QUERY COMPILED II

Lecture based on [GUW, 16.4-16.7] and [AGMS ‘99, sec. 1,2,4,5]

Slides based on
Notes 06-07: Query execution Part I-II
for Stanford CS 245, fall 2002
by Hector Garcia-Molina
Overview: Physical query planning

- We assume that we have an algebraic expression (tree), and consider:
 - Statistical estimates of the size of relations given by subexpressions.
 - Choosing an order for operations, using various optimization techniques.
 - Completing the physical query plan.
Estimating sizes of relations

The *sizes* of intermediate results are important for the choices made when planning query execution.
- Time for operations grow (at least) linearly with size of (largest) argument.
- The total size can even be used as a crude estimate on the running time.
Classical approach: Heuristics

- In GUW section 16.4 a number of heuristics for estimating sizes of intermediate results are presented.
- This classical approach works well in some cases, but is unreliable in general.
- The modern approach is based on maintaining suitable statistics summarizing the data. (Focus of lecture.)
Some possible types of statistics

- Random sample of, say 1% of the tuples. (NB. Should fit main memory.)
- The 1000 most frequent values of some attribute, with tuple counts.
- Histogram with number of values in different ranges.
- The "skew" of data values.
Histogram

- Number of values/tuples in each of a number of intervals.
On-line vs off-line statistics

- **Off-line**: Statistics only computed periodically, often operator-controlled (e.g. Oracle). Typically involves sorting data according to all attributes.

- **On-line**: Statistics maintained automatically at all times by the DBMS. Focus of this lecture.
Maintaining a random sample

- To get a sample of expected size 1% of full relation:
 - Add a new tuple to the sample with probability 1%.
 - If a sampled tuple is deleted or updated, remember to remove from or update in sample.
Estimating selects

- To estimate the size of a select statement $\sigma_C(R)$:
 - Compute $|\sigma_C(R')|$, where R' is the random sample of R.
 - If the sample is 1% of R, the estimate is $100 |\sigma_C(R')|$, etc.
 - The estimate is reliable if $|\sigma_C(R')|$ is not too small (the bigger, the better).
Problem session

- Suppose you want to estimate the size of a join statement $R_1 \bowtie R_2$.
- You have random samples of 1% of each relation.
- How do you do the estimation?
- Warning: Answer on next slide!
Estimating join sizes

- To estimate the size of a join statement $R_1 \bowtie R_2$:
 - Compute $|R'_1 \bowtie R'_2|$, where R'_1 and R'_2 are samples of R_1 and R_2.
 - If samples are 1% of the relations, estimate is $100^2 |R'_1 \bowtie R'_2|$. (Why?)
 - Shortly, you will see a considerably more reliable method, especially when we can store only a very small fraction of relations internally.
Keeping a sample of bounded size

Reservoir sampling (Vitter ’85):

- Initial sample consists of s tuples.
- A tuple inserted in R is stored in sample with probability $s/(|R|+1)$.
- When storing a new tuple, it replaces a randomly chosen tuple in existing sample (unless sample has size < s due to a deletion).
Next: Statistics for join estimation (AGMS ’99)

Goal:

- Maintain information that “summarizes” or “sketches” each relation.
- Should be able to compute (reliable) join size estimates from sketches of two relations. (General case will not be covered.)
Special case: Joining R with itself

- Assume at most t distinct join values.
- Observation:
 - If all values are equally frequent, self-join size $SJ(R)$ is smallest.
 - If data is skewed $SJ(R)$ is bigger. Worst case is where there is only 1 join value.
- Intuitively, we need to measure skew.
Tug-of-war

- Each join value v is assigned a random team: All occurrences of v are members of that team.
- Compute $Z =$ difference between number of members of the two teams.
- Estimate for $SJ(R)$ is Z^2. (Outside of scope of this course: Provably good.)
Computing Z on-line

- Pick hash function h "assigns teams", i.e., maps join value i to $\varepsilon_i = h(i) \in \{-1, 1\}$.
- When new tuple arrives with join value i, add $h(i)$ to current value of Z.
- When tuple with join value i is deleted, subtract $h(i)$ from Z.

Estimating size of a join

- Have: Sketches Z_R and Z_S of relations R and S.
- Estimator for $|R| \times |S|$ is $Z_R \cdot Z_S$. (Outside of scope of this course: Provably good.)
- Standard deviation is $\sqrt{(SJ(R) \cdot SJ(S))}$ - roughly "how much we expect the estimate to deviate from the true value".
- AGMS uses Variance, which is the square of the standard deviation.
Boosting reliability

- The reliability of estimates can be improved by storing \(k \) sketches \(Z_1, \ldots, Z_k \), and taking the mean of the resulting \(k \) estimates.
- Decreases standard deviation by a factor of \(\sqrt{k} \).
To further improve estimates

- “Intelligently split” the domain of the join attribute in several parts, and estimate join sizes for each part. (Dobra et al, 2002)
- “Skim” the most frequent values (by sampling) and use tug-of-war only for less frequent elements. (Ganguly et al, 2004)
Next: Physical query planning

- Have:
 - Relational algebra expression
 - Size estimates
- Need to determine:
 - In which order to compute subexpressions.
 - What algorithm to use for each operation.
Choosing a physical plan

Option 1: "Branch and bound".

![Diagram showing the process of choosing a physical plan with steps: Generate, Prune, Estimate Cost, and Pick Min from the plans generated.]

1. Query
2. Generate
3. Prune
4. Estimate Cost (using size est.)
5. Pick Min
6. Plans
Choosing a physical plan

Option 2: "Dynamic programming".

- Find best plans for subexpressions in bottom-up order.
- Might find several best plans:
 - The best plan that produces a sorted relation wrt. a later join or grouping attribute.
 - The best plan in general.
Choosing a physical plan

Options 3,4,...:
Other (heuristic) techniques from combinatorial optimization.
- Greedy plan selection.
- Hill climbing.
- ...

Order for grouped operations

- Recall that we **grouped** commutative and associative operators, e.g.
 \[R_1 |\langle\rangle| R_2 |\langle\rangle| R_3 |\langle\rangle| \ldots |\langle\rangle| R_k. \]

- For such expressions we must choose an evaluation order (a parenthesized expression), e.g.
 \[(R_1 |\langle\rangle| R_4) |\langle\rangle|(R_3 |\langle\rangle| \ldots) \ldots (\ldots |\langle\rangle| R_k). \]
Order for grouped operations

- Book recommends considering just **left balanced** expressions
 \(...((R4 \text{ }|<|\text{ }R2) \text{ }|<|\text{ }R7) \text{ }|<|\text{ }...\text{ }) \text{ }|<|\text{ }Rk.\)
- This gives **k!** possible expressions.
- Considering all possible expressions gives around **$2^k k!$** possibilities - not so many more.
Choosing final algorithms

- Usually best to use existing indexes.
- Sometimes building indexes or sorting on the fly is advantageous.
- Sorting based algorithms may beat hashing based algorithms if one of the relations is already sorted.
- Just do the calculation and see!
Pipelining and materialization

- Some algorithms (e.g. \(\sigma \) implemented as a scan) require little internal memory.
- **Idea:** Don't write result to disk, but feed it to the next algorithm immediately.
- Such **pipelining** may make many algorithms run "at the same time".
- Sometimes even possible with algorithms using more memory, such as sorting.
Influencing the query plan

- One of the great things about DBMSs is that the user does **not** need to know about query compilation/optimization.
- ...unless things turn out to run too slowly - then manual tuning may be needed.
- Tuning can use statistics and query plans to suggest the creation of certain indexes, for example.
Summary

- **Size estimation** (using statistics) is an important part of query optimization.
- Given size estimates and a relational algebra expression, **query optimization** essentially consists of computing the (estimated) cost of all possible query plans.
- Other issues are **pipelining** and memory usage during execution.