INDEXING II

Lecture based on [GUW, 13.3-13.4] and [Pagh03, 3.0-3.2+4]

Slides based on
Notes 04: Indexing
Notes 05: Hashing and more
for Stanford CS 245, fall 2002
by Hector Garcia-Molina
Today

- Recap of indexes
- B-trees
- Analysis of B-trees
- B-tree variants and extensions
- Hash indexes
Why indexing?

- Support more efficiently queries like:

  ```sql
  SELECT * FROM R WHERE a=11
  SELECT * FROM R WHERE 0<= b and b<42
  ```

- Indexing an attribute (or set of attributes) can be used to speed up finding tuples with specific values.
Indexes in last lecture

- Dense indexes (primary or secondary)
- Sparse indexes (always primary)
- Clustered indexes (always primary)
- Multi-level indexes

- **Updates** (inserting or deleting a key) caused problems
B-trees

- Can be seen as a general form of multi-level indexes.
- Generalize usual (binary) search trees. *(Do you remember?)*
- Allow efficient insertions and deletions at the expense of using slightly more space.
- Popular variant: B⁺-tree
B⁺-tree Example

Each node stored in one disk block
Sample internal node

57 81 95

< 57 57 ≤ k < 81 81 ≤ k < 95 ≥ 95
Sample leaf node:

From internal node

57 81 95

To record with key 57
To record with key 81
To record with key 85

to next leaf in sequence

Alternative: Records in leaves
Searching a B⁺-tree

Above: Search path for tuple with key 101.

Question: How does one search for a range of keys?
In textbook’s notation

Leaf:

Internal node:
B⁺-tree invariants on nodes

- Suppose a node (stored in a block) has space for \(n \) keys and \(n+1 \) pointers.
- Don't want block to be too empty: Should have at least \(\lceil (n+1)/2 \rceil \) non-null pointers.
- **Exception**: The root, which may have only 2 non-null pointers.
Other B^+-tree invariants

(1) All leaves at same lowest level (perfectly balanced tree)

(2) Pointers in leaves point to records except for sequence pointer
Insertion into \mathbb{B}^+-tree

(a) simple case
 - space available in leaf
(b) leaf overflow
(c) non-leaf overflow
(d) new root
(a) Insert key = 32
(b) Insert key = 7

```
3
5
3
11
30
31
```

```
100
```

```
7
30
```
(c) Insert key = 160
(d) New root, insert 45
Deletion from B$^+$-tree

(a) Simple case - no example
(b) Coalesce with neighbour (sibling)
(c) Re-distribute keys
(d) Cases (b) or (c) at non-leaf
(b) Coalesce with sibling
 - Delete 50

n=4
(c) Redistribute keys
- Delete 50
(d) Non-leaf coalesce
- Delete 37

new root
Alternative B+-tree deletion

- In practice, coalescing is often not implemented (hard, and often not worth it)
- An alternative is to use tombstones.
- Periodic **global rebuilding** may be used to remove tombstones when they start taking too much space.
Problem session:
Analysis of B\(^+\)-trees

- What is the height of a B\(^+\)-tree with N leaves and room for n pointers in a node?
- What is the worst case I/O cost of
 - Searching?
 - Inserting and deleting?
B+-tree summary

- Height $\leq 1 + \log_{n/2} N$, typically 3 or 4.
- Best search time we could hope for! (To be shown in exercises.)
- If keeping top node(s) in memory, the number of I/Os can be reduced.
- Updates: Same cost as search, except for rebalancing.
Problem session

- Consider problem 2 on the hand-out, which asks for a proof that B-trees are optimal among pointer-based indexes.
Sorting using B-trees

- In internal memory, sorting can be done in $O(n \log n)$ time by inserting the keys into a balanced search tree.
- The number of I/Os for sorting by inserting into a B-tree is $O(N \log_B N)$.
- This is more than a factor B slower than multiway mergesort.
Next: Buffering in B-trees

- Based on slides by Gerth Brodal, covering a paper published in 2004 at the SODA conference.
More on rebalancing

- The book claims (on page 645): "It will be a rare event that calls for splitting or merging of blocks".
- This is true (in particular at the top levels), but a little hard to see.
- Easier seen for weight-balanced B-trees.
Weight-balanced B-trees
(based on [Pagh03], where \(n\) corresponds to \(B/2\))

- Remove the \(B^+\)-tree invariant:
 There must be \(\lceil (n+1)/2 \rceil\) non-null pointers in a node.

- Add new **weight** invariant:
 A node at height \(i\) must have weight (number of leaves in the subtree below) that is between \((n/4)^i\) and \(4(n/4)^i\).
 (Again, the root is an exception.)
Weight-balanced B-trees

Consequences of the weight invariant:
- Tree height is $\leq 1 + \log_{n/4} N$ (almost same)
- A node at height i with weight, e.g., $2(n/4)^i$ will not need rebalancing until there have been at least $(n/4)^i$ updates in its subtree. (Why?)
Rebalancing weight

New insertion in subtree

More than \(4(n/4)^i\) leaves in subtree \(\Rightarrow\) weight balance invariant violated
Rebalancing weight

Node is split into two nodes of weight around $2(n/4)^i$, i.e., far from violating the invariant (details in [Pagh03])
Weight-balanced B-trees

Summary of properties

- Deletions similar to insertions (or: use tombstones and global rebuilding).
- Search in time $O(\log_n N)$.
- A node at height i is rebalanced (costing $O(1)$ I/Os) once for every $\Omega((n/4)^i)$ updates in its subtree.
Other kinds of B-trees

- **String B-trees**: Fast searches even if keys span many blocks. *(April 4 lecture.)*
- **Persistent B-trees**: Make searches in any previous version of the tree, e.g. “find x at time t”. The time for a search is $O(\log_B N)$, where N is the total number of keys inserted in the tree. *(March 21 lecture.)*
You may recall that in internal memory, **hashing** can be used to quickly locate a specific key.

- The same technique can be used on external memory.
- However, advantage over search trees is smaller than internally.
Hashing in a nutshell

key $\rightarrow h(\text{key})$

Hash function

Typical implementation of buckets: Linked lists
Hashing as primary index

key → h(key) → records

disk block

Note on terminology:
The word "indexing" is often used synonymously with "B-tree indexing".
Hashing as secondary index

Today we discuss hashing as **primary index**. Can always be transformed to a secondary index using indirection, as above.
Choosing a hash function

Book's suggestions (p. 650):

- Key = $x_1 x_2 ... x_n$, n byte character string:
 $$h(\text{Key}) = (x_1 + x_2 + ... + x_n) \mod b$$

- Key is an integer:
 $$h(\text{Key}) = \text{Key} \mod b$$

PROBLEM:
For any fixed function, there are key sets that make it behave very badly (Why?)
Choosing a randomized function

Another approach (not mentioned in book):

- Choose h at random from some set of functions.
- This can make the hashing scheme behave well regardless of the key set.
- E.g., "universal hashing" makes chained hashing perform well (in theory and practice).
- Details out of scope for this course...
Insertions and overflows

INSERT:

\[
\begin{align*}
h(a) &= 1 \\
h(b) &= 2 \\
h(c) &= 1 \\
h(d) &= 0 \\
h(e) &= 1
\end{align*}
\]
Deletions

Delete:
 e
 f
 c
Analysis - external chained hashing
(assuming truly random hash functions)

- N keys inserted, each block (bucket) in the hash table can hold B keys.
- Suppose the hash table has size $N/\alpha B$, i.e., "is a fraction α full".
- Expected number of overflow blocks:
 $$(1-\alpha)^{-2} \cdot 2^{-\Omega(B)} N$$ (proof omitted!)
- Good to have many keys in each bucket (an advantage of secondary indexes).
Sometimes life is easy...

- If B is sufficiently large compared to N, all overflow blocks can be kept in internal memory.
- Lookup in 1 I/O.
- Update in 2 I/Os.
Coping with growth

- Overflows and global rebuilding
- Dynamic hashing
 - Extendible hashing
 - Linear hashing (next)
 - Uniform rehashing
Linear hashing

Two ideas:

(a) Use \(i \) (low order) bits of \(h(K) \)

(b) Hash table grows one bucket at a time
Linear hashing example

$b=4$ bits, $i=2$, 2 keys/bucket

- If $h(K)[i] \leq m$: Look at bucket $h(k)[i]$.
- Otherwise: Look at bucket $h(k)[i] - 2^{i-1}$.

$m = 01$ (max used block)

Future growth buckets:
• can have overflow chains!

Insert 0101.
Linear hashing example, cont.
b=4 bits, i=2, 2 keys/bucket

\[m = 01 \text{ (max used block)} \]

Future growth buckets

- insert 0101
Linear hashing example, cont.
b=4 bits, i=2, 2 keys/bucket

\[i = 2, 3 \]

\[
\begin{array}{|c|c|c|c|}
\hline
0000 & 0101 & 1010 & 1111 \\
\hline
000 & 01 & 100 \\
100 & 101 \\
101 & 110 \\
111 & 111 \\
\hline
\end{array}
\]

\[m = 11 \text{ (max used block)} \]
When to expand the hash table?

- Keep track of the fraction \(\alpha = \frac{N}{B}/m \)
- If too close to 1 (e.g. \(\alpha > 0.8 \)), increase \(m \).
- Conversely, if \(\alpha \) is too small, the table should be shrunk.
Performance of linear hashing

- Avoids using an index, lookup often 1 I/O.
- No good **worst-case** bound on lookups.
- Keys not placed uniformly in the table, so **worse** performance than in regular chained hashing.
- Extensions of linear hashing improve uniformity.
B-tree vs hash indexes

- Hashing good to search given key, e.g.,
 SELECT * FROM R WHERE A = 5
- Indexing (using B-trees) good for range searches, e.g.:
 SELECT * FROM R WHERE A > 5
- More applications to come...
Hashing and range searching

- **Claim in book (p. 652):** "Hash tables do not support range queries"
- True, but they can be **used** to answer range queries in $O(1+Z/B)$ I/Os, where Z is the number of results. (Alstrup, Brodal, Rauhe, 2001; Mortensen, Pagh, Patrascu 2005)
- Theoretical result, out of scope for ADBT.
Summary I

- **Indexing** is a "key" database technology.
- **Conventional indexes** (when few updates).
- **B-trees** (and variants) are more flexible
 - The choice of most DBMSs
 - Range queries.
 - Deterministic/reliable.
 - Theoretically “optimal”: $O(\log_B N)$ I/Os per operation.
 - Buffering can be used to achieve fast updates, at the cost of increasing height of the tree.
Summary II

- **External hash tables** support lookup of keys and updates in $O(1)$ I/Os, expected - randomized algorithm.
 - The actual constant (typically 1, 2, or 3) is a major concern (compare to B-trees).
 - New ITU research: Close to 1 I/O per operation.
 - **Growth management:** Linear hashing (extendible hashing, uniform rehashing).