Text indexing

April 4, 2005

Based on
[KärkkäinenRao03]
Text indexing

Data in form of text:

- Digital libraries
- WWW, HTML-pages
- Biological data (e.g. DNA)
- XML
- etc.

We want to:

- Search for specific strings
- Compare strings
- Analyze text data
Problem session

Can relational databases be used for text data? Think about it by considering the following two situations:

- We have a number of HTML-pages for which we want a database so that we can search for all pages containing a specific key-word. How can the HTML-pages be stored in a relational database and what query will return the desired answer?

- We have a collection of DNA strings and we want a database that supports queries of the form “Is ATTG...T a substring of any of the DNA stings in the database?”. How can this be implemented using a relational database?
This lecture

- Problem definition
- Internal memory data structures
 - Suffix trees
 - Suffix array
- External memory data structures
 - Patricia trie and Pat tree
 - Short Pat array
 - String B-tree
- In two weeks: Google’s text indexing technique (anno 1998)
An alphabet, denoted Σ, is a set of (ordered) characters.

$S[i, j] = S[i] \cdots S[j]$ is a substring of S.
$S[1, j]$ is a prefix of S. $S[i, n]$ is a suffix of S.
Σ^* denotes all strings over alphabet Σ.

We can sort strings according to lexicographic order.
Example: For $\Sigma = \{a, b, c, \ldots, z\}$, where $a < b < c < \cdots < z$, the lexicographic order is the same as in a dictionary.
Indexed String Matching Problem

Let T be a set of K strings in Σ^*, where N is the total length of all strings in T.

String matching query on T: Given a pattern P find all occurrences of P in the strings in T.

Static problem: Store T in a data structure that support string matching queries. Such a data structure is called a full-text index.

Dynamic version: Supports also insertions and deletions of strings in the full-text index.
An important observation:

For all occurrences of a pattern P in a text T there is a suffix of T that has a prefix equal to P.
A suffix array of a text T is denoted SA_T.
An array with one entry for each suffix in T.
The suffixes are sorted. Pointers to the suffixes of T are stored (in sorted order) in the array.
Note that all suffixes with the same prefix are stored in consecutive order in the array.

Searching in a suffix array:
Binary search. $O(\log N)$ string comparisons in at most $O(|P| \log N)$ time.
Possible to do it faster: $O(|P| + \log N)$ [Manber and Myers].

Construction:
In time $O(N \log N)$.

A rooted tree with edges labeled by characters.

- A node in the tree represent the string spelled out following the path from the root to the node.

- A trie for a set T of strings is the minimal trie, such that for all strings $t \in T$ there is a node in the trie representing t.

Compact trie: Trie where paths without branches are replaced with one edge labeled with the string labeling the path.
Data structure for strings with many applications.

For example:
Given a string S preprocess S such that the query

- Is P a substring of S?

for any string P can be answered in time proportional to $|P|$ and not $|S|$.

Suffix trees: $O(|S|)$ time preprocessing and $O(|P|)$ time for queries.
Definition:

- S string of length m.
- Rooted tree with m leaves labeled $1, \ldots, m$.
- Internal nodes have degree 2 or more (except possibly the root).
- Edges are labeled with nonempty substrings of S.
- Two edges out of the same node are not labeled by the same first character.
- For leaf labeled i the concatenation of the edge labels on the root-to-leaf path spells out the suffix starting at position i, i.e. $S[i..m]$.
To get linear space for the suffix tree, the strings can not be stored in the tree. Instead pointers to the string are stored. This is a problem in external memory.

Problem session

- How much space would be needed if the strings were stored along with the edges in the suffix tree?
- Why is it a problem to use pointers to the string when we think about external memory?
A **Patricia trie** is a compact trie, except that the edges are labeled in another way.

- An edge is labeled by only the first character of the label in the compact trie and the length of the string labeling the edge in the compact trie.

- In the leaves there are pointers to the strings.

A **Pat tree** for a text T is denoted PT_T. It is the Patricia trie for the set of suffixes in T.
Searching in a Pat tree

How to search:
Search is almost like in the suffix tree.

– When searching for pattern P compare the first character in P with the characters labeling the edges to the children of the root. Skip the following $x - 1$ characters where x is the number labeling the edge with the same character as P. Continue recursively.

– When reaching the end of the pattern P we know that all leaves in that subtree has the same prefix. Look at one of them and compare to P. If it matches P, then all matches P, otherwise none matches P.
Idea:
When searching in the Pat tree you do not have to access the text more than once. Therefore it is (often) much better for external memory.

Time to search:
\(O(|P| + Z)\), where \(Z\) is the size of the answer.
Short Pat array (SPat array)

External memory version of a suffix array.

Idea:

- Divide the suffix array into blocks of equal size, say size p.
- Take one (the last) string in each block.
- Let these strings form a new shorter array. Store only the first l characters in each string in the array.
- Choose the block size p and length l so that this SPat array fits in memory.
- (More levels can be used if the blocks are too large to fit in one block on disk. Assume for now that p is not larger than the “real” block size.)

Text indexing
The SPat array can be searched (using, e.g., binary search) without extra I/O’s.

- If the pattern P matches more than one string in the SPat array in the first l characters, then we need to look at the actual strings. Let r be the number of strings in the SPat array matching P. $O(\log r)$ I/O’s are needed to find the block to search in.

- When the block to continue the search in is known we need to search the block. A binary search among the p strings requires $O(\log p)$ I/O’s since we need to look up the string each time to compare the strings.
What are the two main problems with using a B-tree for storing strings of variable length?
String B-trees combines B-trees and Patricia tries to overcome the problems with comparing strings and storing strings in the nodes of a B-tree.

Definition:

- The nodes in the tree stores a Patricia trie for the set of strings consisting of the lexicographic smallest and largest strings in all its subtrees.
- The degree of a node is between $b/2$ and b (except for the root).
- The strings in the leaves are lexicographic sorted from left to right.
The essential step is to use the Patricia trie to find the right subtree to continue the search in.

Two cases:

Cases 1:

- The pattern P matches a string S_i in the Patricia trie.
 We are done. Scan the leaves left and right of S_i to find all occurrences of P.
Cases 2:

- The pattern has a mismatch in the Patricia trie.

 Note 1: All strings below the mismatch have the same prefix above the mismatch.

 Note 2: The pattern P may have a mismatch before the mismatch in the Patricia trie, since only the first character after a branching point is compared to P.

 Compare P to some string in the subtree below the mismatch. From this information we know between which strings, in the Patricia trie, P belongs. We know where to continue to search (or that P doesn’t match any string in the tree).

Time:

$$O(scan(|P| + Z) + search(N))$$, where $scan(X) = \Theta(X/B)$ and $search(N) = \Theta(\log_B N)$.
Updates in String B-trees

Insertion:
Similar to insertion in B-trees, but now we must insert new strings into the Patricia tries in the nodes.

Insertion of a string S can be done in $O(scan(|S|) + search(N))$ I/O’s, where N is the number of strings in the String B-tree.

The naive way of doing it takes $O(scan(|S|))$ I/O’s in each node that is changed.

$O(scan(|S|) + search(N))$ is also the amortized cost using the naive algorithm, since the amortized number of split nodes is constant.

Deletion:
Similar.
Summary of external data structures

Patricia trie and Pat tree:

\[O(|P| + Z) \] I/O's (naive implementation).

Efficient if the tree fits in main memory, i.e. \(Scan(|P|) \) I/O's.

Used in String B-trees.

Short Pat array:

Efficient if enough memory to store the SPat array and if the SPat array does not contain too many strings with equal first \(l \) characters.

String B-trees:

Searching in \(O(scan(|S| + Z) + search(N)) \) I/O's.

Updates in \(O(scan(|S|) + search(N)) \) I/O's.

Space needed: \(\Theta(N/B) \) blocks.

Can also be used for dynamic indexed string matching.