Suppose we have relations R_1, R_2, and R_3 with common attributes A (appearing in R_1 and R_2) and B (appearing in R_2 and R_3). Tuples in all relations have fixed length, 5 tuples per disk block, and attributes A and B occupy 10% of the total tuple length. The relations occupy $B(R_1) = 8,000$, $B(R_2) = 10,000$ and $B(R_3) = 90,000$ blocks on disk, respectively. Consider the relational algebra expression:

$$\delta(\pi_A(\sigma_{A>200}(R_1)) \bowtie (\sigma_{B=4}(R_3)) \bowtie (\sigma_{A\leq 450}(R_2))).$$

1. Using advanced statistics, our query optimizer comes up with the following estimates for the number of tuples in each subexpression:

- $|\sigma_{A>200}(R_1)| \approx 10,000$
- $|\sigma_{B=4}(R_3)| \approx 2,000$
- $|\sigma_{A\leq 450}(R_2)| \approx 5,000$
- $|\sigma_{A>200}(R_1) \bowtie (\sigma_{B=4}(R_3))| \approx 20,000,000$
- $|\sigma_{A>200}(R_1) \bowtie (\sigma_{A\leq 450}(R_2))| \approx 100,000$
- $|\sigma_{B=4}(R_3) \bowtie (\sigma_{A\leq 450}(R_2))| \approx 80,000$
- $|\sigma_{A>200}(R_1) \bowtie (\sigma_{B=4}(R_3)) \bowtie (\sigma_{A\leq 450}(R_2))| \approx 50,000$

2. Using these estimates, apply dynamic programming (Selinger-Style Optimization, see GUW page 845) to find the best physical query plan not using any indexes:

- Determine the order of joins.
- Determine the algorithms used for all operations. Assume that there is memory for either a two-pass sorting based join using $5(B(R_i) + B(R_j))$ I/Os to join R_i and R_j, or a two-pass hash join using $3(B(R_i) + B(R_j))$ I/Os to join R_i and R_j.
- Determine where to use pipelining. Assume that there are 10 extra memory buffers available for pipelining purposes.