A Near-linear Time Approximation Algorithm for Angle-based Outlier Detection in High-dimensional Data

Ninh Pham
IT University of Copenhagen
ndap@itu.dk

Rasmus Pagh
IT University of Copenhagen
pagh@itu.dk
Outline

• Introduction
• Proposed Approach
• Experiments
• Conclusion
What is an outlier?

• Definition
 An object deviates significantly from normal objects.

• Applications
 - Credit Card Fraud
 - Network Intrusion
What is an outlier?

- **Definition**

 An object **deviates significantly** from normal objects.

- **Applications**

 - Credit Card Fraud

 - Network Intrusion
Outlier factor

• Measure the degree of outlier-ness
Outlier factor

- Measure the degree of outlier-ness
- Traditional outlier factors
 - kNN distance [RRS’00]
 - Local density [BKNS’00]
Outlier factor

- Measure the degree of outlier-ness
- Traditional outlier factors
 - kNN distance [RRS’00]
 - Local density [BKNS’00]

The curse of dimensionality
Outlier factor

- Measure the degree of outlier-ness
- Traditional outlier factors
 - kNN distance [RRS’00]
 - Local density [BKNS’00]

The variance of angles for different kinds of points
Outlier factor

- Measure the degree of outlier-ness
- Traditional outlier factors
 - kNN distance [RRS’00]
 - Local density [BKNS’00]
- Angle-based outlier factor [KSZ’08]
 The smaller the variance of angle between a point to other pairs of points is, the more likely it is an outlier.

The variance of angles for different kinds of points
Angle-based Outlier Factor

- Outlier factor of point p:
 $$VOA(p) = \text{Var}[\Theta_{apb}] = MOA_2(\Theta_{apb}) - MOA_1^2(\Theta_{apb})$$
 where Θ_{apb} is a random angle between p and random pair (a, b)

The variance of angles for different kinds of points
Angle-based Outlier Factor

- Outlier factor of point p:

$$VOA(p) = \text{Var}[\Theta_{apb}] = MOA_2(\Theta_{apb}) - MOA_1^2(\Theta_{apb})$$

where Θ_{apb} is a random angle between p and random pair (a, b).

Naïve approach runs in $O(n^3)$

The variance of angles for different kinds of points.
Near-linear Time Approximation for VOA

- Project the data set on random hyperplanes
- Sort the data set by their inner products.
- Apply efficient approaches (AMS Sketch) to approximate variance of angle (VOA)
Random Hyperplane Projection

\[r_i \]
Random Hyperplane Projection

\[X_{apb}^{(i)} = \begin{cases}
1 & \text{if } a \cdot r_i < p \cdot r_i < b \cdot r_i \\
0 & \text{otherwise}
\end{cases} \]

\[\mathbb{E}[X_{apb}^{(i)}] = \frac{\Theta_{apb}}{2\pi} \]

[Goemans & Williamson’95]
Random Hyperplane Projection

\[X_{apb}^{(i)} = \begin{cases} 1 & \text{if } a \cdot r_i < p \cdot r_i < b \cdot r_i \\ 0 & \text{otherwise} \end{cases} \]

\[P = \sum_{i=1}^{t} (u_i \otimes v_i) \]

\[\Theta_{apb}^2 = \frac{(2\pi)^2}{t(t-1)} \left(E[P_{ij}^2] - \frac{t}{2\pi} \Theta_{apb} \right) \]

\[u_i = \langle 1,1,1,1,0,0,0,0 \rangle \quad v_i = \langle 0,0,0,0,1,1,1,1 \rangle \]

\[E[X_{apb}^{(i)}] = \frac{\Theta_{apb}}{2\pi} \]

[Goemans & Williamson’95]

\(P_{ij} \) is the number of times that \(a \) locates on the left side and \(b \) locates on the right side after \(t \) projections.
First moment estimation

\[X_{apb}^{(i)} = \begin{cases}
1 & \text{if } a \cdot r_i < p \cdot r_i < b \cdot r_i \\
0 & \text{otherwise}
\end{cases} \]

\[\mathbb{E}[X_{apb}^{(i)}] = \frac{\Theta_{apb}}{2\pi} \]
First moment estimation

\[X_{apb}^{(i)} = \begin{cases}
1 & \text{if } a \cdot r_i < p \cdot r_i < b \cdot r_i \\
0 & \text{otherwise}
\end{cases} \]

\[\mathbb{E}[X_{apb}^{(i)}] = \frac{\Theta_{apb}}{2\pi} \]

\[MOA_1(p) = \frac{4\pi}{(n-1)(n-2)} \sum_{a,b \in S \setminus \{p\}} a \neq b \quad \mathbb{E}[X_{apb}^{(i)}] \]
First moment estimation

\[X_{apb}^{(i)} = \begin{cases}
1 & \text{if } a \cdot r_i < p \cdot r_i < b \cdot r_i \\
0 & \text{otherwise}
\end{cases} \]

\[\Theta_{apb} = \frac{\mathbb{E}[X_{apb}^{(i)}]}{2\pi} \]

\[MOA_1(p) = \frac{4\pi}{(n-1)(n-2)} \sum_{a,b \in S \setminus \{p\}}^{a \neq b} \mathbb{E}[X_{apb}^{(i)}] \]

Unbiased estimator

\[F_1(p) = \frac{2}{(n-1)(n-2)} \left| L_p^{(i)} \right| \left| R_p^{(i)} \right| \]
AMS Sketch

\[P = \sum_{i=1}^{t} (u_i \otimes v_i) \]

where \(s_1 \) and \(s_2 \) are two different 4-wise independent vectors in \(\{ \pm 1 \}^{n-1} \)

\[\| P \|_F^2 = \mathbb{E}\left[\left(\sum_{i=1}^{t} \text{AMS}(L_p^{(i)}) \text{AMS}(R_p^{(i)}) \right)^2 \right] \]

[Indyk & McGregor’08]
Second moment estimation

\[MOA_2(p) = \frac{4\pi^2}{t(t-1)(n-1)(n-2)} \mathbb{E}\left[\left\| P \right\|_F^2 \right] - \frac{2\pi}{t-1} MOA_1(p) \]

\[u_i = \langle 1,1,1,1,0,0,0,0,0 \rangle \]

\[v_i = \langle 0,0,0,0,1,1,1,1,1,1 \rangle \]

\[AMS(L^{(i)}_p) = AMS(u_i) \]

\[AMS(R^{(i)}_p) = AMS(v_i) \]
Second moment estimation

\(u_i = \langle 1,1,1,1,0,0,0,0,0 \rangle \)

\(v_i = \langle 0,0,0,0,1,1,1,1,1 \rangle \)

\(AMS(L_p^{(i)}) = AMS(u_i) \)

\(AMS(R_p^{(i)}) = AMS(v_i) \)

\[
MOA_2(p) = \frac{4\pi^2}{t(t-1)(n-1)(n-2)} \mathbb{E}\left[\|P\|^2_F\right] - \frac{2\pi}{t-1} MOA_1(p)
\]

\[
F_2'(p) = \frac{4\pi^2}{t(t-1)(n-1)(n-2)} \|P\|^2_F - \frac{2\pi}{t-1} F_1(p)
\]

Unbiased estimator

\[
F_2(p) = \frac{4\pi^2}{t(t-1)(n-1)(n-2)} \left(\sum_{i=1}^{t} AMS(L_p^{(i)}) AMS(R_p^{(i)}) \right)^2 - \frac{2\pi}{t-1} F_1(p)
\]
Algorithm Overview

Algorithm 1 FastVOA(S, t, s₁, s₂)

Ensure: Return the variance estimator for all points
1: $\mathcal{L} \leftarrow \text{RandomProjection}(S, t)$
2: $F1 \leftarrow \text{FirstMomentEstimator}(\mathcal{L}, t, n)$
3: for $i = 1 \rightarrow s_2$ do
4: $Y_i \leftarrow \sum_{j=1}^{s_1} (\text{FrobeniusNorm}(\mathcal{L}, t, n))^2 / s_1$
5: end for
6: $F2 \leftarrow \text{median} \{ Y_1, \ldots, Y_{s_2} \}$
7: $\text{Var} \leftarrow [0]^n$
8: for $j = 1 \rightarrow n$ do
9: $F2[j] = \frac{4\pi^2}{t(t-1)(n-1)(n-2)} F2[j] - \frac{2\pi F1[j]}{t-1}$
10: $\text{Var}[j] = F2[j] - (F1[j])^2$
11: end for
12: return Var

FastVOA runs in $O(tn(d + \log n + s_1s_2))$ time.
Error Analysis

• For every $\delta > 0$ and $\varepsilon > 0$, the number of random projections $t = O(\varepsilon^{-2} \log n)$, the AMS sketch size $s_1 = O(\varepsilon^{-2})$, and $s_2 = O(\log \delta^{-1})$, the probability that an unbiased estimator of VOA of a point deviates from its expectation by at most $O(\varepsilon)$ is $1 - O(n^{-2})$.
Experiments

- **Accuracy:**

 The deviation error from its expectation of unbiased variance estimators on 5 data sets
Experiments

- **Effectiveness:**

 The capability of algorithms \{SimpleVOA, FastVOA\} vs. \{ABOD, FastABOD\} [KSZ’08] to retrieve the most likely outliers on Multiple Features dataset
Experiments

- **Efficiency:**

 The CPU time of algorithms \{FastVOA\} vs. \{FastABOD, LB_ABOD\} [KSZ’08] on synthetic datasets of 100 dimensions
Conclusion

- A near-linear time algorithm to approximate variance of angle, a robust outlier factor

- A theoretical error analysis

- Experimental results on the accuracy, effectiveness and efficiency on synthetic and real world data sets