd Y ()(e) =

and

re Y ({(0(9) | g € fH(e) =y ({v(9)(e) | g € f}) =
P ({g(r) () | 9 € 1))

So ¢ is strict, and we conclude thaf — Y is an equalizer of strict maps frod/df — Y and so is
subpointed. O

However, neither— nor — define a cartesian closed structure on the category of pointed sets and strict
maps. Clearly— defines a cartesian closed structure on the category of pointed sets and all maps, and as
will be shown later—o is part of a symmetric monoidal closed structure on a category of domains.

Simpson and Rosolini introduce a free pointed structure, (;:,),cx) on any setX as

Lx=Jx* mE)=E

pEY
i.e., forEin (LX)P, up(E) ={x €e|ec E}.
Lemma 2.7. For all X, (LX, (up)pex) is a pointed set.

Proof. We first show that for alE, p,(E) € LX, i.e.,(3z € p,(E)) € X. The setu,(E) is inhabited iff
there existe € £ andx € e, butife € E, then(3z € e) € X. This means that setting= 3z € p,(E),
we havep D (¢ €) and so by} being a dominance, we hawye\ ¢ € X. Sinceq D p,p A ¢ = q.

We check thaty,), defines a pointed structure. Cleagly ({e}) = e. If E € (LX)P"? consider the
equation

tong(E) = pp({tpaq(E) | p}).
For any of the two sides to be inhabited\ ¢ must hold, and in this case both sides reducg'to O

For f: X — Y, define
Lf:LX - LY
by
Lf(e) ={f(z) |z € e}.

197

Proposition 2.8. The construction () defines a functor from the category of sets to the category of pointed
sets with strict maps. This functor is left adjoint to the forgetful functor.

Proof. For functoriality we simply check that(f) is pointed. Supposg € (LX)P?, then
m({L(f)(e) |e € E}) = pp({{f(2) |z € e} [e € E}) = {f(z) | e € E.x € ¢}

and
L(f)(up(E)) =L(f){z |Je€c E.x ce} ={f(x)|3e€ E.x € e}.

SoL(f) is pointed.

The adjoint correspondence associates to each strictfmaX — Y the set theoretic map — f({x}).
To prove that this association is injective, we prove that pointed maps auX adre uniquely determined
by their values on singletons. Suppose that X — Y is pointed, an@& € XP. Since

e = w({{a} |z ce))

we have

g(e) = g(mp({{z} |z € e})) =y ({g({z}) | 2 € €}).

To show that the correspondence is surjective, supgosE — Y is a set theoretic map, and consider
f:LX — Y given asf(e) = r},’({f(x) | x € e}). Clearly f({z}) = f(x), and so we just need to show

that f is pointed. Suppos& € (LX)? and defing; = (3 € ,,(E)). Then

Fple) = f{z | 3e € Box € e}) =1 ({f(x) | e € Bz € c}).

On the other hand

Y ({f(e)| e € B}) = v} ({rasec({f(x) |z € €}) | e € E}) =
r;/({r(;/({f(x) | de € ENnz €e})|p}).

Sinceq D p, p A ¢ = ¢ and so by the last rule of Definitign 2.2 the last part is simply
T;/({f(x) | de € ENnz€e}),

which proves thaf is pointed. O

Lemma 2.9. ¥ = L1 and so has a pointed structure.

2.2 Domains and predomains
As said, one of Simpson and Rosolini’s axioms states that a class of special sets called predomains is given.
Axiom 2.10. There is a class of seBredom called predomainsuch that

e If A= BandA is apredomain, then so 8.

e For any set-indexed family of predomaif4,).c x the produc{{ [,y A, is a predomain.

e For any pair of functionsf, g: A — B between predomains, the equalizerfadndg is a predomain.

e The set of natural numbef$is a predomain.

198

e If Aisapredomain, soisA.

Lemma 2.11. The setd andX. are predomains.
Proof. The setl is the empty product and so is a predomain. Thexsistisomorphic ta_1. O

Since predomains will be used to model polymorphism it would be desirable to Isatefall predomains,

such that products can be defined over this set. This is unfortunately too much to ask for, so instead Simpson
and Rosolini ask for the existence of a set of predomains containing representatives of each isomorphism
class of predomains.

Axiom 2.12. There exists @&etof predomain®® such that for any predomaid there exists a predomain
B € P such thatd = B.

Definition 2.13 ([14]). Adomainis a pointed predomain. Denote Byom ; the category of domains with
strict maps and byPom the category of domains with all maps. Bydenote the set of pointed structures
on objects oP, i.e.,

D = {(B, (rp)pex) | B € P, (1,)pex is a pointed structure oif3 }

Clearly the seD has the property that for al € Dom | , there exists an elemeht € D such thatd = B
in the categoryDom | .

Simpson and Rosolini’s last axiom states that all endomaps on domains have fixed points.

Axiom 2.14. For every domaim there is a function fix: (A — A) — A such that

o fix, gives fixed points, i.e., for anf: A — A,
Ffixy(f)) = fixy

e The maps fix satisfy a uniformity property, i.e., for any domakhand any set of mapg: A — A,
g: B — B,h: A — B such that
A N A
h h
B—2-B

commutesh(fix, (f)) = fixz(g).

3 The category of domains

In this section, it is shown thd@Dom is cartesian closed)om ; is symmetric monoidal closed, and there
is a symmetric monoidal adjunction

Dom | 1 Dom

where the left adjoint is the lifting functor and the right adjoint is the forgetful functor. This will prove that
there is a linear structure ddom | . These results are basically taken frami [14].

199

Lemma 3.1. The categoryDom | is complete.

Proof. This is immediate from Axiorfi 2.10 and Lemnjas|2.5] 2.4. O
Lemma 3.2. If A, B are predomains, then so ¥ — B. If A, B are domains, then so is aml — B.

Proof. For the first pard — B =[], , B and soA — B is a predomain by Axiorp 2.10.

For the second part, notice that in the proof of Lenima 2.6 it is showntthat B is the equalizer of pointed
maps between domains — B andLA — B, and so by Lemm@a 3.1 is a domain. O

This lemma has two corollaries.
Corollary 3.3. The categoryDom is cartesian closed.

Corollary 3.4. (—) — (=) defines a functoDom | °® x Dom; — Dom | .

Proof. It only remains to check that for each strict magpA — A’ between domains, and for each domain
B, the mapgf — B): (A’ — B) — (A — B)and(B — f): (B — A) — (B — A’) are strict. This is
an easy exercise. O

Definition 3.5 ([14]). Supposef: A x B — C'is a map between domains. Say tlfas strict in the first
variableifforall p € X, e € AP,y € B

Flrp(e),y) =) ({f(z,y) | z € e}).

Likewise one can define what it means fao be strict in the second variable. The mAjs calledbistrict
if it is strict in both variables.

The ® part of the symmetric monoidal structure Brom ; (to be defined below) will satisfy the universal
property that strict maps out of ® B correspond bijectively to bistrict maps out.4fx B.

Lemma 3.6. Bistrict maps are strict.

Proof. Supposef: A x B — C'is bistrict. Using the isomorphisifd x B)P = AP x BP we must show
that

frae),riy(e)) =re({f(z,y) [z € e,y € f})

foranyp € 3, e € AP, f € BP. We compute

Flry(e),ry (9) = vy ({f (@, (9) | w € e}) = v ({5 {F (2.y) | y € g} |z € €})

Since
{ry{f(@y) lyegt|zeet={f(z,y)|zceycg}
we get
Frie),r)(9) = ry ({f(z,y) [z € e,y € g})
which shows thay is strict. O]

Strict maps are not necessarily bistrict, for example projections are in general strict but not bistrict.

200

Lemma3.7.1f f: A x B — C'is bistrictanda: A" — A,b: B’ — B, c: C — (' are strict maps, then
co fo(axb)
is bistrict.

Proof. This follows easily by direct calculation. O

Lemma 3.8. Strict maps fromA to B — C correspond by currying to bistrict maps x B — C.
Proof. First assume that: A — (B — (). We show thatf: A x B — C is bistrict. Ife € A?,y € B

then
(e) y) = f(ry(e)(y) —TB*’C(A{J’(:C) |z €e})(y) =
rs ({f(2)(y) |z ee}) =rf({f(z,y) |z €e})

andifee BP,x € A,
fla,r)(e) = f(2)(r)(e)) = rf ({f(@)(y) |y € e}) =) ({F(z,) | y € €}),
using thatf (z) is strict.
Assume on the other hand théts bistrict. We first show that for alt € A4, f(x) is strict:
f@) () () = fla,r) (€)= vy ({fz,9) [y € e}) = ({f(2)(y) | y € e}).

To show thatf is strict, we must show that fare AP,y € B, f(r;‘(e))(y) = TE_C’C({f(:c) |z € e})(y).
But by definition ofr/—,
ry O ({f(@) |z € e})(y) =y ({f@)(y) |z € e}) =
rS{f(z,y) |z € e}) = f(rite),y) = f(r(e)(y).
]

Lemma 3.9. There exists a functdqr-)® (=): Dom ; x Dom; — Dom; and a domain’ givingDom ;
an SMCC-structure.

Proof. For each domai® the functorB — (—) defined on the category of domains preserves small limits.
The existence of the s tells us that the solution set condition is satisfied, and so by the Adjoint Functor
Theorem,B — (—) has a left adjoinB ® (—).

Using Lemma 3.8 we see that
A—-o(B—oC)2B—o(A—C)

and thusA ® B = B ® A. Thus we can define-) ® (=) as a functor in two variables.
The domain/ is defined a4 (1) (which by the way isZ). This defines a unit for the tensor since

IR A—oB>]—-o(A—-oB)=1—(A—-B)~XA—B.

O]

Lemm4 3.8 gives a correspondence between strict Map® — C and bistrict mapsi x B — C, natural
in C. This correspondence is of course given by a universal map, which is the subject of the next lemma.

201

Lemma 3.10. There exists a natural transformation (—) x (=) — (—) ® (=) such that the correspon-
dence between strict maps out of the tensor and bistrict maps out of the product is given by composition with
this natural transformation. Each component of the natural transformation is bistrict and thus strict.

Proof. The component of the unit of the adjunctiér) ® B 4 B — (—) at A is a strict map fromA to
B — A® B, which corresponds to a bistrict map A x B — A® B. This map induces the correspondence
between bistrict maps out of x B and strict maps out ofl ® B, and we proceed to show thats natural.

Naturality of the unit is the commutative diagram
A——o(B — (A® B))
f L LB%(f@B)
A —(B — (A'® B))

which gives naturality in the first variable gf Naturality in the second variable follows by symmetry.]

Lemma 3.11. The forgetful functot/: Dom_ ; — Dom is a symmetric monoidal functor with respect to
the cartesian closed structure @om.

Proof. We need to construct the natural transformatioH: (—) x (=) — (—) ® (=) and the map
mY: 1 — I satisfying the requirements dfl[8, Definition 1.1]. Define the natural transformatiorto
ben of Lemmd 3.1p, and defineY to be the unit of the adjunction of Proposition[2.8ate.,my: 1 — I
is the map giving the correspondence between strict maps dumd general maps out of

We need to check that these maps satisfy the requirements of [8, Definition 1.1]. So first we need to show
that the compositions

XxV)x 2% (XoV)xZ 1~ (XoY)0Z —>Xo (Yo Z)

and
(XxYV)xZ-Xx(Yx2) PTLXxx (Y07 1=Xo Y o2)

are equal for all domain¥, Y, Z. But both compositions induce the same bijective natural correspondence
between maps
(XxY)xZ—->W

strict in each variable and strict maps
XY Q®Z)—oW

so these two maps are equal. For the diagrams

[~=3

IxX — =X XxY —>Y xX

m?xidl l~ nl ln

IxX—T1sT9x X0V —>YoX

both directions in the first diagram induce the correspondence between mapslout &f strict in the
second variable and strict maps outf@ X . For the second diagram, both maps induce the correspondence
between bistrict maps out & x Y and strict maps out df ® X. O

Lemma 3.12. The lifting functor L Dom — Dom | is a strong symmetric monoidal functor.

202

Proof. For all domainsA, B, C

L(AXB)—OC%AXBHC%A—)B%C%)
LA—oLB o (C=ZLA®LB —C

so thatLA ® LB = L(A x B) and by definitionL1 = I. This defines the natural transformation

and mapm; needed foll to be a strong symmetric monoidal functor. Now, of course one will have to
show commutativity of the diagrams ofl [8, Definition 1.1], but this can be done exactly as in the proof of
Lemma3.11. O

Lemma 3.13. The adjunction
L

Dom; ~ | ~Dom

U

is symmetric monoidal.

Proof. The functors of the adjunction are symmetric monoidal and the left adjoint is strong, so the lemma
follows from [8, Theorem 1.4]. O

Lemma 3.14. The functor L Dom_; — Dom extends the SMCC structure on the category of domains
to a linear category structure.

Proof. This follows from Lemma 3.73 and][8, Proposition 1.14]. O

4 The domains fibration

In this section we construct a Plkl=-model based on the linear structure of the cateddom . A first
attempt at such a model would model types witliree variables as maps: (Dom,)j — (Dom)g
where(Dom |), is the class of domains. But to be able to handle polymorphism, we change this model
slightly, such that types become functgis (Dom)},, — Dom where(Dom)i, is the restriction

of Dom to isomorphisms. The idea here is basically thgt:if{ Dom);s, — Dom is a type with one

free variable, then the values gfare up to isomorphism determined by the valueg oh the domains in

D, so we can define the product of all tfig4)’s with A ranging over all domains (i.e., we take the product

over a proper class) as
[laep £(d)

with projection ontof (A) defined as

[aep F(d) == f(d)

defined by taking: d = A. The idea described here will be modified slightly to make the projection
described above independent of the choicé,ef The details are described in Lemmal4.2, and the idea of
modelling polymorphism this way is due {0 [14].

The model described in this section will be modified to a parametric Pitdodel in Sectiof5.

Some of the constructions of the present section cannot be carried out in the set theoretic setting used in
Sectior] 2, since they involve constructions on classes. In particular, @ |), is a class and not a set,

the collection of all class mag®om,)o — (Dom,), is not a class, and so since a category has a class

of objects, we cannot use this collection to construct a category.

203

For the concerned reader, we sketch how these issues may be resolved. As the given model of SDT, we
will assume that we have a category of classes satisfying the axioms of Joyal and Moerdijk's algebraic
set theory([b] as refined in_[17] with the notion of classic structure on a regular category with a universe
and a small natural numbers object. Given such a setting, the catefsiesand Dom ; mentioned

above are internal categories in the regular category of classes while the collection of all internal functors
(Dom,)g — (Dom,)y is aclass in the external sense, since itis a subclass of the class of morphisms of the
category of classes. Thus the fibrations in Lemimé 4.7 are defined externally. The examples of realizability
toposes mentioned in Sectioh 2 still provide models as they embed into categories of classes as described in
[18].

The reader should keep in mind that we really construct a family of parametric LAPL-structures. Since the
LAPL-structure is constructed using SDT, we get a parametric LAPL-structure for each model of SDT.

We now begin the detailed description of the model. Consider the catéfsyn |);s, obtained from
Dom by restricting to the isomorphisms. We will define the fibration

DFam(Dom) — {(Dom)}, | n}

by defining the base category to have as objects natural numbers and as morphismgdrenfunctors
(Dom,)}y, — (Dom)} . Objects inDFam((Dom,);s,) overn are functorDom |)

iso-*

and morphisms are natural transformations. Reindexing is by compaosition.

n
Yo — Dom

Lemma 4.1. The fibration
DFam(Dom) — {(Dom)}, | n}

iso

has a fibred linear structure plus fibred products.

Proof. Supposef,g: (Dom)},, — Dom are objects oDFam((Dom,|);s,),, We definef @ g by

iso

composing the pairingf, g) with the functor®: Dom; x Dom; — Dom,. Products are likewise

—

defined pointwise, and the comonad is given by pointwise applicatidn di/e define(f — ¢)(D) =

f(D) — g(D) and ifi: D — D' is a vector of isomorphisms, théif — ¢)(¢)(h: f(D) — g(D)) =
g(i)oho f(i™1).

Finally, we notice that the equations required for this to define a fibred linear structure hold, since they hold
pointwise.]

n+1

Lemma 4.2. There exists right Kan extensions for all functgfBBom)?..;" — Dom along projections

(DomJ-)?;zl - (DomJ-)Tilso :

Proof. Supposg: (Dom)"! — Dom . We defineRK,(g): Dom?,

iso

o — Dom as

RK(9)(A) = {z € [[pep 9(A, D) | VD, D' € D,i: D — D'iso. g(A,i)xp = xp'}
This is a domain since it is the limit of a diagram of domains, and the category of domains with strict maps

is complete with limits as computed in sets.

The required adjoint correspondence is given as follows. Supfo@@om){;, — Dom, and¢: 7* f =
g. The A component of the natural transformatibnf = RK(g) is given by the family(t ; ,)pep. We

—,

need to show that this map has image in the suRsgt(g)(A), but this follows from the naturality diagram

204

for t:
o th,D -
(mf)(A, D) —=g(A, D)
(w*f)(id,i):idl Lg(z&i)
* A tap 1T

(m*f)(A, D") ——=g(A, D)
which commutes for each isomorphismD — D’.
Suppose on the other hand thatf = RK;(g). Given any domaitB, there exist$: D — B isomorphism,

and we define ; ,: f(A) — g(4, B) as the composition

Ltz ST 0: %) R
f(A) ——=RKx(g)(A) ——g(A, D) —=g(4, B)

wherenp is the projection onto thé’th coordinate. We show that this definition is independent of the
choice ofD, i. So suppos@®’, i’ is another such choice, then we have a commutative diagram

—,

RK(g)(A) —>—=g(A, D) ==4(A, B)

where the first triangle commutes by definitionRK ;(¢) and the second triangle commutesdlpeing a
functor.

One may easily check that these two maps define a bijective correspondence between transformations
7 f = g and transformationg = RK,(g). It is clear that the correspondence is natural. O

Lemma 4.3. The fibration
DFam(Dom) — {(Dom,)}, | n}

iso

has a generic object and simple products.

Proof. The generic object is simply the inclusididom,);s, — Dom, . This is a split generic object
since all functors factorize through it.

Supposg: (Dom,)"l — Dom, . We define the produdi] ¢: Dom”,, — Dom to be theRK,(g).

iso iso

The universal property of Kan extensions then gives us the desired correspondence between maps
™f—yg
f—=1lyg
O

Remark 4.4. From the proof of 42 we can extract the interpretation of type specialization. Suppese

—,

[19(A) and B is any domain. To specializeto B, we choosé) € D andi: D — B and define
(B) = g(4,i)(xp)

wherexp is the D'th component ofc. As we have proved, this definition is independent of the choice of
D, .

205

Consider the fibratiodFam(Dom) — {(Dom)%, | n} defined to have as objects in the fiber oxer
functors(Dom)., — Dom and as vertical maps natural transformations.

iso

Lemma 4.5. The fibrationDFam(Dom) — {(Dom)%, | n} is equivalent to the fibration of finite
products of free coalgebras for the comorath DFam(Dom) — {(Dom)%, | n}. The maps of the
equivalence together with the identity Brffam(Dom) form a map of fibred adjunctions.

Proof. The fibrationDFam(Dom) — {(Dom,), | n} is the coKleisli fibration corresponding to the
fibred comonad oD Fam(Dom,) — {(Dom)%, | n}. Now apply Proposition 1.21 of [8]. O

iso

Lemma 4.6. The model

DFam(Dom) = 1 DFam(Dom)

\/

{(Dom)fy, | n}

iso

modelsY.

Proof. We defineY = (fixp) pep. Strictly speaking, thisfix,) pep is an element of the wrong set, since

(fixp)pep € [[pep(D — D) — D

and we need an element in the $¢, ., L(LD — D) — D. But these sets are isomorphic, and in
the following we work with implicit isomorphisms between them. We need to check(tixaf) pcp in
fact defines an element in the typf| .. (@« — «) — a], i.e., the right Kan extension of the functdr —
[(D — D) — D]. So we need to check that for all D — D’ isomorphisms between elemeiits D’ € D

(i — 1) — 1)(fixp) = fixp,

But ((i — i) — i)(fixp,) is the map that maps a functigh D’ — D’ to i(fix,(i~! o f o 7)) and since the
diagram

DiflofoiD

)
LD

commutes, uniformity ofix implies that for allf: D’ — D’

We have proved that in fact defines an element §f[. (a« — a) — a].

We need to check that!(Y A!f) =Y A!lf for all domainsA and all mapsf: A — A. As explained in
RemarK 4.14, the teriii A is modeled by choosing an isomorphismD — A for some domairD € D and

setting[Y" A] = ((¢: — i) — 9)fixp, which as we saw before, by uniformity, simplyfis,. Now, to interpret
[Y A(1f)] = fix,(f) we should strictly speaking apply the elementf A — A) — A corresponding to

fix, to {f} wheref: LA — A is the strict map corresponding fa A — A, but this just givesix, (f) as
one would expect. Likewisgf (Y A (1f))] = f(fix, f), which is equal tdix 4 (). O

We sum the above to the following

206

Proposition 4.7.

DFam(Dom)) 1 ~—_DFam(Dom)

\/

{(Dom)%, | n}

iso

is a PILLy-model.

5 The parametric fibration

In this section, we basically apply a parametric completion process aslinl[12, 2] to the model of the last
section. Types in the resulting model will be types in the old model with a relational interpretation mapping
identity relations to identity relations, i.e., satisfying the identity extension schema. First we discuss two
notions of relations.

By a relationR between domaingd, B we mean a subset of x B and we writeRel(A, B) for the set of
relations fromA to B. By an admissible relation between domaihsB we mean a subdomain of x B
and we writeAdmRel(A, B) for the set of admissible relations fromto B. This is also the notion of
admissible relations used in [14]. We shall often wiiter, y) for (z,y) € R.

Lemma 5.1. Admissible relations are closed under reindexing by strict maps and arbitrary intersections,
i.e.,,if R: AdmRel(A,B)andf: A" — A, g: B’ — B are strict maps between domains then

{(z,y): A" x B"| R(f(x),9(y))}

is an admissible relation, and {R, : AdmRel(A, B)),cx is a set-indexed family of admissible relations,
then
{(y,2): Ax B |Vz: X.Ry(y,2)}

is admissible.

Proof. Reindexing is given by pullbacks

{(z,y): A x B Ij%(f(x),g(y))} 1%
A x B il AxB
and intersections are limits, so the lemma follows frBmam ; being complete. O

Consider the categorkdmRel(Dom |) whose objects are admissible relations on domains, and whose
morphisms are pairs of strict maps preserving relations, i.e., mapping related elements to related elements.
We denote byAdmRel(Dom |)iso the restriction oAdmRel(Dom) to isomorphisms, i.e., morphisms

in this category are pairs of isomorphisii)s g) such that f, g) as well ag f~*, g~ !) preserve relations.

We have canonical reflexive graphs of functors:
AdmRel(Dom |)iso=<—— (Dom |)i, AdmRel(Dom) <—— Dom

where in both graphs, the functors from left to right map relations to domain and codomain respectively and
the functor going from right to left map a domain to the identity relation on the domain.

207

Lemma 5.2. The categoryAdmRel(Dom) has an SMCC-structure and products. The maps of the
reflexive graph
AdmRel(Dom;) <— Dom

commute with the products and the SMCC-structure.

Proof. For R: AdmRel(4, B), S: AdmRel(C, D) we define

R x S: AdmRel(A x C,B x D)
R — S: AdmRel(A — C,B — D)

as
{((z,), (w,2)): (Ax C) x (B xD)|R(z,w)AS(y,2)}
and
{(f,9): (A—C)x (B —D)|Va: Ay: B.R(z,y) O S(f(x),9(y))}-
The relationR x S is easily seen to be admissible from Lenmg 5.1. For eagh

{(f,9): (A — C) x (B — D) | R(z,y) > 5(f(2),9(y))} =
N w)ernf @y {(f19): (A — C) x (B — D) | S(f(z), 9(y))}

where the intersection is taken insidd — C) x (B — D). And soR — S can be written as the
intersection

N N {(f,9): (A— C) x (B — D) | S(f(z),9(s/))}

(z,y)€AX B (z',y")eRN{(z,y)}

of admissible relations, and so is admissible by Lerpmp 5.1.

An admissible relation can be considered as a jointly monic span in the usual sense. For the definition of
the tensor on relations, we will change notation a bit. We wiiter the codomain of the maps of the span

in the following, in order not to confuse this with the relation. The point is that the domain of the relation
R ® S will not necessarily b&? @ S as in the span

R® S
v N
A®C B® D,
obtained by tensoring the two spans
R S
2 Y\

A B C D

since we do not know that this is a jointly monic span. In stead we dé&figeS to be the intersection of all
subdomains of A ® C') x (B ® D) containing the image of this span. Now, f6r AdmRel(E, F) and
t: A® C — E,s: B® D — F the pair(t, s) preserves relations iff there exists a mags making

T

R®S T
PN 7\
ARC B®D E F
~— e 7

t S

208

commute, because if the maxists, then the pullback @f alongt x s is a subdomain ofA® C) x (B& D)
containing the image of the-span. On the other hand, (if, s) preserve relations, then the magan be
defined by composition with x s.

Now, by naturality ofp, the mapr exists iff there exists a mapmaking

u

RxS T

SO\ 7\
AxC B x D) F

\.______.></

8 t

commute, wheré, are the bistrict maps correspondingste. So(s,t): R®S — T correspond bijectively
to bistrict pairgs,¢): RxS — T, and these pairs correspond bijectively to maps ffota S — T showing
that(—) ® S is left adjoint toS' — (—).

The neutral element fap is the identity relation od € Dom ;. MapsR ® eq; — S correspond to bistrict
mapsRk x eq; — S, which correspond to strict mags — S so thatR = R ® 1.

The structure maps of the SMCC-structureddmRel(Dom |) such as the natural transformation

are just given by pairing the corresponding map®iom . Of course, one has to show that these maps
preserve relations, but that is easy. Clearly the SMCC-structureAdmRel(Dom |) andDom ; com-

mute with the domain and codomain maps. For the equality map, the only difficult thing to show is that
ey ® edp = ez p-

Supposer is any admissible relation between any pair of domains. SR¢eitself simply a domain, we

have the following equivalences

HomAdmRel(DomL) (qu(X)Bv R) = HomDomL (A ® B, R) =
Hompom , (A,B — R) = HomAdmRel(DomL)(qua €0 — R) =

HomAdmRel(Doml) (qu ® eqg, R)
An easy check shows that this correspondence is given by the identity on the underlying pairs of maps, so by

the Yoneda Lemmagq,, g is isomorphic taeqg, ®eqg with isomorphism given by the paiid 4« ., id Ao B)-
O

Lemma 5.3. The categonAdmRel(Dom |) has a linear category structure, commuting with the functors
of
AdmRel(Dom;) =<— Dom| .

Proof. Supposek: AdmRel(A, B). The relation can be considered as a jointly monic span

R
Y\

A B

in Dom . We define the lifting ofR to be the relation obtained by applying the functéo each map in
the span. It is an easy exercise to show that the resulting span is jointly monic.

209

We need to check that this defines a comonad, and it suffices to check that the maps of the comonad on
Dom preserve relations, which follows from naturality as in the diagrana:for

'R R
/N 2

The same reasoning applies for the rest of the linear structure. For exampled nte composition of
IA with the isomorphism((—) x (=)) =!(—)®!(=), we see thatl preserves relations from the following
diagram

1%

'R (R x R) 'R!R
1A 'B (A x A) (B x B) IA®!A 'BR!B.
— T e e
1A 1A o ~

The span on the right actually represents the reldittin! R, because it is jointly monic (it is isomorphic to
the span in the middle).

The proofs thab, e, m, m; preserve relations is done likewise. The commutative diagrams of [8, Defini-
tion 1.10, Lemma 1.11] commute since they commutBuom | . O

We define the catego@Dom to have as objects natural numbers, and as morphismsrfrimn. pairs of
functors making the diagram

AdmRel(Dom |)i, AdmRel(Dom |)7,
(DOII’IJ_)?SO (DomL)ﬂo

commute.

We define the categorPFam(Dom) fibred overPDom to have as objects over pairs of functors
making the diagram

fT

AdmRel(Dom)i, AdmRel(Dom |)
Wl
(Dom)Y, Dom

commute. A vertical morphisms froify”, f%) to (¢, %) is a a pair of natural transformatiofs: " =
g ,t: f* = ¢%) making the obvious diagrams commute, i.e., forall AdmRel (&, 3),

dOfT’(SR') = tg
codontsz) = ts
Seq; — ta, t&)

wheredom codomdenote the domain and codomain maps respectively. Since ma#pdinRel(Dom |)
are given by pairs of maps iDom | , clearly the equations determindrom ¢, so an alternative description

210

of vertical morphisms would be natural transformationg’® = ¢¢ such that for all vectors of relations

R: AdmRel(d, §), (t5,5) is a map of relationg” (R) — ¢"(R).

Reindexing in the fibratiof® Fam(Dom) — PDom is by composition.

Lemma 5.4. The fibrationPFam(Dom ;) — PDom has a fibred linear structure and fibred products.

Proof. The structure is defined pointwise, using Lenjma 5.3, i.e., for exampjefot f”, %), g = (¢", g%)
objects oven, we define

(Fegr(B) = frR)egH)

(fog¥d) = fUA)og'A).
Of course, as in the proof of Lemrfia 4.1 siree) — (=) is contravariant in the first variable, to define
f —o g for covariant functorsf, g as a covariant functor, we must use that the domain of the fungtgrs
is a category in which all arrows are invertible, so that we can défineo ¢)?(i) = f4(i~') — ¢%(i) and
likewise for (f — g)".

The needed natural transformations are defined using the corresponding natural transformiioms, in
andAdmRel(Dom). For example is defined age: | f" — f",e: |f¢ — f9), and the equations needed
hold, since they hold iAdmRel(Dom) andDom . Since the requirement efo and® being adjoint
can be expressed 2-categorically, the same argument can be used to show this. O

Lemma 5.5. The fibrationPFam(Dom) — PDom has a generic object and simple products.

Proof. The generic object is the inclusion

AdmRel(Dom))iso AdmRel(Dom |)
(Dom)iso Dom
For the simple products, we define f¢f: (Dom)7 — Dom the product(]] f)¢: (Dom,)%, —

Dom by defining(]] f)%(A) to be
{z € Ipep YA, D) | VD, D' € D.VR € AdmRel(D, D'). f"(eqy, R)(zp,zp)}
where we writexp for 7p(z). We define the relational interpretation as
(I1 /)" (R: AdmRel(4, B))(z,y)
forz € (I1/)*(A),y € (I1N)*(B) iff
VD, D' € D.VR € AdmRel(D, D) f" (R, R)(xp,yp)-

Since this is an intersection of admissible relations it is admissible by Lémina 5.1.

We show thaf [/" (eqz) = 0q 1) proving that [7, [T f¢) actually defines an object ®Fam(Dom |).
Suppose first thatr, y) € [] f"(eq;). By definition(zp,yp) € f"(eqz, eqp) = €04 1 p) J.e,xp =yp
and so we have proved f"(eq;) C €04 7)- Suppose on the other hamde]_[fd(ff). We must prove
that(z, z) € [] f"(eqy), i.e. thatfor allD, D" € D, R € AdmRel(D, D') we have

(xDa :BD’) € fr(qu'7 R)

211

which is exactly the definition of € [T f%(A).

We will define the bijective correspondence between niapg)? — f¢ and mapg)? — ([f)? basically
as in the proof of Lemmp 4.3. We need to show that in this correspondence maps preserving relations
correspond to maps preserving relations.

If t: (7*g)? — f?suchthat(t,t): (7*g)" — f" we definet: ¢¢ — (] f)? asfg(x) = (t; p(z))DeD-
We show that this defines an element(J] £)4(A). SupposeD, D’ € D,R: AdmRel(D,D’). Since
z € g*(A), and(z, z) € (7*g)"(eqy, R) = €04 1) the fact that preserves relations show that

(tip(@)ts (@) € f(eqs R)

as desired. It is clear thatffpreserves relations, so does

Suppose:: g% — ([] f)% We show thati: 7*g¢ — f? defined as in the proof of Lemrha 4.2 also preserves
relations. So suppose we have admissible relaton&dmRel(A, B) andR: AdmRel(A4, B) and that
g"(R)(x,y). Pick D, D" € D and isomorphisms: D — A,i': D' — B, then by definition

g a(@) = fUidgi)ompoug(r) g py) = fUidg,i) o mp oug(y). 2
Since(i,i')*R’ € AdmRel(D, D'), and since: preserves relations, we must have
(mp o ug(@),mpr o ugly)) € f7(R, (i,i) R ®3)
by definition of (] f)" (R). Since(i,'): (i,i')*R — R preserve relations anfi is a functor,
(F9(id g,9), f'(id g, 1)) f7(R. (i,7')*R) — f"(R, R)
preserve relations, which together with (2) (3) means that
(iLg 4(2). 15 5(y) € (R, R)

as desired. O

We define the categorl? Fam(Dom) fibred overPDom to have the same objects B¥am(Dom |).

A vertical morphisms fron{f”, %) to (¢", g%) is a natural transformation f¢ = ¢g? whose components
are not required to be strict as they areRifam(Dom |), but still required to preserve relations, i.e.,
if B: AdmRel(4, B), then the pairt ;,t5) is a map of relationg”(E) — ¢"(EK). Reindexing in the
fibrationPFam(Dom) — PDom is given by composition.

Lemma 5.6. The fibrationPFam(Dom) — PDom is equivalent to the fibration of finite products of free
coalgebras for the fibred comonadn PFam(Dom) — PDom. The maps of the equivalence together
with the identity ofPFam(Dom) form a map of fibred adjunctions.

Proof. Itis easy to see th&Fam(Dom) — PDom is the fibred co-Kleisli category f##Fam(Dom |) —
PDom, since maps preserving relations out of

R

Y\
A B

212

correspond to strict maps preserving relations out of

'R
YN\
14 1B

SincePFam(Dom) — PDom has fibred products we may appeal(tb [8, Proposition 1.21]. O

Lemma 5.7. The model

PFam(Dom,)) 1 PFam(Dom)

R U

\\\\\ /////

PDom

modelsY’

Proof. We have & -combinator in the fibration
DFam(Dom) — {((Dom)is,)" | n}

given by the family(fix,) pep. We show that this element defines a ternPiRam(Dom;) — PDom,
for which we basically need to show thditx ;) pep is in the relational interpretation of the typéa. (v —
a) — a.
So we need to show that

(fixp) pen(IT e (v = @) — a)(fixp) pep,

i.e., that
VD,D" € D.VR: AdmRel(D,D’).¥f: D — D,g: D' — D".

(R - R)(fa g)) R<ﬁXDf7 ﬁXD/.g)'

So suppose we are gived, D’ € D. An admissible relation fronD to D’ is given by an inclusion of a
subdomain
R—oDxD

and so(R — R)(f, g) means that the restriction ¢fx g to R factors througlR, i.e., we have a commutative
diagram

R (fx9)lr R
L) Ix9 L /
DxD ——=DxD".

From uniformity of fixed points we deduce tHat,, . (f x g) = fixg(f X g)|r and therefordix,, p/(f x
g) € R. Butusing naturality on the commutative square

DxD % DD

L,

D D

(and likewise for the other projection) we see that
(fixp f, fixprg) = fixp . p/ (f % g)

213

and so(fixy, f, fixprg) € R.
Proving that(fix,) pep satisfies the required equations is done as in the proof of L§mrha 4.6. O

Proposition 5.8.

PFam(Dom)) 1 PFam(Dom) 4
PDom
is a PILLy-model.
Proof. This is the collected statement of the above lemmas. O

6 The LAPL-structure

In this section we show that the Plktmodel [4) is parametric by constructing a parametric LAPL-structure
around it. Even though types in this model are p&jis f¢), when reasoning about parametricity, we will
just consider thef? part of a type. We can considgf as a relational interpretation of the typg”, /%)
since for each vector of relation®: AdmRel(A, B) we havef”(R): AdmRel(f%(A), f4(B)). Notice
also, that since terms froity”, f%) to (¢", g%) are natural transformatioris f¢ = ¢?, so forgetting the
f"-part of a type represents a faithful functor.

Since the category of contexts should contain all functfsrs (Dom)%, — Dom and types for all
relations between them, a natural choice is to have this category contain all fufi¢tqi®om,)7, —
Set. We will use set theoretic logic to reason about the model, so the cat®yanp should contain
subfunctors of the functors €tx.

The pre-LAPL-structure will be given by the diagram
DFam(Sub(Set)) (5)

|

PFam(Dom |) PFam(Dom) DFam(Set)

e

PDom.

The categoryfDFam(Set) is fibred ovelPDom. Its fibre ovem has as objects functors
(Dom,)Y, — Set,
and reindexing along a morphism framto n» in PDom is by composition with the functor
(Dom 1)150)™ — ((Dom)is0)"
The categoryfDFam(Sub(Set)) is a fibred partial order ovdDFam(Set) and has as objects over
f: (Dom,)}, — Set
subfunctors off ordered by inclusion. The mdpFam(Dom) — DFam(Set) is given by the inclusion
of Dom into Set.

214

Lemma 6.1. The fibrationDFam(Set) — PDom has fibred products and products in the base.

Proof. The fibred products are given pointwise. O

Lemma 6.2. The fibred functor

PFam(Dom) —— DFam(Set)

T

PDom

given by(f", f%) +— io f¢, wherei: Dom — Set is the inclusion, preserves fibred products and is faithful.

Lemma 6.3. The composite fibratioD Fam (Sub(Set)) — DFam(Set) — PDom is a fibred first-order
logic fibration with products with respect to projectionsBDom.

Proof. The fibred first-order logic structure is defined pointwise using the first-order logic structure of
Sub(Set) — Set.

We should show that for any projectian n + 1 — n in PDom and anyf € DFam(Set),, we have a
right adjoint to
(7)*: DFam(Sub(Set)) ; — DFam(Sub(Set))¢.

To be more precise, suppoge (Dom |)}, — Set is an object oDFam(Set),, andh: (Dom_)7+l —
Set is a subfunctor ofr*f = f o . We must defind][[h): (Dom,)?., — Set a subfunctor off and

prove that for any other subfunctgrof f
VA.g(A) C (TTh)(A) iff VA, B.g(A) C h(A,B). (6)

Moreover, we must prove th{ is a functor, i.e. ifi’ C h” then]] #' C [] 2", and that the Beck-Chevalley
conditions are satisfied.

Define .
(ITA)(A) = () h(4, D).
DeD
Clearly, the right to left implication of (6) holds. Suppose on the other hand that

— —, —,

vA.g(A) € (TTh)(A)

If A, B are domains, we must show thgtd) C h(A, B). We know that there exist® € D and isomor-
phismi: B = D. Sinceh(A,i): h(A, B) — h(A, D) is an isomorphism of subobjects 6fA) we must

(4,
haveh(A, B) = h(A, D), so since clearly(A) C h(A, D), alsog(A) C h(A, B) as desired.

It is clear that[[(—) defines a functor, i.e. preserves order of subobjectg.ofConcerning the Beck-
Chevalley conditions, we must show tHgt—) commutes with reindexing iPDom, which holds since
reindexing commutes with taking intersections of indexed sets. For the other Beck-Chevalley condition
suppose we have a pullback diagranDifam(Set):

T f

ﬁ% &

W*QLQ

215

for f,g: (Dom,)Y,

iso

of 7*g. We can then compute

(1) 5 = #(Npep MA, D)) s = ({x € f(A) | t5(z) € Npep WA, D)}) 1
and on the other hand

([0)*(h)) 5 = ([TH{z € f(A) | 4(x) gh(ffa B ipi=
(Npepfz € F(A) | t4(z) € h(A, D)}) 5

Since these two are clearly equal, the Beck-Chevalley condition is satisfied. O

— Set andt vertical, and suppose also we have a subollie¢Dom |)" — Set

iso

Lemma 6.4. The diagram((p) is a pre-LAPL-structure.

Proof. All that is missing in this proof is the definition of the fibred functor

PFam(Dom |) Xppom PFam(Dom) —— DFam(Set)

T

PDom.
We define ~ ~ _
U((f", £, (g7, 9M))(A) = Rel(f4(A), g*(A)).

We show that/((f", %), (¢", g%)) defines a functofDom_)7, — Set by defining fori: A — A’ the
action

iso

U7, £ (g7 g @): U 1D, (g7 9 A) = U, £ (97 9)(A)

asR € U((f", f), (¢", 9" N(A) — (F4GY), g% 1)) R. The mapU defines a contravariant fibred func-
tor by reindexing, that is, if: (f", f4) — ((f")", (f)?%) andt: (g",g%) — ((¢")", (¢")¢) are maps, then
U(t,u) is defined as

—,

R: Rel((f)(A), (¢)(A)) = (t 5, u0)"R.
It is easy to see thdf satisfies the requirements. O

Lemma 6.5. The subfunctor of/ given by
V((f7, 1%, (9", %) (A) = AdmRel(f*(A), g*(4))
defines a notion of admissible relations for the APL-structuye (5).

Before we prove Lemnfa 6.5 we need a few lemmas. Recall that in the LAPL{ogic [3], we have defined
as the propositioalf: X — X. f(z) = T, forz: AandA a domain.

Lemma 6.6. The mapA\: ¥ x ¥ — X given byA(e, f) = e N f is strict.

Proof. SupposeF € (X x X)P. Then

por) =AC | e U H= U enf=mlreD (e eB)).

(e,f)EE (e f)EE (e,f)EE

216

Lemma 6.7. Suppose: LX. The propositions

°oc|
o drv: X.e = {z}
e L(N(e)=T
are equivalent, wherkis the uniqgue magX — 1.
Proof. ClearlyL(!)(e) = T impliese |. Since
L(e)={lz |z e} ={x|Tx e}

the second and third proposition are equivalent.

For the last implication supposgel, i.e., that there exists a mgp LX — X such thatf(e) = T. Define
the mapg: LX — S ase’ — f(e') N {0 | 3z € ¢'}. By Lemmd 6.fy is composed of strict maps and so is
strict. But since pointed maps outbX are uniquely determined by their values on singletgas f, and
sof(e) = T implies3z € e. O

Proof of Lemma@ 6]5For readability, we will assume that everything here takes place in the fibefaver
PDom. The more general proof will be the same as below, with all sets replaced by indexed families of
sets. Since all constructions used below are pointwise, the proof generalizes.

An admissible relation from domaid to domainB is simply a subdomain off x B. Equality is an
admissible relation since it is given by the diagonal map, and reindexing preserves admissible relations
by Lemma[5.l. That admissible relations are closed under conjunction and universal quantification is a
consequence of the same lemma.

Suppose C A x B is a subdomain. By Lemnja 6.7
lp = {(e,f) eLAXLB |el3C f| NelD (ee,ef) € p}
= {(e,f)eLAxLB |3z ez Tye fAVx e,y < f.(x,y) € p}

Solp is given by the lift of the spar «— p — B, and so is a subdomain bfA x LB.
If ¢ is a proposition ang is an admissible relation, then

{(@,9) | 6D p@,)} =) {(@v)]p,y)}
2{0j¢}

which is an admissible relation by Lemial5.1. (89y). ¢ D p(z,y) is an admissible relation.

Finally, we need to check that Rule 2.18lof [3] holds. SupposBel(LA,LB) andp’: AdmRel(LA,LB).
We must show that if

Vo: Ayy: B.op({z}, {y}) D p'({z}, {y}) ()
then
Ve: LA, f: LB.(e |2C f 1) D ple, f) D p'(e, f).

So assumd [7) and that LA, f: LB are such that |3C f | Ap(e, f). Denote byp the truth value: |.
Now,

{(e.f) I p} € (0)"

217

sincep impliese = {z} and f = {y} for somez, y and so the assumptigrie, f), impliesy’'(e, f) by @).
Sincey’ is a pointed subset &fA x LB we must have

P {(e,) | p}) €0

Butr; B ({(e, f) | p}) = (5 ({e | p}). 75" ({f | p})) and
rA{elp)= | y={zcAd|Iyece|ptzcyt=c
y€{elp}
and likewiser? ({f | p}) = f,s0// (e, f) as desired. O
Finally, to show that we have a full LAPL-structure we must show that all types have a relational interpre-
tation. Of course, such a relational interpretation of a tyffe f?) is . We must check, however, that

the linear structure on types defined in the model here agrees with the linear struchiteAodmRel —
AdmRelCtx defined abstractly in the LAPL-logic.

Theorem 6.8. The pre-LAPL-structurég [5) has a full LAPL-structure.

Proof. The categoryAdmRelCtx has as objects triplgs, m, f) wheren, m are natural numbers aryd
is an object oD Fam(Set),, ., i.e. a functor

(Dom_)7/™ — Set.

A morphisms from(n, m, f) to (n/,m/, ') is a pair of morphisms
(a",ab):n—n/, (b, bY): m — m/

in PDom and a vertical morphisr: f — f o (a? x b?) in DFam(Set),, .

An object of LinAdmRel over (n,m, f) is a pair of object(g", g%), (h", h?)) € PFam(Dom,), x
PFam(Dom |),, plus a natural transformation

(kzg: f(A, B) — AdmRel(g*(4), h"(B))) (4.B)e(Dom,)1tm-

A vertical morphism irLinAdmRel from ((g", g¢), (", h?), k) to
(((g)"5 (@)D, (B, (W)Y, (k)

is a pair of morphisms
t: (g".9%) = ((¢)", (¢)?) in PFam(Dom,),,
s: (b7, hY) — ((W)7, (K)%) in PFam(Dom |),

such that for alld, B, z € (4, B)

Yy, 2. k1 5(2)(y, 2) O Ky 5(@)(t1(y), 5 5(2))
We have a pair of maps of Pllyl-models:
PFam(Dom |) LinAdmRel
PDom AdmRelCtx

218

defined by mapping an object BinAdmRel, ((¢", g%), (h", h%), k) to (g7, g%) and(h", h?) respectively.
We define the mapping going the other way by first defining the map

PDom — AdmRelCtx

to map an object to (n,n, [[;<,, V(m o 7,7 o 7')) wherer, 7 are the first and second projections re-
spectivelyn +n — n andm;: n — 1 is thei'th projection. One may also describe this object as the
family

(HiSTL AdmRel(A“ Bi))fTGDom",BEDom"
in the fioreDFam(Set),, .

Since objects iPDom are products of the generic object, if we are to define a map of Pidodels, the
action of the functor between the base categories on morphisms is completely determined by the action of
the functor on the total categories, so we will describe the latter.

Suppos€ f?, f7) is an object ofPFam(Dom),,. We map this to the object diinAdmRel given by
the pair of typeg(f%, f7), (f¢, f)) and the natural transformation

(R € I1;<,, AdmRel(4;, B)) — f"(R) € AdmRel(f*(A), f*(B))) i

Given a mag from (f%, f7) to (¢%, g"), that is, a natural transformation
(tz: FUA) — g% (A)) 4

preserving relations, we map it to the péirt). To see that this defines a map fraf<, f7) to (g%, g")
we need to see that it preserves relations , which writing it out is the exact same conditiontapi@serve
relations in the first place.

It is easy to see tha commutes with reindexing and therefore defines a map of fibrations. It is also evident
that® together with the domain and codomain maps constitute a reflexive graph.

The generic object ilLinAdmRel — AdmRelCtx is the object over
(1,1, (AdmRel(A, B))a,B)
in AdmRelCtx given by the pair of type§(id, id), (id, id)) and the natural transformation
(id: AdmRel(A, B) — AdmRel(A, B))4,B.

It is clear thatd preserves generic object. It is also clear that it preserves products in the base.

Let us show thatb preserved. Recall that applyind in PFam(Dom) maps a relation to the relation
obtained by lifting both maps in the span. Logically this gives usdatf”, f9)) is

R~ {(g:h) € Lf'(A) x Lf4(B) | 3z € Lf"(R). L(7)(2) = g AL(n')(2) = b}
But3z € Lf"(R).L(n)(z) = g AL(z')(2) = his equivalent to
(FxegxcIyeh)AVa,y.x€g,ych>D(z,y) e f(R) (8)
If we apply the! in LinAdmRel to ®(f7, f¢) we obtain

R {(g,h) € LFY(A) x LFYB) | (g 13 h 1) Ag |D (eg.eh) € fT(R)}

219

But sinceg | 3T 3z € g by Lemmd6.J and € g D eg = =, this is the same aF|(8).

To see that the simple products are preserved, an easy calculation shows that both combination of simple
products andb map(f”, f?) to the relation

R {(z,y) € [1f4A) x [[f4B) |VD,D' € D.¥S: AdmRel(D, D). (zp,zp/) € f7(R,S)}.

Likewise it is easily seen thdt preserves—.

Finally, we show thatb preservesz. Suppose(f”, f%), (¢, ¢%) are types. Maps out ob((f", f?) ®
(¢",9%) in LinAdmRel are easily seen, using an argument as in Le@a 5.4, to correspond to pairs of
bistrict maps out off? x g¢ preservingf” x g". Since maps out ob(f", f%) @ ®(g", g?) satisfy the same
universal property, we get thé preserves tensor. O

Theorem 6.9. The LAPL-structure[(5) is a parametric LAPL-structure, i.e. satisfies identity extension,
extensionality and very strong equality.

Proof. Let us first prove thaﬂS) satisfies identity extension. Suppose we are given aftyp&). The
relational interpretation of this type is

(f": [li<, AdmRel(4;, B;) — AdmRel(f*(4), f*(B))) z 5.
Instantiating this at equality we obtain
[@] —| =+ (f% f")[eqs]: AdmRel((f7, f")(@), (f%, f")(@))]

which is the element of ~ ~
(AdmRel(f4(A), f4(A))) 1

given as
(F(edp)) 1 = (€ 1)) 1
which is also
[@] — | = F eqya ry: AdmRel((f7, f7)(@), (f7, f7)(@))]-
Very strong equality follows from very strong equality in the subobject fibration Seer Extensionality is
a consequence of very strong equality. O

7 Proving consequences of parametricity for Lilyc

In [14] a language, which we shall call Lily, is introduced. This language is a modification of Lily

[1], where the function type — 7 is interpreted as strict rather than linear functions. The reason for
using strictness rather than linearity is that it is more general, i.e., gives types to more terms, and that it
is exactly what is needed for call-by-value and call-by-name to give the same notion of ground contextual
equivalence. This intuitively also corresponds more directly to strict functions in domain theory, since these
are the functions that diverge if their input does.

Simpson and Rosolini define an interpretation of Ljly into models of synthetic domain theory, and use

this to prove that call-by-value and call-by-name give the same notion of contextual equivalence. This has
been proved for Lily in[[1] using operational methods, but Simpson and Rosolini give a different semantic
proof. In [1] operational methods are also used for proving simple consequences of parametricity for Lily,

220

and in this section, we show how to use the LAPL-structure (5) to prove more advanced parametricity results
for Lily gyict-

The model of PILL in (5) is based on the interpretation of Lijy. given in [14]. In this section we show
that the two interpretations of PlkLand Lilyg,; are basically the same. The two languages are of course
not the same, but since linear maps are strict, we can basically include Rikd.Lily o, and show that

the interpretations agree up to this inclusion.

As mentioned earlier, the LAPL-structure we have constructed using synthetic domain theory is really a
family of LAPL-structures, since we have one LAPL-structure for each model of synthetic domain theory.

In this section we will assume that we have chosen one such model which is also 1-consistent in the sense of
[16,[18]: any sentence of the forfim: N. ¢(n), for ¢ a primitive recursive predicate,—%-sentence—is

true in the model iff there exists (in the external sense) a natural numbech thaty(n) is true. This is,

for example, the case for a realizability topos satisfying the strong completeness laxiom [6] where one takes
predomains to be the well-complete objects. The reason for this assumption is that adequacy (Th¢orem 7.9
below), will be proved in the internal language of the model; it will hold in the real world only under the
assumption of 1-consistency (and precisely when 1-consistency holds), as explained also in Section 8 of
[14]. This technique was introduced [n |16, 18].

We emphasize that the results about Ljly (Theorem$ 7.1, 7.19) hold in general and independently of
any model. Yet, to prove the results we need to refer to a model of SDT satisfying 1-consistency (which is
known to exist).

7.1 The language Lily,

This subsection sums up some definitions and results from [14]. In particular we recall the langugge Lily

with two operational semantics, a call-by-value and a call-by-name semantics. Each of these semantics gives
rise to a concept of ground contextual equivalence corresponding to observing terminétitypes. We

also recall the interpretation of the Lily., into SDT defined in[[14]. Iroc. cit. it is also shown that the
interpretation is adequate with respect to both notions of contextual equality, and using adequacy it is shown
that the two ground contextual equivalences coincide.

The types of Lily; are

o,Ti=alo—oTl|lo]|[]a.o
wherea ranges over an infinite set of type variables. Exceptfof these are exactly the types of PiL
The notation-= o: Type means that is a well formed type with free type variables containe&in

Typing judgements of Lily,;.; are of the form
I'|dtFzt:o

wherel is the context of free variables, i.e., an assignment of types to a finite set of variables usually written
aszi: o1,...,x,: oy SUch that the free variables bére contained in the domain bf i.e.,{z1,...,z,}.

= is afinite set of free type variables containing the free type variables,of . , 0,,, 0. The notatiorE, o
meanssE U c anda ¢ =. 4 is a labeling of the variables in the domainlgfi.e., a map from{z1,. .., z,}

to {0, 1}. Intuitively 6(z;) = 1 means that is strict inx;.

The notatiort-= I' means thaf" is a well-formed context with free variables containecin

FigureDr recalls the term formation rules as defined in [14]. The not&tipt, = :; o F= t: 7 fori = 0,1
is short forl", z: o | §[x — i] F= t: 7, whered[x — 1] is the extension of to dom(d) U {z} such that

221

d(z) = i. The notationz :— o means that eithet :o o or z :; o. Ford, ¢’ labellings of the same set of
variables, the notatioh Vv ¢’ is the labeling mapping:: dom(d) to max(d(x),d’(z)). The constant zero
labeling is denoted.

D|dzaobzt:T

L|Oz:nobza:o |tz otioc—oT

I'létzsio—or T|dtgt:oc T|dkztio

LoV kest): r|okslt:lo
F'|okzs:lo L§,x:_obzt:7 T|dbzat:o F=T
L6V Fzletlzbesint FléFgAat: [[a.o
ozt [[a.o F=7:Type T'|dxz:_obzt:o
U'|dbkzt(r): olr/a] I'|dtFzrecz:o.t: 0

Figure 1: Term formation rules for Lily;

Lemma 7.1. If bothT | § b= ¢t: o andT' | &' bz t: ¢’ thend = ¢’ ando = o',

Lemma 7.2. Supposd” | § k= t¢: 7 is typable in Lilyyi, and= = o: Type is a type in Lily and
x ¢ domT’). Thenl' | 6,z :g o = t: 7 is typable in Lilyy;.

Figure[2 recalls the two operational semantics for Lily as defined in[[14]. Formally these are given as
relationst |}* v andt || v between closed ternmisof closed types and values where the set of values is
the set of closed terms of closed types of the form

viu=Az:o.t|lit| Aot

s{®Ar: 0.8 t® o s /z] 1P v
Ax: ot dAx:o.t s(t) U v

s{" Ar:o.§ st/ v

TN It e

s |1 tls'/x] Y v
let!z besint | v

ti Aa.t’ to/a] v trecx:o.t/z] v
t(o) Jv recr:o.tlv

Aa.t | Aa.t

Figure 2: Operational semantics of Lily.

In Figure[2 the notation || v is used in some rules. This means that each of these rules exist both in the
definition of the|l™ and thel}* semantics. The notatian|}” is short fordv. ¢ ||™ v and likewise fort |}°.

Lemma 7.3. If t |™ v andt ™ v’ thenv = v'. Likewise for{/®.

222

Lemma7.4.1f t J™ v ort |}® v, thent, v have the same type.

A groundo-contextis aternr :_ o = C': I7 for some typer, and for closed: o we write C[t] for C[t/z].

Definition 7.5. For ¢,t': o closed terms of closed types, we Wtitegnd t' if for all ground o-context<C [—],
Clt] V2 iff C[t'] §°. Likewiset =g, ¢’ if for all ground o-contextsC[—|, C[t] 4" iff C[t'] "

The idea of=g, =3, is that terms are considered equal if one can be substituted for the other in larger
programs without observable difference in behavior of the resulting program. Aslin [14]and [1], here
observable behavior refers to termination-atpes.

Lemma 7.6. The relations=g,,, =g, d are equivalence relat|ons and congruences. The latter means that if
z:- ok C:7issometerm, and=g ,t' thenClt/z] =g, C[t'/z] and likewise foe=g,
We now recall the interpretation of Lily;., into SDT defined in[[14]. Each type,, . .., ¢ has two inter-
pretations. The firsfi-5 o)) is aDom]; indexed family of domains, whe@®omy is the class of domains.
We write theD'th component of[l-5 o)) as(4 a])%. The second interpretation of a type is the relational
interpretation(i-5 o])". This is a family of relations

((F oD% AdmRel((Fz oD%, (Fa 0)%) 4, Admper £ 5)
indexed overAdmRelj whereAdmRely is the class of admissible relations on domains. The interpreta-
tion of types is defined in Figufé 3.

(e ey = (D)
tao =l = (ol — (e’
(o)t = Laobs

(s Ta-ol = {r € pepli=a b, |¥D. D' .
VR: AdmRel(D, D'). (Fza o)gyp(mD, mp)}

(Fa a7, AdmRel(A,B3) R
(Fao—7)7% AdmRel(A5) — {(f,9) € (Fao— T])‘iy x (Fq o —o T])dg |
V(z,y) € (Fa o) (f(x),9(y)) € ([':&)%}
(Falo)%. AdmRel(A5) — {(e,;): L(E | o]* (A) x L(Z | a)¥(A) |

(Va: (E] o) (A).x e D3y e f O (EF o) (F)(wy))A
(Vy: (E|o)(B).y € f >z € e D (EF o) (R)(w,))}
(FaITe- o)y, pqmrais = (7)€ (F=1le 0% x (= [T oD% |

vD,D" € D.VR: AdmRel(D, D). (Fza 0)gyr(mp, 70/)}

Figure 3: Interpretation of types

Supposef: A — B is a pointed map. We writéf): AdmRel(A, B) for the graph off.

Lemma 7.7 ([14]). Supposé€ f;: A; — B;)i<p are isomorphisms iDom |)iso andbq, o, o: Typeis
atype in Lily,.. Then there exists an isomorphigal)?(f) in Dom such that(-5 a})(< fi); 1s the graph

of (o])%(f). Moreover the corresponden¢g); — (o])%(f) is functorial.

223

To define the interpretation of terms
r ‘ 1) f—E t: o

define first the interpretation of the contéxt
(“_E T1:01y...,0p: Un])d = (HZ@—E O’ZDE)D-‘

Since the labeling does not play a role in the interpretation of terms and is uniquely determigel, by
we leave it out in the notation and wrif@ = ¢: o)) in stead of(I" | § F= ¢: o).

FOrE = ay, ... an, the interpretatioffI" = ¢: 7J) is a family of maps

((CF=t:7)5: (F= F])dD — ([T])dﬁ)ﬁ

The interpretation of terms is defined in Fig[ife 4. In the definition of the interpretation of the let-expression
the (—)*-notation is used to denote the strict map

L(Fz o)) — (F=7)

corresponding to the set theoretic map
(F= o) = (F=7)
described. The notation
(o) (id 5,4
refers to the morphism of Lemmay.7.

([F l_E X UzD

(TChkz Ax:0.t: 0 — 7))
(T = s(t): 7]
)

D

= d: (= U])df) = ([x: o b=t 7)) 5(Z,
(CFzs:0—7)5@) (T F=t: o)) s(
{(C =) 5(2)}
= (d: (F=o) = (Iz: o k=) 5(7,d))"
([T = s: !a])ﬁ(f))
(T rzAa.t: [Tao)s(@) = ((CFzat: o) p(T)ped
(T rzt(r):olr/al)5(@) = (F=o)?(idg,) ((T F= t: [l a)5(@)p
whereD € D andi: D — (= TDD» is aniso
(CF=recx:o.t: o)) (%) = fix(d: (F= o) — ([,z: 0 F=t: o)) 5(Z,d))

)
7))

(Tt
(I'Fzletlzbesint

NN N S

8 8 &8 & &

S e N N N
Il

Figure 4: The interpretation of terms

The definition of the interpretation of type application involves a choice, and so should be checked to be
well-defined. This is the first condition of the next lemma. The proof of well-definedness can be done as in
the proof of Lemma@ 4]2.

Lemma 7.8 ([14]). Supposé’ = t: 7. Then

o (I'tzt: 7)) is well defined

e i =u1:01,...,2,: 0, andd(x;) = 1 then for each vectoD of domains, the functiofil” | § F=
t: 7)) ;5 is strict in thei'th variable.

224

e If B: AdmRel(D, D) is a vector of admissible relations, and, . .. z,, z, ..., !, are elements
such that for all;,

(zi,27) € (F= o) ;

then
(I = D5(@), (€ b= D) €)

The last property of Lemnja 7.8 is the Logical Relations Lemma.
The following theorems are proved in |14].

Theorem 7.9 (Adequacy[[14]).Supposé: 7,t¢': T are closed terms of closed type. () = (¢']) then
t Egnd t andt Egnd .

Theorem 7.10 (Strictness[[14]).If ¢: lo is a closed term of closed type, theg™ iff ¢ {*. In particular
=gna @Nd =g, coincide.

Since=3,, and=g, coincide we introduce the notatiesay,q to stand for either of them.

Remark 7.11. The assumption that the given model of SDT is 1-consistent stated in the beginning of this
section is used in the proof of Theorgm|7.9. In fact Thegrein 7.9 is statedlin [14] in a more general form,

since there it is formulated in the internal language of the model. This technique for proving computational

adequacy was developed in [16, 18], in which it is also proved that adequacy holds in the external sense
stated here if and only if the given model of SDT is 1-consistent.

7.2 Translating PILL y into Lily

Consider the language PIkl\ ® obtained by removing the type-constructers/ from PILLy and remov-
ing the corresponding term constructors such as the corresponding let-expressaois; of terms.

The types of PILL \ ® and Lilyg, are the same, and the main difference between the two languages is
that — in Lily g IS interpreted as strict maps, and in PiLL ® it is interpreted as linear maps. Since
linear maps are strict, we can basically include RHL® into Lily ;e Up to this inclusion of languages

the interpretation§—)) of Lily g and[—] of PILLy \ ® agree.

Theorem 7.12. There exists an interpretatiop of PILLy \ ® into Lilygi; Such that for all closed termss
of PILLy, [t] = (¢(¢)]). This translation is the identity on types.

The translation is functorial in the following sense: Suppaser — 7,t: 7 — w are closed terms of
closed types of Pl \ ®. Theng(t o u) = ¢(t) o p(u).

Before proving Theore2 we need a lemma. Recall that for anydyiper of PILLy \ ®, [a@ F o]¢

is a functor from(Dom |,)., to Dom . Since(t4 o)) is an indexed family of domains, it does not make
sense to ask if-5 o)) = [@ F o], but we can still compare the values[of - o] on objects with(5 oJ).
Lemma 7.13. For all typesZ - o of PILLy \ ®, the object parts of—]¢ and [-]" agree with(—)¢ and
(=)". Moreover, fori a vector of strict isomorphism between domaihs]®(i) is equal to(—)%(i) as
defined in Lemma 7.7.

Proof. The proof is by induction on the structure of types.

225

Type variables are interpreted as projections by both interpretations. It is easy to seeithaiterpreted
the same way in both interpretations. Let us consider the interpretatioh\af clearly have

-,

[£ o](4) = L(I= | o]*(A))
A

(Z ['lo)4(A) = L((Z | o)*(4))
For the relational interpretation, we have r AdmRel(A, B).

(EF0)(R) = {(e.f): L(E| o) (A) x L(E | 0)*(4) |

x €

Y€ fodreed l

a)¥(A) x L(Z | o)*(A)
en

= {(e,f): L(E | .
yefo(xy) e (EFa)(R)}

elax flANxe

On the other hand= I—!a]]T(ﬁ) is the image of the span obtained by applying the lifting funttte both
maps in the span

[E+ o] (R)
/ \
[EF o]%(A) [EF o]%(B).
So [E Flo]"(R) consists of lifts of pairs fronf= i o]"(R), i.e., pairs(e, f) such thate |3 f | and
r€ey€ fD(x,y) €[ZF o] (R).
The interpretation of polymorphic types is the same in the two interpretations. This ends the induction proof.
For the last part of the lemma, suppased — B is a vector of isomorphisms. Since for eacthe graph
of i; is (i;, id p;)*eqp, and so(i;, id g,) is an isomorphism froni;) to eqg, . Thus([o]%(), idﬂaﬂd(é)) is
an isomorphism fronfo]” ((i)) to e, j4(5) I-€

—

(101G, id g a0 €410, = [0 ().

We can use this to prove

—

([01°®) = ([0]1°(), id 10 5) €Ug1a5) = 1" ((D) = ()" (@) = ((@)*(D)),
and so since their graphs agrée]?(i) = (o)%(7). O

Proof of Theorerh 7.12The interpretationy is defined to be the identity on types. The interpretation of
terms is defined inductively in Figufé 5, where we have written the definition as rules. It is easily seen that
the following properties of the interpretation hold (this is part of the reason the definition makes sense): For
any termt of PILLy \ ®,

e the free type variables af(t) are the same as for

e the free variables of(¢) is the union of the free intuitionistic and linear variableg @ind the types
are preserved.

e any free linear variable in t is labeledl in ¢(t), free intuitionistic variables may be labeled eitber
orl.

226

PE|IT;—FY: J[Ja.(la —a) —a) =
I'|OFz Aa. At: {(la —o). recz: . let!u bet in u(lz)
dE|T,z:0;,—Fax:0)=T|0,x30tlz2:0
dE|Tyz:obz:0)=T|0z:30Fzz:0

é(ElrvAl_tU_OT):P,A‘(gl_Eqﬁ(t)0’—0 T,
HE|T;A Fu:0)=T,A"|§ F=z d(u): o

HE|T;AAN Ftu:7)=T,AA |6V g o(t)p(u): T
PE|T;Az:obt:T)=T,Ald,x:10Fz¢(t): T
PE|IT;AE XNz 0.t:7)=T,A|dFzXx:0.0(t): 0 — T
PE|T;—Ft:o)=T|dFz¢(t): 0
pE|T;—Fit:lo)=T|0F=zlé(t): o
dE,a|TAFt:0)=T,A|dtlzq0(t): 0 Z|TA
dE|T;AFAat: [Ja.o)=T,A|dFz Aa.¢(t): [[a.o
PE|T;ARL: [Jano)=T,A| 6= ¢(t): [[a.o EF 7: Type
PE|T;ARUT): olt/a)) =T,A |0 b=z ¢(t)(7): o[r/a]

PE|TAFs:lo)=T,A|dkF=z¢(s): lo
HE|T,z:0;A'Ht:7)=T,A x: 0|0 b= d(t): T
$(E|T:A,A'Fletlzbesint: 7) =T, A,A' [§V §' b= letlz be(s) in ¢(t): 7

Figure 5: Inductive definition ob.

227

e ¢(t) has the same type as

In the interpretation defined in Figur¢ 5 we use weakening (as in Lgmma 7.2) implicitly in the rules for
function application and let-expressions.

We need to show thaf—]) = [—] o ¢ on the closed terms. This is of course done by induction, and
for the induction we need to consider open terms. But open terms are interpreted differently in the two
interpretations. For an open tetnof PILLy \ ® with free variables

roL
m'o-m

L1:01,...,Tp: O'n;l‘/li 0'/1,...,$
[t] ; is strict map from®), L[o;]%(A 1) ® ;o J4(A4) whereas(¢(t)]) 4, is a map from[[;[o:]4(A) x
I1; [[cr;.]}d(ff), which may be strict in some variables and not in others. The induction hypothesis is that for

all domains4, elements; : [o;]4(A), 2/, [0]4(A)

[t s{z1}® ... @{z } @) ®. .. @)= (o)) 5(x1, ... 2, @Y, .. L),

wherex ® y is shorthand for)(x, y) wheren is the natural transformation frofa-) x (=) to (—) ® (=).

We do the induction cases in the order of constructions of Figure 5, except for the cesehith is the
most difficult and is therefore postponed. The case of free variables is trivial.

For function application, suppose the tetthas free linear variables,, ..., z; andu has free linear vari-
ablesz},...x;,. We have

[tu] ({1} @ ... @{z)@ ®...®x,) =
[i{z} @ Az} @y ©.) ([ul ({m} @ Az} @2y, © .. 27))

and
(tu) 77 7) = (t) 7(&, 27 ..., 29) ((u]) 4(&, 2f4s, - 20))
and so the induction step follows.

For lifted terms, we have by definitiafit]) (%) = {(t) z(Z)}. Letus for simplicity assume thahas exactly

one free (intuitionistic) variable of type. In the PILLy-model, [t] ; is a mapL([o]%((A)) —o [r]%(A) and
['t] z is the composite

- 5 ~ . LItz "
L([o1%(4)) ——=LL([o]*(4)) —=L(7%(4))

so sinces({z}) = {{z}},] z({=}) = {[t] s{=})} . By induction hypothesi§] z({z}) = (¢) z(x).
and so the induction step follows.

For the case = Aa. t we have by induction for alif, #, # and for allD € D
[#] 1 ®{xz}®®m)z p(& &)

and so
[4(Qif{zi}t © Q; 25) = ('] 1 p Qi{wi} ® @; 25 pep = () 5 p (¥, 7)) peD = (1] 4(7, 7).
For the case = /(1) : o[r/a], we have defined

[1] x ®{wz}®®x = [o]* ld@k)(([[t’]]g(@{wi}®®w§-)>D)

228

for some isok: D — [r]%(A), and the(—)) interpretation is defined likewise, and so, using Le 7.13
we get the induction step.

For the case of terms of the form letbe s in t we assume that we have
E|T;AEs: o E|T,x:0; At T

Assume for simplicity of notation thdt, A, A’ consists of exactly one variable each. Then

—

(let!z besin t])g(x, Y, 2) = ([t])g(x, ([s])g(ac, Y), 2)

where

—

() 5+ (T)(A) x L) () x (A)Y(A)) = (r)*(A)
is the unigue extension of
() 52 @DU(A) x (o)?(A) x (A)*(A)) — (r)*(A)

which is strict in the second variable. Since by induction, fouall, w

[1] s({u} @ {v} @ w) = (1)) 4(u, v, w)

we get that also for al’ -
[t]x({u} @ v @ w) = (] z(u, v/, w),
since[t] ; is strict. Thus
(let!z besint) z(z,y,2) = [t];({z} @ (s]) z(z,y) ® 2) =
[tls{z} @ [s]z{z} ®@y)@2z) = [letlzbesint] ;({z} @y ® 2)

For fixed points, we have defindd] = (fix;)pep in Lemma[5.7. In this definition, we have identified
objects of!D — D with non-strict mapsD — D, and so strictly speaking, we should have defined

[Y] = (ap)pep, Whereap: (D — D) — D is the unique strict map such thab ({f}) = fixp(f)

A~

wheref is the set theoretic map — D corresponding t¢f: !D — D.
To computg[4(Y)]), consider first
(f 1l —),z ;g a b4 letlube finu(lz))p
which is the unique extension of the map
(f:LD — D,z: D) — f({z})
to amapL(LD — D) x D — D which is strict in the first variable. So
(f 1/(la — @) k4 recz :p a.let!u be f inu(lz)])p

is the unique extension gf: LD — D + fix,(f) to a strict map.(LD — D) — D, and thus we conclude

(6(Y)]) = (Ac. A f: (la —). recz :pla. let!u be f in u(z)]) =
(ap)p = [Y]

For the last statement of the theorem, suppose— 7, u: 7 — w are terms of PILL \ ®. Then

d(uot) = p(Nz: o.u(t(x))) = Ax: 0. p(u(t(z))) =
Az: 0. g(u)d(t)(x) = ¢(u) o b(t).

229

The restriction of the translation to PIkL\ ® in Theorenj 7.12 is not essential.

Proposition 7.14. There exists a translatiog of PILLy into PILLy \ ® such that for any parametric
PILLy-modelX the diagram

\/

commutes up to natural isomorphism. To be more precise, there exists a family of isomorfhigals—
[+ (0)] indexed by closed types of Pi:|Lsuch that for each closed term o — 7 of closed types, the
diagram

[o] 27> [(0)]

[[tﬂl l[[w(t)]]
[] > ()]

commutes. Furthermore, the restriction ¥fto PILLy \ ® is the identity, and forx - o(«) a type in
PILLy \ ®, ¥(o(7)) = o(¢(7)). The translation is functorial in the sense that ifo — 7 ands: 7 — w
are closed terms of closed types, the o t) = 1(s) o ¥(t).

Of course, the core of the translation of Proposifion]7.14 is the well known consequences of parametricity

oRT
I

[[a. (0 — T — a) — «,
[[a.ao — au.

[l 112

The interesting part of the proposition is that it is a consequence of parametricity therhadlof PILLy
expressible using, I and let-expressionsg,etc. can also be expressed in the smaller language;P\Lk.
For the proof of this proposition we refer to Appenflik A.

Corollary 7.15. There exists a translation of PlkLinto Lilyg,;.; Which commutes with interpretation up to
natural isomorphism. The translation is an extension of the translation of Th¢orefn 7.12.

Proof. This follows from Theorerp 7.12 and Propositjon 7.14. O

Recall that in[[3] an equality theory on terms of Pl:Icalled external equality is defined. External equality
is basically equality up t@, n- conversion.

Lemma 7.16. The translation of PILk into Lilyy,i; maps externally equivalent terms to ground contextu-
ally equivalent terms.

Proof. Externally equal terms of PIL{ are interpreted as equal terms in the model. Since the translation

commutes with interpretation into the model, by adequacy (Thepregm 7.9), the translated terms are ground
contextually equal. O

230

7.3 Consequences of parametricity for Lily

We end this section by showing how to use Theofem|7.12, computational adequacy of the interpretation
(—) and the results of [3] to obtain consequences of parametricity for the languagg.Lily

Consider the category whose objects are the closed types gf;LiBnd whose morphisms from to = are
closed terms of type —o 7 of Lily 4. identified up to ground contextual equivalence. We call this category
Lily.

Corollary 7.17. For all closed types of Lilyg.;, the objectsr and[[a. (6 — a) — « are isomorphic
as objects oLily.

Proof. The maps of the isomorphism = [[a.(c — «) — « are defined as ir_[3]. Applying of
Theoreni 7.1R2 to these maps, we obtain morphisms of the right tydeHyn In [3] it is shown that the
interpretations of these maps into the parametric model are isomorphisms, and so by adequacy, we obtain
the desired result.]

As always, type expressiomnst o () in Lily 4 for which o only appears positively ier induce functors
on Lily.

Theorem 7.18. All functorsLily — Lily induced by types(«) in Lily g, have initial algebras and final
coalgebras.

Proof. First we notice that it is easy to see that the functorial interpretation of types commutes with

We define the initial algebra by applying the translation of Thedgren] 7.2 to(pc. o()) —o pev. o().
To show that this defines a weak initial algebra, consigéold), that is,¢ applied to the term that takes an
algebra and produces a map from the initial algebra. Since

Aa. N f:o0(a) o a. foo(folda!f) = Aa. \°f: o(a) — a. (folda ! f) o in

in PILLy-, using Lemm& 7.16 it is easy to see, that this defines a weak initial algebra.

Suppose we have two mapsh out of this initial algebra definable in Lily;... Then(g]), (]) are maps out
of [in] in the model. But since we know th§in] is an initial algebra in the model/)) = (g]), and so by
adequacyh =gnq g-

The proof for final coalgebras is exactly the same. O

Theorem 7.19. For all typesa b o(«): Type of Lilygyicr, there exists a closed typeof Lilyg,i; such that
7 ando(7) are isomorphic as objects &fily.

Proof. We can definer and the isomorphisms = o(7) in pure PILLy. Now, apply the translation of
Corollary[7.15 to this isomorphism. From this we get a typ@nd morphismso(7') — 7/, 7/ — o(7/)
definable in Lily,. By functoriality of ¢, the interpretations of both compositions of the two maps are
identities in the model. Thus, by adequacy, the two compositions are ground contextual equivalent to the
identity, and thus”’ ando(7') are isomorphic ifLily. O

231

8 Conclusion

We have constructed an LAPL-structure based on the interpretation Qf;Liiyyto models of synthetic
domain theory presented in_[14]. Comparing this with the concrete domain theoretic LAPL-structure of
[8], the completion process for LAPL-structures of [7], and the LAPL-structure based on the operational
semantics of Lily[[1] under development at the moment of writing, this shows that the notion of LAPL-
structure is general enough to handle very different kinds of parametric models.

The LAPL-structure also provides formal proof of the consequences of parametricity, such as the existence
of recursive types, for the interpretation of [14].

Using adequacy of the interpretation of Lily,, we have shown consequences of parametricity forily
up to ground contextual equivalence. These consequences include encodings of inductive, coinductive and
recursive types.

232

A Tensor products in parametric LAPL-structures

In this appendix we prove the following Proposition.

Proposition A.1. There exists a translation of PILLy- into PILLy \ ® such that for any parametric Pllsk-
modelX the diagram

PILLy

PILLy \ ®
-] -]
X

commutes up to natural isomorphism. To be more precise, there exists a family of isomorfhigals—
[+ (o)] indexed by closed types, such that for each closed tekm— 7 of closed types, the diagram

[o] 27> [v(o)]

[[tﬂl l[[w(t)]]

[7] > [w(n)]

commutes. Furthermorej is the identity on PILk \ ® and fora - o(a) atype in PILLy \ ®, ¥(o(1)) =
o(¢(7)). The translation is functorial in the sense, thatifc — 7 ands: 7 — w are closed terms of

closed types, then(s o t) = 1(s) o ¥(t).

We will prove this Proposition working in Abadi & Plotkin’s logic, i.e., in stead of proving Propositiof A.1
we prove the Propositign A.2 and Lemina A.7 below.

Proposition A.2. There exists a translation of PILLy into PILLy \ ® and mapsf,: ¢ — (o) indexed
by closed types, such that, assuming parametricity, for each closed:tesm— 7 of closed types, the
diagram

commutes up to internal equality.

We definey as a translation defined on all types and all terms of Rllals described in Figufé 6.

Lemma A.3. Suppose

(1]

| Z: 050 Ht: T
is aterm of PILL-. Then

—

(0);7: ¥(o") F(t): ¥(r)

[1]

|

<

is a typing judgement of PILk\ ®.

Proof. Easy induction on the structure of O

233

vla)=a Yo —7)=9(0) —=¢(r) Y(la.0) =][a.9(0)

Y(lo) =l(o) Y(I) =[] a. @ —o «a (for « fresh variable)

Yo T1)=]]a. (Y(c) — (1) — a) —o «a (for a fresh variable)

Y(x) =z, forx variable ¢¥(x) = Aa. Nz a.x YY) =

Pltu) =9t p(u) B 0 t) = Na: (o). (b)
YPE@u: 0o Q7T)=Aa. \°h: (o) —o P(T) — a. hp(t) P (u) P(1t) =lp(t)
Y(Aant) = Aaih(t) (o)) = ()W (0)
Y(letz @y: o @’ betinu: 7) =¥(t) Y(1) (Nz: P(a). \y: (o). ¥(u))
Y(let!lzx betinu) = let!z bewy(t) in i (u) Y(let x betinu: 7) = (t) (1) P(u)

Figure 6: Inductive definition of.

Lemma A.4. Suppose, T are types of PILk. The map
lor:0@T —o [Ja. (0 =T —oa)—oa

defined as
Ny:o@T.Aa.\°h:0 — T —oa.letz®2’ beyinhza

isnatural ino, 7, i.e, ifk: 0 —o o/, 1: T — 7/ then
ot 7 0k @1 = ([[a.(k —l —a) —a)oiy;.
Using parametrictiy, one can show that. is an isomorphism up to internal equality. The terms

Nz [Jaoao—oa.xlx: ([Jooaw—a) — T
XNx: I Aa. X\y: a.let x bexiny: I —o ([Ja.a — «)

can be shown to be each others inverses up to internal equality using parametricity.

Proof. We show thai, - is natural ino, 7. The rest of the proof can be found in [3].
Supposé: 0 — o', 1: T — 7'. Then fory: o @ T,

(k@)(y) =letz@wbeyin k(z) @ l(w).
S0igr (k@ 1)(y)) is

Aa.X°h: o' — 7 —a.letz @2’ be(k®@1)(y)inhza' =
Aa. X°h: 0’ —o 7 — a.letz @ wbeyin (letz ® 2’ bek(z) @ l(w) inhx a') =
Aa.Xh: o' — 7" — a.letz@ wbeyin h (k(z)) (I(w))

On the other hand

(Il (k= h = a) —oa)(ior(y)) =
Aa. Xh: o' —o 7" — a. (ig,(y)) a ((k — | — a)(h)) =
Aa. X°h: o' — 7" —o a.letz @2’ beyin (k — 1 —a)(h)za' =
Aa. XN°h: o' — 7' — av.letz @ 2’ bey in h (k(z)) (1(2)).

234

We define termg,: 0 — (o) andg,: ¥(0) — o of PILLy for all types (not just the closed types)
o of PILLy as described in Figurle 7. Basicalfy, g, are defined inductively, by using the functorial
interpretations of type constructors, !, [[«. (—). The induction step for ® 7 is obtained using the

isomorphism of Lemmia Al4.

fo = id, foror =A°t: 0 —oT. frotog, fio =1
fH wo = At ([T o). Aa. fr(t @)
fr=Xt: 1. Aa. \°u: a.let x betinu.
Joor = ty(o)p(r) © fo @ [z
go =ida go—or = At: (o) — Y(7).grotofo g0 =!9o
Mo = At ([[ew o). Aa. g5 (t @)
gr =Xt [Jaeao — a.t I x
Gor = 97 © 97 © i) 4(r
Figure 7: Inductive definitions aof, g.
Before we prove Lemnja Al2 we need to prove a series of lemmas.
Lemma A.5. For all typesda + ¢ the mapsf,, g, are each others inverses.
Proof. Simple induction over the structure of O]
Lemma A.6. Suppos&, a t o: Typeand=F 7: Type. Theny(o[r/a]) = ¥ (o)[v(1)/a] .

Proof. Easy induction on the structure 6f O

LemmaA.7. ¢ is the identity on PILk \ ®. If a - o(«) is atype in PILL \ ® and is any type of PILk,
theny (o (7)) = o (ip(7)).

Proof. Easy induction omw. O
LemmaA.8. If =+ ois atype in PILL \ ® thenf, is the identity.

Proof. Easy induction on the structure of O

The next few pages until Lemnja A]12 we prove a series of lemmas describing the behafjowith
respect to reindexing. Basically what makes this difficult is that sjface- id,, if « is a type variable, we
cannot havef,[7/al = f;(7/a)-

Suppose=, o, B + o(a, 3) is a type in PILL- in which o occurs only negatively and only positively. For
Ekfi7 —o1,9: w—o W we write

EFo(f,9): o(r,w) — (7,

235

for the well known functorial interpretation of. Recall that this functorial interpretation of types is given
by aterm

M: [, 8,0 ,8. (6 —oa) — (8—) — (c(a,) — a(c,).

For details, see [3].

Lemma A.9. [Groupoid-action Lemma] Suppo&e «, 5 o(«, () is a type in PILLy in which o occurs
only negatively and only possitively. Suppose further that - — 7/ is an isomorphism, i.e., there exists
atermf~! which is an inverse tg up to internal equality. Then

E’_ ’ —FU[qu,<f>,<f>]E <U(f_17f>>

Proof. Supposef: 7 — 7. Consider first the two commutative diagrams

-
L
/

f
—o7',

id, id,

T —oT T —o0
f id, idr
f71
! ——oT T
-

These diagrams imply that
(id‘ﬁf_l): <f> —° eqra
(idr, f): €q. — (f).
Instantiating the parametricity schema for the term
M: Jla, 8,0/, (¢ —a) = (8 —f) = (o(a, 8) — o, 3))
giving the functorial interpretation of the typein the case

o =(f), a=eq, B=eq, [=(f)
we get
o(idr,id;)(oleq,, eq] — o[(f), (A)])o(f 7, f).
which using identity extension and functoriality @fgives

(idU(T,T)7 J(f_la f)) qu'(T,T) - J[<f>7 <f>]

Sincevz: o(7,7). z(€0,(,)z We havevz: o(r, 7). zo[(f), (Ne(fL fHz. Sox(a(f~1, f))y implies
za[(f), (f)]y, proving the first direction of the lemma.
To show the other direction, we proceed as before. Consider first the two commutative diagrams

—1

7 o7 T ——oT
idT/L L ; fL Ld

id_r f id ’

T o A —Tor

Thus,
(f 7 idwr): edy —o (f),
(fyide): (f) — eq..
So by parametricity
(o(f~ f)yider): o[(f), ()] — eq.
Suppose nowa|[(f), (f)]y. Thena(f~1, f)(z) = y, i.e.,x{c(f~1, f))y as desired. O

236

Lemma A.10. Supposes, o, B - o(E, «, §) is a type in PILL \ ® in whicha occurs only negatively and
0 only positively. Suppose further that- 7: Type is any type. Then

folrjar/8) = (97, fr)
Proof. The lemma is proved simultaneously with the statement

Yolr/ar/8) = 0 (fr,9r)

by structural induction omr. The base cases oafbeing a variable are trivial. The case=!0" is clear from
the fact thatf,, =!f, and likewise forg. The case of = [[/. ¢’ is proved likewise.

The case o = ¢/ — ¢” is the most interesting. The calculation is
f(o"—oo’”)[r/aﬂ-/ﬁ] = A°h: (0/ —o U/,)[T/Oé, 7—/5] fa/’[r/a,r/ﬂ] oho 9o'[r/a,7/8)
which by induction is equal to
A°h: (0" —o o")[r/a,7/B]. 0" (g7, fr) o ho o' (fr,97) = (¢ — 0")(gr, fr)
O

Lemma A.11. Suppos&, a - o isatypein PILLy \® andZ + 7 is any type. Then the relatiariecg, (f-)]
is equivalent to the graph of;;/o- In particular, for any types, o - o, the relationy(o)[ecg, (f-)] is
equivalent to the graph ofy ()7 /a]

Proof. We first writeo asz, a, 8+ o(Z, «,) where we have split the appearences @ ¢ into negative
(a’s) and positive ('s). By Lemmg A.9 we know that

0[9057 <f7'>7 <f7'>] = <0’(’Ld5, 9r, f'r)>
which by Lemma A.ID is equivalent to the graphfyf; ..,/ as desired. O

Lemma A.12. Suppose, a - o: Type and= = 7: Type. Thenf,(; /o] = fy(o)[r/a) © folT/].

Proof. We prove this by induction on the structurecaf The base cases e6f= « ando = g for 6 € = are
trivial. The case ob = I is also trivial sincefy, ;) is the identity by Lemma AJ8.

The induction step fos =!o” is simply using the fact thaf,, =!f,» andy(lo’) =l (o). We get
fio'irja) = ot /0] = o) irja)0 o [T/ 0] = fyponr/a) © fio[T/

The induction step fos = [[8. o’ is proved likewise.
Supposer = ¢/ — ¢”. Notice first, that sincg’ andg are each others inverses, the induction hypothesis

implies that
9o'r/a] = 9o’ [T/} © G677 /a]
and soifz: o'[t/a] — o”[1/a],
fio' o)1) (T) = for[r/a] © T © Go[r/a)
which by the induction hypothesis equals

fuem)irja) © forlT/a] 0 T 0 gor[T/a] © gy(o1\ir/a] = Fiv(o")irja]—owr (o) /a] © for—eon [T/](Z)

237

and we conclude that
fap(or—p(om)irja) © for—or [T/) = ooz /a)

Finally we consider the case of = ¢’ ® ¢”. Denoting as usual, for any pair of typesw’ by i, . the
isomorphism
ww —o (J[B-(w—ow — B) — B)
we have, using Lemnja A.4
fowor/a) = (LI B (fofr/a] = forrsa) = B) = B) ©iglr/alo'(r/a]

which by induction is equal to

(18- (fut)ir/a) = Futoir/a) = B) — B)o
(H B. (fU[T/a] - fO"[T/a] - ﬁ) - ﬁ) o iO'[T/Oc],O',[T/Oé] =
(H B. (fl/)(a)[’r/oc] - flp(a’)[T/a} - ﬂ) - B) o fo‘®o"[7—/a] =
fuewonir/al © fowo [T/A

as desired. O

The next lemma is basically the induction step for type application for the proof of Propgsitipn A.2. Notice
that for this proof parametricity is crucial.

Lemma A.13. Supposez, a - o: Typeand=F 7: Type. Then

Moo —2 o5lr/a]

fn a.o fCT[T/Q]
apPy(r)

[Ta. (o) ——=¢(o[r/a])
commutes, where apjis the map\°z: [[«. 0.2 7 and app,, /) defined likewise.

Proof. Since
app; © fl1a.o(®) = app.(Ac. fo(z a)) = fo[r/al(z 7)
we haveapp, o fja.c = fo[7/a] o app.. Parametricity tells us that for all: [. (0),

b(o)[ed, (fr)](app;(z), appy(r) (z))
By Lemmg A.1] we thus conclude

Fi(o)ir/a) © 3PP = 8PPy(r)
Now, using Lemm& A.72 we get

appz[;(r) 0 fH oo — fw(a)[T/a} capp; o f]_[ao = fz/;(a)[’r/oa] 0 fU[T/a] capp. = fU[T/a] ° app;

as desired. O

238

Proof of Propositiorf A]2.The proof is by induction on the term but for that to go through, we need
a stronger induction hypothesis, considering open terms as well. The induction hypothesis will be the
following. Suppose we have an open term

276,90 FHT,Y): T

then

2|3 6,7: " - fr(HF, 1) =p(r) (1) (f5(E), fo ()-
wherefz(Z) means the vectof,, (z1), ..., fs, (x,) and so on.
We proceed to prove this by induction én

Case t a variable:
The base cases of variable are trivial sincé acts on variables as the identity.

Caset = *:
f1(x) = Aa. Nz: a.x = (%).

Caset=Y:
Since Lemm tells us thgf] ... is the identity and)(Y') = Y, both sides of the equation are
equal toY".

Caset = \ynq1: 0y, ;. 1"

We assume for notational simplicity that the lambda-abstraction is over the last variatdecif that
we writet'(Z, 7, yn+1). By definition

YA Ynt1: 0y t)(f3(D), for () = Aynta: Ylong)- () (f5(Z), f5(8), Ynt1)

and
fcr;Hrl—OT()‘oyn-‘rl: O.;L+1‘ t/)(fv ?j) = AOyn—i-lz ¢(02+1) fT((f ?j (yn-l—l)))

By induction hypothesis, we know that for agy, : : o, ; we have

Fr (@ yn1) = () (f5(2), fo (), for,,, (Uns1))

In particular this holds if we sajf,,1 to begagﬂ(ynﬂ) and sincey and f are inverses, we get the
desired equality.

Caset=t't":
We have

() (f5(@), for (7)) = ©()(f3(@), for (7)) P (") (£5(D), f5:(7))

which by induction hypothesis is equal to

fri—or (U(2,9)) fr(t"(2,9)) = fr 0 U'(Z,7) 0 g (fr(t"(Z, 9))) = f-('(Z,) (¢" (Z,7)))

proving the induction case.

239

Caset =t @t
Supposé’: 7/,t": 7”. By definition, we have

Y’ @ ") (f3(2), f5(¥)) =
Aa. Xh: (7") —o p(7") —o a. h (W(')(f5(Z), f5:(9))) (W (") (f5(Z), fz()))

by induction hypothesis this equals

which is equal to

Caset = Aa.t':

Caset =t'(w):
Supposé’: []a. 7. Now,
Yt w)(f3(Z), [z (§) = L) (f(Z), f2(¥)) Y(w)

By induction hypothesis this is equal to

fH a.‘r(t/(fa g)) w(w)

which by Lemma A.IB is equal to
fT[w/a] (t/(fa 37) w)

which proves the induction step.

Caset =!t':

S (@, 7)) =1 fr (2 (2,1)))
and since
V(I (f5(Z), f2:(9) =0t (f3(D), fz(9)))
the case follows from the induction hypothesis.
Caset =letz ® 2’ bet'int":
Suppose in this case thdt 7/ @ 7" andt”: 7. Now,

b(letz @ 2’ bet' int")(f5(%), f5(4)) =

B (@), @) () V0 $(). Nz D). o) o @)s fyr @))

240

Now, by induction

(") (f5(5), f3:(4), 2, y) = (") (f3(T), [(§), fr 97 (), frrgen(y)) =
f- (", 4, g7 (), gT"(y)))

And so by using the induction hypothesis#1{9) reduces to

frrar (U(Z,) (1) (Ax: (7). Ay (7). fr(1"(Z, §, g7 (), gr (y))) =
letz ® 2" bet'(Z, §) in f+(t"(Z, 7, g7 fr/(2), gr fr1(21))) = [(U(Z, 7))

Caset = let!y bet' int":
In this case, supposéhas typdr’ andt”:

Y(letlz bet"int")(fz(Z), fz (4)) = letlx bey (') (fz(2), fa (7)) In (") (f5(2), fa (1),).

Using the induction hypothesis, this is equal to

let !z be fi,r (t'(Z, 7)) In f-(t"(Z,7, g (x))).

Sincef.» =!f,, this is equal to
let!z bet' (%) in f,("(Z, 7, g (f+ (1)) = fr(t(Z, 7).

Caset = let x bet'int":

In this casé” has typer. Now,

P(let « bet"int")(fz(7), f7 (4)) = (V') (f5(T), fo (1)) b () (W (") (f5(Z), [z (7))

Using the induction hypothesis, this is equal to

fi(t'(Z,9)) () f-(t"(Z,3)) = let x bet'(Z,5) in f(t"(£,7)) = f-(t(Z, 7))

Finally, Propositiofi A.]L is the collected statement of Proposjtion A.2 and L§mnja A.7.

241

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

G. M. Bierman, A. M. Pitts, and C. V. Russo. Operational properties of Lily, a polymorphic lin-
ear lambda calculus with recursion. Fourth International Workshop on Higher Order Operational
Technigues in Semantics, Mogd, volume 41 ofElectronic Notes in Theoretical Computer Science
Elsevier, September 2000] [1]7,]1.1L, 8

L. Birkedal and R. E. Mggelberg. Categorical models of Abadi-Plotkin’s logic for parametmhidath-
ematical Structures in Computer Sciende appear.[|5

L. Birkedal, R. E. Mggelberg, and R. L. Petersen. Parametric domain-theoretic models of linear Abadi
& Plotkin logic. Technical Report TR-2005-57, IT University of Copenhagen, February Z005. | docu-

ment) [1[6[B, 712, 718, 1.B]A]A

L. Birkedal, R. E. Mggelberg, and R. L. Petersen. Parametric domain-theoretic models of polymorphic

intuitionistic / linear lambda calculus. Submitted, 2005. (documght), 1

André Joyal and leke MoerdijkAlgebraic Set TheoryNumber 220 in London Mathematical Society
Lecture Notes in Mathematics. Cambridge University Press, 19p5. 4

J.R. Longley and A.K. Simpson. A uniform approach to domain theory in realizability mokfieith.
Struct. in Comp. Sciencél, 1996.[B, |7

R. E. Mggelberg. Parametric completion for models of polymorphic intuitionistic / linear lambda
calculus. Technical Report TR-2005-60, IT University of Copenhagen, February 200p. 1, 8

R. E. Mggelberg, L. Birkedal, and R. L. Petersen. Categorical models of PILL. Technical Report
TR-2005-58, IT University of Copenhagen, February 2008.] B} [3,[3,[3[4[b, 5. 8

G. D. Plotkin. Type theory and recursion (extended abstractPraceedings, Eighth Annual IEEE
Symposium on Logic in Computer Scienpage 374, Montreal, Canada, 19-23 June 1993. IEEE
Computer Society Pres§] 1

G.D. Plotkin. Second order type theory and recursion. Notes for a talk at the Scott Fest, February
1993.[1

Gordon Plotkin and Mam Abadi. A logic for parametric polymorphism. Tryped lambda calculi and
applications (Utrecht, 1993)Volume 664 of_ecture Notes in Comput. Sghages 361-375. Springer,
Berlin, 1993.[1

E.P. Robinson and G. Rosolini. Reflexive graphs and parametric polymorphism. In S. Abramsky,
editor,Proc. 9th Symposium in Logic in Computer Sciepames 364-371, Paris, 1994. |.E.E.E. Com-
puter Society/ [1,]5

G. Rosolini.Continuity and Effectiveness in Top&hD thesis, University of Oxford, 1986. 2.1

G. Rosolini and A. Simpson. Using synthetic domain theory to prove operational properties of a
polymorphic programming language based on strictness. Manuscript, Z004. (do¢(irer), It, 2, 2.2,

2.3[2.1[2.16.13, 315] # Bl 7. TIL MLIT.L P-4} [7.4,[7.8[7.0, 7.9,[7.10[V.11, 8

Andrej Stedrov. Intuitionistic set theory. IHarvey Friedman’s research on the foundations of math-
ematics volume 117 ofStud. Logic Found. Mathpages 257—-284. North-Holland, Amsterdam, 1985.

242

[16] A. Simpson. Computational adequacy in an elementary topo€Sln 12th Workshop on Computer
Science LogicLNCS, Springer-Verlag, 1994.][7, 7|11

[17] A. Simpson. Elementary axioms for categories of classed4th Symposium on Logic in Computer
Science (LICS'99)pages 77-87, Washington - Brussels - Tokyo, July 1999. IHEE. 4

[18] A. Simpson. Computational adequacy for recursive types in models of intuitionistic set tAeols
of Pure and Applied Logicl30, 2004.[|,]1, 7.11

243

Parametric Completion for Models of Polymorphic Linear /
Intuitionistic Lambda Calculus

Rasmus Ejlers Mggelberg

Abstract

We show how the externalization of an internal P{limodel in a quasi-topos gives rise to a canon-
ical pre-LAPL-structure in which the logic is the internal logic of the quasi-topos. This corresponds to
how one intuitively would think of parametricity for such internal models.

We describe a parametric completion process based or [10, 1] which takes an internal model of
PILLy in a quasi-topos and builds a new internal Pjl-inodel in a presheaf topos over the original
quasi-topos. The externalization of this Piimodel extends to a full parametric LAPL-structure.
However, this LAPL-structure is different from the canonical one, since the logic comes from the original
quasi-topos.

The concrete LAPL-structure dfl[2] is basically an example of this parametric completion process,
although it is presented a bit differentlic. cit.. The PILLy -model constructed using synthetic domain
theory in [11] 8] 9] is an example of an application of the parametric completion process, but the LAPL-
structure provided for it in [8,19] is different from the one presented here.

Contents

1 Intr tion 246

[2 Tnternal structures in quasi-toposef 246
2.1 Internal Fibrations e 247
[2.2 Internallinear categories e 251

[3 Internal PILL y-models 254

|4 Parametric completion 256

269

[>.1 The LAPL-structure from syntheticdomainthgory

270

245

1 Introduction

In this paper we study the parametric parametric completion process|aofl[10, 1] in the setting ef-PILL
models. We assume that the reader is familiar with the concept of LAPL-structlre [2, 3], and we show that
the parametric completion process produces parametric LAPL-structures, thus providing a rich family of
these. In earlier papers we have constructed a domain theoretic parametric LAPL-structure [2, 3] and shown
how to construct parametric LAPL-structures using synthetic domain thebry [8]. These LAPL-structures
seem to be examples of a parametric completion process, and so the motivation for this work was to describe
this process in general.

An internal PILLy--model in a finitely complete category is an internal linear category with products which
is complete enough to model polymorphism, such that the co-Kleisli category is an irgebreategory of

the ambient category. Of course the externalization of the adjunction between an internairRtidel and

the co-Kleisli category is a PIL{--model in the sense of[7]. If the ambient category is a quasi-topos, the
internal logic is sufficiently rich for reasoning about parametricity, and thus we can construct a canonical
pre-LAPL-structure around the externalization of the internal Rirhodel.

A notion of admissible relations for an internal Pi-kmodel is an internal logic fibration giving a sublogic

of the regular subobiject fibration, such that relations in the logic give a notion of admissible relations in the
sense ofi[2]. The parametric completion process takes an internaj-Riiddel with a notion of admissible
relations in a quasi-topos and produces a Ritrhodel in the category of reflexive graphs over the original
guasi-topos. Basically, the types in the externalization of this PHihodel are types in the original Plkd-

model with a relational interpretation based on the given notion of admissible relations satisfying identity
extension, and so the externalization extends to a parametric LAPL-structure. The LAPL-structure, however,
is not the canonical LAPL-structure of the completed Rikinodel inside the quasitopos of reflexive graphs

as described above. Instead it is build from the logic of the original quasi-topos. This is due to the relational
interpretations of types being in terms of the logic of the original topos.

The concrete LAPL-structure considered [in [2] is a result of the parametric completion process applied
to admissible pers over a reflexive domain seen as an internal subcategory of the category of assemblies,
although the presentation inl[2] is slightly different. This example motivates the generalization to quasi-
toposes instead of toposes. We could have also considered admissible pers as an internal category in the
effective topos, but that would have given us a different logic. The PHihodel constructed using synthetic
domain theory in[[11,€,19] is an example of an application of the parametric completion process, but the
LAPL-structure provided for it in[g,19] is different from the one presented here.

The paper is organized as follows: In Sectign 2 we review some internal category theory needed for the
rest of the paper. Secti¢n 3 defines internal Bikinodels in quasi-toposes and the canonical pre-LAPL-
structure associated to one such. We describe the parametric completion process ifj Section 4 afd Section 5
discusses the LAPL-structures bf [2, 8] as examples of the parametric completion process.

2 Internal structures in quasi-toposes

We start by recalling a bit of internal category theory. In particular we will discuss internal fibrations and
internal linear categories. For a general introduction to internal category theory (in particular the definition
of internal categories and externalization of internal categories), however, the reader is referred to text books
on the subject such as [4].

246

2.1 Internal Fibrations

We define an internal fibration in a quasi-topos to be an internal fulitter B satisfying the proposition
stating that all maps iB have cartesian liftings in the internal language of the quasi-topos. A cleavage for
an internal fibratio: E — B is a map from the pullback

Eo XBO B1 E— B1

-

Eo By

into By such that any elemeif, f: Y — pX) € Eq xg, B1 is mapped to a cartesian liftof f, i.e., the
proposition
VY : Eg.Vf: By.codonmyf = pY D Vg: E1.Vu: By. fou=p(g)A

codon(g) =Y D 3w: E1.p(v) =uA fov=g @)

holds in the internal logic. We will continue to write the cleavage functiofasf) — f. We say thap is
cloven if there exists (externally) a cleavage.

Lemma 2.1. An internal functop: E — B is a cloven internal fibration in a quasi-topos iff
Fam(p): Fam(E) — Fam(B)

is a fibration.

For the proof we need the following lemma

Lemma 2.2. Suppos® — C, B — C are fibrations, and

p

N

C

D

B

is a fibred map. If each restriction to a fibre:
Dc: D. — B.
for ¢ € Cy is a fibration and reindexing along maps@preserve cartesian lifts, thenis a fibration.

Proof. This is an easy exercise. O

Proof of Lemm& 2]1Suppose firsp: E — B is an internal fibration with cleavage denotge- f. Using
Lemmd 2.2 it suffices to show that each fibréafn(p) is a cloven fibration with cleavage preserved under
reindexing.

SupposeX : = — Eg is an object offam(E) and f: = — B, is a vertical map irffam(B) with codomain
p o X. By composing with the cleavage fpwe get a lift of f:

f: 2 —E.

247

Suppose now that we are given = — E; such that codom g = X andu: Z — B; such that expressed
internally

fou=p(g).

By assumption the statemefj (1) holds in the internal logiE.of hus by description in a quasi-topos there
exists a map from

K ={(X, f,g,u) € Eg x By x E; x By | codomf = pX A fou=p(g) Acodom(g) = X}

to E; providing the unique of @) We may now compose the pairing of the givex, f, g, u) above with

this map, to obtain the unique needed. This proves that each fibre of the externalization is a fibration,
and clearly the cleavage is preserved by reindexing because it is given by composing with the cleavage map
fe=

For the other direction, consider the projections Eg xg, B; — E(and
f: EO XBy Bl — Bl.

Since these present respectively an objecFah(E) and a morphism offam(B) we can consider the
cartesian lift of(X, f), which is a morphisny satisfying

B,

Eq

Consider now the map: K — E; given by the third projection considered as a mafam(E) from
domo ¢ to X over the projectionk — Eq xg, B; in E. Consider also the map: K — B, given by
the fourth projection considered as a maginm(B) with codomain domv f over the projection’ —

Ey xB, B1 in E. Now, f o u = Fam(p)(g) in Fam(B) by definition of K and so there exists a unique map
in Fam(B) over the projectionlk’ — E xp, B1 in E given byv: K — E; such thattam(p)(v) = v and

f ov = g. This mapv proves the proposition

VX: Eg.Vf: By.codonyf = pX D Vg: Ei.Vu: By. fou=p(g)A
codon(g) =X D Jv: E1.p(v) =uA fov=g

in the internal logic off.
Finally, for uniqueness af, we sety to be the third projection from

K = {(X,f,g,u,v,v’)EngBl><E1><B1 x Eq XEl_‘ ~
codomf = pX A fou=p(g9) Ap(v) =p(t))=uA fov=fouv=g}

considered as a map iam(E) into X over the projectionk’ — Ej xg, B; in E. We defineu to be
the fourth projection out of(’ considered as a map ifam(B) into domo f over the projectionk’ —
Ey xB, B1. Definev,v’ to be the obvious projections out &f’ considered as maps #hm(E) into
domo f over K’ — Eg xp, B1. Since we still havef o u = Fam(p)(g) andfov = g = fo v/, by
Fam(E) — Fam(B) being a fibration, we conclude that the projections ontotla@dv’ coordinates are
equal, which proves the uniquenessoh () in the internal logic of£. O

248

Lemma 2.3. For p: Q — E an internal cloven fibration and: F — E a functor in a quasi-topog, the
pullback ofp along f is a cloven internal fibration.

For the next two examples we assume ¥ias an internakub-category ofE, that is, there exists a faithful
fibred map

Fam(C) 2. E~

\\\JMW

E
with codom denoting the codomain fibration. We also assume that this map preserves monos.

Below, we will need to do a few calculations in the codomain fibration, and so we establish some notation
first. An objectZ — X of E~ will be denoted] [, £, — X. Recall that a quasi-topos is locally
cartesian closed, and so the fibrewise products and exponepfsof £, — X and[[.y E, — X are
denoted

[Lex B x Ex — X, lLexEF —X
respectively. Iff:Y — X is a map inE we may reindeq [, .y £, — X along f, and we write the
resulting object a$], ., Ey) — Y.

Sinceidc, is an object infam(C) over Cy, ¢(idc,) is a map inE with codomainC,. We will denote the
codomain of(idc,) by [[.cc, ¢- For any objecf: X — Cg in Fam(C) we must have

o(f) = o(f*(idc,)) = froidc,) = sex f(2)-
We can reindexind [, ¢ along either of the two projections, 7': C§ — C, and take the fibrewise
exponent yielding
[Lece m(@)™ @ — C3
which we usually simply denote
Hc,c’ €Cy ¢ — C(%'

Now, for any objectX € E, vertical maps iffam(C) from f: X — Cytog: X — Cg are maps making

the diagram

X h C

1
<f:>\\ Amcodom
C3

commute. The functap takes these maps to vertical map&imn from ¢(f) to ¢(g), which using thatd x
is the terminal object dE’ correspond to maps

X H:EGX g(x)f(m)
X

This correspondence is naturalihand therefore there must be a map

Cl HC,C’GCO Clc (2)

(domcodk /

C3

249

inducing the functorial part ap. We will often denote the obje€t; — C3 by e cec, Cl,0).
Recall also that the pullback of the regular subobject fibraliegSubry — E along dom E— — E gives

an indexed higher order logic fibratidn [1, Lemma A.8]

Q E— codom E.

The indexed generic object for this indexed higher order logic fibration is the family of proje¢tions —
E)zcr, WhereX is the regular subobject classifierldf Using the notation introduced above, we will denote
the subobject classifier

HmGE Y —E
Example 2.4. In this example we construct an internal fibratilbegSuby — C such that we have a
pullback

Fam(RegSuby (C)) —— 3
am (eglil 5(C)) T 3)
Fam(C) ¢ E—.

Thus we can think dRegSubp(C) — C as the internalization of the restriction &egSuby — E to C.
We define the object of objediegSuby (C) to be[[.., X Using the ordering o and the inclusion
(2), we can form the fibred subobject
HC,C/GCO{(f>ga h,l’): ¢ x ZC, X C(Cv C/) xXc | f(x) < g(h(x))}
of
Heweo, 2% 2 x C(e,d) x ¢

in the fibre oveIC2. Using the fibred first-order logic oB—~ — E, we can form the subobject

eveco{(f,9:h): £°x 5 x Ce,d) | Va: c. f(x) < g(h(x))} (4)

of
[evec, 2% ¢ x C(e,).

We defindRegSuby(C); to be [4) with domain and codomain projections mappiifigg, 2) to f and g
respectively. Composition is given by composing/itt@@mponent, and the mafx ¢ — (f, f, id.) maps
an object ofRegSuby(C), to the identity onf.
Finally, the internal fibrationRegSubi(C) — C maps(f,g,h) to h. The cleavage map§f,a) in
RegSuby(C)o xc, C1to(f oa,a, f).

For the pullback diagrany (3), notice that an objectlafim(RegSuby(C)) over f: X — Cg in Fam(C)
is a mapg making the diagram

HCGCQ EC

s

Co

commute. Such maps correspond to diagrams

which correspond to diagrams

[Liex f(2) [Liex =

N

)

i.e., subobjects df[. f(z) - X inQ — E.

Example 2.5. There are a few canonical subfibrationsBégSuby — C. For example, the subobjects in
RegSuby, are represented by regular monoslin but one could also consider regular monodGn In this
example, we consider the monos fr@nthat are regular inE, but may not be so insid€ (the equalizer
diagram may live ir£, but not in the subcategol@). We call this fibratiorSub(C) N RegSuby.

First define the object of monos @ as

Monosc = [[,. sec,1f: Cle,d) [Vr,y: e f(x) = f(y) D= =y}

We assume that is closed under pullbacks of monos, i.e., for every mpaod maph both in C with the
same codomain there exists a mapfian C such thatg’ is the pullback of; alongh as seen fron. This
can be expressed in the internal logiclfbut notice that a diagram i€ which is a pullback irE need not
necessarily be a pullback &, sinceC is not required to be &ull subcategory ok.

The object of objectsSub(C) N RegSubg)o is
[eec, {f: 2|3 Co.3g: Monosc(c,¢).Va: c. f(x) D Jy: . g(y) = x}

and we consider this as a full subcategoryRégSuby. The assumption of closure under pullbacks of
monos is what makes this a subfibratiorRégSuby — E.

Remark 2.6. Exampleg 2.6 would have been simpler, if the internal categoryad been &ull internal
subcategory. In the cases we consider, however, this will very often not be the case, since we will consider
internal categories with comonads, such that the co-Kleisli category is an internal subcategory of the ambi-
ent category. In these cas€sbeing a subcategory of the co-Kleisli category is a subcategory of the ambient
category, but it is only full if the comonad is trivial.

2.2 Internal linear categories

An internal linear category is an internal category with internal functorse, ! and the usual internal natural
transformations such that the usual equations hold in the internal languagel (see [7, Definition 1.10]). Since
the concept of internal categories and internal linear categories can be expressed in any finitely complete
category, the standard assumption of this section will be that the ambient calegosimply a finitely
complete category (and not necessarily a quasi-topos).

Lemma 2.7. SupposeC is an internal category in a finitely complete categdy There is a bijective
correspondence between internal linear category structurds and fibred linear structures ofam(C) —
E.

Proof. This is a consequence of the externalization functor being a locally full and faithful 2-functor pre-
serving products [4, Proposition 7.3.8]. O

251

For any finitely complete categoiywe defineCat(E) to be the category of internal categories and internal
functors inE. Likewise, we defindLinCat(IE) to be the category of internal linear categories and internal
functors preserving the linear structure on the nodeé. i/e write internal categories as

C1=—GCy

whereC; is the object of morphisms an@ is the object of objects. Strictly speaking, the composition
map should be mentioned in the description of the internal category, but we will often leave it implicit or
denote it by comp.

For categorie®, C we denote byEC the category of functors and natural transformations. The rest of this
section is devoted to proving the following (well-known) lemma:

Lemma 2.8. Supposé is a finitely complete category ardtlis any category. Then

Cat(E®) = Cat(E)C.
In one direction, the isomorphism associates to an internal categﬁrb; Fy in E€ the functor that to
eachc € Cq associates the internal categor; (c) =<—— Fy(c) in E. Likewise there is an isomorphism

LinCat(E®) = LinCat(E)°.

For Cat(E®) to even make sense, we need the following lemma.

Lemma 2.9. If E is a finitely complete category ari@lis any category, the categoBF is finitely complete,
and limits are computed pointwise.

Proof. This is well-known, see for example [6, p. 22] of [5, p. 116]. O

Lemma 2.10. Suppos€E, IF are finitely complete categories arfd: E — F is a functor preserving finite
limits. ThenF induces a functoCat(F'): Cat(E) — Cat(F).

If G: E — F is another finite limit preserving functor then any natural transformagionf” = G induces
a natural transformatiorCat(u): Cat(F') = Cat(G).

Moreover,F' induces a functor
LinCat(F): LinCat(E) — LinCat(F)
andy induces a natural transformation.
LinCat(F) = LinCat(G)
Proof. The functorCat(F') maps an internal category
Ci=——=Cy to F(Cy) == F(Co) .

For this to be an internal category @at(F) we also need a composition map. Sir€ereserves finite
limits, we have a pullback
F(Cl XCEICD E—— F(Cl)

lF(dom)

Thus we can define the composition map by applyihtp the composition map of2; =<— C . Clearly
we can also apply’ to internal functors oF (or internal natural transformations) and obtain internal functors
(or internal natural transformations) lih

The natural transformatio@at () has as component a&; <— C, the pair(uc,, i1c,), Which defines
an internal functor by naturality f. Naturality of also implies naturality o€at(u).

We defineLinCat(F') asCat(F) by applying F' to all structure of the internal linear category. Again,

it is crucial thatF' preserves finite limits, since for exampteof the object part of the tensor functor is a
map F'(Cy x Cy) — F(Cyp) in F, and we need a map with domalf(Cy) x F(Cy). The definition of

an internal linear category requires a number of diagrams to commute (Using [7, Lemma 1.11] to modify
the last condition of([[7, Definition 1.10]). Applying to all these commutative diagrams of course yield
commutative diagrams, and thus applyifigo all the internal linear category structure does give an internal
linear category structure.

If H is an internal functor between internal linear categories commuting with the linear structure of these,
then F(H) also commutes with the internal linear structure which proveshiaCat(F") does in fact
define a functor.

For natural transformations, the naturality of: implies that it commutes with all linear category structure,
which proves thaLinCat(u) is a natural transformation. O

Proof of Lemm@ 2]8For eache € C, the functor ey: E© — E given by evaluation at preserves limits.
By Lemmd 2.1ID we get an induced functor

Cat(E®) — Cat(E).
For f: ¢ — ¢ in C, we have a natural transformation from.é@ ev... This induces a functor
Cat(E®) x C — Cat(E).

The functorg of the lemma is the adjoint of this map. This proves that fact is a well defined functor.
We call the inverse o for . To define it, notice that we have two functors

(*)0, (*)11 Cat(IE) — E

mapping an internal category to its object of objects and morphisms respectively. We have natural transfor-
mations domcodomid between these corresponding to domain and codomain maps and identity, and we
have a natural transformation

comp: (—)1 X(—), ()1 = (—)h

given by the composition map in internal categories. These induce functors
(=), (=) : Cat(E)® — E®
and natural transformations déntodont, id®. Since
()T X(ye (DT = (1 (2 ()"
we also have a natural transformation c6mpg—)¢ x (e (—)F — (=)f-

The mapy mapsE': Cat(E)® to the diagram

(2)F(F) == (- (F)

which is clearly an internal category. Fai: F = G a morphism inCat(E)® the natural transformations
(=)o (H): (m)5(F) = (5)5(G), (9T (H): (5)F(F) = ()T (G)

are morphisms iftC. To check that this defines an internal functoffih we must check that it commutes
with dom codom id, comp, which it does, since these are natural transformations.

It is easy to see that, ¢) are each others inverses.
By Lemmd 2.1ID we can define the map

LinCat(E®) — LinCat(E)".

as we defineg.

Finally, to define the mag : LinCat(E)® — LinCat(E®), notice that as above, we can define functors
(=)o, (—)1: LinCat(E) — E

and proceed as before. But this time we have many other natural transformations:

lo: (=)o = (=)o
he (=)= (-h
®o: (=)o X (=)o = (=)o

e (o= (<)

satisfying the usual equations. If we proceed as above we can thus define the functor
¢ : LinCat(E)® — LinCat(E®)

as desired. As before, cleary) are each others inverses. O

3 Internal PILL y-models

Definition 3.1. Suppose we are given a quasi-toffasAninternal PILLy-modelin E is an internal linear
categoryC with products such that

1. C is complete enough to model polymorphism, i.e., for all obj&cta E there exists right Kan
extensions of all functorS x Cy — C along the projectiorE x Cy, — =Z. HereZ and C, are
considered as discrete categories.

2. The co-Kleisli category fdr: C — C denotedC; is an internal subcategory @&
3. The products o€, coincide with the products .

4. C C C, models the fixed point combinatdr, i.e., there exists aterii: 1 — C; such that

Co
/ T dom
1—v>=Cy
icodom

[[]a.(a—a)—a]
Co

254

commutes, wher¢[] a. (o« — o) — «] is interpreted using Itei]1, and such that it holds in the

internal logic of E that
Ve: Co.Vfile—oc f(I(Y clf) =Y clf.

Remark 3.2. One can always constru€t;, as an internal category i, but in Definitior] 3.1l we ask for it
to be an internabulrategory off as defined in Sectidgn 2.1. Using the embeddin@ @fto C, we see that
C is also an internal subcategory @fby the composite map

Fam(C) —— Fam(C)) —=E—

~.L7

E

which also preserves fibred products.

We now describe how an internal Plikmodel gives rise to a pre-LAPL-structure in a canonical way in
which the internal logic oE gives the logic of the pre-LAPL-structure.

The regular subobject fibratidhegSub(E) — E induces a fibratio® — E~ given as

Q — RegSub(E)

.

Eo— -

Proposition 3.3. Given an internal model of PILk, the schema

Q
Fam(C) T Fam(C)) —>El—’
\E /

is a pre-LAPL-structure.
Proof. By [1, Lemma A.4] we have a fibred first order logic fibration.
The only non-trivial part of the proof is the construction of the map

Fam(C) xg Fam(C) U

~_

E.

We defineU to be
(f: = — Co,g: = — C()) —]_[er(RegSub]E)f(x)Xg(x),

i.e., the pullback ofRegSuby)y — Cy along the composite

- (f»g> C(Z) X Co_

—

255

Maps in the fibre from any objecX — = to U(f,g) correspond to maps from the fibrewise product of
X — Eand¢(f x g: 2 — Cp) to the subobject classifidl] ,.= ¥ of Q — E—. Clearly the functo/
satisfies the requirements for LAPL-structuties [2, Definition 3.1]. O

Definition 3.4. A subfibration
Q= RegSuby(C)

e

C.

gives an internal notion of admissible relationsJfis closed under the rules for admissible relations as
expressed in LAPL (Figure 3 and Axiom 2.18[df [7]).

An internal notion of admissible relations gives rise to a subfunctéf by:

V(f: E— Co,9: 2 — Co) = [1ez Qf(a)xg(=)
which gives a notion of admissible relation for the LAPL-structure given by Propo§itiopn 3.3.

Remark 3.5. In many situations the fibratiop: Q — C will be the fibration of regular subobjects on
objects ofC represented by monos @ as in Examplé 2]5. In such cases the fibration will be closed under
some constructions such as equality and reindexing along mapsQrdmt one will need to check some of
the other conditions in the concrete case.

4 Parametric completion

In this section we assume

e E is a quasi-topos

e C is an internal PILLk--model in[E which has pullbacks of monos and these are preserved by the
inclusion intokE.

e Q — Cisacloven internal subfibration 8fub(C) N RegSubyp — C giving a notion of admissible
relations

¢ the proposition
Y((Va, 5, R: AdmRel(o, 5)). (R — R) — R)Y

holds in the pre-LAPL-structure associated to the internal PHohodelC as in Propositiof 3|3 with
admissible relations given b — C.

We show how to construct a parametric internal Bitinodel from this. However, we stress that the inter-
nal PILLy-model is not exactly parametric with respect to the LAPL-structure constructed in the previous
section, but with respect to an LAPL-structure with a different logic. Since the idodel is just the
externalization of the internal PlLk-model, we still get proofs of the consequences of parametricity for
this.

256

Consider the internal categoiyRq(C) whose objects are pairs of objects@fplus a relation on their
product (relations in sense of the logic fragh — C and morphisms are pairs of morphisms preserving
relations, i.e.LRq(C) is given by the pull-back

LRq(C) ——~

.

CxC—2—~

of internal categories iff.
Notice that we clearly have a reflexive graph of functors

LRq(C)=—=C (5)
where the two maps frofiR g (C) to C are the domain and codomain map respectively, and the map going

the other way is the map that map& C to the equality relation on.
Let G denote the small category

_—
= .
—_—

Lemm states that internal categorie€fn are reflexive graphs of internal categoriesfinand so

the reflexive graptﬂS) is an internal categoryBfi. We aim to show that this internal category has the
Kan-extensions needed to model polymorphism. We proceed exactly [@s in [1] but include the proofs for
completeness. Consider first the internal category

LRq(C)
VRN
c C
in the quasi-topo&”®, whereA is the obvious diagram. Consider further the fibration

LinAdmRelationsc — AdmRelCtxc
constructed as usual from the pre-LAPL-structure associat€with admissible relations fror).
Lemma 4.1. The fibrations
LinAdmRelationsc — AdmRelCtxc
and
LRq(C) A
C C
are isomorphic.

Proof. Unwinding the definition oAdmRelCtxc, we find that the objects are tripl€S, =, =) together

—_—

with maps= — Zy x 21 in E. Amap fromZ — Zy x 21 t0Z' — |, x Z] is a triple
— =/ — =/ — =/
p:E— Z,f:E0—E5,9: 51 —

making the obvious diagram commute. TP idmRelCtxc = EA.

Objects inLinAdmRelationsc are given as morphism ilkdmRelCtx¢ into the interpretation of
a,B | R Cax pwhichis[], scc,(RegSubc(C))axs — Co x Co, and since

LRq (Clo = Ha,,@ECO (RegSub (C))axﬁ

257

LRq(C)
we get a bijective correspondence between the objeckauaf| ° \\ | andLinAdmRelationsp.
o C

LRq(C)
For morphisms, a vertical morphism iam (/Q \) from (f,g,p) to (f',4',p') is by the above dis-
c C

cussion a pair of morphisnis f — f',s: g — ¢ satisfyingp O (¢ x s)*p/, which is exactly the same as a
vertical morphism ilLinAdmRelationsc. O

Lemma 4.2. The fibration
LRq(C)
Fam(Z) — EA
C C
has simple products, i.e., models polymorphism.

Proof. This is a consequence of Leminal4.1. O

Let us now consider the case that we are really interested in. We shall assume that we are given a functor

(fo, f1) INE%:

= x LRq(C)y —= ' (6)

il

EXCU

(considering the sets mentioned above as discrete categories) and we would like to find a right Kan extension
of (fo, f1) along(w,) (notice that we have used the notati@no, , I for the structure maps of all objects of
[EC - this should not cause any confusion, since it will be clear from the context which map is referred to). Let

us call this extensioQ(] [... /)o (I], f)1)- An obvious idea is to try the pai(]] f)o. (] f)1) provided
by Lemmd 4.2. Howeve(]], f)1 should commute witlf, and we cannot know thgf /), will do that.
Consider([[f)1(L(A)) for someA € =:

(I1)1(1(A))

|

(IT)o(A) > (ITf)o(A).

If we pull this relation back along the diagonal 0 f)o(A) we get a subobject

[T (A)] = (1 /)o(A)

(called thefield of ([] f)1(1(A))). Logically, |(J] f)1(I(A))] is the set{z € (] f)o(A) | (z,x) €
[1/1(I(A))}, so if we restrict(J] f)1(ZI(A)) to this subobject, we get a relation relation containing the
identity relation. The other inclusion will be easy to prove. Thus the idea is t(q—[g,];r f)o be the map
that mapsA to |[] f1(1(A)), and let]],,, f1(R) be the relation obtained by restrictig] f).(R) to

Hpar fo(Oo(R)) x Hpar fo(01(R)).

258

Notice that in the above sketch and the proof below, si@ceonsist of subobjects i, all objects and
morphisms are in the categofy. However, by pullbacks we mean pullbacks in the greater categpry
since these give the reindexing@ — C. A pullback in[E need not be a pullback & even if all maps in
the diagram are i, sinceC is not required to be &ll subcategory oF.

Lemma 4.3. The fibration
LRq(C
Fam(WM’ > — E€
models polymorphism.

Proof. We defing(][,,,, f)o(A) as the pullback

(I Lpar f) (I1)1(1(A))

I15)o(A) —— ([T /)o(4) x (ITf)o(A)
whereA is the diagonal map. We defirt¢] .. f)1(R) for R € Z', to be the pullback

1(R 1
(I Lpar f)_l() (ITMN(R)

| |

(ITpar /)o@ R) X (ITpar Slo(O1R) = (IT f)o(80R) x (IT f)o(01R).

We first show that] [,,,,. f)1(1(A)) = I((I[,q. f)o(A)) for all A. Logically

(Tpar NU(A) = {(z,y) € ATN1U(A) | (4,9), (z,2) € (ITF)1(I(A))} 2
{(z,2) | 2 € (Ipar Fo(A)} = I((TTpar f)o(A))

Jo(
To prove the other inclusion suppose y) € ([[, f)1(Z(4)) € (1] f)1({(A)). Thenforany, 1 € Co,
(z,y) € 7 ((IT 1)U (A), I(ont1)) = (IT)1(1(A)).

Letea s, , denote the appropriate component of the counitrfor! []. Then

(6A70'n+1x7 €A70'n+ly) € fi (I(A)7 I(Un-i-l)) = I(fO(A7 Un-l-l))v

SO€A 6,1 T = €AoY SINCE(]] f)o(A) is the product offy(A, oy 41) OVEro, 1 in Co, andey 4, ., iS
simply the projection onto the,, ; ;-components 4 .., = = €4,y forall o, ;1 impliesz = y as desired.
Finally we will show thathW provides the desired right adjoint. A morphism frdgy, g1) to (ho, h1),
where

and likewise(hg, h1) is @ morphisms: go — ho preserving relations (see Remark|4.4 below). In the
internal language this means that for eatke = we have amap4: go(A) — ho(A) such that forR with

8o(R) = A,01(R) = B, (z,y) € g1(R) implies (s4(z), s5(y)) € hi(R).

LRq(C)o

g

Co

— > [I]

[1]

259

Now, from Lemmd 42 we easily derive a bijection between m@psg1) — ((I] f)o, (IT f)1) and maps
(goom, g1 om) — (fo, f1). Since[],,, fo(4) € (ITf)o(A), if s: (g0,91) = ((TLpar os (Lpar 1) is

a map then clearly the correspondence gives a fapo o 7, g1 o 7) — (fo, f1). On the other hand, if

(
we have amap: (go o7, g1 om) — (fo, f1) then a prioris: (go,g1) — ((I1 f)o, (I f)1) and we need
to show that for eachi, the image ofs4 is contained in(I[,,, f)o(A4). So suppose: € go(A). Since

(z,z) € g1(I(A)) = I(go(A)), we must havgs(z), 5(z)) € (I]f)1(I(A4)), so5(z) € [I,q fo(A) as
desired. O

Remark 4.4. Consider a morphisrg between typeg = (fo, f1) andg = (go, g1) in the model
LRq(C)
Fam< vy > — E°.
C

At first sight, such a morphism is a pair of morphigfg, £1) with &; : f; — g;. But morphisms iLRq(C)
are given by pairs of maps &, and commutativity of

LRq(C); —1~ LRq(C),

ail iai
&o

Co (07

tells us thatt; must be given b€y, £y). Thusmorphisms between types are morphisms between the usual
interpretations of types preserving the relational interpretations

Lemma 4.5. The categorfLRq(C) is an internal linear category with products and this structure com-
mutes with the maps df|(5).

Proof. The fibred linear structure on
LinAdmRelationsc — AdmRelCtxc

gives a fibred linear structure on
LRq(C)
Fam(VRN) — EA
using Lemma 4]1. By Lemnja 2.7 and Lemmg 2.8 we get linear structurk®Rej(C) andC commuting

with the domain and codomain functors.

To see thaty, —, ! all preserve identities we first notice that these constructions can be written out in the
internal logic ofE. Suppose: AdmRel(o, 1), p': AdmRel(c’,7’) then

lp = (z: loyy: 7).z [Ty | Ax | D plex, ey)
p—op/ = (f,o'—oO‘,g,T—OT)\V/CC UVZ/TP(%)Dp((x)vg(y))
p& 0 = (oo frm)(¥(e, B, R: AdmRel(a, 3)). (p — p —o R) —o R)

for the natural transformation
forio@T —o]]la. (0 —T—oa) o«

defined as

forz=letd’ ®2": o @7 bexin Aa. \°h: 0 — 7 — a. h 2’ 2".

260

Now, one can easily prove thend—o preserve equalities, using Axiom 2.18 of [2] for the casé of

We proceed to show thaty, ® eq, is the equality or ® 7 using the Yoneda lemma. Suppose we are given
an admissible relatio®: AdmRel(w,w’). Maps

(f,9):eq, @eq — R
in LRq(C) correspond to maps
(f,9): eq, —eq. — R.
SinceR is simply a subobject ab x w’ in the categonyC, such maps correspond to

(f.

)io—T—oR

Na)l

in C. Such maps correspond to maps
(f.9):00T =R

still in C, which correspond to maps
(f,9): eQg, — R

in LRq(C). By the Yoneda Lemmagq, ® ed, is isomorphic teeq, . in LRq(C), and by inspection of
the correspondence provided above, this isomorphism is givéiiby,, id,x-), which means that the two
relations are equivalent.

The products are defined as

pxp =(x:oxa y:mx7) p(r(x),x(y) A (' (z),7'(y)),

wherer, 7’ denote first and second projection respectively. This product clearly also commutes with domain
and codomain maps and preserves equalities. O

It is interesting to notice that in the above proof, the argumenf@reserving identities was not purely
logical, but used the fact that admissible relations corresponded to subobj€tts in

Combining Lemmals 2|8,4.5 we get the following lemma.

Lemma 4.6. The reflexive graph of internal categoriesn
LRq(C)=—=C
constitutes an internal linear category Bf*.
Remark 4.7. Lemmas 4]B,4]6 together prove that the fibration
Fam (LRq(C) ==C) EC

models all of PILL- excepft” (we show that” is modeled in Lemnja 4.9 below). Types witinee variables
are modeled as pairs of maggy - o1, [a@ F o]o):

LRq(C)j — =~ LRq(C)o
| I |
Co Co

261

making the obvious 3 squares commute. Let us dendi& by | the interpretation ofi - ¢ in the fibration
Fam(C) — E and compare this t§—]o. From the definitions above, it is clear that the constructions
—o, !, ® are modeled the same way [jr]o and [—], but the interpretation of [.. (—) is different in the
two. For example

[at (o — a) = a)yp=[atF (a — a) — o]

but
Mo (a0 — a) = a)o={z: [[[e. (¢ = @) — o] | z(Ve, 5, R: AdmRel(«, 5). (R — R) — R)z}

corresponding to our intuition that the parametric completion process should restrict polymorphic types to
parametric elements. From the proof of Lenima 4.3 we see that type application is modeled the same way in

[-] and[—]o.
Notice also that closed types in the model

Fam (LRq(C)=—=C) _ EC
are given by theipy component, since we have requiked= 1 (o).

Lemmg 4.5 shows in particular that we have a comdmerl.R o (C), and so we can form the co-Kleisli cat-
egoryLRq(C), as the internal category withRq (C) as object of objects and with object of morphisms
defined by the pull-back:

(LRQ(C)1)1 LRq(C),

| l

Ixid

LRQ(C)O X LRQ(C)O —_— LRQ(C)O X LRQ(C)O

Lemma 4.8. The co-Kleisli category for the comonadn LRq(C) =— C insideE® is isomorphic to
LRq(C) =—C,

Proof. The co-Kleisli category is constructed pointwise. O

Lemma 4.9. The schema

is a PILLy-model.

Proof. The only thing still to prove is that it modelg. Recall the computation of the interpretation of
[Ta. (@ — a) — a from Remarf 4J7. Sincf[] a. (o« — a) — «]o is a subtype of [a. (@ — o) — @]
we may ask ift” € [[[a. (&« — a) — a]p. This is true, since we have required that

Y (Yo, 8, R: AdmRel(«, 3). (R — R) — R)Y.

262

From the proof of Lemmp 4.3 we see that type instantiation is interpreted the same fvayand[—]o,
and so the term
alfira—akFYalf

is interpreted equally in the two interpretations. Validity of
alfra—abk fI(Yalf)y=(Yalf)

in the model
Fam(LRq(C)=——=cC) — EY

thus follows from validity of the same in
Fam(C) — E.

Consider the functof—)o: E¢ — E defined by mapping

to =y. We define the categori€ésandP by the pullbacks
P——Q
]
C——E—
= |
e (=)o -

Lemma 4.10. The composable fibratioh — C — E is an indexed first-order logic fibration with an in-
dexed family of generic objects. Moreover, the composable fibration has simple products, simple coproducts
and very strong equality.

Proof. The composable fibratioR — C — E¢ is a pullback ofQ — E~ — E which has the desired
properties. All of this structure is always preserved under pullback, except simple products and coproducts.
These are preserved since the niap, preserves products. O

Consider the map into the pullback

Fam (er(f) —— (—)j(Fam (Cy)) —— Fam(C))

= LRq LRq
given by the map, that ma $M> — (M\p > in Fam < Mv > to =y — C,in Fam(C,). We define
the mapl: -

LRq(C) I
Fam(w > —C

263

EG

to be the composition of this map with the pullback of the inclusiofizafi(C,) into E~. One could also
express this definition as the map that maps

to ¢(fo), whereg is the inclusion offam(C,) into E—.

Lemma 4.11. The diagram

is a pre-LAPL-structure.

Proof. Using Lemmd 4.10 we see that all we need to prove is@hat E¢ has fibred products, thdtis
faithful and product preserving and that the fundioexists. The first follows fronfE— — E having fibred
products.

LRq(C),
Recall from Remar4 that a map Fam (Md,) is a natural transformation preserving relations
LRq(C) o , . ,
and the functor fronFam Mv into (—)§(Fam (Cy)) is simply the identity on maps. Since also the

inclusion ofFam (C;) intoE~ |s assumed faithful] is faithful. Since the inclusion of; into E is required
to preserve products for all internal Pli:kmodels,/ preserves products.

The functorU is defined using the functdr of Propositiorj 3.3 as the composition

LRo(C)\ 2 _yx
Fam< @ ’) e (Fam(c)) P ¢

~_|

]EG’

LRq(
In words,U maps an object dfam < fm > (square taken fibrewise) given by the maps
C

=, I 1IRg(C), = 9 LRq(C)
Z0 fo C = 90 C
to HIEEO (RegSub]E)fO(x)Xgo(x) — Eo. OJ

264

LRq(C)\ 2
Consider the subfunctdr of U defined by mapping an objettfo, f1), (go,91)) in Fam < ﬁ\p) to
C

HJ:EE() /fo(:c)xgo(:t) — Eo.
Lemma4.12. The functo” defines a notion of admissible relations for the pre-LAPL-structure of Ldmmja 4.11.

Proof. All terms occurring in the rules for admissible relations and in Axiom 2.18 are constructed without
use of type abstraction. Thus the terms are interpreted exactly as in the pre-LAPL-structure of Proposi-
tion[3.3. Since the logic in the models of Propositjon| 3.3 and Lefnmg 4.11 are the same, all relations
occurring in the rules and Axiom 2.18 are interpreted equally. Since also the notion of admissible relations
is the same in the two models, the Lemma follows since we have assumed that the model of Pr¢pdsition 3.3

models admissible relations. O
Consider the graph/:

Ml
where we assume that the two graphs included are reflexive graphs. ThéWjraph

LRq(C) LRq(C)
I[N
/ \
C C

defines an internal categorylil" . By Lemm is an internal linear category with structure computed
pointwise.

We denote by
LinAdmRelations — AdmRelCtx

the fibration of admissible relations based on the pre-LAPL-structure constructed in lemina 4.11.

Proposition 4.13. There is an isomorphism of fibrations:

Fam(W) LinAdmRelations

EW AdmRelCtx

preserving the fibred linear category structure.

Proof. An object of AdmRelCtx is a pair of objects oE®:

plus an object oE~ with domainZ, x =f, i.e. amaE; — Zo x = in E. A map inAdmRelCtx from

S = A —) .= = =/
(._.1%;_40, ;_41<;_0,(1.._42—>._40><._.0)
to
=, ==, =2 ——== ph: = = =/
(_44*><;._43,._4*><;_3, ._5—>_3X._3)

265

is a pair of maps if£“, i.e., a quadruple of magsy, f1, f5, f1) such that

f1 fi

4 1

T

3 _: 4>_3

=l
< —
>
[1]= [1]

°+

both commute, plus a vertical mapliiT — E over=y x =Zy:

—_ h

=) (fo x f3)*Es

x (Fox f§)*b

= =/
—0 X —0-

Since the maj corresponds to a mapg making

/ / \

commute, we get the isomorphissdmRelCtx = EW.
An object ofLinAdmRelations over

- 11

=N 4 LRq(C)o = 1 LRq(C)o

=) fo Co Z0 L C
commute, plus a map:

=9 \ 4 HmEEo,y656 (RegSU-bE)fo (@)% fi(z)

Eo X 2
Sincep corresponds to a map:
p/ LRQ(C)O

266

we get the bijective correspondence between objecttinfAdmRelations and objects off'am(W).
This correspondence extends to morphisms, since vertical morphism in both fibrations correspond to pairs
of morphisms preserving relations.

The isomorphism preserves the fibred linear structure on the nose, since in both fibrations, the fibred linear
structure is defined using the internal linear structur€cndLR g (C) respectively. O

Lemma 4.14. The graphW models polymorphism.

Proof. This is a consequence of Propositjon 4.13. O

Proposition 4.15. There is a reflexive graph of fibred linear categories

LRq(C)
Fam (vév) Fam(W)
E¢ EW

The3 maps preserve products in the base, generic object and simple products.

Comparing with Proposition 2.9 df][7] the maps of Proposifion 4.15 give rise to a reflexive graph of maps
between the corresponding Pi:kmodels.

Remark 4.16. The reflexive graph in [10] arises this way, although the setup_of [10] is slightly different.

Proof. An object of Fam(W) is a map inE"’

=) h LRq(C)o LRq(C)o
M=~ = el
=P Es Co Co

Let us denote such objects as tripl¢sg, p) where

=1 (C)o =, ©)0
F= o s Q“M) - <LRQM)7 9= 1(90,91) : <M> — <LRQ/W >

/4 v A v
= C =5 C

andp : 23 — LRq(C)o. The domain and codomain maps of the postulated reflexive graph fmajp)

to f andg respectively, and the last map mapso (f, f, f1). Clearly generic objects and products in the
basecategories are preserved, and since the linear category structure is computed pointwise in both fibrations,
it is clearly preserved by all maps.

We now show that all maps preserve simple products. The domain and codomain maps preserve simple
products since from the viewpoint of Propositjon 4.13 these are just the domain and codomain maps out of

LinAdmRelations — AdmRelCtx.

Consider the map going the other way. Mappjfnglong this map and then taking products gives us the map
that — described in the internal language of the tdpes- mapsR: AdmRel 4, B) to

{(z,y) € (1 No(A) x (I] o(B) | YA, B: Co.VR: AdmRel 4, B). f1(R, R)(x4,yz)}

267

where(] | f)o denotes the type-component of the simple prodifigt(called[], f inthe proof of Lemm3)

taken inFam(LRq(C) =<— LRq(C)) — E&. This map coincides witf[] f)1, the relational interpre-
tation of [| f as desired. O

Proposition 4.17. The pre-LAPL-structure of Lemrha 4]11 has relational interpretation of all types.

Proof. This follows from Propositiofi 4.15 and Proposit[on 4.13. O

Lemma 4.18. The LAPL-structure of Lemnia 4]11 satisfies extensionality.

Proof. The model has very strong equality, which implies extensionality. O

Lemma 4.19. The LAPL-structure of Lemnpa 4]11 satisfies the identity extension axiom.

Proof. Consider a typg = (f1, fo):

LRq(C)j > LRq(C)y (7)
||
Co Co

with n free variables. We need to show that
(idan, idon)"J(f) o [a@ | — | — F eqa] = [a+ egyq)].

The mapJ is defined as the composition of two maps. The first map nfapg f, f, f1) :

LRQ(C)SLR o nLRQ(C)BL LRq(C)o LRq(C)o
1 Bl | D=
Cy Cy Co Co

and the second identifies this with an elemenLafiAdmRelations, which in the internal language of
the LAPL-structure may be written as

=

[a@,5 | — | R: AdmRel&, §) F fi(R): AdmRel f(d), f(5))]

Sincef makes the diagram(7) commute we conclude that

B (idar, idon)*J(f) o [@] — | = F eqa] =
[&]—| R: AdmReld, @) F fi(R): AdmRel f(a), f(@))]o[a| —| —Feqs] = [@F eqf(&)]].

Summing up we have:

Theorem 4.20. The pre-LAPL-structure of Lemrha 4]11 is a parametric LAPL-structure.

268

5 Examples

For any reflexive domairD, one can form the category of admissible p&® (D) and the category of
admissible pers with maps tracked by strict track&B (D), as in [2]. As is well-known, the category
of pers is an internal subcategory of the category of assemAMlian(D) over D, and using the same
construction one may easily show thaP (D) and AP (D), are internal subcategories &fsm(D). In
fact AP(D) is an internal PILL - model in the quasi-topoAsm (D) with co-Kleisli categoryAP (D).

The category of regular subobjects of admissible pers internalizes to an internal fibration
RegSubypp), = AP(D).

which we may use for a notion of admissible relations. Applying the completion process to this structure,
we obtain the LAPL-structure:

UFam(RegSub sgm(p)) (8)

|

PFam(AP(D),)~ _PFam(AP(D)) UFam(Asm(D))

\ l

PAP(D).

The PILLy-model on the left is the PILL model of [2]. The fibre of
UFam(Asm(D)) — PAP(D)

over an object has as objects mapgsP (D)" — Asm(D) and as morphisms uniformly tracked morphisms
between assemblies. The logic

UFam(RegSubpgm(py) — UFam(Asm(D))

is the fibration of families of regular subobjects of assemblies, i.e., a subobjectdP (D)" — Asm(D)
is a family of subsetsl ; C| f(R) |, where| — | is the forgetful functor fromAsm(D) to Set.

The LAPL-structure[(8) is the LAPL-structure ofi [2] with the category of sets replaced by assemblies. The
logic of the two are the same since we have a pullback

UFam(RegSijsm(D)) — Sub(Set)

| |

UFam(Asm(D)) Fam(Set).

Therefore, even though the presentation is different, the LAPL-structurel of [2] is basically the LAPL-
structure obtained from parametric completion as presented in this paper.

5.1 The LAPL-structure from synthetic domain theory

The LAPL-structure from[[11,18,19] is not directly an application of the parametric completion process
presented in this paper. The logic is given by sets, and thePinbdel is constructed using the category
of domains, which is not small.

269

A natural way to view the LAPL-structure from SDT is to view it as coming frdom as seen as an
internal category in the category of (not necessarily small) groupoids via the following construction:

Consider the functof-)iso from the category of categories to the category of groupoids mapping a category
to its restriction to isomorphisms. Suppd3és a category, then the diagram

iso =— Ciso 9)
is an internal category in the category of groupoids. The categgpyhas as objects arrows @f and as
morphisms pairs of isomorphisms making the obvious square commute. The two left to right going maps
map an arrow to its domain and codomain respectively and the last map maps an object to the identity on
that object. This construction extends to a functor from the category of categories to the category of internal
categories in the category of groupoids.

The externalization of {9) has as object 0@}, functorsCi

1SO
Cit, — Ciso) and as morphisms natural transformations.

— C (since these are the same as functors

Using the above construction on the categbrgm ;| of domains with strict morphisms, we obtain an in-
ternal PILLy-model in the category of groupoids. We may further apply the construction to the fibration
of regular subobjects oPom . Using this as our notion of admissible relations, the Rikinodel con-
structed as in the parametric completion process is the model preserited in [11, 8, 9].

The LAPL-structure of [9], however, is not derived from the internal logic in the category of groupoids. In-
stead, the category of contexts and the logic fibration in the LAPL-structdoe ofit. is the externalization
of

Sub(Set) — Set

seen as an internal fibration in the category of groupoids using the construction above.

6 Conclusion

We have defined a notion of internal Pli:kmodel in a quasi-topos and shown how the externalization of
an internal PILLy--model can be extended to a pre-LAPL-structure in which the logic is given by the regular
subobiject logic of the quasi-topos. This corresponds to the way one would usually think of parametricity for
such internal models.

We have described a parametric completion process based on the parametric completion process of [10]
which takes an internal PILk-model in a quasi-topos and returns an internal RiLmodel in a presheaf-
category over the original quasi-topos. The externalization of the resulting/Pihddel extends to a para-

metric LAPL-structure. This LAPL-structure is different from the canonical LAPL-structure associated to
internal PILLy-models as mentioned above, and in fact the logic of the LAPL-structure is the logic of the
original quasi-topos.

The concrete LAPL-structure ofl[2] is an example of this parametric completion process, although it is
presented a bit different iloc. cit. The PILLy-model constructed using synthetic domain theory in[[11, 8,

9] is an example of an application of the parametric completion process, but the LAPL-structure provided
foritin [8] 9] is different from the one presented here.

270

References

[1] L. Birkedal and R. E. Mggelberg. Categorical models of Abadi-Plotkin’s logic for parametifi¢éth-
ematical Structures in Computer Sciende appear, (documenf),[1, P13, 4

[2] L. Birkedal, R. E. Mggelberg, and R. L. Petersen. Parametric domain-theoretic models of linear Abadi
& Plotkin logic. Technical Report TR-2005-57, IT University of Copenhagen, February Z005. |docu-

ment)[1[B[¥ F.19.6

[3] L. Birkedal, R. E. Mggelberg, and R. L. Petersen. Parametric domain-theoretic models of polymorphic
intuitionistic / linear lambda calculus. Submitted, 200%. 1

[4] B. Jacobs.Categorical Logic and Type Thegryolume 141 ofStudies in Logic and the Foundations
of Mathematics Elsevier Science Publishers B.V., 1999 2] 2.2

[5] S. Mac Lane.Categories for the Working MathematiciaBpringer-Verlag, 1971 2.2

[6] S. Mac Lane and I. MoerdijkSheaves in Geometry and Logic. A First Introduction to Topos Theory
Springer, New York, 1992[2.2

[7] R. E. Mggelberg, L. Birkedal, and R. L. Petersen. Categorical models of PILL. Technical Report
TR-2005-58, IT University of Copenhagen, February 200H. 1/2.2[24,]3.4, 4

[8] R. E. Mggelberg, L. Birkedal, and G. Rosolini. Synthetic domain theory and models of linear Abadi
& Plotkin logic. Technical Report TR-2005-59, IT University of Copenhagen, February Z005. |docu-

ment)[1[5.1}, 511.]6

[9] R. E. Mggelberg, L. Birkedal, and G. Rosolini. Synthetic domain theory and models of linear Abadi
& Plotkin logic. Submitted, 2005[(docume}if)[1,15.1) 51, 6

[10] E.P. Robinson and G. Rosolini. Reflexive graphs and parametric polymorphism. In S. Abramsky,
editor,Proc. 9th Symposium in Logic in Computer Sciepages 364-371, Paris, 1994. |.E.E.E. Com-

puter Society. (documenf)} [1, 4116, 6

[11] G. Rosolini and A. Simpson. Using synthetic domain theory to prove operational properties of a

polymorphic programming language based on strictness. Manuscript, 2004. (do¢(ijent), 1] 5.1, 5.1,
&

271

	intro.pdf
	Parametric Polymorphism
	Encoding of inductive and coinductive types
	Data abstraction
	Relational parametricity

	Models of Polymorphism
	The second-order lambda calculus
	Adding fixed points

	Models of Parametric Polymorphism
	Models of Abadi & Plotkin's logic

	Contributions of this dissertation
	Abadi & Plotkin's logic
	APL-structures
	LAPL-structures
	Completion Processes
	An LAPL-structure from Synthetic Domain Theory

	Related Work
	Ma & Reynolds notion of parametricity
	Parametricity graphs
	Parametricity in operational semantics
	More related research

	Structure of the dissertation
	Conclusion
	Future work

	abadiplotkin.pdf
	Introduction
	Abadi & Plotkin's logic
	Second-order -calculus
	Equality

	The logic
	Definable relations
	The axioms

	APL-structures
	Soundness
	Completeness

	Parametric APL-structures
	Consequences of parametricity
	Dinaturality
	Products
	Coproducts
	Initial algebras
	Final coalgebras
	Generalizing to strong fibred functors

	Concrete APL-structures
	A parametric non-well-pointed APL-structure

	Comparing with Ma & Reynolds notion of parametricity
	A parametric completion process
	Internal models for 2
	Input for the parametric completion process
	The completion process
	The APL-structure

	Parametric Internal Models
	Conclusion
	Composable Fibrations

	lapl.pdf
	Introduction
	Outline

	Linear Abadi-Plotkin Logic
	PILLY
	Equality
	Ordinary lambda abstraction

	The logic
	Definable relations
	Constructions on definable relations
	Admissible relations
	Axioms and Rules
	Admissible relations preserved by structure maps
	Extensionality and Identity Extension Schemes

	Proofs in LAPL
	Logical Relations Lemma
	A category of linear functions
	Tensor types
	Unit object
	Initial objects and coproducts
	Terminal objects and products
	Natural Numbers
	Induction principle

	Types as functors
	Existential types
	Initial algebras
	Final Coalgebras
	Recursive type equations
	Parametrized initial algebras
	Dialgebras
	Compactness

	Recursive type equations with parameters

	LAPL-structures
	Soundness
	Completeness

	Parametric LAPL-structures
	Solving recursive domain equations in parametric LAPL-structures
	Parametrized recursive type equations

	Concrete Models
	The connection to CUPERs
	Lifting
	Going fibred
	A domain-theoretic model of PILL
	A parametric domain-theoretic model of PILL

	pillmodeldef.pdf
	Models of DILL
	The 2-category of symmetric monoidal categories
	The co-Kleisli category and the Eilenberg-Moore category of a comonad
	The category of products of free coalgebras

	PILL models

	pinoalexmodel.pdf
	Introduction
	Synthetic Domain Theory
	Pointed sets
	Domains and predomains

	The category of domains
	The domains fibration
	The parametric fibration
	The LAPL-structure
	Proving consequences of parametricity for Lilystrict
	The language Lilystrict
	Translating PILLY into Lily
	Consequences of parametricity for Lilystrict

	Conclusion
	Tensor products in parametric LAPL-structures

	laplcompletion.pdf
	Introduction
	Internal structures in quasi-toposes
	Internal Fibrations
	Internal linear categories

	Internal PILLY-models
	Parametric completion
	Examples
	The LAPL-structure from synthetic domain theory

	Conclusion

