
www.itu.dk

Computation expressions
and monads

Peter Sestoft
BSWU 2013-04-18

1

www.itu.dk

Agenda
•  Computation expressions, or monads
•  Sequence expressions as computation exprs.
•  Monad laws
•  Simple expressions and evaluators

– Return int, standard evaluation
– Return int option, evaluation may fail
– Return int Set, evaluation may produce a set
– Return int trace, evaluation traces operators
– Express all this uniformly using comp. expr.

•  Next week: async as computation expression

2

www.itu.dk

What is a computation expression?
•  A computation expression such as

•  is syntactic sugar for a standard functional
expression, such as

•  This gives a systematic way to combine
operations or propagate "background" data

•  Computation expressions are sometimes
called monads (in mathematics, Haskell, ...)

3

seq { for x in [1 .. 3] do yield x*x }

Seq.collect (fun x -> Seq.singleton(x*x))
 [1 .. 3]

www.itu.dk

Computation expressions in F#
•  seq {...} is a computation expression
•  async {...} is a comp. expr. (next week)
•  We can define our own computation exprs:

– Optional result (None or Some)
– Set of results
– Trace of operations

4

www.itu.dk

Sequences as computation
expressions (H&R p 281)

•  This sequence expression

•  is syntactic sugar for this expression

5

seq { for i in [1 .. 3] do
 for ch in ['a' .. 'd'] do
 yield (i,ch) }

Seq.collect
 (fun i ->
 Seq.collect
 (fun ch ->
 Seq.singleton (i, ch))
 ['a' .. 'd'])
 [1 .. 3]

www.itu.dk

Transformation of seq {...}

6

Seq construct C Transformation T(C)

for x in e do ce For(e, fun x -> T(ce))

yield e Yield(e)

For : seq<'a> * ('a -> seq<'b>) -> seq<'b>
Yield : 'a -> seq<'a>

For(xs, f) = Seq.collect f xs
Yield a = Seq.singleton a

The compiler rewrites for and yield
keywords to normal function calls:

The For and Yield functions must be defined:

www.itu.dk

How to define our own mySeq {...}?
•  Define a MySeqBuilder class with For, Yield:

•  Make an object of that class:

•  The object can now indicate a comp expr:

7

type MySeqBuilder() =
 member this.For(xs, f) = Seq.collect f xs
 member this.Yield x = Seq.singleton x

let mySeq = new MySeqBuilder()

mySeq { for i in [1 .. 3] do
 for ch in ['a' .. 'd'] do
 yield (i, ch) };; Homemade

sequence
expression

www.itu.dk

Understanding the H&R example

•  Lift out inner for as a function:

•  Outer for is just this:

•  So in total

8

seq { for i in [1 .. 3] do
 for ch in ['a' .. 'd'] do
 yield (i,ch) }

let inner i =
 seq { for ch in ['a' .. 'd'] do yield (i,ch) }

let inner i =
 Seq.collect (fun ch -> Seq.singleton (i, ch)) ['a' .. 'd']

S
am

e
as

S
am

e
th

in
g

Seq.collect (fun i -> inner i) [1 .. 3]

Seq.collect (fun i ->
 Seq.collect (fun ch -> Seq.singleton (i, ch)) ['a' .. 'd'])
 [1 .. 3]

www.itu.dk

List and array expressions
•  The F# list expression:

•  is syntactic sugar for the seq expression

•  Similarly for F# array expressions:

•  See F# Specification §6.3.13 and §6.3.14
•  F# has no "list computation expression", it

boils down to seq computation expressions
9

[for x in [1..3] do yield x*x]

Seq.toList(seq {for x in [1..3] do yield x*x })

[| for x in [1..3] do yield x*x |]

www.itu.dk

Questions
•  In seq {...} expressions one can use "if"

•  Q1: What function to add to MySeqBuilder to
support the if operator? (H&R Table 12.2)

•  Q2: What member of the Seq module should
be used to define it? (H&R Table 11.1)

11

let sift a xs =
 seq { for n in xs do
 if n % a <> 0 then
 yield n };;

www.itu.dk

For=Bind=let!, Yield=Return
•  For and Yield are special names that make

sense in seq{...} expressions
•  Normal names are Bind/let! and Return
•  One could define sillySeq using Bind/Return:

12

type SillySeqBuilder() =
 member this.Bind(xs, f) = Seq.collect f xs
 member this.Return x = Seq.singleton x

let sillySeq = new SillySeqBuilder()

sillySeq {
 let! i = [1 .. 3]
 let! ch = ['a' .. 'd']
 return (i, ch) }

seq {
 for i in [1 .. 3] do
 for ch in ['a' .. 'd'] do
 yield (i,ch) }

M
or

e
se

ns
ib

le
,

bu
t

ex
ac

t
sa

m
e

m
ea

ni
ng

www.itu.dk

Kært barn har mange navne
•  Function Bind in computation expression is

–  for and For in seq {...}
–  List.collect on F# lists
–  Seq.collect on F# sequences
–  flatMap on Scala and Haskell lists, sequences, ...
–  SelectMany in Microsoft Linq (eg. C#P p. 205)
–  bind in monads

•  Function Return in computation expressions
–  yield in seq {...}
–  (fun x –> [x]) on F# lists
–  Seq.singleton on F# sequences
–  unit or return in monads

13

www.itu.dk

The option {...} computation expr.
A form of error propagation

14

type OptionBuilder() =
 member this.Bind(x, f) =
 match x with
 | None -> None
 | Some v -> f v
 member this.Return(x) = Some x
let optM = OptionBuilder()

optM { let x = 56
 let! y = Some 78
 return x+y };

optM { let x = 56
 let! y = Some 78
 let! z = None
 return x+y };;

let!

return

let x = 56
optM.Bind(Some 78,
 fun y ->
 optM.Return(x+y)) let x = 56
optM.Bind(Some 78,
 fun y ->
 optM.Bind(None,
 fun z ->
 optM.Return(x+y)))

www.itu.dk

Question: What's happening here

15

optM { let x = 56
 let! y = Some 78
 let! z = None
 let! v = Some 42
 return x+y+v };;

type OptionBuilder() =
 member this.Bind(x, f) =
 printfn "this.Bind: %A" x
 match x with
 | None -> None
 | Some v -> f v
 member this.Return(x) = Some x
let optM = OptionBuilder()

New line
here

Print when
called

www.itu.dk

Monad laws
•  For(Yield a, f) = f(a)

collect (singleton a) f = f(a)
•  For(xs, Yield) = xs

collect xs singleton = xs
•  For(For(xs, f), g) = For(xs, fun x->g(f(x)))

collect (collect xs f) g = collect xs (fun x -> g(f(x)))

•  The laws are the same for
– Bind instead of For, and Return instead of Yield

•  Let's check them for the maybe monad

16

A standard simple evaluator
•  Very simple expressions like 7 + 9 * 10

•  A simple evaluator:

17

type expr =
 | CstI of int
 | Prim of string * expr * expr

Prim("+",
 CstI(7),
 Prim("*", CstI(9),
 CstI(10)))

let rec eval1 e : int =
 match e with
 | CstI i -> i
 | Prim(op, e1, e2) ->
 let v1 = eval1 e1
 let v2 = eval1 e2
 match op with
 | "+" -> v1 + v2
 | "*" -> v1 * v2
 | "/" -> v1 / v2

let opEval op v1 v2 : int =
 match op with
 | "+" -> v1 + v2
 | "*" -> v1 * v2
 | "/" -> v1 / v2

let rec eval2 e : int =
 match e with
 | CstI i -> i
 | Prim(op, e1, e2) ->
 let v1 = eval2 e1
 let v2 = eval2 e2
 opEval op v1 v2

www.itu.dk

An evaluator that may fail (w. None)

18

let opEvalOpt op v1 v2 : int option =
 match op with
 | "+" -> Some(v1 + v2)
 | "*" -> Some(v1 * v2)
 | "/" -> if v2 = 0 then None else Some(v1 / v2)

let rec optionEval2 e : int option =
 match e with
 | CstI i -> Some i
 | Prim(op, e1, e2) ->
 match optionEval2 e1 with
 | None -> None
 | Some v1 ->
 match optionEval2 e2 with
 | None -> None
 | Some v2 -> opEvalOpt op v1 v2

www.itu.dk

An evaluator giving a set of results

19

let opEvalSet op v1 v2 : int Set =
 match op with
 | "+" -> Set [v1 + v2]
 | "*" -> Set [v1 * v2]
 | "/" -> if v2 = 0 then Set.empty else Set [v1 / v2]
 | "choose" -> Set [v1; v2]

let rec setEval1 e : int Set =
 match e with
 | CstI i -> Set [i]
 | Prim(op, e1, e2) ->
 let s1 = setEval1 e1
 let yss =
 Set.map (fun v1 ->
 let s2 = setEval1 e2
 let xss = Set.map (fun v2 -> opEvalSet op v1 v2) s2
 Set.unionMany xss)
 s1
 Set.unionMany yss

www.itu.dk

An evaluator tracing the operators

20

type 'a trace = string list * 'a

let opEvalTrace op v1 v2 : int trace =
 match op with
 | "+" -> (["+"], v1 + v2)
 | "*" -> (["*"], v1 * v2)
 | "/" -> (["/"], v1 / v2)

let rec traceEval1 e : int trace =
 match e with
 | CstI i -> ([], i)
 | Prim(op, e1, e2) ->
 let (trace1, v1) = traceEval1 e1
 let (trace2, v2) = traceEval1 e2
 let (trace3, res) = opEvalTrace op v1 v2
 (trace1 @ trace2 @ trace3, res)

www.itu.dk

A mess; comp expr to the rescue
•  The four evaluators look very different
•  ... and very complicated

•  By defining the combining operations as
computation expressions,
–  the evaluators all get to look the same
–  the evaluators look much simpler

21

www.itu.dk

An evaluator that may fail, NEW

22

type OptionBuilder() =
 member this.Bind(x, f) =
 match x with
 | None -> None
 | Some v -> f v
 member this.Return x = Some x
 member this.ReturnFrom x = x

let optionM = OptionBuilder();;

let rec optionEval3 e : int option =
 match e with
 | CstI i -> optionM { return i }
 | Prim(op, e1, e2) ->
 optionM { let! v1 = optionEval3 e1
 let! v2 = optionEval3 e2
 return! opEvalOpt op v1 v2 }

www.itu.dk

An evaluator ... set of results, NEW

23

type SetBuilder() =
 member this.Bind(x, f) =
 Set.unionMany (Set.map f x)
 member this.Return x = Set [x]
 member this.ReturnFrom x = x

let setM = SetBuilder();;

let rec setEval3 e : int Set =
 match e with
 | CstI i -> setM { return i }
 | Prim(op, e1, e2) ->
 setM { let! v1 = setEval3 e1
 let! v2 = setEval3 e2
 return! opEvalSet op v1 v2 }

www.itu.dk

An evaluator ... trace operators, NEW

24

type TraceBuilder() =
 member this.Bind(x, f) =
 let (trace1, v) = x
 let (trace2, res) = f v
 (trace1 @ trace2, res)
 member this.Return x = ([], x)
 member this.ReturnFrom x = x

let traceM = TraceBuilder();;

let rec traceEval3 e : int trace =
 match e with
 | CstI i -> traceM { return i }
 | Prim(op, e1, e2) ->
 traceM { let! v1 = traceEval3 e1
 let! v2 = traceEval3 e2
 return! opEvalTrace op v1 v2 }

www.itu.dk

A standard evaluator, NEW

25

type IdentityBuilder() =
 member this.Bind(x, f) = f x
 member this.Return x = x
 member this.ReturnFrom x = x

let identM = new IdentityBuilder();;

let rec eval3 e : int =
 match e with
 | CstI i -> identM { return i }
 | Prim(op, e1, e2) ->
 identM { let! v1 = eval3 e1
 let! v2 = eval3 e2
 return! opEval op v1 v2 }

www.itu.dk

Reflections on
computation expressions

•  They reveal similarities
– between different kinds of computations
– between different kinds of data: list, seq, option, ...

•  They clarify the structure of the evaluators

•  Unfortunately, in F# a computation expression
builder (optionM, setM, traceM, identM)
cannot be a parameter to a function

•  Hence one cannot have a single "super-eval"

•  ... but in Scala we can, you'll see in November

26

www.itu.dk

References
•  F# computation expressions

–  Hansen and Rischel chapter 12
–  http://en.wikibooks.org/wiki/F_Sharp_Programming/

Computation_Expressions
–  http://msdn.microsoft.com/en-us/library/dd233182.aspx

27

