Query compilation I

March 7, 2005

Based on GUW 16.2-16.3

Advanced Database Technology, Spring 2005
Anna Östlin and Rasmus Pagh
IT University of Copenhagen
Stages in query processing:

1. Query compilation – today (Chapter 16)
 - Parse (SQL) query to a \textit{query expression tree}. \(\div\) curriculum
 - Select a \textit{logical query plan}, expressing the query in relational algebra.
 - Select a \textit{physical query plan}, i.e., particular algorithms and an ordering for the relational operations.

2. Query execution (Chapter 15) – last week
 - Several possible algorithms for relational algebra operations.
 - The best algorithm depends on the particular relations involved, and on the internal memory available.
Parsing is the process of transforming a string into its derivation by a grammar.

The result is usually represented as a parse tree.

In the book, parse trees for SQL are called query expression trees.

Grammars and parsing is a major part of a course on compilers, and out of scope for this course. We will assume that:

- We have a parse tree of the query (such as the ones on GUW page 792-793).
- All operations are semantically valid (for example, do not use nonexisting relations or attributes).
From a parse tree to a logical query plan

(Apologies for the absence of trees on the slides...)

Basic ideas:

- A transformation rule for each syntactical construct.
- Rules generally involve the logical query plans of subexpressions (recursive processing).

Main example: SELECT-FROM-WHERE

- Suppose we have the parse tree for the expression
 \[E = \text{SELECT } A_1, \ldots, A_n \text{ FROM } E_1, \ldots, E_m \text{ WHERE } C. \]

- The corresponding algebraic expression \(\mathcal{A}(E) \) is
 \[\pi_{A_1, \ldots, A_n} (\sigma_C (\mathcal{A}(E_1) \times \ldots \mathcal{A}(E_m))). \]

- At all times we work with trees (parse trees and algebraic expression trees) rather than the textual representation.
Subqueries in conditions

Missing detail:

- In SQL, conditions might involve subqueries, e.g., the computation of some value that an attribute must be compared to.

- The subquery may be **correlated**, meaning that its result depends on the tuple being looked at (e.g., “does the value in attribute A exist in relation R.”)

- Correlated subqueries must in general be evaluated for every tuple (though it is often possible to do better).

- **Uncorrelated** queries just need to be evaluated once, before performing the `SELECT-FROM-WHERE`.

- We need to extend basic relational algebra to express subqueries in conditions – however, in most cases it is possible to rewrite to basic relational algebra (examples in GUW 16.3.2).
There are many algebraic laws that allow us to rewrite expressions in relational algebra.

Commutative laws:
- \(R \times S = S \times R \)
- \(R \bowtie S = S \bowtie R \)
- \(R \cup S = S \cup R \)

Associative laws:
- \((R \times S) \times T = R \times (S \times T) \)
- \((R \bowtie S) \bowtie T = R \bowtie (S \bowtie T) \)
- \((R \cup S) \cup T = R \cup (S \cup T) \)
Selecting a good algebraic expression

- There may be many algebraic expressions that evaluate to what we want.
- Though they are all equal, some may be better than others!
- We want an expression that is likely to result in short computation time.

Algebraic laws give us a way of rewriting the expression produced from the parse tree in order to improve it.
Problem session: Useful algebraic laws

For each of the following algebraic laws, consider whether it might be useful for rewriting an algebraic expression to have smaller computation time:

1. $\sigma_C(E_1 \cup E_2) = \sigma_C(E_1) \cup \sigma_C(E_2)$.
2. $\sigma_C(E_1 - E_2) = \sigma_C(E_1) - E_2$.
3. $\sigma_C(E_1 - E_2) = \sigma_C(E_1) - \sigma_C(E_2)$.
4. $\sigma_C(E_1 \times E_2) = \sigma_C(E_1) \times E_2$ if E_1 has all attributes in C.
5. $\sigma_C(E_1 \cap E_2) = \sigma_C(E_1) \cap \sigma_C(E_2)$.
6. $\pi_L(E_1 \bowtie E_2) = \pi_L(\pi(L \cup A_{E_2}) \cap A_{E_1}(E_1) \bowtie \pi(L \cup A_{E_1}) \cap A_{E_2}(E_2))$.
7. $\pi_L(\sigma_C(E_1)) = \pi_L(\sigma_C(\pi_A(E_1)))$ where A = attributes mentioned in C.
8. $\delta(E_1 \bowtie E_2) = \delta(E_1) \bowtie \delta(E_2)$.

Some other laws used:

- Splitting laws like $\sigma_{C_1 \land C_2}(E) = \sigma_{C_1}(\sigma_{C_2}(E))$ for simplifying the parts of the expression.

- Laws for pushing the selection operator **up** the tree, before pushing it down (in more subexpressions than otherwise).

- Laws for special cases of the aggregation operator.

- Grouping of associative operators, e.g., $(E_1 \bowtie E_2) \bowtie (E_3 \bowtie E_4)$ becomes simply $E_1 \bowtie E_2 \bowtie E_3 \bowtie E_4$. (This is to indicate that the order of operations may be chosen freely.)
Next we will consider how to transform the algebraic expression tree into an efficient **physical query plan**, indicating **what** algorithms are to be used for the operations, and in **which order**.

According to the book, one usually **first** chooses an algebraic expression and **then** tries to find the best physical query plan based on that expression.