Geometric index structures

March 21, 2005

Based on GUW Chapter 14.0-14.3, [Arge01] Sections 1, 2.1 (persistent B-trees), 3-4 (static versions only), 4.1, 9.
Today's lecture

- Multidimensional data
- Commonly used (heuristic) geometric index structures
- Persistent B-trees
- Stabbing query problem
- Planar point location
- The logarithmic method
Multidimensional data

Geometric data is one, two, or three dimensional, but also all relational data can be seen as multidimensional data.

- A relation with k attributes can be seen as a k-dimensional space.
- A tuple can be seen as a point in the k-dimensional space. The coordinates for the point are the values for the attributes.
Given the relation:

\[
\text{Student}(\text{Name, age, enrolled_year})
\]

Find all students aged 30 to 40 who started to study before 2004.

\[
\text{SELECT Name} \\
\text{FROM Student} \\
\text{WHERE age} \leq 30 \text{ AND age} \geq 40 \text{ and enrolled_year} < 2004;
\]
Geometric index structures

Hash-like indexes
• Grid files (*)
• Partitioned hash functions

Tree-based indexes
• Multiple-key indexes (*)
• kd-trees (*)
• Quad trees
• R-trees (*)

These indexes are *heuristic*, i.e., they are not (proved to be) worst case efficient.
Queries on geometric data

- **Partial match queries**: look up all points matching one or more attributes.
- **Range queries**: look up all points within a range for one or more attributes.
- **Nearest-neighbor**: find the point nearest to a query point.
- **Where-am-I**: given data in the form of geometric objects, find the objects that intersect the query point.
Grid files

• Simple idea:
 – Split each dimension into intervals.
 – Put each point into a bucket corresponding to the intervals it lies in (Ex: GUW p. 677).

• Overflow handling as in hash tables.

• Supports partial match queries, range queries, and nearest neighbor queries (how?)

• Bad case: All data along “diagonal” - need many grid lines (in internal memory) to avoid large buckets.

• Empty buckets? No problem, just hash!
Multiple-key index

- Index for several attributes A, B, C,...:
 - Group index attributes as a tuple (A,B,C,...)
 - Order among tuples is lexicographic.
 - Make B-tree index according to this order.
 - (Note: Different exposition in GUW).
- Efficiently supports partial match queries on a prefix of the attributes (corresponds to a range query).
- Bad case: Partial match query on non-prefix, e.g., search for single value of last attribute.
kd-trees

- Short for “k-dimensional search tree”.
- Change from ordinary search trees:
 - Each node is associated with a dimension.
 - An internal node partitions the points of its subtree along its dimension.
 - Dimensions rotate down the tree: 1,2,..,k,1,2,..k,1,2,… (Ex: GUW p. 691)
- Supports partial match queries, range queries and nearest neighbor queries.
- Bad case: Many points with same value in some dimension makes it impossible to split points well along this dimension.
R-trees

• In a B-tree each interior node:
 – Corresponds to a 1-dimensional range.
 – “Knows” the ranges of its children.

• In an R-tree each interior node:
 – Corresponds to a k-dimensional rectangle.
 – “Knows” the rectangles of its children.

• Supports partial match queries, range queries and nearest neighbor queries,…

• Flexible: All kinds of geometric objects (not just points) fit into rectangles.

• Unspecified (and hard): Maintaining “good” rectangles.
Persistent data structure

• A persistent data structure supports queries on previous versions of the data structure.
• A query specifies a time, e.g., “Was element x in the data structure at time t”?
• Updates are only supported at current time, not in an earlier version.
• Possible solution: Copy the data structure when it is updated. (Inefficient!)
• Similar to the concept of temporal databases.
Persistent B-trees

- One data structure representing \textbf{all versions} of the B-tree.
- Elements have an \textit{existence interval}: it exists from the time of insertion until time of deletion (or until now if it is still in the current version).
- Nodes in the B-tree also have an \textit{existence interval}.
- Nodes and elements are \textit{alive} in their existence intervals.
- \textbf{Invariant}: A node contains $\Theta(B)$ alive children in its existence interval.
- \textbf{Note}: Nodes alive at time t make up a B-tree for elements alive at time t.
Searching and updates in persistent B-trees

• **Searching for x at time t** can be done as usual in time $O(\log_B N)$ in the tree consisting of nodes alive at time t.

• **Insertion of x** is similar to normal insertion in a B-tree. If x should be inserted in leaf l, and l is full, then we have to maintain the new invariant. (Blackboard)

• **Deletion:** The element is not deleted, but the time interval is updated. This may cause a violation of the invariant. (Read yourself)
Time and space for persistent B-trees

- **Construction:** Insert elements one by one: N insertions take $O(N \log_B N)$ I/Os.
- In fact, construction can be done in $O(N/B \log_{M/B}(N/B))$ I/Os (not curriculum).
- **Space:** $O(N/B)$ blocks.
- **Note:** N is the total number of elements, both alive and deleted elements.
Problem session

Why are we talking about persistent B-trees in a lecture on geometric data?

• How can we use a persistent B-tree to represent 2-d (geometric) data?
• Given a set of points in 2-d, how can we perform a 3-sided, 2-d range query using the persistent B-tree?
Stabbing query problem

- Data structure for a set of intervals (1-d).
- Query: Report all intervals containing point q.
- Static version.
- Use the logarithmic method to get a dynamic data structure supporting insertions of intervals.
Stabbing query problem (cont.)

- Use a persistent B-tree with intervals as elements and interval endpoints as times.
- *Sweep* the intervals from left to right.
- Insert an interval when the sweep line reaches it left endpoint.
- Delete an interval when the sweep line reaches the right endpoint.
- **Construction time:** $O(N/B \log_{M/B}(N/B))$
- **Query:** Report all elements alive at time q. $O(\log BN + T/B)$. ($T =$ output size)
Planar point location

• Given a planar subdivision with N vertices.
• We want a data structure supporting:
 – **Query**: “Which region contains point q=(x,y)’”
• Assume: Enough to find one segment of the region (the one straight above q).
Planar point location (cont.)

- Idea: Use a persistent B-tree.
- Segments are elements.
- A segment exists in the time interval from left x-coordinate to right x-coordinate.
- Search at time x ($q=(x,y)$). How do we find the right segment?
Problem session

• Segments can not be ordered (in a given direction) in general. Why not?
• We need an order of the segments to search in the B-tree. Which segments do we need to compare?
• How can it be done?
Planar point location (cont.)

- Search for “segment” q=(x,y), in the persistent B-tree at time x.
- A point can be compared to a segment.

- Search time: \(O(\log_B N)\) I/Os.
- Construction time: \(O(N \log_B N)\) I/Os.
- Space: linear \((O(N/B)\) blocks).
The logarithmic method

- A general method to make many static data structures dynamic.
- Internal memory version:
 - Partition the N elements into \(\log N \) sets of size \(2^0, 2^1, 2^2, \ldots \).
 - Build a static data structure for each set, denoted \(D_0, D_1, D_2, \ldots \).
 - Every query has to query each of the sets.
 - Insertion: Find first empty \(D_i \). Build the structure \(D_i \) with all elements in the \(D_j \)'s for \(j<i \) and the new element.
 - Note: \(2^0 + 2^1 + \ldots + 2^{i-1} = 2^i - 1 \)
 - Amortized cost: \(x \) is in at most \(\log_2 N \) d.s.
The logarithmic method - external memory

- \(\log_B N \) subsets
- \(D_i \) has size at most \(B^i \)

- **Query**: Query all structures.
- **Insertion**: Insert in smallest \(D_i \) where
 \[|D_1| + |D_2| + \ldots + |D_i| < B^i. \]
 The new data structure for \(D_i \) contains all elements in
 \(D_j, j \leq i \), and the new element.
- **Deletion**: Mark elements deleted.
The logarithmic method - external memory (cont.)

Analysis:

- Assume a static structure with construction cost $T(N)$ and query cost $Q(N)$.
- **Query time**: $O(\sum \log_B^N Q(|D_i|))$. If $Q(N)=O(\log_B N)$ then the query time is $O(\log_B^2 N)$.

- **Amortized cost of insertion**:
 - Note 1: D_i may be smaller than B^i, and it is rebuilt more than once. Hence an element may be in D_i during several rebuilds.
 - Note 2: At least B^{i-1} new elements in D_i each rebuild.
 - Note 3: An element never moves "down".
 - Assume $T(N)=O(N/B \log_B N)$ then insertion costs $O(\log_B^2 N)$ I/Os, amortized. (Blackboard.)